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Preface

Life

A million things for you to learn
but one by one those pages turn
Like history itself

Dave Stewart ;t’ﬂg Spiritual Cowboys

The systematic derivation of implementations from formal descriptions of programming
languages has fascinated many researchers in computing science. Tennent [102] for ex-
ample says

A theory of semantics should contribute to systematic composition and
verification of programs, especially compilers. Indeed, a general notation
for semantic specification would permit the development of a true compiler-
generator, just as BNF led to the development of parser generators.

In contrast to the consensus about formal definition of syntax by means of some variant
of context free grammars, such as Backus-Naur Form [34], there is no agreement about
a concise, readable and easily manipulatable notation for specifying the semantics of
programming languages. As a solution we propose the Squiggol style of programming
[67, 12] combined with the pragmatic aspects of Action Semantics [78]. This blend
covers traditional techniques such as Initial Algebra Semantics [43] and Attribute (or
Affix) Grammars [55, 56]. The language of update schemes [72] is used to give high level
descriptions of low level abstract machines.

Chapter 2 discusses our modifications to make traditional Squiggol fit into the common
denotational semantics framework of cpo’s and continuous functions. Previous accounts
[63] (implicitly) assumed to work in the category SET of total functions between sets of
values. This has the disadvantage that finite and infinite types constitute different worlds
and that arbitrary recursion is impossible. The price to be paid for working in CPO is
that partiality of both functions and values becomes unavoidable. Only a tiny bit of the
concepts and theory introduced in Chapter 2 is put into use in the rest of the thesis. It
remains for future work to find out useful applications for the unused layabouts. Recently
Paterson [82] has shown how anamorphisms can be used to give denotational semantics
of term graphs.



As soon as we wish to give a denotational semantics of a language construct that is not
already inherently present in the semantic meta-language, we are actually digging in the
mud. The concept C in question has to be encoded in terms of primitives that are avail-
able. The best thing to hope for is that the coding process does not violate our intuition
about C. Examples of concepts that are awkward to deal with in conventional denota-
tional semantics are, in increasing order of troublesomeness: pointers, nondeterminism,
and concurrency.

To specify complex pointer operations update schemes as devised by Meijer [72] (no
relative of the author) seem to be a good choice. Update schemes will be presented in
Chapter 3. Constructive proofs for the fact that an elegant notation for specifying pointer
manipulations is no superfluous luxury are the tutorials by Ait-Kaci [2] and Maier and
Warren [22]. In his thesis, Meijer gives a very intricate semantic description of update
schemes. Chapter 3 presents a more abstract view. We introduce update schemes as a
general computational model by setting them alongside Predicate/Transition nets [41]. An
intermediate vision is given by Osborne [81]. Ultimately he wants to produce a compiler
for (a restricted class of) update schemes.

After the first two theoretical chapters we turn our attention to more practical applica-
tions of the theory. In Chapter 4 a realistic compiler is derived for a simple imperative
language. The resulting compiler is realistic; it generates three-address code, uses short
circuit evaluation for boolean expressions and includes tail-call elimination. The main
driving force in the calculations is the introduction of additional continuation arguments
to make implicit control-flow explicit. This is especially clear in the development of an
implementation for a backtrack language in Chapter 5. Starting from a semantics based
on relations, four continuations are introduced culminating in (the control part) of War-
rens Abstract Machine [110]. Chapter 1 provides a gentle introduction to our methods
and shows how a compiler for a simple functional language may be calculated.

Although the practical results of the last two chapters are encouraging, there is still a lot
of work to be done. There seem to be strong links with partial evaluation and techniques
such as binding time analysis. The generic, variable free, definition of the fusion law
fogs the distinction between compile-time and run-time objects. A full inductive proof
gives a much cleaner separation between the two. Another aspect in favour of explicit
induction proofs and bound variables occurs when dealing with attribute grammar-like
semantic descriptions. Here there appears to be no way of avoiding the ritual steps of an
inductive proof and the elimination of bound variables leads to an explosion of low-level
combinator code to direct attributes to their correct destinations. These observations
contradict with the tendency within the Squiggol community to avoid induction proofs
and bound variables to get easier proofs and more elegant derivations. If the approach
advocated in this thesis is to be applied to full scale programming languages, some form
of machine assistance is imperative. The regular patterns of the proofs are promising in
this respect.
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Chapter 1

More Advice on Proving a
Compiler Correct: Improve a
Correct Compiler

Papa don't preach

I'm in trouble deep

Papa don’t preach

I've been losing sleep
Cause | made up my mind
And I'm keeping my baby

Madonna

One of the objectives of denotational semantics is to give a precise description of pro-
gramming languages that can serve as a standard against which implementations can be
verified, or preferably, from which correct compilers can be derived. We want to use a
calculational approach to derive correct and efficient implementations for programming
languages from their denotational descriptions. Experience [75] has shown that it is not a
good idea to validate an implementation a posteriori, rather development and proof should
proceed hand in hand. Besides the correctness aspect, a transformational approach can
help to understand the relationships that may or may not exist between various imple-
mentations, or even suggest alternative methods. This introductory chapter provides a
leisurely exposition on a calculational approach to semantics directed compiler generation
that will be developed in the remainder of this thesis.



1.1 The Compiler Correctness Problem

Many people [51, 76, 65, 17, 101, 77, 33, 19] have suggested the use of algebraic means
to tackle the compiler correctness problem. Given a source language L, a target language
T, their respective semantics m e L - M, a € T — U and a compiler ¢ from L to T,
one seeks an encoding e of the source semantics into the target semantics such that the
following diagram commutes.

By enforcing an algebraic structure on the different domains and defining the respective
functions as homomorphisms, initiality of L ensures commutativity. A sufficient condition
to prevent trivial solutions resulting from taking U as a final algebra, is to require e to be
injective, i.e. U must be a true implementation of M.

An F-algebra is a pair (A, @ € AF — A) consisting of the carrier set A and the operations
@ of signature F, for some suitable functor F. A homomorphism h between F-algebras
(A, @) and (B,1) is a structure preserving map h € A — B that replaces the operations
@ by ¥, formally, h o @ =1 o hF, or as a diagram

AF—2 A

hF h

BF———B

¥

From the initial F-algebra (L, in) there is a unique homomorphism to any other F-algebra
(A, @). To stress the importance of this unique morphism it is called by the name
“catamorphism” and written using so called banana-brackets (in := o), or (¢|)g.

The abstract syntax of a programming language L is the initial F-algebra (L, in) where in
is the set of constructors of the abstract syntax. Therefore we can define a denotational
semantics m € L — M for L as the catamorphism (in := @|) by imposing an F-algebraic
structure (M, @) on the semantic domain M. In a traditional, oxford-style, denotational
description this is achieved by encoding ¢ using A-abstraction and application. As argued
by Mosses, Watt and others [78, 111, 60], such language descriptions have rather poor
pragmatic qualities. It is hard to identify essential semantic concepts of the language being
described, and the (automatic) generation of compilers is virtually impossible. Partial
evaluation [97] is no solution; reducing a mess does not yield order. Besides this critique
of traditional denotational semantics, it must be said that on the other hand compiler



writers seem to ignore the existence of formal semantics completely, probably because
they don’t like greek letters. This behavior is inexcusable as it undermines any attempt
to implement software that has been proven correct.

Action Semantics as developed by Mosses and Watt [111, 78] is an attempt to improve the
readability and modularity of formal descriptions of programming languages. The semantic
domain M is cast into a G-algebra (M, «) where the set of actions « corresponds to the
run-time concepts of the programming language in question. For an imperative language
an action algebra includes primitive actions such as assignment and action combinators
such as sequencing, looping and conditionals. The essence of writing a semantics now
lies in extracting from the action algebra (M, x € MG — M), a compile-time algebra
(M, T € MF — M) of the same signature as the abstract syntax. Polymorphic functions
T e VYM.(MG —» M) — (MF — M) are called transformers by Fokkinga [37]; the
run-time operations « are transformed into the compile-time actions Tox. Fokkinga uses
transformers to formulate the notion of /aws categorically. The ADJ-group calls operations
T derived operations.

Classical approaches such as Initial Algebra Semantics and Action Semantics have not
been concerned with calculational issues. They only provided a framework to prove the
correctness of a given compiler respectively to structure language definitions. We want
to derive a new compiler by calculation not to prove a given one correct. Any semantics
m € L — M derived from an action G-algebra (M, ) can be factored into a static
compiler d € L — S and a dynamic S interpreter a € S — M such that the diagram

d=(in:=TIN
L (in J

m= (in:=T«| a=(IN:= «)
M

commutes, by simply letting d map a program into a textual representation of its denota-
tion. Hence (S,IN) is the initial G-algebra of the semantic algebra underlying M. Sethi
[98] dubs this representation ‘concrete semantics’. The free theorem (see Chapter 2) for
TeVM.(MG — M) - (MF - M) is

fofp=aofG = foTp=TxofF (Transformer)

From this law, commutativity of the above diagram is immediate.

(in:=Ta) = (IN:= ) o ([in:=T INJ
& fusion law, see below

(IN:=oaf) o T IN =Taxo (IN:= |JF
& (Transformer)

(IN:=«)) o IN = o (IN:= )G
= definition catamorphism

true



Factoring a semantics into a compile-time and a run-time part is a disciplined form of
partial evaluation. The work done at compile-time is computing the residual value in the
algebra (S,IN) out of an element from (S, T IN). In ordinary partial evaluation IN (and
«) are the unknowns in the factorization process.

Usually the compiler generated as described above will not produce very efficient code
as too little work can be done statically. The remedy is to improve the already correct
compiler d. Improving a compiler derived from m € L — M means finding an (injective)
implementation e € M — U such that

M - u

commutes. ldeally, the new semantics n is calculated from the composition of the old
semantics m and the improving transformation e. If m is the catamorphism (in := T«
we may try to find a F-algebra (U, Rf) (with new action algebra (1,3 € UH — U)) such
that the refinement e is a homomorphism between (M, Ta) and (U,RB), i.e. e o Tax =
RpB o eF. In that case we have (by initiality of L) that the new semantics n is given by
the catamorphism (in := Rp|. No induction is needed.

_Tx

(L,in) MF M
(in := T« (in:=RB) & eF e

In many cases, unfortunately, the above method does not yield a satisfying underlying
action algebra. Instead we want to determine a Rf3 such that e o (Tat) L = (RB)) 1o e. Now
a full structural induction proof on 1 seems unavoidable (for a more thorough discussion
see Chapter 2). In this chapter we therefore use structural induction for all our proofs,
even if it is, technically speaking, redundant.

A useful heuristic to obtain a implementation function e is to add an extra argument to
the semantics m, much akin to the ever popular accumulating argument strategy [14],
such that this argument is available at compile-time. Shifting work from run-time to
compile-time is essential to generate realistic code. A low-level implementation results
when the run-time operations are transformed into an easily and efficiently implementable
form exploiting structural properties of the domains. This process is called defunctional-
ization [91]. Typical examples are converting stores into actual memory and continuations
into concrete machine code or linked lists. Arguments of operations can become global
variables provided at any moment there is at most one ‘active’ copy of that argument
around. This is the case when the argument is passed sequentially between operations,



i.e., the semantics is single-threading [95]. Otherwise the argument should be copied
explicitly to maintain referential transparency.

Based on the improved semantics 1 we can again generate a compiler c € L — T that
solves the original compiler correctness diagram.

C

L L ¢ T L—&—T
/ \ + \ / = m a
M 3 u u M

High-Level Semantics

An approach that is very close the one proposed here is High-Level Semantics as devel-
oped by Lee [60]. A High-Level semantic description consists of two levels. The macro
semantics’ L — (I — S||[POT) maps a program into a function that given compile-time
objects from 1 yields a pair consisting of the static semantics S, for example type correct-
ness, and a term of the run-time action algebra POT. The micro semantics POT — M
provides an interpretation specifying the dynamic semantics of a program. For a single
POT several interpretations may be given. Lee makes no attempt to prove the correctness
of a desired model (e.g. machine code) against an intended model (e.g. direct semantics).

Although it is a good idea to make an explicit distinction between compile-time and run-
time, it is a bad thing to make an explicit and fixed separation between the two. The
principal strategy to generate good code is to transfer as much work as possible from run-
time to compile-time. Fixing the borderline between the two a priori make this impossible.
Only when we have found an action algebra close enough to be implemented directly, the
semantics may be changed into a compiler that yields a concrete representation of its
dynamic semantics.

Diacritical Convention When making proofs about two semantic definitions we are
frequently required to consider and to compare pairs of values, one from each definition,
which are both called by the same name. The diacritical convention as proposed by Stoy
[100] is a convenient and systematic way of distinguishing such values. All names from
the one definition are given acute accents (*) while the names belonging to the other get
grave accents (). By convention acute accents are used for decorating the more ‘abstract’
semantics, while concrete, more to the ‘ground’ semantics get grave accents.

1.2 A simple functional language F

The remainder of this chapter derives an implementation for a simple functional language
F along the lines sketched in the introduction. First the syntax and the static semantics

LPOT abbreviates “prefix-form operator term”



of F are introduced. An initial direct semantics is improved into a semantics where
arguments are passed via an argument stack. The implementation of environments is
optimized by introducing de Bruijn-indices. Finally an actual implementation is sketched
using update schemes.

1.3 Syntax

The example source language consists of simply typed A-expressions with integer con-
stants. Adding more elaborate data types, pattern matching and other sugar posses no
fundamental problems, but at the moment would only obscure the presentation needlessly.

T,0 € type == IN|type — type
A,B,E,Fe€expr u= vart¥re
|  consttype

| (Avart¥Pe.expr)tvre

(expr expr)type

We let x,y, z range over var, and ¢ over const.

1.4 Semantics

In order to define F completely, a static semantics and a dynamic semantics must be
supplied. The static semantics should describe all context conditions, for example type
checking. Though some aspects of static semantics can be realized by refining the abstract
syntax of the language, this is not always the case. Context dependent properties, such
as whether the same bound variable occurs with the same type, cannot be imposed by
a context free grammar. Usual practice in denotational semantics is to consider context
conditions as ‘syntactic’, and assume only syntactically correct programs. This gives
the undesirable situation that context dependency falls between two stools; it cannot be
described by the (context free) syntax, while it is ignored in the semantics. In our opinion
static semantics form an essential part of a language definition and thus should be treated
as a first class citizen.

1.4.1 Static semantics

The static semantics M[_] € expr — B checks if expressions are well-typed. An example

of a well-typed expression is
(AXO' XU)U—)U

for all types 0. An ill-typed expression is
(3]N XG)’T

10



for all types o and .

Type consistency is checked using an auxiliary function £[_] € expr — env — type. An
environment 1 is a mapping var — type that represents the context-condition that all
occurrences of the same bound variable have the same type.

Elx°ln = o, ifnx=o0

Elc°ln = o, if N=o¢
E[(Ax°.B)*In = =, if t=0— E[B] nix:= 0]
ENFA)In = o, fE[FIn=(E[Aln) — o

Using £[] we can easily define M[E°] = (0 = £[E°] no) where 1o is the empty
environment. The given static semantics is peculiar in that it is only a semi-decision
procedure. For well-typed expressions M[_] yields true, but it is undefined for ill-typed
expressions.

1.4.2 Standard semantics

The standard, call-by-name, interpretation of expressions is given by the valuation function
MI[_] € expr — D, where D is the solution of the recursive domain equation

D :=Value N |Func D —= D

Again M[_] is defined in terms of a helper function £[_], this time of type expr —
env — D. An environment 1 is a mapping var — D that records the values of the free
variables that occur within an expression. The action algebra of actions env — D has as
operations

LOOKUP x°1n = 1nx°
CONSTcn = Valuec
LAMBDA x° enn = Func (Aa.(e n[x° :=a]))
APPLY fan = (Func ' (fn)) (an)

Call-by-name, or normal order evaluation is implied by the strictness of the destructor
Func~! which forces evaluation of its argument f.

Given the above actions the definition of the valuation function £[_] is immediate.

EMx°] = LOOKUP x°
Elc™N] = CONSTc¢
EMAx°.E)"] = LAMBDA x° £[E°T]
ENF A)Y] = APPLY E[F°7] £[A°]

Note that £[_] corresponds to a catamorphism

(LOOKUP, CONST,LAMBDA, APPLY))

11



that replaces the (invisible) constructor for variables by LOOKUP, that for constants by
CONST etc.

We are only interested to compute the result of expressions of base type, so M[EN] =
EMENT 1o where 119 is the empty environment.

The typed A-calculus admits a much simpler semantic domain, namely interpret IN as the
cpo of natural numbers and — as the continuous function space functor [85].

Dn = N
Do—n’ = DG_)D’T

Then we have that £[E°] € env — D, where env is the set of type respecting mappings
from variables of type o to elements of Dy.

1.4.3 Spineless semantics

A compiler based on the above semantics will probably result in an inefficient G-machine-
like implementation [50]. Better results can be expected when an explicit argument stack
is introduced. This will lead to implementations that are generalizations of the Spineless
Tagless G-Machine [88] and the Three Instruction Machine [71]. The semantic domains
for a spineless semantics are

neenv = var— func
a,be func = stack— IN
£ estack == []|func > stack

These domain equations are again too loose, and well-typedness allows for more refined
domains.

neenv = {var® — funcg}
[]€stacky = 1
a >~ & € stackor = funce|/stacke
a € func, = stacke — IN

In order to transform the standard semantics into a spineless one, we define two mutual
recursive binary operations, the concretization map ~ € D||type — func and the ab-
straction map *~ € func|[type — D such that for all ¢ € type and f € func, and
f € Dy the adjunctive property

f=f° = f=+° (AbstrConcrlso)
holds. Thus " and _"° are each others inverses, when applied to arguments of the right
type. The respective types of ~ and ~ leave little choice.

N[ = ¢ N o= ]

fvo'—)"l' ((1 % a) — (f aAO')VT a fAO‘—)’I‘ a — ()\E,f (avo‘ % a))/\’l‘

12



The last two definitions may be written into variable free form using (f - g)h=go ho f.

_VO'—)’I' — pop ° (AU _) V"l')
popfla~& = fag

ST = (Y9 = "o push

pushfaé = f(ax§)

Using abstraction and concretization operations we derive a spineless implementation.

