
SPEClAL SECT/ON

LEARNING TO PROGRAM = LEARNING
TO CONSTRUCT MECHANISMS
AND EXPLANATIONS

Teaching effective problem-solving skills in the context of teaching
programming necessitates a revised curriculum for introducto y computer
programming courses.

ELLIOT SOLOWAY

MOTIVATION AND GOALS
A revolution-fueled by the growing body of cogni-
tive science research into the nature of expertise-is
causing radical revision (e.g., see [24]) in science and
mathematics curricula today. What has been taught
in the past is by and large not what an expert ac-
tually knows. For example, geometry students typi-
cally understand each step in a proof, as the teacher
puts it on the board, line by line. However, when
attempting to do a proof for homework, students
often have no idea where to begin. Why? Mathe-
maticians do not develop proofs in such an orderly,
linear fashion. Rather, developing a proof is a
nonlinear, search process. Unfortunately, students
are not told explicitly about the nonlinear nature of
proof development: They see their teacher develop a
proof line by line, and not surprisingly, they think
they should be able to do the same. Today, teaching
topics such as geometric proofs is being revised to
include explicit instruction as to the heuristics that
guide proof development.

This article continues with the curriculum redefi-
nition effort and focuses on concepts that should be
taught in an introductory programming course.
Textbooks used in introductory programming
courses typically focus on the syntax and semantics
of constructs in a language. New research with nov-
ice programmers, however, suggests that language

This work was sponsored by the National Science Foundation. under NSF
Grants MDR-8470150. DPE-8470014, and IST-8505019.

8 1986 ACM 0001.0762/86/0900-0650 750

constructs do not pose major stumbling blocks for
novices learning to program. Rather, the real prob-
lems novices have lie in “putting the pieces to-
gether,” composing and coordinating components of
a program [35, 361. Expert programmers know a
great deal more than just the syntax and semantics
of language constructs (e.g., [2, 5, 13, 18, 27, 311.
They have built up large libraries of stereotypical
solutions to problems as well as strategies for coordi-
nating and composing them. Students should be
taught explicitly about these libraries and strategies
for using them.

Teaching programming in schools is a particularly
hot topic now: On the one hand, it is argued that
programming is merely a job skill, and that program-
ming instruction should not be included in a general
curriculum; on the other hand, it is argued that pro-
gramming is a subject where one can learn effective
problem-solving skills (e.g., [21]). Currently, there is
little empirical support for the latter camp (e.g.,
[lo, 17, 23, 331). However, the lack of impact of pro-
gramming on problem solving may be due to the fact
that students are not taught the key ideas underly-
ing programming: Why should learning where to put
a semicolon in Pascal lead to enhanced problem-
solving ability?

The focus on instruction of the syntax and seman-
tics of programming language constructs leads to an
emphasis on the program as the output of the pro-
gramming process. However, a program has two
audiences:

850 Communications oftherlCM September 1986 Volume 29 Number 9

Special Sectiorl

l The computer: The instructions in a program turn that, by and large, have remained as tacit knowledge
the computer into a mechanism that dictates how a in experts’ heads, but that need to be explicitly
problem can be solved. taught, will be explained.

l The human reader: The programmer needs to have
an explanation as to why the program solves the AN ENRICHED SET OF VOCABULARY TERMS
given problem. There is a lot of knowledge and many strategies that

In this view, learning to program amounts to learning
experts use that need to be made explicit and taught

how to construct mechanisms and how fo construct ex-
explicitly to students in introductory programming

planations. The need to construct mechanisms and
courses. There are two general categories of con-

explanations transcends the domain of program-
cepts: knowledge and strategies for using knowledge.

ming: In daily life, people constantly are developing
The following list is not exhaustive; it is only meant

mechanisms and explanations to solve problems. For
to illustrate the basic theme.

example, giving instructions to a visitor on how to
get from the airport to an office is a mechanism, and
providing a justification for why that particular
route is an effective choice is an explanation. In an
introductory programming course, students should
be taught what they really need to know about pro-
gramming, and in doing so, they will learn effective
problem-solving strategies that transcend the do-
main of programming.

Goals and Plans: the
Heart of the Matter
What are the basic building blocks for analyzing
problems and constructing programs? Goals and
plans-stereotypical, canned solutions-are two key
components in representing problems and program
solutions. A chatty walk-through of a simplified
problem decomposition will provide an intuitive un-
derstanding of the nature of goals and plans. More

UNDERLYING ASSUMPTIONS
Two key assumptions underlying the proposed cur-
riculum are the following:

formal jargon will be introduced at the end of this
section.

What, then, are the dominant elements in the fol-
lowing problem?

