
SPEClAL SECT/ON 

LEARNING TO PROGRAM = LEARNING 
TO CONSTRUCT MECHANISMS 
AND EXPLANATIONS 

Teaching effective problem-solving skills in the context of teaching 
programming necessitates a revised curriculum for introducto y computer 
programming courses. 

ELLIOT SOLOWAY 

MOTIVATION AND GOALS 
A revolution-fueled by the growing body of cogni- 
tive science research into the nature of expertise-is 
causing radical revision (e.g., see [24]) in science and 
mathematics curricula today. What has been taught 
in the past is by and large not what an expert ac- 
tually knows. For example, geometry students typi- 
cally understand each step in a proof, as the teacher 
puts it on the board, line by line. However, when 
attempting to do a proof for homework, students 
often have no idea where to begin. Why? Mathe- 
maticians do not develop proofs in such an orderly, 
linear fashion. Rather, developing a proof is a 
nonlinear, search process. Unfortunately, students 
are not told explicitly about the nonlinear nature of 
proof development: They see their teacher develop a 
proof line by line, and not surprisingly, they think 
they should be able to do the same. Today, teaching 
topics such as geometric proofs is being revised to 
include explicit instruction as to the heuristics that 
guide proof development. 

This article continues with the curriculum redefi- 
nition effort and focuses on concepts that should be 
taught in an introductory programming course. 
Textbooks used in introductory programming 
courses typically focus on the syntax and semantics 
of constructs in a language. New research with nov- 
ice programmers, however, suggests that language 
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constructs do not pose major stumbling blocks for 
novices learning to program. Rather, the real prob- 
lems novices have lie in “putting the pieces to- 
gether,” composing and coordinating components of 
a program [35, 361. Expert programmers know a 
great deal more than just the syntax and semantics 
of language constructs (e.g., [2, 5, 13, 18, 27, 311. 
They have built up large libraries of stereotypical 
solutions to problems as well as strategies for coordi- 
nating and composing them. Students should be 
taught explicitly about these libraries and strategies 
for using them. 

Teaching programming in schools is a particularly 
hot topic now: On the one hand, it is argued that 
programming is merely a job skill, and that program- 
ming instruction should not be included in a general 
curriculum; on the other hand, it is argued that pro- 
gramming is a subject where one can learn effective 
problem-solving skills (e.g., [21]). Currently, there is 
little empirical support for the latter camp (e.g., 
[lo, 17, 23, 331). However, the lack of impact of pro- 
gramming on problem solving may be due to the fact 
that students are not taught the key ideas underly- 
ing programming: Why should learning where to put 
a semicolon in Pascal lead to enhanced problem- 
solving ability? 

The focus on instruction of the syntax and seman- 
tics of programming language constructs leads to an 
emphasis on the program as the output of the pro- 
gramming process. However, a program has two 
audiences: 

850 Communications oftherlCM September 1986 Volume 29 Number 9 



Special Sectiorl 

l The computer: The instructions in a program turn that, by and large, have remained as tacit knowledge 
the computer into a mechanism that dictates how a in experts’ heads, but that need to be explicitly 
problem can be solved. taught, will be explained. 

l The human reader: The programmer needs to have 
an explanation as to why the program solves the AN ENRICHED SET OF VOCABULARY TERMS 
given problem. There is a lot of knowledge and many strategies that 

In this view, learning to program amounts to learning 
experts use that need to be made explicit and taught 

how to construct mechanisms and how fo construct ex- 
explicitly to students in introductory programming 

planations. The need to construct mechanisms and 
courses. There are two general categories of con- 

explanations transcends the domain of program- 
cepts: knowledge and strategies for using knowledge. 

ming: In daily life, people constantly are developing 
The following list is not exhaustive; it is only meant 

mechanisms and explanations to solve problems. For 
to illustrate the basic theme. 

example, giving instructions to a visitor on how to 
get from the airport to an office is a mechanism, and 
providing a justification for why that particular 
route is an effective choice is an explanation. In an 
introductory programming course, students should 
be taught what they really need to know about pro- 
gramming, and in doing so, they will learn effective 
problem-solving strategies that transcend the do- 
main of programming. 