MIEN]
= demand
MIEN]
= unfold
EMENT mo
= (AbstrConcrlso)
(ETEN] mo) ™~
= assume theorem (1.1) holds
(ETENT 1)~ ™
= unfold
ETENT 4[]

In the above calculation we have assumed that
96 E[ET = E[ET o (1.1)

where 1] x = (1 x°9)~9 is the extension of the concretisation function ~ to environments.
This theorem will be proved by structural induction. A new semantics EL] and a set
of new run-time actions are determined as a side-effect of the proof. When giving hints
within a calculation we use “fold” and “unfold” when compile-time values are manipulated
and “evaluate” in case run-time expressions are simplified. New run-time operations are
“synthesized” while new compile-time operations are “extracted”.

The base case for the proof is E := x°.

R (LOOKUP x° 1)"9 &
= unfold = evaluate

95 LOOKUP x° (mx9)"° &
= abutting calculation = fold

ENTER x° o~ X &
= extract = synthesize

EMx°] o ENTER x° 4 &

The next base case deals with constants.

13



NG e (CONST cN )N [

= unfold = unfold
N 6 CONST N CONST c™N 7

= abutting calculation = evaluate
RETURN c™N o ¥ c

= extract = synthesize
EleNT o> RETURN ¢™ 7 []

Abstractions need somewhat more work.

(LAMBDA x° E[ET] 1)°°77 (a >+ &)

= unfold
0T o E[(AXC.E)OT] (LAMBDA x° E[ET 1 a™°)"" &
= unfold = evaluate
_977T o LAMBDA x° E[ET] (E[E7] nx® :=a°])"" &
= abutting calculation = IH
TAKE x° &E[E7] o~ EMET] §[x° := a"°"°]
= extract = "o —id
E[(AXC.E)o ] o~ EMET] #[x° :=a] &
= synthesize

TAKE x° E[E7] 1 (a >+ &)
Finally for applications we need some creativity to reach the induction step.

(APPLY E[FT°] £[AT] 1)°° &

= evaluate
0 E[(F A)°] (EIFT 1 (E[ATIn)7° &
= unfold = eureka
%o (APPLY E[FT €[AT]) (E[F7°Ln (EIATI m)"™ ™) &
= abutting calculation = fold
PUSH E[AT] E[F° o ¥ (EIF=eT ) ™ ((EIAT] n)™™ >+ &)
= extract = IH twice
ENF AT EIFo7 4 (EIAT] A >+ &)
= synthesize

PUSH E[AT] E[FT°] 1 &

14



Thus by a constructive induction proof we have synthesized the following set of actions

ENTERxNn § = nx§
RETURNcn[] = ¢
PUSHafnég = fn(ans+§&)
TAKExen (a =& = enlx:=alé&

together with a new set of valuation functions.

El] € expr— env— func

Elx] = ENTERx
Elc] = RETURNCc
E[F A] = PUSH &[A] E[F]

EMx.B] = TAKE x £[B]
M[] € expr— N
MIEN] = E[Elno []

The real connoisseur will spot the Krivine-machine [21, 58] in this description.

1.4.4 Environment trimming

In the above description environments are shared; PUSH a fn & =fn (an > &). An
alternative is that each suspension has its own private environment consisting of precisely
the values of its free variables.

Let 7V E denote the set of free variables occurring in the expression E, and let 1 | s be
the restriction of environment 1 to the variables appearing in the set s. Then a refinement
for the above rule for function application may be expressed as

PUSH E[A] ETFIn & = EIF mIFVF) (E[Al mTFV A) ++ &)

The restricted environments of argument expressions indicate the trimmed suspensions
that are created for them, thus each suspension gets a tailor-made environment instead of
sharing a single global one. For the function part, trimming merely shows to what extend
variable slots in its environment may be reused.

If a function body contains no free occurrences of its binding variable, the rule for A-
expressions may be refined to

TAKE x E[B] 1 (a >+ &)
= evaluate

E[B] (nlx:=a] 1FV B) &
= x¢FVB

EMBIn &
= synthesize

DROP x E[B] 1 (a >+ &)
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The net effect being that a is removed from the stack.

1.4.5 An optimization for bound variables

When the argument of an application is a variable, a compile-time optimization is possible
whether or not environments are trimmed or shared.

EFxIn &
= unfold
PUSH &[x] E[F] n &
= unfold
EMFIn (Ex] n &)
= unfold and evaluate
EMFlm x> &)
= synthesize
PUSHARG x E[F] 1 &

As all other run-time actions make use of &, no other such optimization is possible.

1.4.6 Intermediate Code

As argued in the introduction, the semantic function £[] can be partially evaluated
into a compiler C[_] € expr — I_code and a lower level semantics M[_] € I.code —
env — func such that £[.] = M[_] o C[.]. The advantage of using such intermediate
code is that it leaves the choice between an implementation based on shared or private
environments open, depending on M[_].

C[J] € expr— Icode

Clx] = ENTERx
Clel] = RETURN c
C[F A] = PUSH A[AI;CIf]

CIAx.B] = MxJ{C[B]}
Alx] = ARG x
A[A] = SUSP [FV Al{CIA]}

The expression twice = Af.Ax.f (f x) is compiled into

A Ax.{PUSH (SUSP fx); ENTER f}
[f,x]{PUSH (ARG x); ENTER f}

twice
fx
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1.5 Translating into deBruijn-form

In this section we will derive a compiler that translates simple A-expressions into de Bruijn
form [109]. For example

I =Ax.x becomes A.0
K =Ax.Ay.x becomes A.A.1
S =AfAgAx.f x (g x) becomes AAAN20 (10)
A de Bruijn-number i indicates how long ago, in terms of binding actions, the identifier
corresponding to i was bound to its value. Thus in conventional terminology the de

Bruijn-number of an identifier corresponds to its nesting depth, and operationally means
that 1 static links have to be traversed to fetch the value of the identifier.

The insight leading to an efficient implementation of environments is that (finite) map-
pings env = var — func can be represented by pairs of lists of identifiers and values,
i.e. var«|[funcx. The abstraction map & € (varx||[func+) — (var — func) is defined
informally as

Xo...xn1l@[ao...an-1] = Molxn—1:=an-1l)...[x0:= ao

where Mg is the empty environment. We use xs as a meta-variable over varx and 1
as meta-variable over funcx. Using ¢, the definition of a function Concr € (env —
func) — varx — (func*x — func) leaves little choice

Conermxsn = m(xs®n)
We note in passing that this transformation is valid in an untyped context as well.

Using Concr we derive a concrete version of the semantics M[_] of expressions.

MIE]
= demand
MIE]
= unfold
ETEI Mo [
= Mo = [1® [] then fold Concr
Concer E[E] [1[] 1]

= assume theorem (1.2) holds

EMEN L[]

Thus under the premise
Coner E[E] xs = &[E] xs (1.2)

we have found a semantics based on deBruijn numbers. We will try to determine an EME]
that makes equality (1.2) hold by structural induction on expr.
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The most inventive steps are for variables and abstraction

Coner E[x] xs
= unfold

Concer (ENTER x) xs
= abutting calculation

FETCH (position x xs)
= extract

Elx] xs

where FETCH and position are defined as

FETCHO (a % as) =
FETCH (i+1) (a >+ as) =

position x (x >+ xs)

position x (y = ys) =

Next we synthesize a concrete TAKE instruction.

Concr E[Ax.E] xs
= unfold
Coner (TAKE X é[E]]) XS
= abutting calculation
TAKE E[E] (x =+ xs)
= extract
EMX.E] xs

Coner (ENTERx) xsn &
= unfold

(xs@m) x &
= eureka

FETCH (position x xs) 1 &

as
FETCH1 as

0
1 + position x ys

Coner (TAKE x E[E]) xs 1 (a =+ &)

= unfold

TAKE x E[E] (xs@&n) (a =+ &)
= evaluate

EIE] (xs@m)x:=al &
= fold &

EME] (x s+ xs®as=+n) &

fold Concr

Coner E[E] (x = xs) (a 1) &
= synthesize
TAKE (Concr E[E] (x >+ xs)) 1 (a > &)

= IH

TAKE (E[E] (x =+ xs)) M (a =+ &)

The two remaining cases for constants and application are just tedious calculations and
therefore omitted. Putting all pieces of the proof together yields the following semantics.

Elx] xs
Elc] xs
EAx.B] xs

FETCH (position x xs)

RETURN ¢

TAKE £[B] (x >+ xs)

18



E[F Al xs = PUSH (E[A] xs) (E]F] xs)

with actions
FETCHi[ao...ai...]E, = a;
RETURNcn & = ¢
TAKEen (a™ &) = e(axn)§
PUSHafné = fnlans &)

Our running example twice will be translated into the code

twice = TAKE (TAKE (PUSH fx (ENTER 1)))
fx = PUSH x (ENTER1)
x = ENTERO

1.6 Towards a concrete implementation

In order to construct a low-level implementation based on the deBruijn-form semantics,
we must choose efficient realizations for the various components: code, environment,
and stack. Encoding this in a functional meta-language has many drawbacks; functional
languages are not suited to describe low-level activities. Update schemes as proposed by
Meijer [72], are a high-level language especially designed for specifying low-level opera-
tions on pointers and sequences. One way of looking at update schemes is as a linear
representation of graph rewrite rules. Furthermore it is relatively easy to transform update
schemes into low-level languages such as C.

The implementation for F we envisage represents environments as linked lists LINK a e
of suspensions. A suspension SUSP p e is a pair of a code address p and an environment
pointer e. The argument stack is realized as a real stack. The stack pointer SP points
at the top of the argument stack. The current environment is represented by ENV while
the programme counter PC points at the next instruction to execute.

As intended by the definition
TAKEen (a+ &) = elaxmn)é

the TAKE-instruction pops the topmost argument from the stack and binds it in the
environment. The update scheme for TAKE

PC[p] p[TAKE]p' ENV]e] SP[s] s[als’
=
PCl[p'] ENV[e'] SP[s’] e/[LINK a e]

makes all low-level details concerning pointers explicit that are invisible in the functional
version. To see this we draw an edge between a location 1 that appears inside a cell, such

19



as p in PC[p], and the occurrence of 1 as the address of a sequence of cells, like p in
p[ TAKE Jp’.

PC[.] .[TAKE]. ENV[e] SP[.] .[al.
=
PC[.] ENV[.] SP[.] JLINK a e]

Similarly we can rephrase the other actions in terms of update schemes. The action
ENTER i is expanded into i times DEREF followed by ENTER. A DEREF instruction
dereferences the environment chain once.

PC[p] p[DEREF]p’ ENV]e] e[LINK a e’]
=
PC[p'] ENV/e']

When the right suspension is reached, it may be ENTER-ed. The current environment e is
replaced by the environment e found in the suspension a[ SUSP p” e’ ] and execution
continues at p”.

PCip] plENTER]p’ ENV]e] e[LINK ae'] a[SUSPp”e”]
=
PClp"] ENV[e"]

A pointer to a suspension built from code and the current environment is PUSH-ed onto
the stack.

PClp] pl[PUSHp']p” ENV[e] SP[s]
=
PC[p" ] SP[s’'] s'[als a[SUSPp’e]

Finally, the RETURN instruction delivers its value in some result register and halts.

PClp] p[RETURN ¢ ]

=
PC[HALT ] RES[c]

The function twice = Af.Ax.f (f x) would be translated into the code

twicel TAKE, TAKE, PUSH fx, DEREF, ENTER]
fx[ PUSH x, DEREF, ENTER]
x[ ENTER]

Osborne [81] has (manually) translated an update scheme specification for a similar ab-
stract machine into C. The speed of the resulting implementation was of the same order
of magnitude as that of Miranda?.

2Miranda is a trademark of research software Itd.
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Chapter 2

Functional Programming with

Bananas, Lenses, Envelopes and
Barbed Wire

Hey Mr.Tallyman
Tally me banana
Daylight come and me wanna go home

George Clinton

Among the many styles and methodologies for the construction of computer programs,
the Squiggol style in our opinion deserves attention from the functional programming
community. The overall goal of Squiggol is to calculate programs from their specification
in the way a mathematician calculates solutions to differential equations, or uses arithmetic
to solve numerical problems.

It is not hard to state, prove and use laws for well-known operations such as addition,
multiplication and —at the function level— composition. It is, however, quite hard to
state, prove and use laws for arbitrarily recursively defined functions, mainly because it
is difficult to refer to the recursion scheme in isolation. The algorithmic structure is
obscured by using unstructured recursive definitions. We crack this problem by treating
various recursion schemes as distinct higher order functions, giving each a notation of
its own independent of the ingredients with which it constitutes a recursively defined
function.

This philosophy is similar in spirit to the 'structured programming’ methodology for im-
perative programming. The use of arbitrary goto's is abandoned in favor of structured
control flow primitives such as conditionals and while-loops that replace fixed patterns of
goto's, so that reasoning about programs becomes feasible and sometimes even elegant.
For functional programs the question is which recursion schemes are to be chosen as a
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basis for a calculus of programs. We shall consider several recursion operators that are
naturally associated with algebraic type definitions. A number of general theorems are
proven about these operators and subsequently used to transform programs and prove
their correctness.

Bird and Meertens [12, 67] have identified several laws for specific data types (most no-
tably finite lists) using which they calculated solutions to various programming problems.
By embedding the calculus into a categorical framework, Bird and Meertens’ work on
lists can be extended to arbitrary, inductively defined data types [63, 39]. Recently the
group of Backhouse [6] has extended the calculus to a relational framework, thus covering
indeterminacy.

Independently, Paterson [83, 84] has developed a calculus of functional programs similar
in contents but very dissimilar in appearance (like many Australian animals) to the work
referred to above. Actually if one pricks through the syntactic differences, the laws derived
by Paterson are the same and in some cases slightly more general than those developed
by the Squiggolers.

This chapter gives an extension of the theory to the context of lazy functional program-
ming, i.e., for us a type is an w-cpo and we consider only continuous functions between
types (categorically, we are working in the category CPO). Working in the category SET
as done by for example Malcolm [63] or Hagino [48] means that finite data types (defined
as initial algebras) and infinite data types (defined as final co-algebras) constitute two
different worlds. In that case it is not possible to define functions by induction (catamor-
phisms) that are applicable to both finite and infinite data types, and arbitrary recursive
definitions are not allowed. Working in CPO has the advantage that the carriers of initial
algebras and final co-algebras coincide, thus there is a single data type that comprises
both finite and infinite elements. The price to be paid however is that partiality of both
functions and values becomes unavoidable. A cut back version this chapter has appeared
as a joint paper with Fokkinga and Paterson in [70], a more formal treatment of the
subject matter is given in [39] and in Fokkinga's thesis [37].

2.1 The data type of lists

We shall illustrate the recursion patterns of interest by means of the specific data type of
cons-lists. So, the definitions given here are actually specific instances of those given in
§2.5. Modern functional languages allow the definition of cons-lists over some type A by
putting:

Ax u= Nil| Cons (A||Ax%)

In a conventional functional language the cartesian product A||Ax would be written as
(A, Ax). The recursive structure of this definition is employed when writing functions
€ Ax — B that destruct a list; these have been called catamorphisms (from the greek
preposition Kortoe meaning “downwards” as in “catastrophe”). Anamorphisms are func-
tions € B — Ax (from the greek preposition ctvoe meaning “upwards” as in “anabolism™)
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that generate a list of type Ax from a seed from B. Functions of type A — B whose acti-
vation tree ([1], pp. 391) has the shape of a cons-list are called hylomorphisms (from the
Aristotelian philosophy that form and matter are one, UAoo meaning “dust” or “matter”).

Catamorphisms

Let b € B and & € A||B — B, then the list-catamorphism h € Ax — B recursively
replaces the constructor Nil by the value b and Cons by the binary operator &.

hNil = b (2.1)
h (Cons (a,as)) = a& (h as)

In the notation of Bird&Wadler [13] one would write h = foldr b (&). We write
catamorphisms by wrapping the relevant constituents between so called banana brackets:

h = (b,®) (2.2)

Countless list processing functions are readily recognizable as catamorphisms, for example
length € Ax — IN, or filter p € Ax — Ax, with p € A — bool.

length = (0,¢) wherea®n=1+n
(Nil, @)
where a @ as = Cons (a,as), ifpa

filter p

= as, if pa

Separating the recursion pattern for catamorphisms (_) from its ingredients b and &
makes it feasible to reason about catamorphic programs in an algebraic way. For example
the Fusion Law for catamorphisms over finite lists reads:

folb,®)=(c,®) & fb=c A f(a@as)=a® (f as)
Without special notation pinpointing catas, such as (_) or foldr, we would be forced to
formulate the fusion law as follows.
Let h, g be given by

hNil = b gNil = ¢
h (Cons (a,as)) a® (h as) g (Cons (a,as)) = a® (g as)

thenfoh=giffb=candf (a®as)=a® (f as).

A clumsy way of stating such a simple algebraic property.
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Anamorphisms

Given a predicate p € B — bool and a function g € B — A||B, the list-anamorphism
h € B — Ax yields Nil if p b holds and otherwise constructs a list by Cons-ing the
first argument a of the pair (a,b’) generated by the seed g b to the list returned by the
recursive call h b’.

hb = Nil, ifpb (2.3)
= Cons (a,hb’), otherwise
where (a,b’) =g b
Anamorphisms are not well-known in the functional programming folklore, they are called

unfold by Bird&Wadler, who spend only few words on them. We denote anamorphisms
by wrapping the relevant ingredients between concave lenses:

h = [g,v] (2.4)

Many important list-valued functions are anamorphisms; for example zip € Ax||Bx —
(A||B)* which ‘zips' a pair of lists into a list of pairs.

zip = [g,p]
p (as,bs) = (as=Nil)V (bs =Nil)
g (Cons (a,as),Cons (b,bs)) = ((a,b),(as,bs))

Another anamorphism is iterate f which given a, constructs the infinite list of iterated
applications of f to a.

iterate f = [g,false’] where g a = (a,f a)
We use c* to denote the constant function Ax.c.

Given f € A — B, the map function fx € Ax — Bx applies f to every element in a given
list.

fxNil Nil

fx(Cons (a,as)) = Cons (f a,f*xas)

Since a list appears at both sides of its type, we might suspect that map can be written
both as a catamorphism and as an anamorphisms. Indeed this is the case. As catamor-
phism: fx = (Nil, ®|) where a @& bs = Cons (f a, bs), and as anamorphism fx = [g,p)
where p as = (as = Nil) and g (Cons (a,as)) = (f a, as).