Tacit Knowledge. Experts are not necessarily con-
scious of the knowledge and strategies they employ
to solve a problem, write a program, etc. ([7]). Often,
experts refer to “intuition, gut feel, etc.” as the
sources of their inspiration. However, the scientists’
job is to make explicit that which was implicit--to tease
out the otherwise tacit knowledge that experts have
and use. This enterprise has in fact been carried out
in a wide variety of content domains such as mathe-
matics (e.g., [ZO]), physics (e.g., [15]), etc. The reader
will recognize immediately the majority of the con-
cepts described in the next section, not as new types
of knowledge associated with good programming and
problem solving, but, rather, as simply making ex-
plicit that which was already there!

Averaging problem: Write a program that will read
in integers and output their average. Stop reading
when the value 99999 is input.

An average requires that a sum of the input num-
bers be taken, and that this sum must be divided by
a count of the numbers summed. These two require-
ments are goals of the problem. In developing a pro-
gramming solution for this problem, two additional
goals (at least) must be put forth: The numbers must
be input, and the average must be output. Expert
programmers have developed standard techniques
for realizing these four goals since they are common
and appear in many problems. For example, pro-
grammers have a templatelike structure for reading
in a stream of integers, summing them, and stopping
when a sentinel value (99999) is input: Whorfian Hypothesis. The belief that one should

tease out tacit concepts and teach them explicitly
rests to some degree on the Whorfian Hypothesis. In initialize a running total
writing about language, Benjamin Whorf suggested ask user for a value
that “language determines thought”: That is, you can if input is not the sentinel value
only think about something if you have a word for then
it. The strict, literal interpretation of Whorf’s conjec- add new value into running total
ture seems much too strong. However, a weaker loop back to input
claim that “language aids thought” surely has a great
deal of appeal. That is, how can students learn a

This template is not language dependent-an expert

concept, when what they need to learn is not explic-
can instantiate this template in Pascal, C, PL/l, etc.

itly taught to them? The geometry proof example
In our terminology, such canned solutions are plans

mentioned earlier is a case in point.
([z]). Programmers also have a looping plan for
reading in and counting values that are input, again

In what follows, then, a set of “vocabulary items” stopping when a sentinel value is input:

September 1986 Volume 29 Number 9 Communications of the ACM a51

Special Section

initialize a counter a current problem in terms of old problems, so that
ask user for a value solution strategies can be transferred from the old
if input is not the sentinel value situation to the current situation. The language of

then goals and plans provides just such a language for
increment counter characterizing problems and solutions ([29]).
loop back to input:

A key observation that must be made is that the
plan for realizing the summing goal and the plan for
realizing the counting goal must be merged, since the
data will be passed through only once:

initialize a running total
initialize a counter
ask user for a value
if input is not the sentinel value

then
add new value into running total
increment counter
loop back to input

Once the sum and count have been calculated, divi-
sion must take place to arrive at the average. An
expert programmer knows that division must be pro-
tected since a run-time error will occur if division
by zero takes place:

l Example 2: Figure 1 depicts a buggy program gen-
erated by a student programmer for a more com-
plicated version of the averaging problem. What
would be a good description of this bug? Why
might the student have created this bug? The
goal/plan language again proves useful: The stu-
dent has not merged a “valid-data-entry plan”-a
filter loop plan that checks the validity of incom-
ing data-with the sum-and-count plans. In fact,
merging these plans requires considerable skill;
analyses of literally thousands of student-
generated programs suggest that students have sig-
nificant difficulty in precisely those situations
where merging must take place ([36])! Many more
examples of the use of goals and plans can be
found in [11] and [37].

if count is greater than 0 then
then do the calculation
else report the problem to the user

Note that this protection plan comes directly after
the sum-and-count plans. This type of plan composi-
tion is abufmenf.

It is not mere coincidence that a goal/plan lan-
guage has utility in both developing and analyzing
computer programs. Empirical data support the theo-
retical claim that experts in domains such as pro-
gramming, chess, go, electronic circuits, mathemat-
ics, etc., have and use goals and plans in their
problem-solving activity. The classic experiment in
this area was carried out by Chase and Simon [6]
with chess players:

Although the preceding discussion may appear
straightforward, the power of the goal/plan language
can be seen in the following two examples:

l Example 1: Consider the following problem:

Write a program that will output ‘T’ if all the in-
puts are ‘T’, but output ‘F’ if there is just one ‘F’ in
the input sequence. Stop reading when a ‘#’ is
input.

Master and novice chess players were shown a meaning-
ful chess board, and asked to recall the pieces (once the
board was taken away). The masters recalled more of
the pieces than did the novices. Next, the masters and
novices were shown a board in which the chess pieces
were placed randomly on the board. What happened?
The performance of the masters was the same as that of
the novices.