Goals and Plans: the 
Heart of the Matter 
What are the basic building blocks for analyzing 
problems and constructing programs? Goals and 
plans-stereotypical, canned solutions-are two key 
components in representing problems and program 
solutions. A chatty walk-through of a simplified 
problem decomposition will provide an intuitive un- 
derstanding of the nature of goals and plans. More 

UNDERLYING ASSUMPTIONS 
Two key assumptions underlying the proposed cur- 
riculum are the following: 

formal jargon will be introduced at the end of this 
section. 

What, then, are the dominant elements in the fol- 
lowing problem? 

Tacit Knowledge. Experts are not necessarily con- 
scious of the knowledge and strategies they employ 
to solve a problem, write a program, etc. ([7]). Often, 
experts refer to “intuition, gut feel, etc.” as the 
sources of their inspiration. However, the scientists’ 
job is to make explicit that which was implicit--to tease 
out the otherwise tacit knowledge that experts have 
and use. This enterprise has in fact been carried out 
in a wide variety of content domains such as mathe- 
matics (e.g., [ZO]), physics (e.g., [15]), etc. The reader 
will recognize immediately the majority of the con- 
cepts described in the next section, not as new types 
of knowledge associated with good programming and 
problem solving, but, rather, as simply making ex- 
plicit that which was already there! 

Averaging problem: Write a program that will read 
in integers and output their average. Stop reading 
when the value 99999 is input. 

An average requires that a sum of the input num- 
bers be taken, and that this sum must be divided by 
a count of the numbers summed. These two require- 
ments are goals of the problem. In developing a pro- 
gramming solution for this problem, two additional 
goals (at least) must be put forth: The numbers must 
be input, and the average must be output. Expert 
programmers have developed standard techniques 
for realizing these four goals since they are common 
and appear in many problems. For example, pro- 
grammers have a templatelike structure for reading 
in a stream of integers, summing them, and stopping 
when a sentinel value (99999) is input: Whorfian Hypothesis. The belief that one should 

tease out tacit concepts and teach them explicitly 
rests to some degree on the Whorfian Hypothesis. In initialize a running total 
writing about language, Benjamin Whorf suggested ask user for a value 
that “language determines thought”: That is, you can if input is not the sentinel value 
only think about something if you have a word for then 
it. The strict, literal interpretation of Whorf’s conjec- add new value into running total 
ture seems much too strong. However, a weaker loop back to input 
claim that “language aids thought” surely has a great 
deal of appeal. That is, how can students learn a 

This template is not language dependent-an expert 

concept, when what they need to learn is not explic- 
can instantiate this template in Pascal, C, PL/l, etc. 

itly taught to them? The geometry proof example 
In our terminology, such canned solutions are plans 

mentioned earlier is a case in point. 
([z]). Programmers also have a looping plan for 
reading in and counting values that are input, again 

In what follows, then, a set of “vocabulary items” stopping when a sentinel value is input: 
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initialize a counter a current problem in terms of old problems, so that 
ask user for a value solution strategies can be transferred from the old 
if input is not the sentinel value situation to the current situation. The language of 

then goals and plans provides just such a language for 
increment counter characterizing problems and solutions ([29]). 
loop back to input: 