Hylomorphisms

A recursive function h € A — C whose call-tree is isomorphic to a cons-list, i.e., a
linear recursive function, is called a hylomorphism. Let ¢ € C and & € B||C — C and
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g € A — B||A and p € A — bool then these determine the hylomorphism h

ha = c, ifpa (2.5)
= b@(ha'), otherwise
where (b,a') =g a

This is exactly the same structure as an anamorphism except that Nil has been replaced
by ¢ and Cons by &. We write hylomorphisms by wrapping the relevant parts into
envelopes.

h = [(c,®),(g,p)l (2.6)

A hylomorphism corresponds to the composition of an anamorphism that builds the call-
tree as an explicit data structure and a catamorphism that reduces this data object into
the required value.

[(c,®),(g,p)] = lc,®)o[g,p]

A proof of this equality will be given in §2.5.4.

An archetypical hylomorphism is the factorial function:

fac = [(1,x),(g,p]]
pn = n=0
g(1+n) = (T+n,m)

Paramorphisms

The hylomorphism definition of the factorial may be correct but is unsatisfactory from a
theoretic point of view since it is not inductively defined on the data type num == 0 |
14+ num. There is however no ‘simple’ ¢ such that fac = (¢). The problem with the
factorial is that it “eats its argument and keeps it too” [105], the brute force catamorphic
solution would therefore have fac’ return a pair (n,n!) to be able to compute (n + 1)!.

Paramorphisms were investigated by Meertens [68] to cover this pattern of primitive
recursion. For type num a paramorphism is a function h of the form:

h0o = b 27
h(l1+n) = na&(hn)
For lists a paramorphism is a function h of the form:
hNil = b
h (Cons (a,as)) = a@ (as,h as)

We write paramorphisms by wrapping the relevant constituents in barbed wire h = {b, ®},
thus we may write fac = (1, @) where n®m = (14+n) x m. The function tails € Ax —
Asxx, which gives the list of all tail segments of a given list is defined by the paramorphism
tails = {Cons (Nil, Nil), ®) where a & (as, tls) = Cons (Cons (a, as), tls).
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2.2 The category CPO

In this section we give a short overview of cpo’s, continuous functions and least fixed
points. The material is well known, but we could not resist including it because of the
interesting similarities with reasoning on the program level.

2.2.1 Partially ordered sets

A partially ordered set or poset is a pair (D,C) consisting of a set D together with a
partial order C on D. A poset X C D is a chain if all elements in X are comparable, i.e.
for all x,x’ € X either x C x' or x' C x. The least or bottom element of a poset, if any,
is usually denoted by 1.

Given d,d’ € D, their join d U d’ is the least element in D that is greater than both d
and d’.

c=dud = (VezcCe=dCeAd Ce)

In general it is not true that every two elements in D have joins. An easy to verify law
concerning joinis L LUd = dU L = d. The least upperbound of a subset X C D is
denoted by LI/, conventionally written as | |.

c=U/X = (VexzcCe=(VxeXuxCe))

Not every X C D need have a lub.

2.2.2 CPO’s

A poset D is a complete partial order or w-cpo if it contains a bottom element and each
chain in D has a lub, so LI/X does exist for any chain X C D. The lub LI/ of a chain X
satisfies the laws

uA = L (28)
U/(xJUX) = xU(L/X) (2.9)

(this is not a definition of LI/ 1)
A function f € D — E is monotonic if it respects the ordering on D,
fdcCfd « dCd'
A function f € D — E is continuous if it respects lubs of chains, let X C D be a chain:

(foll/) X = (U/ofx)X
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where fxX = {f x | x € X}. The extension of a function f € D — E to f*x € D*x — Ex
satisfies the following equations:

=} = {}
fx({djuD) = {f d}U (f«D)
Again, this is not a definition of fx. If f is continuous then it follows that f is monotonic by
taking the chain X = x C x'. An example of a monotonic function that is not continuous
is:
f € (NUw)—{0,1}
fw =
fn =0

—_

This f is clearly monotonic, but (folU/) N =f w =1 while (LU/ o fx) N =0.

2.2.3 Least Fixed Points

An element d € D is a fixed pointof f € D — D if f d = d, it is a least fixed point if for
any other fixed point d’ it holds that A C d’.

Let f € D — D, then we define the set of iterated applications of f as:
iteratefd = {f'd|ie N}
The function iterate f d satisfies the following law
iteratefd = {d}U (f*xoiteratef) d (2.10)

Kleene’s recursion theorem states that any continuous function f € D — D has as least
fixed point

uf = (U/ o iterate f) L

First we show that uf is indeed a fixed point of f

f (uf)
= unfold
(f o U/ o iterate f) L
= f is continuous, iterate f L is a chain
(U/ o f* o iterate ) L
= d=1Ud
LU (U/ ofxoiterate f) L
- (29
L/ ({L}U (f* o iterate f) L)
= (2.10)
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(U/ o iterate f) L
= fold
uf

To show that uf is also the least fixed point of f, we use the recursion induction rule of
Park.

ufCd & fdCd (Reclnd)

Assume that d is also a fixed point of f then f d C d and thus according to the above
lemma pf C d.

2.2.4 Calculating with fixed points

In the sequel we will never again refer to the explicit definition uf = (LI/ o iterate f) L,
instead we supply a handful of handy calculation rules for fixed points.

Fixed point property The vacuous fact that the least fixed point of f is also a fixed
point of f,

d=uf = d=fd (FPProp)
allows us to unwind recursively defined objects.

Fixed point induction The fixed point induction rule of Scott and de Bakker [23, 85],
is a free theorem [106, 28, 93] of the fixed point operator n € (D — D) — D.

Let f € A — A be a continuous function and P be a chain complete (or inclusive or
admissible or inductive) predicate on A, then the following induction rule holds.

e P (1)
e WaeA : P(a): P (fa))

P (uf)

In order to show that some property P hold for recursively defined function uf, it suffices
to show that the induction base P(L) holds, and that assuming the induction hypothesis
P(a) the induction step to P (f a) can be made. The p-induction rule is easily generalized
to n-ary predicates.

(n-ind)

A predicate is called chain complete if it respects lubs of chains, for any chain X:
(A/oPx) X = (Pol/)X

Clearly not every predicate is admissible, but if f and g are continuous the predicate
P (f,g) = f = g is admissible and if f is continuous and g monotonicthen P (f,g) = fC g
is admissible. The conjunction and disjunction of admissible predicates are admissible.
Paulson [85] and Bird [10] (Chapter 7) provide more profound discussions on fixed point
theory.
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Fixed point fusion Specializing the fixed point induction rule to functions yields the
fixed point fusion rule.

f(ug)=ph & fstrict A fog=hof (FPFusion)

Theorem (FPFusion) appears under different names in many places® [96, 74, 27, 8, 49,
4,16, 100, 47, 114].

Rolling rule The rolling rule is a direct consequence of (FPFusion).

fulgef) = ul(fog) (Rolling)
This role is part of the folklore.

Total fusion By analogy of ‘loop fusion’, the total fusion law allows two recursive func-
tions to be combined into a single recursive function.

ufoug=pnh & faogb=h(aob) (TotalFusion)

Rule (TotalFusion) can be proved by fixed point induction on P(a,b,c)=a-.b=c.

2.3 Functors

In the preceding section we have given specific notations for some recursion patterns in
connection with the particular type of cons-lists. In order to define the notions of cata-,
ana-, hylo- and paramorphism for arbitrary data types, we now present a generic theory of
data types and functions on them. For this we consider a recursive data type (also called
‘algebraic’ data type in Miranda) to be defined as the least fixed point of a functor?.

A bifunctor 1 is a binary operation taking types into types and functions into functions
such thatif f ¢ A - Band g€ C — D thenf{fge€ AtC — B{D, and which preserves
identities and composition:

idtid = id
ffgohfj = (foh)t(goj)

Bifunctors are denoted by T, 1,8, ... A monofunctor is a unary type operation F, which is
also an operation on functions, F € (A — B) — (AF — BF) that preserves the identity
and composition. We use F,G,... to denote monofunctors. In view of the notation Ax
we write the application of a functor as a postfix: AF. In §2.6.1 we will show that x is a
functor indeed.

The data types found in all current functional languages can be defined by using the
following basic functors.

LOther references are welcome.
2\We give the definitions of various concepts of category theory only for the special case of the category
CPO. Also ‘functors’ are really endo-functors, and so on.
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Product The (lazy) product D|D’ of two types D and D’ and its operation || on
functions are defined as:

D|D' = {(d,d")|deD,d’ €D
(flg) (d,d) = (fd,gd")

Closely related to the functor || are the left and right projections and the split combinator:

exl (d,d") = d
exr (d,d") = d’
(fag)d = (fdgd)

The relation between the projections and split is best expressed by the equivalence
f=gah = exlof=g A exrof=h (SplitCharn)

Using exl, exr and 2 we can define f||g as f||g = (f o exl) 2 (g o exr). We can also
define 2 using || and the doubling combinator A d = (d, d), since f 2 g = f||g o A.

Strictness The strictifying functor _; adds an additional bottom element to a given
domain D: D, ={L}UD. Its associated operation on functions is the function:

fi,L = 1
f,d = fd,deD

Sum The sum D | D’ of D and D' and the operation | on functions are defined as:

DID" = ({o}IDuU{1}D).
(flg) L = L
(flg) (0,d) = (0,fd)
(flg)(1,d") = (1,gd")

The arbitrarily chosen numbers 0 and 1 are used to ‘tag’ the values of the two summands
so that they can be distinguished. Closely related to the functor | are the injections and
the junc combinator:

inl x (0,x)
inry = (1,y)
(fvg) L = 1
(fvg) (0,x) = fx
(fvg)(l,by) = gy

with which we can write f | g = (inl o f) v (inr o g). Using V which removes the tags
from its argument, V 1L = 1 and V (i,x) = x, we can define fvg=V o f|g. The
relationship between inl,inr and v is nicely expressed by the adjunction

f=gvh = foinl=g A foinr=h A foL =1 (SumCharn)

30



Arrow The bifunctor — that forms the function space D — D’ of continuous functions
from D to D', has as operation on functions the 'wrapping’ function:

(f—)g)h = gohof

Often we will use the alternative notation (g < f) h = g o h o f, where we have
swapped the arrow already so that upon application the arguments need not be moved,
thus localizing the changes occurring during calculations. The functional

(fE g h = fohFog
wraps its F-ed argument between f and g.

Closely related to the — are the apply, curry and uncurry combinators:

fCxy = fxv)
2 (x,y) = fxy
Q@ (f,x) = fx
= 1id° (f,x)

Currying () and uncurrying (-°) are each others inverses.

f=g~ = f°=g¢g (CuryUncurrylso)

Note that — is contra-variant in its first argument, i.e. (f 5 g)o(h—j)=(hof) —
(g o j). This turns out be be very annoying and we will not allow — as a data type
functor.

Identity, Constants The identity functor | is defined on types as DI = D and on
functions as fl = f. Any type D induces a functor with the same name D, whose
operation on objects is given by CD = D, and on functions fD = id.

Lifting For mono-functors F, G and bi-functor 1 we define the mono-functors FG and F{G
by

x(FG) = (xF)G
x(FtG) = (xF) 1t (xG)

for both types and functions x.

In view of the first equation we need not write parenthesis in xFG. Notice that in (F{G)
the bi-functor § is ‘lifted’ to act on functors rather than on objects; (F1G) is itself a
mono-functor.

Sectioning Analogous to the sectioning of binary operators, (a®) b = a® b and
(@b) a = a @ b we define sectioning of bi-functors f;

(AT) = Afl
(ff) = ftid
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hence B(A1) = A1 B and f(Af) = id { f. Similarly we can define sectioning of } in its
second argument, i.e. (fB) and ({f).

It is not too difficult to verify the following two properties of sectioned functors:

(1) o g(AT) g(BT) o (ff) forall fe A— B (2.11)
(ft) o (gf) = ((fog)f) (2.12)

Taking f f g = g — f, thus (f{) = (fo) gives some nice laws for function composition.

2.3.1 Laws for the basic combinators

There are various equations involving the above combinators, we state nothing but a few
of these. In parsing an expression function composition has least binding power while ||
binds stronger than |.

exlofllg = foexl flgoinl = inlof
exlofag = f fvgoinl = f
extofllg = goexr flgoinr = inrog
exrofag = ¢ fvgoinr = ¢
(exloh)a (exroh) = h (hoinl)v (hoinr) = h & h strict
exlaexr = id inlvinr = id
flgohaj = (foh)algo]) fogehlj = (foh)v(ge])
ngoh. = (foh)A(goh) fstrictz}fogvh = (fog)v(foh)
flg=hli = f=hAg=j flg=hlj = f=hAg=j
fag=haj = f=hAg=j fvg=hvj = f=hAg=j
A nice law relating 2 and v is the abides law:
(fag)v(haj) = (fvh)a(gvj) (2.13)

2.3.2 Varia

The one element type is denoted 1 and can be used to model constants of type A by
nullary functions of type 1 — A. The only member of 1 called void is denoted by ().

In some examples we use for a given predicate p € A — bool, the function:
p? € A—DA|A
p?a = 1, pa=_L1
= inla, pa=true
= inra, p a=false

thus f v g o p? models the familiar conditional if p then f else g fi. The function VOID
maps its argument to void: VOID x = (). Some laws that hold for these functions are:

VOID.f = VOID

p?oX = X‘Xo(‘pox)?
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The following two simple, but handy A-fusion laws will save a lot of work, since we don’t
have to invent variable-free versions of functions in order to calculate.

fo(MA.EX]) = Mx.f(E[x]) (LambdalLeftFusion)
(M.E[x])og = Ax.E[g x| (LambdaRightFusion)

We prove them both in one go.

(foAx.Elx]og)y
(f o Ax.E[x]) (g v)
f (Elg yl)
(MAx.fE[gx])y

Let F, G be functors and @A € AF — AG for any type A. Such a @ is called a polymorphic
function. A natural transformation is a family of functions @A (omitting subscripts
whenever possible) such that:

Vi:f€eA > B:@pofF=1Go@a (NatrTran)

As a diagram the definition of a natural transformation becomes

AF AG
fF fG
BF W’ BG

As a convenient shorthand for (NatrTran) we use ¢ € F — G to denote that ¢ is
a natural transformation. The “Theorems For Free!” theorem of Wadler, deBruin and
Reynolds [106, 28, 93] states that any function definable in the polymorphic A-calculus is
a natural transformation. If @ is defined using , one can only conclude that (NatrTran)
holds for strict f.

2.4 Algebraic Data Types

After all this stuff on functors we have finally armed ourselves sufficiently to abstract from
the peculiarities of cons-lists, and formalize recursively defined data types in general.

Let F be a monofunctor whose operation of functions is continuous, i.e., all monofunctors
defined using the above basic functors or any of the map-functors introduced in § 2.6.1.
Then there exists a type L and two strict functions ing € LF — L and outg € L — LF
(omitting subscripts whenever possible) which are each others inverse such that

id = u(in & out) (Initial)
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[15, 95, 61, 99, 108, 39]. We let uF denote the pair (L,in) and say that it is “the least
fixed point of F”. Since in and out are each others inverses we have that LF is isomorphic
to L, and indeed L is — upto isomorphism — a fixed point of F.

For example the functor L defined on objects X as
XL=1]A|X

defines the data type of cons-lists over A, for any type A; (Ax,in) = uL If we put
Nil =inoinl € 1 — Ax and Cons = in o inr € A||Ax — Ax, we get the more
familiar (A%, Nilv Cons) = uL.

Other examples of data types are binary trees with leaves of type A, that result from
taking the least fixed point of functor

XT =1]A|X|X

Backward lists with elements of type A, or snoc-lists as they are sometimes called, are
the least fixed point of
XL=1]X||A

i.e. (A%,Nilv Snoc) = pL. Natural numbers (num, Zero v Succ) are specified as the
least fixed point of XN =1 | X.

2.5 Recursion Schemes

Now that we have given a generic way of defining recursive data types, we can define
cata-, ana-, hylo- and paramorphisms over arbitrary data types. Let (L,in) = uF, ¢ €
AF — A, b e A = AF, & € (A||L)F — A then we define

lolg = ple & out) (CataDef)
[Wlg = wnlin E ) (AnaDef)
[, 0] = ule E) (HyloDef)
() = (M. &0 (id 2 f)F o out) (ParaDef)

When no confusion can arise we omit the F subscripts.

Definition (CataDef) agrees with the definition given in §2.1; where we wrote (e, ®| we
now write (e* v (®)).

Definition (AnaDef) agrees with the informal one given earlier on; the notation [[g,p] of
§2.1 now becomes [(VOID | g) o p?].

Definition (HyloDef) agrees with the earlier one in the sense that taking @ = ¢* v @& and
P = (VOID| g) o p? makes [(c*, D), (g,P)] equal to [@,V].

Definition (ParaDef) agrees with the description of paramorphisms as given in §2.1 in the
sense that (b, ®) equals {b* v (®)) here.
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2.5.1 Program Calculation Laws

Rather than letting the programmer use explicit recursion, we encourage the use of the
above fixed recursion patterns by providing a shopping list of laws that hold for these
patterns. For each QO-morphism, with Q € {cata, ana, para}, we give an evaluation rule
which shows how such a morphism can be evaluated, and an induction principle. From the
induction principle various specialized laws can be compiled; The Uniqueness Property is
a canned induction proof for a given function to be a Q-morphism, the fusion law shows
when the composition of some function with an Q-morphism is again an Q-morphism.

For hylomorphisms we prove that they can be split into an ana- and a catamorphism and
show how computation may be shifted within a hylomorphism. A number of derived laws
show the relation between certain cata- and anamorphisms. These laws are not valid in
SET.

2.5.2 Catamorphisms
Evaluation rule The evaluation rule for catamorphisms follows from the fixed point
property x = uf = x =1 x:

() oin = @ o (@|F (CataEval)

It states how to evaluate an application of (@|) to an arbitrary element of L (returned by
the constructor in); namely, apply (@) recursively to the argument of in and then ¢ to
the result.

For cons-lists (Ax,Nil v Cons) = puL where XL = 1 | A||X and fL = id | id||f with
catamorphism (c v @) the evaluation rule reads:

lcvd)ol = L
lcv@)oNil = ¢
lcva®)oCons = ®oid|lcv®)

i.e. the variable free formulation of (2.1). Notice that the constructors, here Nilv Cons
are used for parameter pattern matching.

Induction principle for catamorphisms The induction principle for catamorphism is
given by

(Catalnd)

It directly follows by fixed point induction on P(x,y)=fox=govy.