On the surface, this problem and the averaging
problem appear different. However, this problem
has an almost isomorphic plan structure to the av-
eraging problem: A sentinel is used to stop reading
the input; instead of accumulating totals as in the
averaging problem, this problem requires a flag to
be set/reset depending on the values input; since
no input may be given, protection of the output
must be implemented. In teaching programming-
and problem solving in general-a key objective is
to develop useful methods of abstraction: If every
problem a student must solve appears to be new
and different, then there is little reuse of experi-
ence. A hallmark of expertise is the ability to view

Chase and Simon argued that the masters were bet-
ter able to recall the meaningful chessboard because
they were able to encode the pieces of the board in
terms of chunks that represented meaningful units
(e.g., a particular type of offense). In contrast, by
definition novices do not have the degree of experi-
ence masters have, and thus the novices do not pos-
sess the domain specific chunks. Similar experi-
ments have been carried out in the domain of
programming [l, 19, 271 with comparable results.
These sorts of experiments lend support to the
theory that experts have and use domain specific
chunks. These chunks are plans in the programming
domain. Finally, the notion of a chunk (plan) is not
useful only in technical subject domains: Cognitive
psychologists have long posited the existence of

852 Communications of the ACM September 1986 Volume 29 Number 9

Special Secth

BUGGY VERSION CORRECT VERSION

BEGIN
sum := 0;
count := 0;
writeln('please input a rainfa
read(rainfal1)
while rainfall < 0 do

begin

BEGIN
sum := 0;

11');
count := 0;
writeln('please input a rainfal
read(rainfal1)
while rainfall <> 99999 do

begin
writeln('rainfal1 cannot be < 0;

input again');
read(rainfal1);

end;
while rainfall <> 99999 do

begin
sum := sum + rainfall;
count := count + 1;
writeln('please input a rainfall')
read (rainfall);

end;

etc.
END.

Problem: Read in integers that represent daily rainfall, and
print out the average daily rainfall; if the input value of rainfall

.l’);

while rainfall < 0 do
begin

writeln('rainfal1 cannot be < 0;
input again ’) ;

read(rainfal1);
end;

sum := sum + rainfall;
count := count + 1;
writeln('please input a rainfall');
read (rainfall);

end;

etc.
END.

is less than zero, prompt the user for a new rainfall.

FIGURE 1. Sample Buggy Program

schemata as units of mental organization that play
the same type of role in reading and writing stories
as plans play in reading and writing computer pro-
grams (e.g., [3, 4, 9, 261). Thus, there is a substantial
body of psychological research that underlies the
goal/plan idea.

Goals and plans can be given more concrete real-
izations. For example, the plan that “reads in and
sums integers, stopping when 99999 is input” is
called the SENTINEL-CONTROLLED RUNNING-
TOTAL LOOP PLAN. Similarly, the plan that “reads
in and counts integers, stopping when 99999 is in-
put” is called the SENTINEL-CONTROLLED
COUNTER-LOOP PLAN. The plan that protects the
division in the average calculation is called the
SKIP-GUARD PLAN. The intent is to convey some
sense of the plan’s goal in its name. Although plan
names can be awkward, to say the least, they give
explicit labels to structures that should be used re-
peatedly when solving problems. Assigning a label
helps to establish a plan’s reality. In fact, a whole
library of plans has been built up to teach introduc-
tory programming. Students are explicitly taught to
use the plans in this library and to construct plans of
their own ([ll, 30]j. The goal/plan language is at the
core of the proposed revised curriculum for teaching
introductory programming.

Mechanisms and Explanations: the
Products of the Programming Process
If introductory programming courses are to teach
students something more than a job skill, the under-
lying abstractions of programming must be made
explicit. That is, students must be taught what pro-
gramming has in common with other problem-
solving tasks. By focusing on programs as the output
of the programming process, students are naturally
led to think that what they have learned in “Com-
puter Science 100" is relevant only to the production
of programs. To facilitate the transfer of knowledge
from “Computer Science 100" to other problem-
solving activities, students must be taught explicitly
that programming is a design discipline, and as such
the output of the programming process is not a pro-
gram per se, but rather an artifact that performs
some desired function. Artifacts lead naturally to the
concept of mechanism: A mechanism, whether it be
instantiated as a transistor, a bolt, a gear, or a verbal
instruction, specifies a chain of actions that, when
set in motion, produces some desired effect. Artifacts
that are instantiated in software are exceedingly
malleable-change is the norm, not the exception.
Programmers typically do not have the luxury of
producing a one-shot artifact. Rather, they need to
provide a trail of how and why the artifact was de-

Septewlber 1986 Volume 29 Number 9 Communications of the ACM a53

Special Sactiorf

signed the way it was to enable the next program-
mer to carry out effective changes of the artifact.
This trail of information is an explanation. The prod-
ucts of the programming process are really mecha-
nisms and explanations; what students learn in an
introductory programming course is the knowledge
and skills to construct these objects.