A key observation that must be made is that the 
plan for realizing the summing goal and the plan for 
realizing the counting goal must be merged, since the 
data will be passed through only once: 

initialize a running total 
initialize a counter 
ask user for a value 
if input is not the sentinel value 

then 
add new value into running total 
increment counter 
loop back to input 

Once the sum and count have been calculated, divi- 
sion must take place to arrive at the average. An 
expert programmer knows that division must be pro- 
tected since a run-time error will occur if division 
by zero takes place: 

l Example 2: Figure 1 depicts a buggy program gen- 
erated by a student programmer for a more com- 
plicated version of the averaging problem. What 
would be a good description of this bug? Why 
might the student have created this bug? The 
goal/plan language again proves useful: The stu- 
dent has not merged a “valid-data-entry plan”-a 
filter loop plan that checks the validity of incom- 
ing data-with the sum-and-count plans. In fact, 
merging these plans requires considerable skill; 
analyses of literally thousands of student- 
generated programs suggest that students have sig- 
nificant difficulty in precisely those situations 
where merging must take place ([36])! Many more 
examples of the use of goals and plans can be 
found in [11] and [37]. 

if count is greater than 0 then 
then do the calculation 
else report the problem to the user 

Note that this protection plan comes directly after 
the sum-and-count plans. This type of plan composi- 
tion is abufmenf. 

It is not mere coincidence that a goal/plan lan- 
guage has utility in both developing and analyzing 
computer programs. Empirical data support the theo- 
retical claim that experts in domains such as pro- 
gramming, chess, go, electronic circuits, mathemat- 
ics, etc., have and use goals and plans in their 
problem-solving activity. The classic experiment in 
this area was carried out by Chase and Simon [6] 
with chess players: 

Although the preceding discussion may appear 
straightforward, the power of the goal/plan language 
can be seen in the following two examples: 

l Example 1: Consider the following problem: 

Write a program that will output ‘T’ if all the in- 
puts are ‘T’, but output ‘F’ if there is just one ‘F’ in 
the input sequence. Stop reading when a ‘#’ is 
input. 

Master and novice chess players were shown a meaning- 
ful chess board, and asked to recall the pieces (once the 
board was taken away). The masters recalled more of 
the pieces than did the novices. Next, the masters and 
novices were shown a board in which the chess pieces 
were placed randomly on the board. What happened? 
The performance of the masters was the same as that of 
the novices. 

On the surface, this problem and the averaging 
problem appear different. However, this problem 
has an almost isomorphic plan structure to the av- 
eraging problem: A sentinel is used to stop reading 
the input; instead of accumulating totals as in the 
averaging problem, this problem requires a flag to 
be set/reset depending on the values input; since 
no input may be given, protection of the output 
must be implemented. In teaching programming- 
and problem solving in general-a key objective is 
to develop useful methods of abstraction: If every 
problem a student must solve appears to be new 
and different, then there is little reuse of experi- 
ence. A hallmark of expertise is the ability to view 

Chase and Simon argued that the masters were bet- 
ter able to recall the meaningful chessboard because 
they were able to encode the pieces of the board in 
terms of chunks that represented meaningful units 
(e.g., a particular type of offense). In contrast, by 
definition novices do not have the degree of experi- 
ence masters have, and thus the novices do not pos- 
sess the domain specific chunks. Similar experi- 
ments have been carried out in the domain of 
programming [l, 19, 271 with comparable results. 
These sorts of experiments lend support to the 
theory that experts have and use domain specific 
chunks. These chunks are plans in the programming 
domain. Finally, the notion of a chunk (plan) is not 
useful only in technical subject domains: Cognitive 
psychologists have long posited the existence of 
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BUGGY VERSION CORRECT VERSION 

BEGIN 
sum := 0; 
count := 0; 
writeln('please input a rainfa 
read(rainfal1) 
while rainfall < 0 do 

begin 

BEGIN 
sum := 0; 

11'); 
count := 0; 
writeln('please input a rainfal 
read(rainfal1) 
while rainfall <> 99999 do 

begin 
writeln('rainfal1 cannot be < 0; 

input again'); 
read(rainfal1); 

end; 
while rainfall <> 99999 do 

begin 
sum := sum + rainfall; 
count := count + 1; 
writeln('please input a rainfall') 
read (rainfall); 

end; 

etc. 
END. 