35



Fusion law Explicit use of the induction principle should be avoided whenever possible,
since the ritual steps, checking the premises and then declaring that by induction the
theorem holds, hinder a smooth linear calculation. By partial evaluation (better partially
performing) of induction proofs these steps are taken once and for all. The resulting
theorem is a form of “canned induction”. As an illustration we partially evaluate (Catalnd)
with g :=id.

The first ritual step is to check the base case.

foJ_:goJ_
= g=id
fol=_L1

The next ritual step is making the induction step, assuming the hypothesis f o x = g o
y=fox=vy.

fo(poXF:goll)oyF

= g=1id
fo@oxF=1vPoyF
= hypothesis

fo@oxF=1Vo (fox)F
functor calculus

fo@oxF=1ofFoxF

= assume f o @ =1 o fF

true

The third ritual step is the exclamation that by the induction principle for catamorphisms,
the fusion law holds.

folp)=) & fol=1L Afop=19ofF (CataFusion)
UP for catamorphisms The Uniqueness Property can be used to prove the equality of
two functions.

f=() = fol=( ol Afoin=E&0fF (CataUP)

The = part of the proof for (CataUP) follows directly from the evaluation rule for cata-
morphisms. For the & part we use the (Catalnd) with @ :=in,{ :=in and g := (&)

Injective functions are catamorphisms Let f € A — B be a strict function with left-
inverse g, then for any @ € AF — A we can fuse f with (| since fo @ = (fo @ o gF) o
fF.

fo(p)=(fowogF) & fstrict A gof=1d (2.14)
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Taking @ = in we immediatly get that any strict injective function can be written as a
catamorphism.

f=(foinogF)p & fstrict A gof=1id (2.15)

Using this latter result we can write out in terms of in since out = (out o in o inL) =
(inL].

Catamorphisms preserve strictness The given laws for catamorphisms all demonstrate
the importance of strictness, or generally of the behavior of a function with respect to
L. The following “poor man’s strictness analyser” for that reason can often be put into
good use.

pFol =1 & Vf:fstrict:Ffol=_1 (2.16)
The proof of (2.16) is by fixed point induction over P(F)=Fo 1L = L.
Specifically for catamorphisms we have
(Plpol=1 = @ol=_1

if F is strictness preserving. The & part of the proof directly follows from (2.16) and the
definition of catamorphisms. The other way around is shown as follows

1
= premise
(o) oL
= inol =1
(@) cino L
= (CataEval)
@o(plFol
= F preserves strictness

(poJ_

Examples

Unfold-Fold Many transformations usually accomplished by the unfold-simplify-fold tech-
nique can be restated using fusion. Let (INx, Nilv Cons) = uL, where XL =1 | IN||X
and fL = id | id||f be the type of lists of natural numbers. Using fusion we derive an
efficient version of sum o squares where sum = (0°* v add) adds together all elements
of its argument list and squares = (Nil v (Cons o sq||id)) squares each individual
element of its argument list. Since sum is strict we just start calculating aiming at the
discovery of a \{ that satisfies the condition of (CataFusion).
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sum o Nil v (Cons o sq||id)

~ (sum o Nil) v (sum o Cons o sq||id)

~ 0° v (add - id||sum o sq|[id)
v (add o (id o sq)||(sum o id))

N

0° v (
0" v (add o (sq o id)||(id o sum))
0" v (add - sq|lid o id||sum)
(0° o id) v (add o sq|[id o id||sum)
0° v (add o sq|id) o id | id||sum

"~ 0° v (add o sqlid) o sumL

v

and conclude that sum - squares = (0°* v (add o sq||id)].
A slightly more complicated problem is to derive a one-pass solution for
average = divosuma length
Using the tupling lemma of Fokkinga [35]
(o 2 (W) = (e oexlL)a (P oexrL)) (BananaSplit)
a simple calculation shows that average = div o ((0°vadd - id||exl)2 (0*vsucc o exr)).

Accumulating Arguments An important item in the functional programmer’s bag of
tricks is the technique of accumulating arguments, where an extra parameter is added to
a function to accumulate the result of the computation. Though stated here in terms of
catamorphisms over cons-lists, the same technique is applicable to other data types and
other kind of morphisms as well.

(c*vea)l=((c®)" vS]) lvg where (acf)b=f (a®Db) (2.17)

&

a®vg=a AN L®a=1L A (a®db)®c=b® (a®c)

Theorem (2.17) follows from the fusion law by taking Accu o (c* v @) = ((c®)* v ©)
with Accuab=a®b.

Rewriting (2.17) into traditional notation makes the importance of the rule more clear,
the transformed function is tail-recursive.

Let h be defined as

hNil = ¢
h (Cons(a,as)) = a& (has)
then h as = (h as) ® v where
hNilb = ca@b
h (Cons(a,as))b = has(a®b)
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A choice for ® that works for any @ is a ® f = f a in which case a® f =f o (a®). This
is known as continuation passing style, the continuation f o (a®) is an explicit functional
representation of the ‘return stack’.

Given the naive quadratic definition of reverse € Ax — Ax as a catamorphism (Nil* v
where a®as = as H# (Cons (a, Nil)), we can derive a linear time algorithm by instantiat-
ing (2.17) with @ := # and ® := Cons to get a function which accumulates the list being
reversed as an additional argument: (id v &|) where (a © as) bs = as (Cons (a,bs)).
Here - is the function that appends two lists, defined as as + bs = (id* v @) as bs
where a @ f bs = Cons (a, f bs).

In general catamorphisms of higher type L — (I — S) form an interesting class by
themselves as they correspond to attribute grammars [38].

2.5.3 Anamorphisms

Evaluation rule The evaluation rule for anamorphisms is given by:

outo [W] = [W]LoW (AnaEval)

It says what the result of an arbitrary application of [[W] looks like: the constituents
produced by applying out can equivalently be obtained by first applying { and then
applying [W]L recursively to the result.

Anamorphisms are real old fusspots to explain. To instantiate (AnaEval) for cons-list we
define the functions hd € Ax — A which delivers the first element of a nonempty list,
the operation tl € Ax — Ax which yields the tail of a nonempty list and the test is_nil
which checks if a list is empty.

hd = 1L vexloout
t1 = L vexroout
ismil = +true® v false® o out

Assuming that f = [VOID | (h 2 t) o p?] we find after a little calculation that:

isnilof = p
hdof = h & —p
tlof = t & —p

which corresponds to the characterization of unfold given by Bird and Wadler [13] on
page 173.

Induction Principle for anamorphisms The induction rule for anamorphisms is slightly
simpler then the one for catamorphisms since the base case need not be checked.

° (VX,U . Xof:yog : XFo(pof:yFoll)og)
[elef=Tw]og

(Analnd)
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Fusion law for anamorphisms The strictness requirement that was needed for cata-
morphisms can be dropped in the anamorphism case. The dual condition of f o L = L
for strictness is 1 o f = L, which is vacuously true.

[e]of=[0] & @of=fFotp (AnaFusion)

This law can be proved from the induction principle by taking g :=1id.

UP for anamorphisms The UP for anamorphisms follows the evaluation rule and from
(AnaFusion) by putting ¢ := out.

f= |:(Il)1| = Ou.tof:ﬂ:oll) (AnaUP)

Any surjective function is an anamorphism The results (2.14) and (2.15) can be
dualized for anamorphisms. Let f € B — A a surjective function with right-inverse g,
then for any P € A — AL we have

K‘ll)]of:KgLoll)of] & fog:id (218)

since P o f = fL o (gL o P o ). The special case where 1 equals out yields that any
surjective function can be written as an anamorphism.

f:KgLooutof]L & fog:id (219)

As in has right-inverse out, we can express in using out by in = [outL o out o in) =
[outL].

Examples

Reformulated in the lenses notation, the function iterate f becomes:
iterate f = [inroidaf)
We have [[inroid 2 f] = [VOID |id 2 f o false*?] (= [[id 2 f, false*] in the notation

of section 2.1).

Another useful list-processing function is takewhile p which selects the longest initial
segment of a list all whose elements satisfy p. In conventional notation:

takewhile p Nil = Nil
takewhile p (Cons a as) = Nil, f-pa
= Cons a (takewhile p as), otherwise

The anamorphism definition may look a little daunting at first:
takewhilep = [inlv (VOID|1id o (—p o exl)?) o out]

The function f while p contains all repeated applications of f as long as predicate p
holds:

f whilep = takewhile p o iterate f
Using the fusion law (after a rather long calculation) we can show that f while p =

[VOID| (id & f) o —p?].
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2.5.4 Hylomorphisms

Splitting Hylomorphisms In order to prove that a hylomorphism can be split into an
anamorphism followed by a catamorphism

[o, ] = (oo [W] (HyloSplit)

we can use the total fusion theorem (TotalFusion). The anamorphism [ ] builds an
explicit F-shaped call-tree, which is subsequently reduced by catamorphism ().

Shifting law Hylomorphisms are nice since their decomposability into a cata- and an
anamorphism allows us to use the respective fusion laws to shift computation in or out
of a hylomorphism. The following shifting law shows how computations can be shifted
within a hylomorphism.

[eo &0 =M@, &)y & E€L =M (HyloShift)

The proof of this theorem is straightforward.

oo &P,
= definition hylo
L(Af.@ o & o fL o )
= feL-oM
L(Af.@ o TM o0 & 0 )
= definition hylo
[o,& o Wy

An admittedly humbug example of (HyloShift) shows how certain left linear recursive
functions can be transformed into right linear recursive functions. Let fL =1id | f||id and
fR = id | id||f define the functors which express left respectively right linear recursion,
then if x @y =y & x we have

[cv@,fl(hat)op?l,

[cv ® o SWAP, | (hat)op?],
— SWAPelL SR

[cv &, SWAPof|(hat)oplg
T levea,fl(tah)oplg

where SWAP =1id | (exr 2 exl).

2.5.5 Relating cata- and anamorphisms

From the splitting and shifting law (HyloShift), (HyloSplit) and the fact that (@) =
[o,out] and [P] = [in, ] we can derive a number of interesting laws which relate
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cata- and anamorphisms with each other [83].

finmo@l =[@oout ]y & @eL—=M (2.20)

Using this law we can easily show that

([@ob), = lolyolboout]y & beLoM (2.21)
= (@l o liny o) & beL M (2.22)
[eod]y = (inmeol o[W] & oL =M (2.23)
= [ooout o [P], & 9L oM (2.24)

This set of laws will be used in §2.6.

From the total fusion theorem (TotalFusion) we can derive:

[W]e o lolp=id & boe=id (2.25)
Its dual companion ensures only partial correctness.
(o o [W]F Cid & @ob=id (2.26)

Example: Reflecting binary trees

The type of binary trees with leaves of type A is given by (tree A,in) = uL where
XL=1]A|X||Xand fL = 1id | id | g||g. Reflecting a binary tree can be defined by:
reflect = (in o SWAP)) where SWAP = id | id | (exr 2 exl). A simple calculation
proves that reflect o reflect = id.

reflect o reflect

= SWAP, fL = fL « SWAP
[SWAP . out] o (in « SWAP)

= SWAP out o in o SWAP =1id
id

2.5.6 Paramorphisms

The evaluation rule for paramorphisms is
(p)oin = @o (id2{@))F (ParaEval)
The Induction Rule for paramorphisms is given by

° foJ_:goJ_
e (Vx,y : fox=goy co@o(idax)F=goPo (id 2 y)F)

: f
fo{p)=go{b)
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The UP for paramorphisms is similar to that of catamorphisms:
f={p) = fol={p)ol Afoin=9o(id2f)F (ParaUP)
The fusion law for paramorphisms reads
fo{p)={) & fstrict A fo@ =10o (id||f)F (ParaFusion)
Any function f € L — A (with (L,in) = puF) is a paramorphism.
f = {foinoexlF)
The usefulness of this theorem can be read from its proof.
{(f o in o exlF)
= definition (ParaDef)
W(Ag.f oin o exlF o (id 2 g)F o out)

= functor calculus

w(Ag.f o in o out)

Example: composing paramorphisms from ana- and catamorphisms

A nice result is that any paramorphism can be written as the composition of a cata- and
an anamorphism. Let (L,in) = pL be given, then define

XM = (LX)L
hM = (id||h)L
(M,IN) = uMm

For numbers defined as the least fixed point of functor XL = 1 | X, we get XM =
(mum||X)L = 1| num||X, i.e. (numsx,in) = uM, which is the type of lists of numbers.

Now define preds € L — M as follows:
preds = [ALoouty ]y

For numbers this yields preds = [[id | A - out], that is given a number N = n, the
expression preds N delivers the list [n —1,...,0].

Using preds we massage (@) o preds into paramorphical shape:
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@)y o preds

B (pDM o KAL o OutL]M
N I.L()\f(p ofMo AL o OutL)

T u(AMf.@ o (id||[f)L o (id & id)L o outy)
},L(7\f(p o (‘l.d A f)L o OU.tL)
((P)L

|
|

Thus (@) = (@) o preds. Since (IN]), = id it follows that preds = {IN}, .

2.6 Parametrized Types

In §2.1 we have defined for f € A — B, the map function fx € Ax — Bx. Two laws
for x are idx = id and (f o g)* = f* o g*. These two laws precisely state that =
is a functor. Another characteristic property of map is that it leaves the ‘shape’ of its
argument unchanged. It turns out that any parametrized data type comes equipped with
such a map functor. A parametrized type is a type defined as the least fixed point of a
sectioned bifunctor. Contrary to Malcolms approach [63] map can be defined both as a
catamorphism and as an anamorphism.

2.6.1 Maps

Let 1 be a bi-functor, then we define the functor * (sometimes written as ()) on objects
A as the parametrized type Ax where (Ax,in) = w(At), and on functions f € A — B
as:

fx

(ino (fT)D(AT) (2.27)
= (inof{id) wheregL=1idtg

Expanding the banana-brackets shows that f* = u(Ag.in o fg o out) which immediately
gives an alternative version of fx as an anamorphism:

fx = [(ff) o out] gy,

Functoriality of fx is calculated as follows:

fx o g
= definition x

(in o (f1)) o (in o (gf))
= (2.22)

(ino (ff) o (gt))
= (2.12
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(ino ((fog)t))

= definition *
(fog)x

Maps are shape preserving. Define SHAPE = VOIDx* then SHAPE o fx = VOID o f* =
SHAPE.

For cons-list (A%, Nilv Cons) = n(Af) with AfX =1| A||X and f{g =1id | f||g we get
fx = [f { id o out]. From (CataUP) we find that this conforms to the usual definition
of map.

f* ol = L
fxo Nil = Nil
fx o Cons = Cons o f||[fx

Other important laws for maps are factorization [104] and promotion [12].

(o) ofx = (o (ft)) (2.28)
fxo 0] = [(ff) o] (2.29)
(o) ofx = golx) € gox=@ofig A g strict (2.30)
fxo[W] = [E]leg & Eog=Fffgo (2.31)

Now we know that x is a functor, we can recognize that in € If* — % and out € * — Ifx
are natural transformations.

fxoin 1Tlof1'f>k
outofx = f7jfxoout

Iterate promotion

Recall the function iterate f = [[inr o idaf], the following law turns an O(n?) algorithm
into an O(n) algorithm, under the assumption that evaluating g o f™ takes n steps.

g* o iterate f = iteratehog & gof=hog (2.32)
Law (2.32) is an immediate consequence of the promotion law for anamorphisms (2.31).
Interestingly we may also define iterate as a cyclic list:
iterate f x = p(Axs.Cons (x, fxxs))

and use fixed point fusion to prove (2.32).
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2.6.2 Map-Reduce factorization

A data type (Ax,in) = p(AtT) with A § X = A | XF is called a free F-type over A. For
a free type we can always write strict catas () as (f v | by taking f =1 o inl and
@ =P oinr. For fx we get

fx = (inof|id)
= (tauvjoino f|id)
= (tauofvjoin)
where tau = in o inl and join = in o inr.
If we define the reduction with ¢ as
o/ = (idv ol (2.33)

the factorization law (2.28) shows that catamorphisms on a free type can be factored into
a map followed by a reduce. The reduction finishes what the map has left undone.

Ifv o)
T (idv o flid)
T (id v @) o fx
- @/ o fx

The fact that tau and join are natural transformations give evaluation rules for fx and
@/ on free types.

fxotau = tauof @/ otau = id
fxojoin = join o fxF @/ ojoin = @o(@/)F

Early Squiggol was based completely on map-reduce factorization. Some of these laws
from the good old days; reduce promotion and map promotion.

@/eojoin/ = @/ (@/)*
fxojoin/ = join/ o fxx

2.6.3 Monads

Any free type gives rise to a monad [63], in the above notation, (x,tau € | = *,join/ €
*x — %) since:

join/otau = id
join/otaux = id
join/ o join/ = join/o.join/x

Wadler [107] gives a thorough discussion on the concepts of monads and their use in
functional programming.
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2.7 Mutual Recursion

Until now we have not considered mutual recursion, neither for functions nor for data
types. The theory is easily extended to deal with mutual recursion. Mutual recursive
function definitions like

f = Alf, g g = BIf, gl

can be solved in two ways. The most straightforward techniques is by simultaneous
recursion [64, 44].

(f,g) = wu(A(f, g).(Alf, ¢], BIf, g])) (MutRecFunc)

The fixed points of f and g are constructed hand in hand®. An alternative method is to
use iterated recursion [7, 24]

f = u(Af.AIf, u(Ag.BIf, g])])
g = u(Ag.BIf,gl)
Naming w(Ag.BIf, g]) as f*, we obtain an equivalent, but more suggestive formulation
f = pAf.A[f,fx%]) (ItRecFunc)
g = fx

Note that % is not a map-functor, though nearly. In this case the fixed point of f is
constructed first, and subsequently used to find the solution of g. The equivalence of
(MutRecFunc) and (ItRecFunc) is more involved than expected. In the proof we let f
and § denote f, g as found by simultaneous recursion, and %,g the f, g found by iterated
recursion. It is obvious that f = A[]E, gl and g = B[f, gl, i.e. (f,g) is a fixed point of
A(f, g).(A[f, g, BIf, g]). To show that (f, ) is also the least fixed point we reason

—h/

Cf
w(AMAL %)) Cf
(Reclnd)
Alf, fx] Cf
= f is a fixed point
Alf, %] C Alf, ¢
& monotonicity of A
,* Cg
w(Ag.BIf, 9l) C ¢
& (Reclnd)
BIf,d1 C ¢
= g is a fixed point
BIf, d] C BIf, d]

true

&

3Technically speaking we are working in the product category CPO?2.
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Using the fact that f C f we can similarly show that g C .
By analogy of mutual recursive functions, mutual recursive data types like
Auz=in; ATB B:=in; A{B

can be solved either simultaneously [64, 61] or iteratively [36, 113, 61]. Using simultaneous
recursion gives

((A,in), (B,IN)) = wu(f~f) (MutRec)

Catamorphisms on mutual recursive types are mutual recursive functions, for the above
types A and B we get

(f,g) = unA(f,g).(@ofifgoout,PpofigoOUT)) (CataMut)
which will be written as f = G(pI)Jr and g = ﬂll)\):[.