The right half of Figure 2 is a Pascal program for
the averaging problem. The program is the mecha-
nism that instructs the computer as to how an aver-
age should be calculated.

How does the program in Figure 2 solve the desired
problem? When executed by a computer (or by a
human assuming the role of a computer), the pro-
gram accepts numbers from a user, adds those

goal; RUNNING goal :

numbers into an accumulator called total, etc.

The description in Figure 2 is only a partial repre-
sentation of the mechanism. That is, in executing
the mechanism, the computer turns a static program
written on a piece of paper into a dynamic entity
that exists over time. In this dynamic representation,
notions such as the causal relationship between the
statements become very important and must be used
in describing how a program works: For example,
the running total (total) and counter update
(count) are performed before the next input value is
read in; after the sentinel value is input, a test is
made to see if the counter is greater than zero.

The left half of Figure 2 is the explanation for
why that program computes the desired answer. The

r - - - - - - - - - - - 7

1 SENTINEL I
compute--TOTAL realize + CONTROLLED!

LOOP stopping ; RUNNING !
PLAN condltlon ! TOTAL t

1 LOOP PLAN !
L-----------J

COUNTER goal :

condltlon

\
godI:

.
:PRINT:

output :PLAN :
d"l?rdgfZ

Explanation

.

:count := 0;
.
.

.

r---------------------------------~-,

I total := 0;
L----,----------------------------~-

1-.11-1.-1-.1.--.---.--.

I
wrlteln('lnput number'); i

I read(new);

L
khlle new <> 99399 do !
-.I.UI.-I.-IU.I-I.--.-.~

tegln

end;

average := total/count;
3

.
:wrlteln(average) ; .

end

Note that the relationship between a plan and its gQd& k i CONTROLLEO COUNTER-LOOP PLAN is enclosed by a
indicated by a box (e.g., the code that implem@f$ the*. box of dashes and dots.
SENTfNEL-CONTROLLED RUNNING-TOTAL f&X@ PLAR
is enclosed by a box of dashes), In particular, the codi+ ’ Prdblem: write a program that will repeatedly read in and
realizing the merging of the SENTINEL-C6NTRt.JLLE@ , sum data until a final stopping ,value of 99999 is input. Out-
RUNNING-TOTAL LOOP PLAN and the SENTfWfk~ put the average of the numbers read in.

854 Communications of the ACM

FIGURE 2. An Example: Mechanism and Explanation

September 1986 Volume 29 Number 9

Special Section

goals of the English statement of the problem are
identified, and stereotypical methods (plans) are
used to attack and resolve each of these goals.

Why does the program effectively compute the
average of the numbers read in? The SENTINEL-
CONTROLLED RUNNING-TOTAL LOOP PLAN is
used here because the problem requires that the loop
be terminated following input of a specific value (the
“sentinel-controlled” part of the plan), and because a
running sum is needed to achieve the goal of sum-
ming the numbers entered by the user of the pro-
gram. Also, ta calculate the average, a merge of the
SENTINEL-CONTROLLED COUNTER-LOOP PLAN
with the SENTINEL-CONTROLLED RUNNING-
TOTAL LOOP PLAN keeps track of the number of
values input, since the input data will only be passed
over once.

In the explanation, phrases such as because and to
are used; these phrases signal the presence of infor-
mation explaining the relationship between goals in
the problem and plans instantiated in the program.

Just as the program description does not convey
the entire mechanism, the goal/plan representation
in Figure 2 does not include some important infor-
mation. For example, how does the programmer
know that the merging of the COUNTER-LOOP
PLAN with the SENTINEL-CONTROLLED
RUNNING-TOTAL LOOP PLAN will be correct?
Or, why did the programmer choose not to read
the numbers into an array, using a SENTINEL-
CONTROLLED ARRAY INPUT LOOPING PLAN,
and then process the data? This type of information
must be encoded in a more complete explanation.

Understanding how to talk about mechanisms and
explanations is still at an early stage. At least some
vocabulary already exists for talking about mecha-
nisms: language constructs, data and control flow,
static and dynamic properties, etc. Playing an analo-
gous role, the discussion of goals, plans, and their
relationships begins to provide a concrete language
for talking about explanations.