Problem: Read in integers that represent daily rainfall, and 
print out the average daily rainfall; if the input value of rainfall 

.l’ ); 

while rainfall < 0 do 
begin 

writeln('rainfal1 cannot be < 0; 
input again ’ ) ; 

read(rainfal1); 
end; 

sum := sum + rainfall; 
count := count + 1; 
writeln('please input a rainfall'); 
read (rainfall); 

end; 

etc. 
END. 

is less than zero, prompt the user for a new rainfall. 

FIGURE 1. Sample Buggy Program 

schemata as units of mental organization that play 
the same type of role in reading and writing stories 
as plans play in reading and writing computer pro- 
grams (e.g., [3, 4, 9, 261). Thus, there is a substantial 
body of psychological research that underlies the 
goal/plan idea. 

Goals and plans can be given more concrete real- 
izations. For example, the plan that “reads in and 
sums integers, stopping when 99999 is input” is 
called the SENTINEL-CONTROLLED RUNNING- 
TOTAL LOOP PLAN. Similarly, the plan that “reads 
in and counts integers, stopping when 99999 is in- 
put” is called the SENTINEL-CONTROLLED 
COUNTER-LOOP PLAN. The plan that protects the 
division in the average calculation is called the 
SKIP-GUARD PLAN. The intent is to convey some 
sense of the plan’s goal in its name. Although plan 
names can be awkward, to say the least, they give 
explicit labels to structures that should be used re- 
peatedly when solving problems. Assigning a label 
helps to establish a plan’s reality. In fact, a whole 
library of plans has been built up to teach introduc- 
tory programming. Students are explicitly taught to 
use the plans in this library and to construct plans of 
their own ([ll, 30]j. The goal/plan language is at the 
core of the proposed revised curriculum for teaching 
introductory programming. 

Mechanisms and Explanations: the 
Products of the Programming Process 
If introductory programming courses are to teach 
students something more than a job skill, the under- 
lying abstractions of programming must be made 
explicit. That is, students must be taught what pro- 
gramming has in common with other problem- 
solving tasks. By focusing on programs as the output 
of the programming process, students are naturally 
led to think that what they have learned in “Com- 
puter Science 100" is relevant only to the production 
of programs. To facilitate the transfer of knowledge 
from “Computer Science 100" to other problem- 
solving activities, students must be taught explicitly 
that programming is a design discipline, and as such 
the output of the programming process is not a pro- 
gram per se, but rather an artifact that performs 
some desired function. Artifacts lead naturally to the 
concept of mechanism: A mechanism, whether it be 
instantiated as a transistor, a bolt, a gear, or a verbal 
instruction, specifies a chain of actions that, when 
set in motion, produces some desired effect. Artifacts 
that are instantiated in software are exceedingly 
malleable-change is the norm, not the exception. 
Programmers typically do not have the luxury of 
producing a one-shot artifact. Rather, they need to 
provide a trail of how and why the artifact was de- 
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signed the way it was to enable the next program- 
mer to carry out effective changes of the artifact. 
This trail of information is an explanation. The prod- 
ucts of the programming process are really mecha- 
nisms and explanations; what students learn in an 
introductory programming course is the knowledge 
and skills to construct these objects. 

The right half of Figure 2 is a Pascal program for 
the averaging problem. The program is the mecha- 
nism that instructs the computer as to how an aver- 
age should be calculated. 

How does the program in Figure 2 solve the desired 
problem? When executed by a computer (or by a 
human assuming the role of a computer), the pro- 
gram accepts numbers from a user, adds those 

goal; RUNNING goal : 

numbers into an accumulator called total, etc. 

The description in Figure 2 is only a partial repre- 
sentation of the mechanism. That is, in executing 
the mechanism, the computer turns a static program 
written on a piece of paper into a dynamic entity 
that exists over time. In this dynamic representation, 
notions such as the causal relationship between the 
statements become very important and must be used 
in describing how a program works: For example, 
the running total (total) and counter update 
(count) are performed before the next input value is 
read in; after the sentinel value is input, a test is 
made to see if the counter is greater than zero. 