The fusion law for catamorphisms (CataMut) reads

fo (I(PDT = GXDT
Ago(lw\)i:(lél)i & fo=xoftg A (FusionMutRec)
gop=~Eo0gif

The iterative solution of mutual recursive data types will be derived by finding appropriate
functors such that the iterative version of the catamorphisms (CataMut) (interpreted as
recursive functions) can be defined as catamorphisms on the types resulting from taking
the separate least fixed points of the derived functors. When rewriting the mutual recursive
catamorphisms as defined in (CataMut) into iterative form, we get

f = wAf.eofffxoout)
g = fx

where fx = pw(Agah o f1g o OUT). Provided that B = A(@), the map factorization law
(2.28) says that T equals

fx = ﬂlbD(Ai—) ° f@
where (@) is the map functor induced by {:

f® = (INoffid)y
(B=A®,IN) = n(Af)

For f we calculate

f
= unfold f

W(Af.@ o T T % o out)
= unfold fx
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MM o F1 (b o) © FD) o out)
= 1 functor

},L(7\f(p o ‘l.d'l' Gll)D(Ai) of "' f@ o out)
= fold, assuming that (A,in) = u(If®)
(@oidf Gll)D(Ai—)DH@

Hence we have derived that the iterative solution of mutual recursive types is given by

(A,in) = uid®)
(B=A®,IN) = pn(A})

2.8 The Induction Principle for Algebraic Data types

Fixed point induction is useful when we want to prove properties of recursively defined
functions. However, not everything we would like can (easily) be proved using fixed point

induction, for example p(in £ out) = id. Remember that we have cunningly used this
property in proofs for laws like Uniqueness to make the induction go.

If we want to prove a certain property for all x € L, it is often more convenient to use
structural induction [89] then to use fixed point induction.

Let (L,in) = uF and P C L an admissible predicate, then the structural induction principle
(StructInd) follows by fixed point induction on the predicate Q(f) = Vx € L =: P(f x) with
f=in & out [85].
e P(L)
e Vx € LF: PF(x): P(in x)
Vx € L P(x)

(Structind)

It is illustrative to look at a concrete case of (Structlnd), for example cons-lists (A%, Nilv
Cons) = pL with XL = 1| A||X. Instantiating the second premise gives

Vx € (A%)L:PL(x): P(Nilv Cons x)
T Wx€l|A||Ax:x €1]A|P:P(Nilv Cons x)
= (Vxel:xe1:P(Nil)) A (V(a,x) € Al|[Ax:a € AAx € P:P(Cons (a,x)))
= P(Nil) A (Va € A,x € Ax: P(x): P(Cons (a,x)))

Thus the structural induction principle for cons-lists reads

e P(L)

e P(Nil)

e Vac A, x € Ax:P(x):P(Cons (a,x))
Vx € Ax = P(x)

49



2.9 Higher order functions wreck calculations

In this section we will pause a while to explain how higher order functions play havoc with
our desire to eliminate explicit induction proofs in favor of nice calculational developments.

2.9.1 Banana split

Remember the banana split theorem

(oDf 2 (Wg = (¢ oexIF)a (o exrF))

This works well for catamorphisms of type L — A, however suppose we have (@] € L —
(A — B) and () € L — (C — D), then the tupled catamorphism (¢ o exlL) 2 ({ o
exrL)) has type L — (A — B)||(C — D). What we would like to have is an operation A
such that (@)A(Pp) € L — (A]|C) — (B||D). Type considerations suggest to take

l@)AMD = () o (@)= () (AGF)

By further massaging of the suggested definition for A we get

(ID o (@) 2 (W)
= (BananaSplit)

(1D o ((@ o exIL) 2 (P o exrL))
= assume (||) has left inverse
(1) o (@ o exIF) & (P o extF) o [|7'F)
= simplify
(1) o @b o (exl + id 2 L)F & (exr + L 2 id)F|

Not a very sexy definition for such a simple operation (see also §4.2.4). The left-inverse
|7 of the product combinator (||) is synthesized by reasoning as follows.

I~ (fllg)

= wish

(f,g)
= introduce ||

(exlofll[goid 2 L,exrof||go L 2id)
= definition «+ and 2

((exl «—1id 2 L) 2 (exr « L 21id)) (f,g)

Hence || 7! = (exl «— id 2 L) & (exr + L 2 id) will do.
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2.9.2 Compiler Calculation

In subsequent chapters many calculations have the following format. Given Abs € A — B
and Conc € B — A such that Abs o Conc = id, we want to derive Abs o (1] from
Abs o Conc o (¢). This can be done in essentially two different ways.

Abs o Conc o (@) Abs o Conc o (@
= Conco @ =1 o ConcF = Abs o Conc =1id
Abs o (V] Abs o (Conc o @ o AbsF|

The leftmost alternative usually give the desired solution for 1. More precisely, the
underlying action algebra is unsatisfactory.

Now let (@) € L — (B — B), and try to derive Conc — Abs o ([ from Conc —
Abs o Abs — Conc o (). There are three ways to continue, of which we only show
two.

Conc — Abs o Abs — Conc o (@)
= Abs — Conco @ =1 o (Abs — Conc)F
Conc — Abs o (V)

This one normally does not yield a satisfying solution for \{, to find one we must work a
little harder.

(Conc — Abs o Abs — Conc o (@[)1
Abs o Conco (@] 1o Abs o Conc

Abs o Conco (@] 1
= Conco (@) L= () 1o Conc
Abs o (P)) Lo Conc

(Conc — Abs o (P)) 1

The question remains how to find an elegant and efficient proof for the step
Conco (@)l = (P) 1o Conc.

As a first attempt we try to prove using (Catalnd) that id — a o (@) =b — id o (U).
The induction base requires that a is strict. No progress can be made in the induction
step, so that the following theorem remains.
id—oaoclp)=b—ido(P) & aol=1L A
(Vf,g : id—aof=b—=1idog :
id—)ao(PofF:b—)idoll)ogF)
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Hence we are bound to conclude that we can not save any work over an explicit induc-
tion proof. Trying to apply “Theorems for free” does not help either. Straightforward
expansion of Wadler's rules [106] leads to

e (Wyz(x,yl€(f=glF=go@x=1yof)
VieuF:zgo(o)l=(P) lof

without knowing the functor F it seems impossible to simplify the expression (x,y) €
(f — g)F.

2.10 Continuous Algebras

Technically speaking our notion of data type comes comes very close to the concept of
initial continuous algebra as introduced by the ADJ group [43] and Reynolds [92]. A
continuous F-algebra is a pair (D, @) where the carrier D is a cpo and the operation @ is
a strict function of type DF — D. A homomorphism h from (D, @) to (E, ) is a strict
function such that h o @ =1 o hF. An algebra (L,in) is initial if for any algebra (D, @)
there is a unique homomorphism h between (L,in) and (D, ¢). From (CataUnique) it
follows that h equals (¢]) and that uF yields the initial F-algebra.

Dualizing the above reasoning gives that an F-co-algebra is a pair (D, @) with @ a not
necessarily strict function of type D — DF, that a co-homomorphism h between (D, ¢)
and (E, ) is a function such that © o h = hF o \{ and that (L, out) is the final co-algebra
with [[@] the unique co-homo to any (D, ).

The nice thing about working in CPO is that the carriers of the initial F-algebra and
the final F-co-algebra coincide. The fly in the ointment is that we cannot calculate with
properties induced from initiality as this would mean that we have to restrict ourselves
too much.

2.11 Conclusions

We have considered various patterns of recursive definitions, and have presented a lot of
laws that hold for the functions so defined. Although we have illustrated the laws and the
recursion operators with examples, the usefulness for practical program calculation might
not be evident to every reader. Hopefully the rest of this thesis will be convincing.

There are more aspects to program calculation than just a series of combining forms (like
0D, [=]{=).I-, -I) and laws about them. For calculating large programs one certainly needs
high level algorithmic theorems. The work reported here provides the necessary tools to
develop such theorems. For the theory of lists Bird [11] has started to do so, and with
success.

Another aspect of program calculation is machine assistance. Our experience —including
that of our colleagues— shows that the size of formal manipulations is much greater
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than in most textbooks of mathematics; it may well be comparable in size to “computer
algebra” as done in systems like MACSYMA, Maple, Mathematica etc. Fortunately, it
also appears that most manipulations are easily automated and, moreover, that quite a
few equalities depend on natural transformations. Thus in several cases type checking
alone suffices. Clearly machine assistance is fruitful and does not seem to be too difficult.

Finally we observe that category theory has provided several notions and concepts that
were indispensable to get a clean and smooth theory; for example, the notions of functor
and natural transformation. Without doubt there is much more categorical knowledge
that can be useful for program calculation; we are just at the beginning of an exciting
development.

Acknowledgements Ross Paterson, Maarten Fokkinga and Graham Hutton provided
many useful remarks on draft versions of this chapter.
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Chapter 3

From Pr/T-nets to Update
Schemes

It's been a long time commin
But | know a change is gonna come

Otis Redding

This chapter introduces and relates two computational models; Predicate/Transition nets
and update schemes. General (Petri) net theory [86] is a theory of structure and behavior
of dynamic systems that stresses causality and distributedness of states and changes.
Update schemes [72, 81] were proposed as a high-level formalism for describing low-level
operations in abstract machines.

Meijer [72] used update schemes to describe the implementation of Programmar, a
compiler-compiler based on Extended Affix Grammars [112]. Osborne [81, 80] has contin-
ued the work in the area of using update schemes as a formalism for specifying abstract
machines. Ultimately he wants to produce a compiler for (a restricted class) of update
schemes. We take a slightly different route by considering update schemes as a general
formalism for specifying (concurrent) computations. In this thesis, update schemes will
be used only to specify abstract machines. The use of update schemes as a formalism for
specifying concurrent processes will be left as a topic for future research.

We will first discuss the Predicate/Transition net philosophy of describing dynamic sys-
tems. Then we define update schemes by taking different, yet equally plausible, assump-
tions than those underlying net theory.
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3.1 Pr/T nets

The Predicate/Transition net (Pr/T net) [41] computational model describes a compu-
tation by means of a set of dynamically evolving predicates. Before plunging into theory
first some examples.

3.1.1 Informal introduction

Nowadays divorce is quite common. The occurrence of the divorce of John and Mary
changes the relations

Married{..., (John,Mary),...} Single{...}

to the modified relations

Married{...,...} Single{John, Mary,...}

Pr/T nets are schemes for expressing such changes in a structured and formal manner.

Usually variable relations are represented by circles called places which are marked with
those tokens for which the relation currently holds. Places can be grouped together to
express a rule of change, called a transition. The graphical representation of a transition
is a box connected to its input and output places by means of directed arrows. The box
may be decorated with a guarding expression. We propose a textual representation for
Pr/T-nets. A transition that expresses divorce for example is

Divorce: Married{(m,f)} = Single{m, f}

A Pr/T net is formed by connecting a number of places by means of transitions and
providing an initial distribution of tokens over the net. A possible distribution of tokens
over a Pr/T net is called a case.

The transition Divorce can be embedded into a simple model of reincarnating life de-
scribed by the following set of transitions:

Birth: Dead{x} = Single{x}
Dieg : Single{x} = Dead{x}
Marry: Single{x,y} = Married{(x,y)}
Divorce: Married{(x,y)} = Single{x,y}
Diem : Married{(x,y)} = Single{x} Dead{y}
Diel, : Married{(x,y)} = Single{y} Dead{x}

Some properties that can be derived formally by merely looking at the form of the above

net are

e the system is live, at any instance there is a transition that can occur.

e the total number of souls is invariant.
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Another example is semaphores. Let BS{p} denote that process p wants to enter the
critical section, the condition CS{p} indicates that p is occupying the critical section
while AS{p} denotes that p just left the critical section. Then the following net ensures
that the critical section contains at most 1 tokens where n is the initial marking of place
SCNN.

P: S{v+1} BS{p} = S{v} CS{p}

V: S CS{p} = S{v+1} AS{p}

Transition P may occur if the value of semaphore S is at least 1, and some process p
wants to enter the critical section. Then in one atomic step, the value of the semaphore
is decremented and p enters the critical section. Transition V takes p out of the critical
section while increasing the value of the semaphore.

3.1.2 Formal definitions

Now that we have seen a few informal examples of Pr/T nets, the time has come to turn
to a more formal treatment.

syntax The syntax of Pr/T nets is given by the grammar

Pr/T net == transitionx case
transition = mname: placex {guard} = placex
place == predicate{tokensx}
token = (term,...,term)

A term is an expression built from constants, function symbols and variables. A ground
term is a term without variables. A ground token is a token without variables, i.e. a tuple
of ground terms. A guard is a boolean term, tautological guards may be omited. A case
is a set of ground places, i.e., a mapping from predicate symbols to sets of ground tokens.
A substitution is a mapping from variables to terms.

concession, redex A transition may occur, or has concession if its guarding expres-
sion yields true, all of its pre-conditions and none of its post-conditions hold. Let
u =n: pre {guard} = post be a consistently renamed, ‘fresh’, copy of a transi-
tion of a given net, @ a substitution and C a case. The pair A = (u, @) is called a redex,
or u has concession at C under o, iff

e @ guard holds,
e *A C C; a token may only leave a relation of which it is a member,

e A N C =0, a token may only enter a relation of which it is not yet a member.

where *A = @ pre and A = @ post are respectively the pre- and the postconditions of
A.
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Firing a redex A = (u, @) changes the current case into its successor by removing the
preconditions *A from C and adding the postconditions A" in one atomic step:

ChweC' = C'=(C\AUA

We say that transition u has occurred, or that u has fired.

3.1.3 Relations between redexes

The next subsections discuss various relationships that may hold between redexes.

ordered Two redexes A and T are ordered, notation A;T, if A" N°T # (. Ordered redexes
cannot have concession at the same case and A must precede I" in any firing sequence.
A simple example of ordered redexes is

Ping{} = Pong{}
Pong{} =  Ping{}

starting (arbitrarily) at case Ping. Note that Ping and Pong are nullary predicates
(booleans) that either hold or don't hold.

conflict Two redexes are in conflict if they have concession at the same time but firing
one takes concession from the other. More formally conflict between A and T is expressed
by: "AN°T # 0 (forward conflict) or A NT* # () (backward conflict). Marriage is full of
conflict, there may be several candidates for a marriage, but choosing a partner makes all
other choices impossible.

concurrent, no order Two redexes are independent if they have no common pre- and

post-conditions
(FAUA)N('TUT*) =0

Independent redexes don't interfere with each other and hence can be fired concurrently.
Let A = {A;} be a set of pairwise independent redexes, with U = {u | (u, @) € A},
O ={o|(u, @) €A}, "A=U/{"Ai | Ai € A} and & = U/A{ | Ai € A}, then

ClWoC' = C'=(C\AJUA

Independent redexes may be fired in any order. Let C,C’ be such that C[V)C' and
V C U, then there exists a C" such that C[V)C"” and C"[U\ V)C".

3.2 Update Schemes

We now discuss some of the assumptions underlying Pr/T nets, propose alternative ones
and examine consequences of replacing the old premises by the new.
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3.2.1 Caells instead of Predicates

In a Pr/T net the state of a system is modeled by means of dynamically evolving predicates.
Often we want to model state as a set of cells which may hold only a single value, i.e.,
a conventional digital computer's store. Moreover cells may be allocated or dismissed in
the course of a computation. In a Pr/T net the total number of relations is invariant.
A configuration in an update scheme computation is a (partial) function from a set of
locations to a set of cells which may hold a single value. The total number of occupied
locations may grow or shrink due to a transition.

In order to talk about sequences of cells we assume that the set of locations comes
equipped with two functions pred and succ both of type loc — loc giving the successor
and the predecessor of a given location respectively. The functions pred and succ satisfy
(pred o succ) p = p whenever succ p is defined (and dually (succ o pred) p = p
if pred p is defined). A sequence of cells t between two locations p and ¢ in some
configuration C, notation p[t]q € C, is defined as the list [C p, (C o succ) p,...,(Co
pred) q]. When no confusion can arise either of the boundary locations of a locator
p[ t ]q may be omitted. The expression succ™ p may be abbreviated as p+n whilep—n
may be used as a shorthand for pred™ p.

3.2.2 Non-destructive reading and tests

The second difference between Pr/T nets and update schemes lies in the notions of
concession and firing. A Pr/T net transition has concession only if all its pre-conditions and
none of its post-conditions hold. Then when the transition occurs, the pre-conditions cease
to hold while the post-conditions start to hold. The interpretation of a configuration as a
computer store strongly suggests that the occurrence of a transition does not invalidate
all of the pre-conditions; reading the value of a cell does not make it loose its contents.
Rather the effect of a transition is the minimal amount of change to the configuration
that makes its post-conditions hold.

The requirement that pre- and post-conditions of a Pr/T net transition are disjoint ex-
cludes side-conditions or tests. In an update scheme overlapping pre- and post-conditions
will be allowed

3.2.3 Formal introduction

syntax The syntax of update schemes is given the grammar

script == schemex configuration
scheme == name: locator* {guard} = locators
locator == term[term Jterm
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A configuration is a (partial) function € loc — value. A value is a ground term. A
configuration covers the cells for which it is defined, cover C = {p € loc | C p is defined}.
A substitution is a mapping from variables to terms.

concession, redex If the guarding expression of a scheme holds and the preconditions
are contained in the current configuration, that scheme has concession and may occur.

Let u =n: pre{guard} = post be a fresh copy of a scheme, @ a substitution and
and C a configuration. The pair A = (u, @) is called a redex, or u has concession at C
under o, iff

e @ guard,
e °A C C the preconditions are part of the current configuration,

e A is a configuration, cells can only contain one value.

where *A = @ pre and A = @ post are respectively the pre- and the postconditions of
A.