DESIGN STRATEGIES: CONSTRUCTlNG
MECHANISMS AND EXPLANATIONS

Canned solutions are programming plans-stereo-
typical methods for achieving goals. The objective of
the stepwise-refinement planning strategy is to iden-
tify in the given problem statement various goals for
which programming plans have already been devel-
oped. But what happens when a student does not
have the plans that are relevant to a problem? For
example, what happens when students just start
learning to program? The answer is simple: Students
cannot employ stepwise refinement as straightfor-
wardly; they will do a substantial amount of floun-
dering and searching, and tend to decompose a prob-
lem inappropriately. In fact, in a study with junior
grade software designers this floundering behavior is
precisely what was observed ([Z]). Stepwise Refinement

Stepwise refinement is a planning technique that is Recall that an explanation is made up in large
intended to provide an orderly method for thinking measure by the goals and plans underlying the
about a problem. Almost all programming textbooks mechanism. Notice that the stepwise-refinement
attempt to teach students how to use this technique. process actually produces the goal/plan decomposi-
Typically students are told to break down a problem tion that explains why the resultant mechanism is
into subprdblems. They are then shown how the au- an effective solution to the problem: The goal/plan
thor carries out this prescription on a set of exam- decomposition relates goals that need accomplishing
ples. Most students can follow the argument quite to techniques (plans) for achieving those goals. As
well: They can understand the transition between part of the goal/plan decomposition, the reasons

each step. However, when asked to create a stepwise
refinement for a new problem, most students are at
a loss as to where to begin. When they attempt step-
wise refinement on their own and confront the ques-
tion of how to actually do it, troublesome issues
arise: Why was the problem broken down into those
n levels; why not m levels? And why were those
particular routines used; why not some other rou-
tines? Textbooks typically do not answer those ques-
tions. Students are left to induce the strategies for
doing stepwise refinement on the basis of the text-
book’s examples.

In teaching stepwise refinement, one crucial heu-
ristic that everyone intuitively knows, but seldom
makes explicit, must be added:

Break down a problem into subproblems, on the basis
of problems that you have already solved and fey which
you have canned (OY almost canned) solutions.

In teaching stepwise refinement, the image we try to
paint is as follows:

Assume that you already possess a “barrel of canned
solutions.” Look up at the problem from that barrel
of solutions, and try to see if some of those canned
solutions can be used in the solution of the new
problem. Break the new problem down so that you can
use those canned solutions.

In other words, students must already possess the
primitives into which the problem will be decom-
posed in order to carry out a stepwise-refinement
strategy.

September 1986 Volume 29 Number 9 Communications of the ACM 855

Special Se&m

why one goal and/or plan was chosen over another
should also be made explicit; this too is part of the
explanation.

Plan Composition Methods
Stepwise refinement describes the “macrostrategy”
for developing a goal/plan decomposition for a given
problem. However, rules for how plans at the “micro-
level” should be woven together have also been
identified. For example, in solving the averaging
problem using stepwise refinement, there is a need
for an output goal, to print out the computed value,
and a calculate goal, to produce the average. How
should the plans that realize these two goals be
“glued together” (Figure 2)? Since the CALCULA-
TION PLAN is completely finished before the
OUTPUT PLAN can be performed, simply abut the
two plans-the plan for computing the average out-
puts a value that is the input to the plan that prints
out the value.

More generally, four strategies for gluing together
plans have been identified:

Abutment: Two plans are glued together back to
front, in sequence, as illustrated in the averaging
problem.
Nesting: One plan is completely surrounded by
another plan. For example, in the averaging pro-
gram in Figure 2, the OUTPUT PLAN, the plan
that realizes the goal of writing out the average, is
nested within the SKIP-GUARD PLAN, which re-
alizes the goal of not permitting division by zero to
occur in the average calculation if no numbers are
actually input.
Merging: At least two plans are interleaved. For
example, to solve the averaging problem, the plan
that summed the input and the plan that counted
the number of inputs were merged.
Tailoring: Sometimes a canned plan that has al-
ready been developed is not quite what is needed
in a problem. It must be modified to fit the partic-
ular needs of the situation. After all, we do call it
“software.”

Plan merging is an exceedingly difficult activity to
carry out effectively. (For example, see the buggy
program in Figure 1, in which the student did not
properly merge the VALID-DATA-ENTRY PLAN
with the SENTINEL-CONTROLLED RUNNING-
TOTAL LOOP PLAN and the SENTINEL-
CONTROLLED COUNTER-LOOP PLAN.) In study-
ing bugs that novice programmers make, it has been
shown that when novices try to merge plans they
almost invariably merge them incorrectly [37]. Such
behavior is not all that surprising: Weaving together
two or more plans requires great care and attention

to details, and the ability to foresee all sorts of subtle
interactions. From an instructional point of view,
students must be alerted to the problems of produc-
ing programs in which plans are merged.