The left half of Figure 2 is the explanation for 
why that program computes the desired answer. The 

r -  - - - - - - - - - -  7 

1 SENTINEL I 
compute--TOTAL realize + CONTROLLED! 

LOOP stopping ; RUNNING ! 
PLAN condltlon ! TOTAL t 

1 LOOP PLAN ! 
L-----------J 

COUNTER goal : . . . . . . . . . . . 

condltlon 

\ 
godI: 

. . . . . . . . 
:PRINT: 

output :PLAN : 
d"l?rdgfZ . . . . . . . . 

Explanation 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

:count := 0; 
. 
. 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

r---------------------------------~-, 

I total := 0; 
L----,----------------------------~- 

1-.11-1.-1-.1.--.---.--. 

I 
wrlteln('lnput number'); i 

I read(new); 

L 
khlle new <> 99399 do ! 
-.I.UI.-I.-IU.I-I.--.-.~ 

tegln 

end; 

average := total/count; 
3 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
:wrlteln( average ) ; . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

end 

Note that the relationship between a plan and its gQd& k i CONTROLLEO COUNTER-LOOP PLAN is enclosed by a 
indicated by a box (e.g., the code that implem@f$ the*. box of dashes and dots. 
SENTfNEL-CONTROLLED RUNNING-TOTAL f&X@ PLAR 
is enclosed by a box of dashes), In particular, the codi+ ’ Prdblem: write a program that will repeatedly read in and 
realizing the merging of the SENTINEL-C6NTRt.JLLE@ , sum data until a final stopping ,value of 99999 is input. Out- 
RUNNING-TOTAL LOOP PLAN and the SENTfWfk~ put the average of the numbers read in. 
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FIGURE 2. An Example: Mechanism and Explanation 
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goals of the English statement of the problem are 
identified, and stereotypical methods (plans) are 
used to attack and resolve each of these goals. 

Why does the program effectively compute the 
average of the numbers read in? The SENTINEL- 
CONTROLLED RUNNING-TOTAL LOOP PLAN is 
used here because the problem requires that the loop 
be terminated following input of a specific value (the 
“sentinel-controlled” part of the plan), and because a 
running sum is needed to achieve the goal of sum- 
ming the numbers entered by the user of the pro- 
gram. Also, ta calculate the average, a merge of the 
SENTINEL-CONTROLLED COUNTER-LOOP PLAN 
with the SENTINEL-CONTROLLED RUNNING- 
TOTAL LOOP PLAN keeps track of the number of 
values input, since the input data will only be passed 
over once. 

In the explanation, phrases such as because and to 
are used; these phrases signal the presence of infor- 
mation explaining the relationship between goals in 
the problem and plans instantiated in the program. 

Just as the program description does not convey 
the entire mechanism, the goal/plan representation 
in Figure 2 does not include some important infor- 
mation. For example, how does the programmer 
know that the merging of the COUNTER-LOOP 
PLAN with the SENTINEL-CONTROLLED 
RUNNING-TOTAL LOOP PLAN will be correct? 
Or, why did the programmer choose not to read 
the numbers into an array, using a SENTINEL- 
CONTROLLED ARRAY INPUT LOOPING PLAN, 
and then process the data? This type of information 
must be encoded in a more complete explanation. 

Understanding how to talk about mechanisms and 
explanations is still at an early stage. At least some 
vocabulary already exists for talking about mecha- 
nisms: language constructs, data and control flow, 
static and dynamic properties, etc. Playing an analo- 
gous role, the discussion of goals, plans, and their 
relationships begins to provide a concrete language 
for talking about explanations. 