Firing, occurring In a postcondition one can distinguish three different types of loca-
tions. First there are locations that are present in the current configuration C but not in
the postconditions A’. The values of the cells addressed by these locations remain un-
changed in a rewrite step. Secondly there are locations that occur in both C as well as in
A", The values in these locations are updated to the values specified by the postcondition.
Finally there may be some new locations, that do not occur in C. These are added to the
configuration.

Let A = (u, @) be a redex in configuration C. The configuration overlap A° is the
subconfiguration of C which overlaps with A*, formally overlap A" = {(p,C p) | p €
(cover C) N (cover A")}. Firing u changes C into its successor by removing overlap A
from C and adding the postconditions A® in one atomic step:

Chuwyo,C'" = C'=(C\overlap A)UA
We say that transition u has occurred.

Script A configuration is in normal form or has reached a fixed point if it contains no
more redexes. The meaning of a script with initial configuration C is the bag of all its
normal forms

{C"|CDH*C’,C in normal form}

3.2.4 Relating redexes in update schemes

Due to the assumptions underlying the computational model of update schemes, the
relationships that may or may not hold between redexes in an update scheme are far more
complicated than those encountered in a Pr/T-net.
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ordered The configuration contribute A is the contribution of A to the change of C
into its successor when firing A; contribute A = A*\ C. The set contribute A contains
new locations and already present locations whose cells have different values then they
have in configuration C.

Two redexes A and T are ordered, notation A;T, if contribute AN°T" # (. Since T
depends on changes or extensions to the configuration to be made by A, the redex I can
only fire after A.

conflict The update of a redex is the subset of the configuration that is updated when
firing a redex; updates A = overlap (contribute A). Thus the set updates A contains
those cells in C whose value will be changed, or updated, by A°.

A redex A is in conflict with another redex ' if A updates cells which are in the pre-
conditions of I', more formally updates AN °T # (. Note that conflict is not symmetric.
Firing A takes away concession from T.

Hazard Due to the fact that two cells cannot be written concurrently we have an interest-
ing situation not possible in Pr/T nets, namely that the cells contributed by A and those
contributed by I" overlap, more formally cover (contribute A)Ncover (contribute I') #
(). Although A and T may have concession at the same time, and firing one may leave
the other in concession, they may not be fired concurrently.

A simple scheme exhibiting hazard is

= X[3]
= X[4]
In Algol68 notation the above scheme would be written as PAR (x := 3, x := 4).

no order Two redexes are independent, and can be rewritten concurrently if they both
have concession but are not in conflict and there is no hazard

e updates AN°T =0 Aupdates I'N°A = @ no conflict,

e cover (contribute A) N cover (contribute I') = () no hazard.

Concurrency is definitely not the same as arbitrary interleaving.

3.2.5 Examples

The use of update schemes to specify abstract machines will be illustrated in Chapter 5.
This section presents some simple, yet elegant examples of update scheme specifications
for more general programming problems, and shows how update schemes could be used
to describe digital circuits. When compared with for example Unity [18] we find that the
update scheme solutions are (nearly) free of indexitis.

61



sorting Sorting a sequence between locations x and y into ascending order proceeds by
non-deterministically swapping elements t and v that are out of order.

sort: SORT[x,y] x[s]a[t]b[ulc[v]d[w]y {t>v}= alv]b c[t]d

This scheme is not only highly nondeterministic, it is also highly concurrent. Disjoint pairs
of cells may be swapped in parallel. The |hs of the above scheme describes the picture:

SORTI |,

] s‘t‘u‘v‘w

SORTI!, ] S ‘v‘ u ‘t‘ w

Rule sort has concession until the complete array between bounds x and y is sorted.

maximum A related problem is finding the maximal element of a sequence between x
and y. If there is some element n between x and y that is bigger than the current
maximum m, the new current maximum becomes n.

MAX[x,y,m] x[sla[n]b[tly {n>m}=> MAX[x,y,n]
semaphores The update scheme version of semaphores is quite similar to the Pr/T-net
solution. Here PC;[ pc ] denotes the program counter of process 1.

V: PCi[pc] pc[Vslpc' s[n] = PCilpc']  s[n+1]
P: PCilpc] pc[Pslpc’ s[n+1] = PCipc’'] s[n]

Note that the pattern s n+11] in the definition of rule P is a hidden guard, ensuring that
the rule is only applicable when the value of the semaphore is at least 1.

reachability A graph is given by enumerating its arcs between nodesiand j as[ ARC1ij].
The update scheme completes an initial reachability relation [REACH 1 b] where b
denotes that node 1i is reachable.

[REACH i true] [ARCij] [REACH ] false] = [REACH] true]

parsing Push-down automata to recognize context-free languages are extremely easy to
specify in update schemes (see also [72]). As an example we specify a recognizer for the
language described by the grammar:

S —» a%d',S.
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Given an initial configuration PARSE[p ], p[S]p’ and IN[i],i[w]i’, the following up-
date scheme terminates with a configuration containing PARSE[p’] and IN[i'] iff w is
in the language generated by S.

PARSE[p] p[Slp’ = PARSE[p"] p"[a"]p’
PARSE[p] p[Slp’ = PARSE[p”] p"[a"S]p’
PARSE[p] pla'lp’ IN[i] i[a"i’ = PARSE[p’] IN[i’]

3.2.6 VLSI components

To describe (elementary) VLSI-components we introduce an ad-hoc abstraction mecha-
nism for update schemes of the form name((?loc)x*, (loc!)x) : schemex.

A simple wire is defined as
wire(?I,0!): I[x] = O[x]

i.e, the input of the wire is propagated to the output. An n-type transistor is a switch
that opens if its gate is high

n_trans(?G,?5,D!): G[1] S[x] = D[x]

thus if G[ 1] then n_trans(?G, ?S, D!) behaves as a wire wire(?S,D!). Similarly a p-type
transistor opens if its gate is low: p_trans(?G,?S,D!): G[0] S[x] = D[x].

A Muller C-element can be defined as
C(?A,?B,C!): A[x] B[x] = C[x]
If gates A and B carry the same value x, this value is propagated to output port C.

An inverter is a wire which delivers the inverted value of its input to its output.

inv(?1,0!) : I[1] = 0[0]
I[0] = O[1]

Under the assumption that in any configuration VDD[1] and GNDJ[ 0], an equivalent
specification of the inverter is

inv(?1,0!1):  I[1] GND[0] = O[0]
I[0] VDD[1] = O[1]

In this latter specification we recognize that I[1] GND[0] = O[0] equals n_trans(
?21,2GND, O!)and I[0] VDD[1] = O[1] equals p_trans(?1,?VDD, O!). An inverter
can be implemented by two transistors.

inv(?I,0!): n_trans(?I,?’GND, O!)
p_trans(?1,?vDD, O!)

This realization of an inverter using two complementary switches is common in relay-logic.
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3.3 Conclusions and future work

For operations involving complicated pointer manipulations it is no superabundant luxury
to have a special formalism to specify these operations. We think that update schemes
are very suitable for this purpose. A disadvantage of update schemes is that they are hard
to calculate with and reason about. It might be worthwhile therefore to have a look at
other formalism with the same goals, such as the structures of Jonkers [52].
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Chapter 4

BNF for Syntax, BMF for
semantics

Come on baby let’s get out of this town

I got a full tank of gas with the top rolled down
If you won't take me with you

I'll go before the night is through

And baby you can sleep while | drive

Melissa Etheridge

This is the first of two chapters that applies the theory developed in the previous chapters
to derive compilers. The imperative language C is of about the same complexity as the
sample languages used in most books on compiler construction. The compiler that we
will derive generates realistic code suitable to be input to a conventional code generator.

4.1 Overview

We start by giving the syntax and a separate static and direct dynamic semantics of a sim-
ple imperative language V. Section 4.2.4 briefly shows how static and dynamic semantics
can be combined. Continuing with improving the dynamic semantics we first derive a con-
tinuation semantics; W-programs are translated into flow-charts. Next we investigate the
efficient compilation of expressions. Arithmetic expressions are translated into conven-
tional three-address code and boolean expressions are implemented using jumping-code.
The language C of section 4.6 extends W with simple procedures. We give a constructive
proof that recursive functions can be implemented using a stack in §4.6.2. Finally we
show how certain recursive calls may be eliminated and replaced by jumps.
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4.2 A simple imperative language W

As a starting point for our derivations we take a simple imperative language whose most
complicated construct is the while-loop. In §4.6 the language W will be extended with
non-nested procedures to yield C. The syntax of W is given by the grammar

P € program := prog statement
S, T € statement == skip
|  var:= expression
| statement ; statement
| if expression then statement else statement fi
|  while expression do statement od

The classes of arithmetic and boolean expressions are defined by the single grammar
expression. Type correctness will be enforced by defining an appropriate static semantics.

A,B,E,F € expression == varvar
|  num num
|  true| false
| expression (2) expression

The set of binary operators Q) includes boolean operators (Y such as and and or, arith-
metic operators @ like + and X, and relational operators & such as = and >.

4.2.1 Meaning functions

The semantic functions M[_] € program — prog, E[] € expression — expr and
S[.] € statement — stat may be given by the following set of mutual recursive cata-
morphisms.

Mlprog P] = program S[P]
S[skip] = skip
S[x:=E] = assign (x,E[E])
SIS; Tl = seq (SIS], SIT)
Slif BthenSelseT fi] = cond (£[B],S[S],SI[T])
Slwhile Bdo S od] = while (£[B], S[S])
Elvar x] = wvarx
Elnumn] = numn
Eltrue] = true

Elfalse] = false
E[E@F] = operg (EIELEIF)
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These equations show that the valuation functions M[_], S[.] and £[_] inductively replace
each of the constructors of a given program by a corresponding compile-time semantic
operation (from the algebras prog, stat respectively expr). These operations should
assemble the denotation of a construct from the denotations of its components in terms
of operations of the run-time semantic algebra. The essence of writing a compiler is the
extraction of a suitable compile-time algebra from a given run-time algebra. The recursive
structure of the valuation functions is uniquely determined by the recursive structure of
the abstract syntax.

4.2.2 Static Semantics

We will develop the static semantics M[_] and the dynamic semantics M 4[_] separately
(omitting subscripts whenever possible) and later merge these into a single semantic
function M[_]. As a possible static semantics we derive and check the types of expressions
and statements in a given program. It is illustrative to compare our solution to the one
given in §7.2 of Reps and Teitelbaum [90].

We start by defining £[_] € expression — expr. The type expr is a map from some
set of inherited attributes into a set of derived or synthesized attributes. Since we are
interested in the type of expressions, one of the synthesized attributes will be of type
Type defined as:

T € Type == Unbound| Num |Bool|Error
On Type we impose the lattice structure:
Unbound C {Num,Bool} LC Error

Expressions may contain variables so we need to maintain a compile-time environment or
symbol table mapping variables to their type, therefore one of the inherited attributes will
be of type Symtab:

no x = Unbound
nx:=Tly = T, x=y
= My, x#Y

The empty symbol table 1o maps every identifier to Unbound; binding identifier x to
type T in n is denoted by n[x := T].

The type of the static semanticsis £[_] € expression — (Symtab, Type) — (Symtab,
Type) where an inherited attribute (1, T) consists of the types of the variables as found
thus far together with the type required by the context, while the corresponding derived
attribute (n', T') = £[E] (n, T) extends i with the types of variables occurring in E and
delivers the derived type of E. This is captured by the invariant:

M T)=£E[E] (n,T) = nCn' ATCT
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The compile-time operations for computing the static semantics are defined as follows.
The type Ty derived for a variable x is the least type that is consistent with both the type
T required by the context and the type 1 x that has already been inferred for x.

Ellvar x] M, T) = Mx: =Ty, Tx) where T,y=nx)UT

The type derived for literal constants is the smallest type that agrees with the type of the
constant and the required type.

Eltrue] (n, T) = (n,TUBool)
Elfalse] (n,T) = (n,TUBool)
Elnumn] n,T) = (1, TUNum)

For a binary operator E @ F (or A D B) the required type of the argument expressions
E and F (A,B) is Num (Bool). The derived type is the lub of the derived types of the
subexpressions.

EIE@F (n,T) = (e, TUTy)
where (1, Te) = E[E] (n, Num)
(me, Te) = EIF] (e, Te)
EIADB] M, T) = (e, TUT)
where (Ma, Ta) = EIA] (1, Bool)
(Mo, Te) = EIB] (Ma, Ta)

Relational operators are overloaded, any two expressions can be related provided that they
are of the same type.

EES ] m,T) = (g TU(T¢M Error) L Bool))
where (1, Te) = E[E] (17, Unbound)
(Tlfva) = EI.[F] (TIEvTe)

In giving the valuation functions, we have unfolded the respective operations var, true
etc. When needed in actual calculations using the fusion law, they can be recovered easily.

Static semantics of statements

With the static semantics of expressions in hand, the static semantics of statements is
relatively easy. A given symbol table 1 should be updated with the types of variables occur-
ring in the statement. Moreover any type error must be signalled. The type of the static
semantics of statements is therefore S[_] € statement — Symtab — (Symtab, B). If
S[S] n = (n',B) then B is True iff the statement S is free of static semantic errors.

The empty statement contains no typing errors.

Slskipf n = (n,True)
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A type error in the expression part of an assignment is propagated upwards to the state-
ment level.

Slx:=Eln = Melx:=T],T#Error)
where (e, T) = E[E] (1,1 x)

In composite statements, type errors occurring in components are combined and type
environments are threaded through the constituent statements.

SIS;TIn = (MyesAcy)
where (ns,cs) = SIS 1
(Me, ce) = ST s
Slif BthenSelseTfiln = (ng, Ty =BoolAcs Acy)
where (Mp, Tp) = E[B] (n, Bool)
(Ms,cs) = SISI np
(Me,ce) = ST s
Slwhile BdoS od]n = (ns, Ty = Bool Acg)
where My, Tp) = E[B] (1, Bool)
(Ms,cs) = SISI np

Static semantics of programs

The static semantics of programs states that no static semantic error has been found and
is defined by:

M[] € program— B
Mlprog S| = cs where (n,cs) = SIS no

The types of identifiers appearing in S are recorded in 1.

4.2.3 Dynamic Semantics

The initial dynamic semantics will be a standard direct semantics [95], hence the following
definitions should pose no particular problems.

MI[] € program — prog

Milprog S] = prgm (S[S])
= SI[S] no
S[] € program — stat
S[skip] = skip
SKIP
S[x:=E] = assign (x,E[E])
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= x:=¢&[E]
S[S; Tl = seq (S[S],SIT])
= SIS SITI
Slif BthenSelse T fi] = cond (£[B],S[SI, SITI)
= &[B] — SIS] [ SIT]
Slwhile Bdo S od] = while (£[B], S[S])

= p(Aloop.£[B] — (S[S] ; loop) | SKIP)

E[] € expression — expr

Elvar x] = wvar (x)
LOOKUP x
Elnumn] = num (n)
= LITERALn
Eltrue] = true
= TRUE = LITERAL1
Elfalse] = false

= FALSE = LITERALO
EIE@F] = operg (EIE]EIF)
= E[E1 @ EIF
In the clause M[prog S] = S[S] no, the initial environment 1y is a run-time object.
An environment 1 € env = (var — IN) | carries the dynamic values of variables appear-
ing in an expression. Updating the environment is strict; an assignment statement x := E

updates x with the value of E, thus if £[E] = L the meaning of the statement S[x := E]
should be L as well. The initial environment 1o maps every variable to L.

NMox = L1

nx:=1] = 1
nx:=vly = v, 1ifx=y
= ny, ifx#y

Evaluating an expression should yield a value in IN. Since expressions can contain vari-
ables, their values must be provided at run-time. Hence the denotation of expressions is
a function of type e, f,a,b € expr = env — IN.

LOOKUPxn = nx
LITERALvn

e@f)n = en®fn

When no confusion may arise we will just write ) instead of (2.

v

Executing a statement modifies a given environment by updating variables with the values
assigned to them in that statement s,t,u € stat = env — env,prog = env.

SKIP11 = 7
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(x:==e)Jn = nx:=en]

(s;t)n = strictt(sn)
(b—ost)n = 1, bn=L1
= smn, bn=1

tn, bn=0

where strict f L = 1| and strict f x = f x if x £ L. Sequential composition ; is defined
by strict composition as we want | ;t = L regardless of the value of t.

Example As an example take a program for computing the factorial for n > 1:

fac:=num 1;

while (var n > num 1)

do
fac := (var n x var fac) ;
n:=(varn—num 1)

od

The denotation of this simple program is the recursive function

factorial = fac:= (LITERAL1);
w(Aloop.(LOOKUP n > LITERAL 1) —
(fac:= (LOOKUP n x LOOKUP fac) ;
n:= (LOOKUP n — LITERAL 1) ; loop)
[ SKIP)

4.2.4 Merging static and dynamic semantics

Thus far static and dynamic semantics were defined separately, e.g., for expressions:
Esl] € expression — (Symtab|[Type) — (Symtab|/Type)
Esl] = (vars,trues, falses, numsg, opers)
E4ald € expression — expr
Eqll]l = (varg,trueq,falseq,numg,operql
We want to combine these two functions into a single function:
El] € expression — (Symtab||Type) — (Symtab|/Type|lexpr)
E[] = (var,true, false,num,plus,oper)

From the given semantic equations, it is easy to recover the various compile-time opera-
tions such as opers and operg:

opers (e,f) = AM,T).(ng, TUTy)
where (e, Te) = e (n, Numj; (¢, T¢) = (me, Te);
operq (e,f) = (E@F) where E=¢F="f
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Combining these rules into a single one using the Attribute Grammar Tupling rule (AGF)
yields:

plus (e,f) = AM,T).M,TUTLE&F)
where (e, Te, E) = € (1, Num)
(me, Te, F) =1 (me, T¢)

Similarly the other equations can be combined. It is not the right time and place here
to digress on the advantage of modular descriptions in general so we conclude that our
proposed approach has good support for modularity.

4.3 Continuation Semantics

In his thesis, de Bruin [25] experimented with continuation semantics for defining lan-
guage concepts such as jumps, backtracking and dynamic process networks. Explicit
manipulation of control, i.e. the evaluation order of a program’s constructs, in the form
of continuations will play a central rdle in our work as well. Invariably every efficiency im-
proving transformation is aimed at making explicit an otherwise implicit evaluation order
by the introduction of an additional continuation.