Providing students with four strategies for gluing
plans together makes explicit a strategy for develop-
ing the explanation and mechanism components of a
program at the microlevel. In particular, the expla-
nation is furthered when students are told how the
subgoals are stitched together to solve the overall
goal, and the mechanism is furthered when the
plans are instantiated in terms of actual program-
ming language constructs.

Rules of Programming Discourse:
Good Programming Practices
When plans are instantiated via actual code, there is
still a great deal of flexibility as to how those plans
should be realized: Different language constructs can
realize the same plan, and/or the statements in a
plan can have multiple orderings. For example, con-
sider the program in Figure 3, which calculates and
outputs a correct average. A programming instructor
would certainly not want to give the writer of this
program full credit in a test situation, since this pro-
gram is written in a “poor style.” Generally speaking,
initializing variables to some strange value (e.g., typ-
ically one initializes a variable containing numeric
values to either 0 or 1) is not a good habit. A goal/
plan analysis of this program reveals the student’s
underlying intentions in performing these strange
initializations:

Program Average
VAR count : INTEGER;

sum, average, number : REAL;
BEGIN

sum := -99999 ;
count := -1;
REPEAT

writeln('please input a number');
read (number)
sum := sum + number;
count := count + 1;

UNTIL (number = 99999);
average := sum/count;
writeln('the average is: ',average);

END _

This student program would not receive full credit because of
its poor programming style.

FIGURE 3. Violating a Rule of Programming Discourse

858 Communications of the ACM September 1986 Volume 29 Number 9

Special Section

In attempting to realize the goal of reading in, sum-
ming, and counting user input integers, the student
has implemented the SENTINEL-CONTROLLED
RUNNING-TOTAL LOOP PLAN with a repeat
construct in Pascal. However, the repeat construct
is not appropriate when implementing a loop in
which the stopping value can be input on the first
read; in such a case, the processing loop must not be
executed even once. In Pascal, the while construct
is the most appropriate loop for a SENTINEL-
CONTROLLED RUNNING-TOTAL LOOP PLAN.
(See [34].) Using a repeat construct allows the sen-
tinel value to be added incorrectly into the running
total (and also the counter is incorrectly updated).
To compensate for this “off-by-one bug,” the student
has subtracted out the sentinel value (and the
counter value) during the initialization phase of the
program!

Surely, backing out a value to compensate for an
off-by-one bug is not good programming practice.

Programming teachers, in grading a program such
as the one depicted in Figure 3, often get the follow-
ing response from students: “But my program
runs. , . .” Often, teachers are hard put to say explic- I
itly why a piece of code is not in good style, and the
student is left in the dark as to why the program is
SO strictly graded. Aside from learning about step-
wise refinement and plan composition methods, stu-
dents must be taught to use rules of programming
discourse ([12]), which are analogous to rules of con-
versational discourse. For example, consider the fol-
lowing interchange:

Clearly, that second role was obscure: Students
would have to understand the behavior of the loop
to appreciate the programmer’s choice of that partic-
ular initialization. Unfortunately, precious few pro-
gramming textbooks (e.g., [la, 161) explicitly teach
students about the rules of programming discourse.
Rather, students are expected to pick them up from
observing examples of programs. However, as pro-
gramming teachers know, students tend not to learn
what counts as a program written in a good style.

From the computer’s perspective, a program that
violates the rules of discourse but computes the de-
sired value is as good as a program that does not
violate the rules of programming discourse. How-
ever, a program is not just for the computer: A pro-
gram that follows the rules of discourse better en-
ables a human reader to reconstruct the explanation
that the program writer was following in initially
developing the mechanism. Expert programmers use
rules of discourse, albeit implicitly, in generating
programs, and they assume that other programmers
will do the same. Programs that violate the rules of
discourse are often very difficult to comprehend. In
fact, in a recent study, the performance of advanced
programmers was reduced to that of novice program-
mers when the advanced programmers were asked
to deal with programs that violated various rules of
discourse ([31]).

May: Hi, John. Can you tell me what time it is?
John: Yes.

John’s response is not in accordance with accepted
rules of discourse; he should have said something
like this:

Simulation: Making Explicit the
Dynamic Properties of a Program
Although stepwise refinement and plan composition
methods deal with putting pieces of solutions to-
gether, the resulting solution must in fact do what it
is supposed to do. That is, the former three strategies
deal with plans as static objects; however, the dy-
namic, run-time properties of the plans must be in-
spected, too, since unwanted interactions often arise.
In studies, professional designers [2] and maintainers

John: Yes, it is 3:15. [18] have been observed repeatedly carrying out sim-

Analogously, there are rules of programming dis-
course that prescribe good programming practices,
For example, the program in Figure 3 violated the
following rule of programming discourse:

Do not do “double duty” with code, especially when the
second function played by the code is obscure.