DESIGN STRATEGIES: CONSTRUCTlNG 
MECHANISMS AND EXPLANATIONS 

Canned solutions are programming plans-stereo- 
typical methods for achieving goals. The objective of 
the stepwise-refinement planning strategy is to iden- 
tify in the given problem statement various goals for 
which programming plans have already been devel- 
oped. But what happens when a student does not 
have the plans that are relevant to a problem? For 
example, what happens when students just start 
learning to program? The answer is simple: Students 
cannot employ stepwise refinement as straightfor- 
wardly; they will do a substantial amount of floun- 
dering and searching, and tend to decompose a prob- 
lem inappropriately. In fact, in a study with junior 
grade software designers this floundering behavior is 
precisely what was observed ([Z]). Stepwise Refinement 

Stepwise refinement is a planning technique that is Recall that an explanation is made up in large 
intended to provide an orderly method for thinking measure by the goals and plans underlying the 
about a problem. Almost all programming textbooks mechanism. Notice that the stepwise-refinement 
attempt to teach students how to use this technique. process actually produces the goal/plan decomposi- 
Typically students are told to break down a problem tion that explains why the resultant mechanism is 
into subprdblems. They are then shown how the au- an effective solution to the problem: The goal/plan 
thor carries out this prescription on a set of exam- decomposition relates goals that need accomplishing 
ples. Most students can follow the argument quite to techniques (plans) for achieving those goals. As 
well: They can understand the transition between part of the goal/plan decomposition, the reasons 

each step. However, when asked to create a stepwise 
refinement for a new problem, most students are at 
a loss as to where to begin. When they attempt step- 
wise refinement on their own and confront the ques- 
tion of how to actually do it, troublesome issues 
arise: Why was the problem broken down into those 
n levels; why not m levels? And why were those 
particular routines used; why not some other rou- 
tines? Textbooks typically do not answer those ques- 
tions. Students are left to induce the strategies for 
doing stepwise refinement on the basis of the text- 
book’s examples. 

In teaching stepwise refinement, one crucial heu- 
ristic that everyone intuitively knows, but seldom 
makes explicit, must be added: 

Break down a problem into subproblems, on the basis 
of problems that you have already solved and fey which 
you have canned (OY almost canned) solutions. 

In teaching stepwise refinement, the image we try to 
paint is as follows: 

Assume that you already possess a “barrel of canned 
solutions.” Look up at the problem from that barrel 
of solutions, and try to see if some of those canned 
solutions can be used in the solution of the new 
problem. Break the new problem down so that you can 
use those canned solutions. 

In other words, students must already possess the 
primitives into which the problem will be decom- 
posed in order to carry out a stepwise-refinement 
strategy. 
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why one goal and/or plan was chosen over another 
should also be made explicit; this too is part of the 
explanation. 

Plan Composition Methods 
Stepwise refinement describes the “macrostrategy” 
for developing a goal/plan decomposition for a given 
problem. However, rules for how plans at the “micro- 
level” should be woven together have also been 
identified. For example, in solving the averaging 
problem using stepwise refinement, there is a need 
for an output goal, to print out the computed value, 
and a calculate goal, to produce the average. How 
should the plans that realize these two goals be 
“glued together” (Figure 2)? Since the CALCULA- 
TION PLAN is completely finished before the 
OUTPUT PLAN can be performed, simply abut the 
two plans-the plan for computing the average out- 
puts a value that is the input to the plan that prints 
out the value. 

More generally, four strategies for gluing together 
plans have been identified: 

Abutment: Two plans are glued together back to 
front, in sequence, as illustrated in the averaging 
problem. 
Nesting: One plan is completely surrounded by 
another plan. For example, in the averaging pro- 
gram in Figure 2, the OUTPUT PLAN, the plan 
that realizes the goal of writing out the average, is 
nested within the SKIP-GUARD PLAN, which re- 
alizes the goal of not permitting division by zero to 
occur in the average calculation if no numbers are 
actually input. 
Merging: At least two plans are interleaved. For 
example, to solve the averaging problem, the plan 
that summed the input and the plan that counted 
the number of inputs were merged. 
Tailoring: Sometimes a canned plan that has al- 
ready been developed is not quite what is needed 
in a problem. It must be modified to fit the partic- 
ular needs of the situation. After all, we do call it 
“software.” 