The first such continuation introduction makes the control-flow in sequencing of state-
ments §;t explicit. A statement denotation § € env — env should be implemented as a
function $ = C § € (env — env) — (env — env) such that C $ takes its continuation
as an explicit argument. Type considerations strongly suggest to define C as

Cét = ¢:f

)

The left-inverse A of C takes a concrete § that expects a continuation back into an
abstract one A s that does not.

AS
= §=C$¢
A (C3)

= wish
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= aim at folding C
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Thus $ =C $§ = § = A 8, i.e., we have found that A § = § id is a left-inverse of C. Using
the fact that A o« C =1id € env — env the previous direct semantics can be turned into
a continuation semantics.

M(prog S]
demand

M prog S]

= unfold
SISI o

= AoC=1id
(Ao Co SIS Mo

= unfold
C S[S] id o

= assume fusion: C o S[] = S[]
SIS id no

The proof of the postulate C o S =381 using the fusion law determines new compile-
time operations (and thereby new run-time operations) that satisfy the premisses of the
fusion law.
CoS[]=8[] & Cskip=skip A
C o assign = assign o id|[id A
Coséq=seqoC||C A
Cocénd =cond - id||C||C A
C o while = while o id||C
Rewritten with bound variables, but omiting quantifiers this theorem reads
CS[S]s=8[S]s & C skip s =skip s N
C (assign (x,e)) s = assign (x,e) s N
C(séq (s,t)u=seq (Cs,Ct)u A
C (cond (b,s,t)) u=cond (b,Cs,Ct)u A
C (while (b,s)) t =while (b,Cs) t
This version reflects that continuations are compile-time objects and may thus be used

to derive a more efficient compiler if partial evaluation is possible.

One particular branch in the resulting proof may be summarized as
M = M[]
{Z A o C == ld

C S[S] s = S[S] s
& fusion
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..\ C (assign (x,e)) s = assign (x,e) s A...
& unfold C and assign, extract assign

..\ assign (x,e) s=(x:=e)s A...
& evaluate :=, synthesize :=

LA (xi=e)sn=snx:=en] A...

skip We try to find S[skip] s under the assumption that s is available as a compile-time
entity.

C skip s
= unfold
(SKIP;s)

= evaluate

= extract
skip s
Indeed C skip = skip, note that all instances of SKIP are compiled away; skip s = s.
If s was not available at compile-time we could only have synthesized a new run-time

operation SKIP s n=snmn.

Assignments give rise to a new run-time and a new compile-time operation.

C (assign (x,e)) s

= unfold (x:=e;s)n
x:=e;s = evaluate

= abutting calculation s mix:=emnl)
(x:=¢e)s = synthesize

= extract (x:=¢e)sm

assign (x,e) s n

Thus we have shown C o assign = assign o id||id and thereby we synthesized a new
run-time operation (x := e) s 1 = s n[x := e n] and extracted a new compile-time
operation assign (x,e) s = (x:=e) s.

sequential composition and conditionals are nearly as easy as skip and assign.
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C (cond (b,s,t)) u

C (séq (s,t)) u unfold
= unfold (b—s[t)hu
s;t;u property conditional
= fold twice b— (s;u) [ (t;u)
Cs(Ctu) fold twice
= extract b= (Csu)[(Ctu)
seq (Cs,Cthu = extract

cond (b,Cs,Ct)u

while-loops The most interesting case is the while-loop where recursion is involved. The
following lemma, which is easily proved by fixed point induction on P(f,g) = f;u = g
using f=AlL(b— (s;1) [ t)and g =ALb — (s;1) [ (t;u),

w(Aloop.(b = (s;loop) 1t));u = p(Aloop.b = (s;loop) [ (t;u)) (4.1)

intuitively says that loops are tail-recursive, and hence can be realized by a flow-chart
program.

C (while (b,s)) t
= unfold
u(Aloop.(b — (s;loop) | SKIP));t
= (4.1) and evaluate
u(Aloop.b — (s ; loop) [ t)
fold
u(Aloop.b — (C s loop) [ t)
= extract
while (b,C s) t

Applying the fusion law and unfolding the compile-time operations skip, assign etc,
results in a continuation semantics for V.

Mlprog S] = SIS] id no

Slskip] s = s
Slx:=E]ls = x:=€E&[E] s
SIS; Thlu = SISI (S[T]w)
Slif BthenSelseT filu = £&[B] — (S[S] u) [ (SIT]u)
Slwhile BdoSod] t = p(Aloop.£[B] — (S[S] loop) [ t)
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Elvar x] = LOOKUP x

Elnumn] = LITERALn
Eltrue] = TRUE
E[false] = TFALSE

S[E@TF] = E[E]1Q EIF
The clauses for expressions remain yet unchanged.

Our continuation semantics for W is the same as the semantics given by de Bruin [25]
and Schmidt [95] for a similar language, except that Schmidt swaps the continuation and
environment arguments. He makes no distinction between static and dynamic arguments.

example The current semantics translates programs into flow-charts [98]. The program
for computing factorials as given earlier, with n initialized to 100 for example, would

compile into
ENTER

( EXIT fi=nxf

n=n-—1

The well known idea of cutting loops and associating recursive equations with a flow-chart
[66] can be applied here as well. Cut-points become ‘labels’ and all but one of the arcs
pointing at such labels become GOTO's.

GOTO labelt = label
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IFfalsebSt = b—)tﬂs
EXITsnn = n

Using these extra instructions the denotation for the factorial program reminds of machine
code:

factorial = (fac:= (LITERAL 1)) loop
loop = (IFfqise (LOOKUP n > LITERAL 1) done o
fac := (LOOKUP n x LOOKUP fac) o
n:= (LOOKUP n — LITERAL 1) o
GOTO loop) L
done = EXIT L

The translation scheme for flow-of-control statements can be modified easily to produce
code with labels and jumps akin to code generated by conventional compliers.

Slif BthenSelseT fil u = TF¢qse E[B] t (SIS] (GOTO u 1))
where t = (S[T] u)
Slwhile Bdo S od] t = loop
where loop = IF¢q15e E[B] t (S[S] (GOTO loop L))

4.4 Expression Continuations

The next goal is to make control-flow in the evaluation of expressions explicit. Looking at
EIE @ Fln = EIEIn @ EIF] n, we see that the order of evaluating the arguments of Q) is
not specified. For an actual implementation some order must be chosen, and subsequently
intermediate values have to be stored. Usually a stack is introduced for this purpose.
Explicit naming of intermediate values is not only easier to derive, it also gives better code
for modern load-store RISC architectures such as the Motorola 88.000 [79]. Pettersson
[87] also generates three-address code (but from an already given) continuation-style
semantics. His correctness proofs are very informal, especially when dealing with functions.
He concludes for example that a callee-saves protocol is needed for function calls. In our
opinion this is not the case at all. The choice between callee-saves and caller-saves can
(and should) be left to the final code generator.

Explicit control-flow can be introduced into the evaluation of expressions by lifting the
order of evaluation subexpressions to the statement level.

Slx:=E@F = Sly:=°E;z:=F;x:=y @zl (ExprSimpl)
where y and z are fresh variables.

This suggest that expressions should be turned into statements by means of the transfor-
mation E € expr — (var||stat) — stat; the type of E leaves little choice but taking

Ee(x,s) = (x:=e)s (4.2)
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Although E may generate unnecessary assignments such as in E E[var x + var y] (z, s),
it is often simpler to eliminate these in subsequent compilation phases than to complicate
the transformation to deal with these special cases. If we use for example graph coloring
[5] to map identifiers into machine registers, redundant moves x := LOOKUP vy are
eliminated for free.

Instantiating the fusion law yields the following condition under which the optimization E
may be incorporated into the semantics.

S[1=8[1 AN Ec&[]=E[] <« cénd=-condo E|id|lid A
while = while o E||id A
assign = assign o E||{id A
Eovdr=var A Eonim=num A
E trie =true A E fdlse = false A
E o oper = oper o E||E

variables and constants New compile-time (and run-time) operations are extracted
(synthesized) by calculating. As usual we start with the simplest cases.

E (vdary) (x,s) E (nimn) (x,s)
= unfold = unfold

(x :=LOOKUP y) s x:= (LITERALnN) s
= extract = extract

vary (x,s) numn (x,s)

This gives new compile-time operations var y (x,s) = (x := LOOKUP y) s and
numn (x,s) = (x := LITERALn) s.

binary operators Improving the compilation of binary operators is the reason why we
do these calculations in the first place. The calculation is driving towards folding E on
the subexpressions e and f, thereby using the observation as a heuristic.

E (operg (e, f)) (x,s)

= unfold
x = (e /@ f)s

= observation (ExprSimpl), y and z fresh variables
yi=e (z:=f (x:= (LOOKUP y @ LOOKUP z) s))

= fold twice

Ee (y,E f (z,x:= (LOOKUP y @ LOOKUP z) s))
= synthesize

Ee(y,Ef(z,x:=(y®@z)s))
= extract
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oper (E e, E f) (x,s)

This yields x := (y @ z) s =snx =1y @ 1 z] and operg (e, f) (x,5) =
e (y,f (z,x:=(y @ z) s)).

statements In order to apply fusion, the optimization E should be embedded into the
meaning of statements. The key observation is the following equivalence that makes the
evaluation order in a conditional statement explicit.

Slif BthenSelseT fi] = S[x:=B;if (var x) then S else T fi]

With this insight the derivation of the new compilation scheme for conditionals is simple
enough.

cond (b,s,t) u
= unfold
b—o(su) [ (tu)
= eureka
x:=b (LOOKUP x — (s u) [ (t u))
fold
Eb (x,(LOOKUP x — (s u) [ (t u)))
= extract
cond (E b,s,t)u

Similarly we find assign (x,e) s = e (x,s) and while (b,s) t = w(ALDb (x, (LOOKUP x —
(s 1) [ t))) (no fixed point induction needed).

Refering to the fusion law yields the new semantics:

Milprog S] = SIS] id no

Slskip] s = s
Slx:=E]s = £E[E] (x,s)
Slif BthenSelseT fil u = E&[B] (x, LOOKUP x — (S[S] u) [ (SIS] u))
Slwhile Bdo S od] t = u(Aloop.£[B] (x, LOOKUP x — (S[S] loop) [ t))

Elvar y] (x,s) (x := LOOKUP y) s
Elnum n] (x,s) = (x:=LITERALnN) s
Eltrue] (x,s) = (x:=TRUE)s
Elfalse] (x,s) = (x:=FALSE)s
E[EQDF (x,8) = EIEI (y,&IF] (z,x:= (y @ z) s))

79



The new set of run-time operations is:

(x :=LOOKUPyYy)s1n = snkx:=nvy]
(x:= LITERALn) s = snx:=n]
x=(y@zlsn = snx:==ny@nzl

The full continuation version, using labels and GOTO's, of our example script looks like:

factorial = (r:=LITERAL1
fac := 1) loop
loop = (r0:=LITERALT

r1:= LOOKUP n o
12:=(r1 >710) o0
IFfatse 2 done o
13 := LOOKUP fac o
14 := LOOKUP n o
fac:=14x 130
15:= LITERAL 1o
16 := LOOKUP n o
n:=16—150
GOTO loop) L
done = EXIT L

where IF¢q1se X s t = LOOKUP x — t [ s.

4.5 Short Circuit Evaluation

Most programming languages, with Algol68 and Pascal being exceptions to the rule,
specify short circuit evaluation of boolean expressions. The C book [53] for example says:

“Unlike &, && guarantees left-to-right evaluation: the first operand is eval-
uated, including all side effects; if it is equal to O, the value of the expression
is 0. Otherwise the right operand is evaluated, and if it is equal to O, the
expression’s value is 0, otherwise 1."

Our short circuit implementation of boolean expressions is motivated by the equivalences

Sl[x :=B] = &IJif B then x := true else x := false fi]
S[if (AorB)thenSelseT fi] = SI[if A then S else (if B then S else T fi) fi]
S[if (Aand B) thenSelse T fi] = SIJif A then (if B then S else T fi) else T fi]

This allows short circuit evaluation of boolean expressions to be implemented with very
little boolean ‘values' ever existing.
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If short circuit code is required, boolean connectives have to be translated differently from
arithmetical operators. Therefore the syntax of W is changed to distinguish between
arithmetic and boolean expressions. It is possible to introduce short circuit evaluation
without changing the syntax, however these solutions are essentially the same as the
proposed one but much more awkard to deal with. We will return to this point point in
section §4.5.1
P € program := prog statement
S, T € statement == skip

|  var:= expression

| statement; statement

| if boolean then statement else statement fi

|  while boolean do statement od

E,F € expression == wvarvar

| num num

|  expression @ expression

|  bool boolean

A,B € boolean = varvar

|  true | false

| expression & expression

|  boolean ® boolean
Formally short circuit evaluation of boolean expressions can be introduced by simultaneous
application of the transformations:

Bb(s,t) = b—os][t
Ee(x,s) = x:=es

First we will derive the new semantic operations for boolean expressions. The generated

code for a variable dynamically chooses a branch to continue because the value of variable
x is not known until at run-time.

B (vdr x) (s,t)
~ (LOOKUP x) — s [t

var x (s,t)

Atomic boolean expressions are eliminated at compile-time, since the pair of continuations
(s,t) is a compile-time object.

B trie (s,t) B fdlse (s,t)
" TRUE— s [t " FALSE —s [t
T s Tt
~ trite (s,t) ~ false (s,t)

81



Complex boolean expressions are reduced to a nest of conditionals as suggested by the
above observations.

B (dnd (a,b)) (s,t) B (67 (a,b)) (s,1t)
~ (@ANDDb) o st ~ (@ORb)— st
= observation = observation

a—=(bos[t)t a—=sll(bos]t)
“ Ba(Bb (s,t)t) “ Bal(s,Bb(s,t))
~ and (B a,B b) (s,t) ~ or (B a,Bb)) (s,t)

Relational expressions cannot be encoded by means of control-flow, and thus require
somewhat more work.

B (equal (e, f)) (s,t)

T (eOf) st

T x:=(e@f) (LOOKUP x = s [ t)

T y=e(z:=f(x:=y Bz (LOOKUP x — s [ t)))
Ee (yEf(z,x:=yE x (LOOKUP x = s [ t)))

equal (E e, E f) (s, 1)
Boolean expressions form the interface between E and B, it is assumed that bool = id.

E (bool b) (x,s)

- (x :=b) s
b — (x:=TRUE s) [ (x := FALSE s)
B b (x:=TRUE s,x := FALSE s)

~ bool (B b) (x,s)

The remaining cases for E remain unchanged with respect to the calculation in §4.4.
The transformations E and B must be introduced via statements. Assignments contain
numerical expressions.

assign (x,e) s
x:=es
Ee (x,5s)

assign (x,E e) s

In conditionals and loops we find boolean expressions.
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cond (b,s,t) u while (b,s) t

b—o(suw | (tu " u(Aloop.b = (s loop) [ t

(tuw
T Bb((su),(tw) ~ 1(Aloop.B b (s loop, 1))
~ cond (B b,s,t) u " while (B b,s) t

The fusion law yields the compilation scheme:

Slskip] s = s
Slx:=E] S = £[E] (x,s)
SIS; TTu = S[S] (SI[T]w)

S[if BthenSelse T fi] u B[B] (S[S] u,S[T] u)
S[while Bdo S od] t = p(Aloop.B[B] (S[S] loop,t))

Elvar y] (x,s) y:=LOOKUP x s
Elmumn] (x,s) = x:=LITERALn s
E[EDF] (z,s) = CEIE] (%, (ETF] (y,(z:= (x D y) s))))
E[bool B] (z,s) = B[B] (z:= TRUE s,z := FALSE s)
Blvar x] (s,t) = (LOOKUP x)—s|[t
Bltrue] (s,t) = s
Blfalse] (s,t) = t
BIE © Fl (z,5) = £IE] (x,(EF] (y,(z:= (x ©y) s))))
Bl[A and B] (s,t) = B[A] (BIB] (s,t)),t)
B[A or B] (s,t) = B[A] (s,(B[B] (s,t)))

4.5.1 Alternative solutions

Alternative derivations for introducing short circuit evaluation are possible where the
syntax need not be changed. But anyhow the evaluation function must 'know’ whether
the expression has to be translated as an ordinary expression or as a boolean expression.

One solution is to use mutumorphisms as described by Fokkinga [35]. A mutumorphism
is a set of mutual recursive functions defined on a single data type. The mutumorphism
solution would correspond to the situation where B[_] and £[_] would be defined as
mutual recursive functions on the single type expression. Although mutumorphisms
posses algebraic properties like Uniqueness and Fusion, they are quite troublesome due to
the tupling involved.

Another solution would be to have an additional inherited attribute indicating the com-
pilation mode, i.e., boolean or arithmetical as done by Aho, Sethi and Ullman [1] §8.4.
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It is much more efficient to leave this encoding to the parser that generates the abstract
syntax tree.

4.6 Adding Procedures: from )V to C

Function procedures are added to W by extending the syntax with the clauses:

statement = ...|return expression
expression = ...|call procedure (expression)
P € procedure := proc (var) begin statement end

Recursive (function) procedures will be represented by cyclic programs. Usually programs
are assumed to be finite and recursion is solved semantically by means of a recursive
environment mapping procedure names into their denotations. Solving recursion on the
syntax level as we do makes calculations a lot simpler, and the syntax as well. Procedures
need not have names. Mathematically there is no difference between having the recursion
in the programs or in the environment (also see [95] pp 125-126 for a discussion about
this). In our framework, abstract syntax described by an algebraic data type defines
both finite and infinite programs. Instead of viewing this as a bug, we regard it as a
feature. Pragmatically it makes a world of difference not to take advantage of syntactic
recursion, one should consult Meyer [73] for examples where the use of environments
makes derivations less elegant.

Using cyclic programs it is impossible to describe dynamic binding. Syntactic recursion is
static binding at its extreme.

As a matter of fact, the introduction of cycles in the semantics via while-loops is already
a major source of disruption in our calculations since we must take resort to fixed point
induction every time we are proving promotability of improving transformations. For cyclic
programs this is done once and for all in the proof of the fusion law.

example An example recursive procedure is nfib
wAnfib . proc (n)
begin
if (n < 1) then return 1
else return (1 +nfib (n — 1) + nfib (n — 2))
fi
end)

4.6.1 Dynamic semantics of functions

Leaving the definition of a modified static semantics as future work, we now turn our
attention towards a dynamic semantics for C. Statement continuation will be of type
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env — IN instead of env — env because function procedures return a value.