That is, the initialization of Sum and Count played
two roles:

l Role 1: The variables were initialized to some
starting value.

l Role 2: The starting values were chosen so as to
compensate for the off-by-one bug that resulted
from an incorrect looping structure.

ulations of their design in progress, or the program
being enhanced. (See also [13].) These professionals
appear to seek and gain an understanding of the
casual interactions among the components. The
feedback provided by simulation then enables them
to rework-their design, in the case of the designers,
or to be sensitive to a possible trouble spot, in the
case of the maintainers. Moreover, those designers
and maintainers who did not carry out simulations
did not develop an effective design or an effective
enhancement.

Simulation, then, is a strategy for uncovering un-
wanted causal interactions between components
that occur as a result of the dynamic aspects of a
program. Simulation has its detractors (e.g., [z]);

September 1986 Volume 29 Number 9 Communications of the ACM 857

Speciril Section

however, if simulation is not to be used, then some
other means for understanding these dynamic effects
must be developed. Until then, the simulation strat-
egy should be explicitly taught to students.

11.

12.

13.

CONCLUDING REMARKS
Teachers of introductory programming clearly know
that teaching the syntax and semantics of a pro-
gramming language is not enough. Students should
be given explicit instruction in “vocabulary terms”
such as mechanism, explanation, goal, plan, rules of
programming discourse, plan composition methods,
etc. As supported by a wide range of empirical stud-
ies (e.g., see [8, 28, 32]), these notions are, in fact,
what expert programmers know and use. Moreover,
these notions are applicable not only in a program-
ming context. For example, people are constantly
developing mechanisms and explanations to deal
with problems arising in daily life. If a revised cur-
riculum of this type enables students to transfer
what they learned from programming to other
problem-solving situations, then programming will
be established as not just a vocational skill, but
rather as a vehicle for learning effective problem
solving-and the intense excitement surrounding
programming for “just plain folks” would be justi-
fied!

14.

Johnson, W.L. Intention-based diagnosis of errors in novice pro-
grams. Ph.D. thesis 246. Dept. of Computer Science, Yale Univ., New
Haven, Corm.. 1985.
Joni. S.. and Soloway. E. But my program runs! Discourse rules for
novice programmers. J. Educ. Comput. Res. To be published.
Kant. E.. and Newell. A. Problem solving techniques for the design
of algorithms. Tech. Rep. CMU-C S-82-145, Dept. of Computer Sci-
ence, Carnegie-Mellon Univ., Pittsburgh, Pa., 198’2.
Kernighan. B.. and Plauger. P. The EJements of Style. McGraw-Hill,
New York. 1978.

15. Larkin. I.. McDermott. I., Simon, D.. and Simon. H. Expert and nov-
ice performance in solving physics problems. Science 208 (198o),
140-156.

16.

17.

18.

19.

20.

21.

Ledgard. H., Hueras, J.. and Nagin, P. Pascal with Style: Programming
Proverbs. Hayden Book Co., Rochelle Park, N.J., 1979.
Linn. MC. The cognitive consequences of programming instruction
in classrooms. Educ. Res. 14, 5 (1985). 14-29.
Littman, D., Pinto. I., Letovsky, S., and Soloway, E. Software mainte-
nance and mental models. In Empirical Studies of Programmers,
E. Soloway and S. lyengar. Eds. Ablex, New York, 1986.
McKeithen. K.B.. Reitman, J.S.. Rueter. H.H., and Hirtle, S.C. Knowl-
edge organization and skill differences in computer programmers.
Cognifiue Psychol. 13 (1981), 307-325.
Michener. E.R. Understanding understanding mathematics. Cogni-
tive Sci. 2 (1978). 283-327.
Papert. S. Mindstorms, Children, Compufers and Powerful Ideas. Basic
Books, New York, 1980.

22.

23.

24.

25.

26.

27.

Acknowledgments. The research upon which this
article is based has involved significant contribu-
tions from a number of individuals: Beth Adelson,
Jeff Bonar, Kate Ehrlich, Lewis Johnson, Stan Letov-
sky, David Littman, Jeannine Pinto, Warren Sack,
Jim Spohrer, and Beverly Woolf. Important, helpful
comments on earlier drafts of this article were made
by the reviewers, as well as members of my research
group, the Cognition and Programming Project, at
Yale; assistance from David Littman, Jim Spohrer,
and Warren Sack was especially useful. To all these
people, I say a most heartfelt “thank you.”

28.

29.

30.

31.

32.