Plan merging is an exceedingly difficult activity to 
carry out effectively. (For example, see the buggy 
program in Figure 1, in which the student did not 
properly merge the VALID-DATA-ENTRY PLAN 
with the SENTINEL-CONTROLLED RUNNING- 
TOTAL LOOP PLAN and the SENTINEL- 
CONTROLLED COUNTER-LOOP PLAN.) In study- 
ing bugs that novice programmers make, it has been 
shown that when novices try to merge plans they 
almost invariably merge them incorrectly [37]. Such 
behavior is not all that surprising: Weaving together 
two or more plans requires great care and attention 

to details, and the ability to foresee all sorts of subtle 
interactions. From an instructional point of view, 
students must be alerted to the problems of produc- 
ing programs in which plans are merged. 

Providing students with four strategies for gluing 
plans together makes explicit a strategy for develop- 
ing the explanation and mechanism components of a 
program at the microlevel. In particular, the expla- 
nation is furthered when students are told how the 
subgoals are stitched together to solve the overall 
goal, and the mechanism is furthered when the 
plans are instantiated in terms of actual program- 
ming language constructs. 

Rules of Programming Discourse: 
Good Programming Practices 
When plans are instantiated via actual code, there is 
still a great deal of flexibility as to how those plans 
should be realized: Different language constructs can 
realize the same plan, and/or the statements in a 
plan can have multiple orderings. For example, con- 
sider the program in Figure 3, which calculates and 
outputs a correct average. A programming instructor 
would certainly not want to give the writer of this 
program full credit in a test situation, since this pro- 
gram is written in a “poor style.” Generally speaking, 
initializing variables to some strange value (e.g., typ- 
ically one initializes a variable containing numeric 
values to either 0 or 1) is not a good habit. A goal/ 
plan analysis of this program reveals the student’s 
underlying intentions in performing these strange 
initializations: 

Program Average 
VAR count : INTEGER; 

sum, average, number : REAL; 
BEGIN 

sum := -99999 ; 
count := -1; 
REPEAT 

writeln('please input a number'); 
read (number) 
sum := sum + number; 
count := count + 1; 

UNTIL (number = 99999); 
average := sum/count; 
writeln('the average is: ',average); 

END _ 

This student program would not receive full credit because of 
its poor programming style. 

FIGURE 3. Violating a Rule of Programming Discourse 
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In attempting to realize the goal of reading in, sum- 
ming, and counting user input integers, the student 
has implemented the SENTINEL-CONTROLLED 
RUNNING-TOTAL LOOP PLAN with a repeat 
construct in Pascal. However, the repeat construct 
is not appropriate when implementing a loop in 
which the stopping value can be input on the first 
read; in such a case, the processing loop must not be 
executed even once. In Pascal, the while construct 
is the most appropriate loop for a SENTINEL- 
CONTROLLED RUNNING-TOTAL LOOP PLAN. 
(See [34].) Using a repeat construct allows the sen- 
tinel value to be added incorrectly into the running 
total (and also the counter is incorrectly updated). 
To compensate for this “off-by-one bug,” the student 
has subtracted out the sentinel value (and the 
counter value) during the initialization phase of the 
program! 

Surely, backing out a value to compensate for an 
off-by-one bug is not good programming practice. 

Programming teachers, in grading a program such 
as the one depicted in Figure 3, often get the follow- 
ing response from students: “But my program 
runs. , . .” Often, teachers are hard put to say explic- I 
itly why a piece of code is not in good style, and the 
student is left in the dark as to why the program is 
SO strictly graded. Aside from learning about step- 
wise refinement and plan composition methods, stu- 
dents must be taught to use rules of programming 
discourse ([12]), which are analogous to rules of con- 
versational discourse. For example, consider the fol- 
lowing interchange: 

Clearly, that second role was obscure: Students 
would have to understand the behavior of the loop 
to appreciate the programmer’s choice of that partic- 
ular initialization. Unfortunately, precious few pro- 
gramming textbooks (e.g., [la, 161) explicitly teach 
students about the rules of programming discourse. 
Rather, students are expected to pick them up from 
observing examples of programs. However, as pro- 
gramming teachers know, students tend not to learn 
what counts as a program written in a good style. 

From the computer’s perspective, a program that 
violates the rules of discourse but computes the de- 
sired value is as good as a program that does not 
violate the rules of programming discourse. How- 
ever, a program is not just for the computer: A pro- 
gram that follows the rules of discourse better en- 
ables a human reader to reconstruct the explanation 
that the program writer was following in initially 
developing the mechanism. Expert programmers use 
rules of discourse, albeit implicitly, in generating 
programs, and they assume that other programmers 
will do the same. Programs that violate the rules of 
discourse are often very difficult to comprehend. In 
fact, in a recent study, the performance of advanced 
programmers was reduced to that of novice program- 
mers when the advanced programmers were asked 
to deal with programs that violated various rules of 
discourse ([31]). 

May: Hi, John. Can you tell me what time it is? 
John: Yes. 

John’s response is not in accordance with accepted 
rules of discourse; he should have said something 
like this: 

Simulation: Making Explicit the 
Dynamic Properties of a Program 
Although stepwise refinement and plan composition 
methods deal with putting pieces of solutions to- 
gether, the resulting solution must in fact do what it 
is supposed to do. That is, the former three strategies 
deal with plans as static objects; however, the dy- 
namic, run-time properties of the plans must be in- 
spected, too, since unwanted interactions often arise. 
In studies, professional designers [2] and maintainers 

John: Yes, it is 3:15. [18] have been observed repeatedly carrying out sim- 

Analogously, there are rules of programming dis- 
course that prescribe good programming practices, 
For example, the program in Figure 3 violated the 
following rule of programming discourse: 

Do not do “double duty” with code, especially when the 
second function played by the code is obscure. 

That is, the initialization of Sum and Count played 
two roles: 

l Role 1: The variables were initialized to some 
starting value. 

l Role 2: The starting values were chosen so as to 
compensate for the off-by-one bug that resulted 
from an incorrect looping structure. 

ulations of their design in progress, or the program 
being enhanced. (See also [13].) These professionals 
appear to seek and gain an understanding of the 
casual interactions among the components. The 
feedback provided by simulation then enables them 
to rework-their design, in the case of the designers, 
or to be sensitive to a possible trouble spot, in the 
case of the maintainers. Moreover, those designers 
and maintainers who did not carry out simulations 
did not develop an effective design or an effective 
enhancement. 

Simulation, then, is a strategy for uncovering un- 
wanted causal interactions between components 
that occur as a result of the dynamic aspects of a 
program. Simulation has its detractors (e.g., [z]); 
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however, if simulation is not to be used, then some 
other means for understanding these dynamic effects 
must be developed. Until then, the simulation strat- 
egy should be explicitly taught to students. 

11. 

12. 

13. 

CONCLUDING REMARKS 
Teachers of introductory programming clearly know 
that teaching the syntax and semantics of a pro- 
gramming language is not enough. Students should 
be given explicit instruction in “vocabulary terms” 
such as mechanism, explanation, goal, plan, rules of 
programming discourse, plan composition methods, 
etc. As supported by a wide range of empirical stud- 
ies (e.g., see [8, 28, 32]), these notions are, in fact, 
what expert programmers know and use. Moreover, 
these notions are applicable not only in a program- 
ming context. For example, people are constantly 
developing mechanisms and explanations to deal 
with problems arising in daily life. If a revised cur- 
riculum of this type enables students to transfer 
what they learned from programming to other 
problem-solving situations, then programming will 
be established as not just a vocational skill, but 
rather as a vehicle for learning effective problem 
solving-and the intense excitement surrounding 
programming for “just plain folks” would be justi- 
fied! 
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