Parnas, D. Software aspects of strategic defense systems. Am. Sci. 73
(1985). 432-440.
Pea. R., and Kurland, D. Logo programming and the development of
planning skills. Tech. Rep. 16, Center for Children and Technology,
Bank Street College of Education, New York, 1984.
Resnick, L. Mathematics and science learning: A new conception.
Science 220 (19831, 477-478.
Rich. C. Inspection methods in programming. Tech. Rep. AI-TR-604,
AI Laboratory, MIT, Cambridge, Mass., 1981.
Schank. R.C., and Abelson, R. Scripts, Plans, Goals and Understanding.
Lawrence Erlbaum Associates, Hillsdale, N.J., 1977.
Shneiderman, B. Exploratory experiments in programmer behavior.
Jut. 1. Comput. Juf. Sri. 5, 2 (1976). 123-143.
Shneiderman, B. Software Psychology: Human Factors in Compufer and
Inform&w Sysfems. Winthrop Publishers. Cambridge, Mass.. 1980.
Soloway, E. From problems to programs via plans: The content and
structure of knowledge for introductory LISP programming. I. Educ.
Compuf. Res. (Summer 1985).
Soloway, E. Programming and problem solving in Pascal. In prepara-
tion.
Soloway, E., and Ehrlich, K. Empirical studies of programming
knowledge. IEEE Trans. Softw. Eng. SE-IO. 5 (1984). 595-609.
Soloway, E., and Iyengar. S. Empirical Studies of Programmers. Ablex,
New York, 1986.

33. Soloway. E., Lochhead, J.. and Clement, J. Does computer program-
ming enhance problem solving ability? Some positive evidence on
algebra word problems. In Computer Literacy, R. Seidel, B. Hunter,
and R. Anderson, Eds. Academic Press, New York, 1982, pp. 171-
215.

34. Soloway. E.. Ehrlich, K.. Bonar, J.. and Greenspan. J. What do nov-
ices know about programming? In Directions in Human-Computer
Interactions, A. Badre and B. Shneiderman. Eds. Ablex. New York,
1982.

REFERENCES
1. Ad&on. B. Problem solving and tht: development of abstract cate-

gories in programming languages. Mem. Cognitior~ 9 (1981), 422-433.
2. Ad&on. B., and Soloway. E. The role of domain experience in

software design. IEEE Trans. Softw. Eng. (Nov. 1975).
3. Bartlett, F.C. Remembering. University Press. Cambridge, Mass., 1932.
4. Bower, G.H., Black, J.B., and Turner. T. Scripts in memory for text.

Cognitive Psychd. 17 (1979). 177-220.
5. Brooks. R. Towards a theory of the comprehension of computer

programs. ItIt. J. Man-Mach. Stud. 18 (1983), 543-554.
6. Chase, W.C.. and Simon, H. Perception in chess. Cognitive Psychol. 4

(19731, 55-81.

35. Spohrer. J.. and Soloway, E. Novice mistakes: Are the folk wisdoms
correct? Commurt. ACM 29, 7 (July 1986). 624-632.

36. Spohrer, J., and Soloway. E. Analyzing the high-frequency bugs in
novice programs. In Empirical Studies of Programmers, E. Soloway and
S. Iyengar. Eds. Ablex. New York, 1986.

37. Spohrer. J., Soloway, E., and Pope, E. A goal/plan analysis of buggy
Pascal programs. Hum.-Comput, Inferaction 1, 2 (1985).

CR Categories and Subject Descriptors: D.m [Miscellaneous]: soff-
ware psychology; K.3.2 (Computers and Education]: Computer and Infor-
mation Science Education-curriculum

General Terms: Design, Human Factors, Languages

7. Collins, A. Explicating the tacit knowledge in teaching and learning.
Tech. Rep. 3889. Bolt, Beranek and Newman, Cambridge, Mass.,
1978.

Author’s Present Address: Elliot Soloway. Cognition and Programming
Project, Dept. of Computer Science, Yale University, P.O. Box 2158. New
Haven, CT 06520.

8. Curtis. B. Tutorial: Human Factors in Software Development. IEEE
Computer Society, 1985.

9. Graesser, A.C. Prose Comprehension beyond the Word. Springer-Verlag.
New York, 1981.

10. Howe. J.A.M.. O’Shea, T., and Plane, J. Teaching mathematics
through Logo programming. Tech. Rep. 115, Artificial Intelligence,
Univ. of Edinburgh, Scotland. 1979.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct commer-
cial advantage, the ACM copyright notice and the title of the publication
and its date appear, and notice is given that copying is by permission of
the Association for Computing Machinery. To copy otherwise, or to
republish, requires a fee and/or specific permission.

a58 Communications of the ACM September 1986 Volume 29 Number 9