RETURNxs11 = mnx
x = CALL ((p,y),z) sm = snlx:=v] wherev="p (noly:=nz|)
EXITsnn = L

The CALL-instruction x := CALL ((p,y), z) calls procedure p with an initial environment
in which the formal argument y is bound to the value of the actual argument z. The
value computed by p is assigned to x.

The extra valuation functions for the new syntactic elements are defined using the new
semantic operations. The meaning of complete programs must be redefined as well.

Mlprog S] = SI[S] (EXIT L) 1o
Slreturn E] s = £[E] (x, RETURN x s)
Elcall P(E)] (x,s) = £&IE] (y,x := CALL (P[P],y) s)
P[] € procedure — stat|jvar
Plproc (x) begin S end] = (S[S] (EXIT L),x)

A procedure or program that does not RETURN explicitly, implicitly returns L.

4.6.2 Introducing the dump

The semantics of a procedure call
x:= CALL ((p,y),z) s = snlx:=v]wherev=p Mmoly:=1n z])

does not reflect the standard subroutine call, where evaluation on the caller's side is
temporarily suspended and control is transferred from caller to callee which eventually
returns its result to back to the caller. This implicit evaluation order will be explicated
by introducing yet another continuation, the dump, which represents the suspended com-
putation of the caller of the currently executing procedure. The dump continuation has
type IN — IN, and should be strict. Given the result of the callee, the caller may resume
computing its result, but if the callee evaluates to | the whole computation has to fail.

The injective function C € (env — IN) — (env — dump — IN) maps an abstract
continuation § that does not expect a dump, into a concrete one $ = C § that does
expect a dump.

Csnd = 6($n)

Its left-inverse A € (env — dump — IN) — (env — IN) maps a concrete continuation
$ = C $ back into an abstract one § = A s.

Asn
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A(C3$)n
= wish
$m
= aiming at folding C
id ($ )
= fold
Csnid
= Cs=s

$1id

Thus A s 11 =351 id is a left-inverse of C. The new semantics is calculated using the
fact that A o C =1id € env —» IN.

Mprog S]
= wish
M prog S]
= unfold
S[S] (EXIT L) no
Ao.C=1id
(Ao CodS[S]) (EXIT L) mo
= assume C o S[S] = S[S] - C
(A o8[Sl o C) (EXIT L) 1o
= unfold A
(S[S] - C) (EXIT L) mo id

The new semantics will be derived by proving the assumption C o SISI =8IS] - C using
the induction principle for catamorphisms.

CoSIS] =3I[S] - C
A C o E[E] = E[E] o id]|C
A (C|lid) PIP1=PI[P] & (Coskip=skipoC) A
(Coséq ($,1) =seq (5,1) o C
ECoé=3oC A Coft=toC) A
(x.¢

(C o assign (x,é) = assign (x,e) o C
&ECoé=eoid||C) A

(Cocénd (b,$,{) =cond (b,3,1) o C
&Cob=boid||C A



&Cob=boid[|[C A Co§=380CA)
(C o oper (é,f) = oper (&,f) o id||C
ECoé=200id||C A Cof=1oid|C) A
(Cocdll (p,é) =call (p,e) o id|/C
ECoé=20id||C A (Cllid) p=D) A
((Cl|id) préc ($,x) = proc (8,x)
ECoé=300)

Writing the above theorem with bound variables would make it even more incomprehen-
sible.

strictness Now that programs may be cyclic, we must check that C is strict. This is
obvious, as we required dump continuations to be strict. The meaning of skip statements
and sequencing remains unchanged.

C ((seq ($,1) u)

C (skip s) = unfold
= unfold C (s (fu)

Cs = IH twice
= extract $(t(Cu)

skip (C s) = extract

seq (3,1) (Cw)

If we use the perhaps more obvious statement C (S[skip] s) = S[skip] s the result is an
unsatisfying, but correct, semantics.

C (3[[skip]] s)nd
= unfold
Csnbd
= unfold

5 (sm)
= synthesize
SKIP sn &
= extract
Sllskip}] s o

It forces the introduction of a weird run-time instruction SKIP that returns immediately.

assignment Assignments pose no problems.
C (assign (x,é) s)
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= unfold
C (€ (x,s))
= IH
e (x,Cs)
= extract

assign (x,e) (C s)

return The side effect of applying C to RETURN-statements is a new instruction.

C (retiirn € s)

= unfold C (RETURN x) s 1 &
C (é (x,RETURN x s)) = unfold

= H § (RETURN x s 1)
¢ (x,C (RETURN x s)) = evaluate

= abutting calculation d(mx)
¢ (x, RETURN x (C s)) = synthesize

= extract RETURN (Cs)n 8

retwrn ¢ (C s)

The instruction RETURN s11 8 = & (1 x) captures the intuition of the statement return E,
namely return the value of E to the caller of the current function.

conditional The conditional statement takes five.

C (cond (f),é,f)) u
= unfold

C (b (x,LOOKUP x — (§ u) [ (fu)))
— IH

b (x,C (LOOKUP x — (§ u) [ (f u)))
= property conditional

b (x,LOOKUP x — (C (§ u)) [ (C (fw)))
= IH twice

b (x,LOOKUP x — (3 (C u)) [ (t (Cw))))
= extract

cond (b,3,1) (C u)

while-loops For while-loops the following lemma is needed.

g u(M.AKX]) = u(Ax.Blx]) & g Alx] =Blgx] (4.3)
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which follows directly from the fixed point fusion theorem and the two A-fusion laws.

C (while (b,$) t)
= unfold

C (1(Aloop.b (x,LOOKUP x — ($ loop) [ t)))
= lemma, previous calculations for conditional

i(Aloop.b (x, LOOKUP x — (3 loop) [ (C t)))
= extract

while (b,3) (C t)

expressions Having shown that C promotes over all operations of S[_], we now must
show that C also promotes over the operations of £[_]. This determines a new run-time
operation.

C (oper (4,b) (x,s)) Cx=(y®@z))snd
= unfold = unfold

C (d (y,b (z,x=(y @ 2) 3)) d(x=(y®@z)sn)
= IH twice = evaluate

a (y,b(z,C (x=(y @2)s) d(smx:=ny@nzl)
= abutting calculation = fold

a (y,b (z,x:=(y @z) (Cs))) Csnx=ny®@nzlsd
= extract = synthesize

oper (a,b) (x,C s) x=(y@z) (Cs)ns

For expressions compiled into LITERAL and LOOKUP we find in a similar fashion

(x:=LOOKUPyY)snd = snlx:=nvyld
(x:= LITERALn)snd = snx:=n]bd

procedure call The reason why doing the current derivation is to implement function
calls.

C (cdll ((,y),€) (x,s))
= unfold

C (é (z,x:= CALL ((p,y),2) s))
= IH

¢ (z,C (x == CALL ((p,y),2) s))

= synthesize, see below
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e (z,x:= CALL (((Cllid) p,y),z) (C s)))
— IH

e (z,x:= CALL ((p,y),z) (C s)))
= extract

call ((p,y),e) s

In the fourth step of this calculation the assumption has been made that C (x := CALL
((P,u),2)) s =x:= CALL (((C|lid) p,y),z) (C s) which remains to be shown.

C (x:= CALL ((p,y),2)) sm d
= unfold
d (x:= CALL ((p,y),z) sn)
= evaluate
(00 (Av.s nlx :=V])) (p (Moly :=n zl))
= law for A, note that the dump remains strict

(Av.d (s mx:=v])) (p (Moly :=m z]))
= fold

Cp (moly =mnzl) (W.C snlx:=v]J))
= synthesize
x:= CALL ((C p,y),z) (Cs)n
Function entrance

The last remaining case is (C||id) o prdc.

(Cl[id) (prée ($,x))

= unfold C (EXITs)n 8
(CJ[id) (§ (EXIT L),x) = unfold

_ H § (EXIT s 1)
(3 (C (EXIT 1)),x) = evaluate

= abutting calculation 5L
(8 (EXIT 1),x) = synthesize

= extract EXIT s nd

proc (8,x)
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4.6.3 Final Semantics

Applying the catamorphism induction rule yields the final semantics for C.
Mlprog P] = S[P] (EXIT L) no id

Slskip] s = s
Slx:=E]s = £[E] (x,s)
SIS;Tlu = S[S] (S[T]w)
(

Slreturn E] s = E[E] (x, RETURN x s)
Slif BthenSelseT fil u = £&[B] (x,LOOKUP x — S[S] u [ S[T] u)
Slwhile Bdo S od] t = p(Aloop.£[B] (x, LOOKUP x — (S[S] loop) [ 1))
Elvar y] (x,s) = x:=LOOKUPwys
Elnum n] (x,s) = x:=LITERALn s
Eltrue] (x,s) = x:=TRUEs
Elfalse] (x,s) = x:=TFALSE s
EIEDFI (x,8) = CEIE] (y,EF] (z,x = (y @ z) s))
Elcall P(E)] (x,s) = £&[E] (y,x:= CALL (P[P],y) s)
Plproc (x) begin s end] = (S[s] (EXIT L),x)
The run-time operations indeed are very close to concrete machine instructions
EXITsnd = &L
RETURNxsnd = 6 (nx)
(x:=LOOKUPyYy)snd = snx:=muyld
(x :=LITERALNn)snd = snx:=n]?d
x = CALL ((p,y),z) snd = p (Moly:=nzl) (Av.s nlx:=v] 3)
x:=yY@z)snd = snx:=ny@nzld)

4.7 Tail call elimination

Suppose the context condition holds that any variable appearing in a program is defined
(occurs on the lhs of an assignment) before it is used (occurs on the rhs of an assignment),
then the CALL instruction can be refined as

x:= CALL ((p,y),z) smdé = p (mly:=nzl) (Av.snlx:=v]3)

Thus the current environment 1 may be passed to p instead of the empty environment
No. This modified CALL instruction allows certain recursive calls can be replaced by
iteration. When a procedure returns by calling a procedure (either itself or another), that
call is said to be a tail call. We can replace such a call by a jump, this not only saves
time, but also space.
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(x :== CALL ((p,v),z) o RETURN x) s
= evaluate CALL

P My :==mn z]) (W.RETURN x s n[x :=V] §)
= evaluate RETURN

p (My:=mnzl)d
= devaluate LOOKUP and GOTO
(y:=LOOKUP zo GOTOp)sn d

Incorporating this into our translation scheme gives
Slreturn (call P(E))] s = £[E] (x,GOTO p s) where (p,x) = P[P]

Note that this definition is not homomorphic, but can be made so easily.

4.8 Concrete Implementation

The run-time operations are now so low-level that they can be implemented directly in
some assembler language. The CALL and RETURN instruction would require a little
more work; the dump must be defunctionalized into a stack of environment and return
address pairs. If Cis used as a high-level assembler language that provides simple function
calls?, our example function is translated into:

int nfib (int n){
register int rO,r1,r2,r3,r4,r5,r6,r7,r8,r9,r10,r11,r12,r13,r14;
r0 = 1; rl = n;
r2 = (rl1 <= r0);
if (r2) {goto 1}
r3 =1; r4 = n; r5 = r4-r3; r6 = nfib(xrh);
r7 =n; r8 = 2; r9 = r7-r8; r10 = nfib(xr9);
rll = 1; r12 = r11+r10; r13 = ri12+r6;
return(ri3);

1: r14 = 1;
return(ri4);

}

When compiled using gcc -0 on a Data General AV300 this gives an nfib number of
1.200.000. Formally derived compilers can be efficient!

Lunfortunately most C compilers do not treat tail calls properly
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Chapter 5

A Taxonomy of Backtracking

Can'’t you find another way of doing it baby
Can’t you

Sam and Dave

An increasing number of programming languages provide backtracking as a form of control
structure: Snobol [46], Icon [45], Prolog [20] and Summer [54], to mention just a few. Not
surprisingly, much research goes on in this area, both practically as well as theoretically.
There seems to be, however, a great lull in the conversation between these two worlds.
On the one hand, practical implementations are presented in an ad hoc fashion with very
little motivation, whereas denotational and operational semantics of backtracking usually
stay far away from any implementation on some concrete machine. Hence the relationship
between formal semantics and concrete implementations usually stays unclear.

This chapter derives several implementations for a simple backtrack language B. This
language is what remains from a logic language like Prolog when all syntactic structure
in literals is abstracted away and semantic concepts such as unification and substitution
are ignored; B= logic programming - logic. Mainly for historical reasons, we will interpret
elementary B actions as terminal symbols, hence the interpretation of a B script as a
(possibly ambiguous) context free grammar.

The initial meaning function will map a script onto a relation that coincides with a Definite
Clause Grammar [42] as known from logic programming. These relations are subsequently
implemented as functions. In order to capture a backtracking implementation of nonde-
terministic choice, list-valued rather than set-valued functions are used. Depending on the
dual choice of specifying elementary actions as relations or as functions we get a spectrum
of direct semantics for B, with on the two extremes respectively those of de Vink [30]
and of Salter and Jones [94]. We then continue by transforming the former semantics
until we arrive at a number of low level implementations of backtracking among which
the backtracking part of the WAM [110] and the Recursive Backup Machine [57].
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The use of continuations for describing (the semantics of) backtracking has now become
quite common [24, 57, 62, 31, 26, 103, 25], but deriving this from a relational specification
and further transformation into concrete implementations was not done before. To our
best knowledge we have presented the first systematic derivation of the backtracking part
of the WAM, a derivation of the unification part is given by Kursawe [59].

5.1 A calculus of relations

The calculus of relations that we use is based on [29]. Given a (typed) binary relation
R C BJ|A we write R € B+ A as b R a or R(b,a) if (b,a) € R. We assume that the
arguments of our relations are flat domains; for flat domains D the powerdomain consists
of precisely the non-_L subsets of D.

Relational composition is defined in analogy with function composition as:
o € (CoBIBoA)—=(CoA)
RoS = {(c,a)|(FbeB:cRbADSa)}
Sometimes we will use ; as notation for 5. The union of two relations is defined as:
U € (BoA|IBoA) - (BeA)
RUS = {(a,b)|aRbVaShb}
A function f € B — A is mapped into the relation F € B +> A by taking its graph:
Il € (A—=B)—= (BeA)
fl = {(b,a)[b="a}
A set-valued function f € A — {B} is mapped into F € B &3 A by taking its choice:
Ch ¢ (A—={B))=(BoA)
Chf = {(b,a)|befal
A relation F € B & A is mapped into the function f € A — {B} by taking its breadth:
Br € (BoA)— (A—-{B})
BrFa = {beB|bFa}
Br and Ch establish a bijection between relations and set valued functions.
f=BrF = F=Chf

In the sequel we use that:

(BroCh) fa
~ Br(Chf)a

“ (beB|bChfa)
“ (beB|befal

" fa
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5.1.1 Br promotion laws

The next breadth promotion laws will be used in the next section to map relations into
functions.

Bro(o) = ©o B‘I‘HB‘I‘
BroU = UoBr|Br
Bro|ll = ({_{}o)oid

BroCh = 1id

where f © g = U/ o f* o g. Kleiski composition of set-valued functions f © g first applies
g to its argument, which yields a set of answers. Then f is applied to each of the elements
of this set, giving a set of set of answers which is flattened (U/) into a single set in the
end.

The next corollaries to the above laws may be used as peephole optimizations.

Br (Iffofgl]) = Brlfog

= {Jofog
Br (Iflog) = fxoBrg
Br(folg]) = Brfog

Br is a homomorphism on relations built from o,U,|_| and Ch.

5.2 The Language B

The abstract syntax of B is given by the grammar:

script o= expr
E,F,G € expr := empty]fail | symbol'|expr; expr | expr,expr

Throughout the sequel C varies over symbol. To save parenthesis we have the convention
that , binds stronger than ;. The choice of symbols, , for sequential composition and ;
for alternative composition follows usual Prolog convention. In Chapter 4 semicolon ; was
used for sequential composition. Don't get them mixed up.

Informally a symbol C" denotes the requirement of recognizing at the head of the input
that very symbol, or fail otherwise; this may be seen as an abstraction of a unification
action in full Prolog. The constant fail denotes immediate failure, the constant empty
denotes instant success; juxtaposition E,F denotes the requirement of first recognizing E
and then F; alternation E ; F denotes the requirement of recognizing either E or F.
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5.3 Relational Semantics

The semantic function M[_] € script — recognizer, gives the meaning of a script.
The function £[_] € expr — nonterminal gives the meaning of an expression. The
semantic domains are defined as:

R,S € nonterminal = input < input

recognizer = B < input

The evaluation functions that map expressions and scripts into their denotations are
defined by means of a catamorphism.

Mlscript E] = EOS E[E]
Elfaill] = TFAIL
Elempty] = EMPTY

E[C'T = READ C

E[E,FI = E&[F] o EIE]
E[E;Fl = EMEJUETF]

To complete our semantics, we must provide definitions for the elementary predicates
EMPTY, FAIL, READ C and the end-of-sentence test EOS.

There are essentially two ways of defining these primitive relations; as the || of a non
set-valued function, or equivalently directly as a relation or as the choice of a set-valued
function. In order to capture the notion of backtracking however, we use lists instead of
sets (see also [40]).

Defining primitive relations as Definite Clause Grammars, yields after Br-promotion the
direct semantics for B as given by de Vink [30]. The semantics defined using || coincides
with that of Salter and Jones [94]. Thus we have, in a uniform way, derived two seemingly
unrelated direct semantics for backtracking.

5.3.1 Direct semantics a la de Vink

The direct semantics of [30] results from defining the primitive relations as Definite Clause
Grammars that are commonly used in Prolog.

EMPTY = {(ji)]ji=1
FAIL = {}

READ C = {(j,i)[i=C>j}
EOS = {(i=I[]1)}

If we are not interested in the number of unsuccessful parses, we may define EOS =

{(true, [])}.
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Taking the breadth of these elementary
functions:

FAIL i

EMPTY i

READ C (C’ 1)
(f>g)i

fog

EOS i

relations gives the following set of list-valued

[]
[i]
(C=C)—=H0llI]
fiHgi
H/ofxog
(i=11)—[truel [ []

and valuation functions for the semantics of de Vink are

M[] € script — (input — Bx)
Mlscript E]1 = (EOS© E[E]) 1
El] € expr— (input — inputx)
Elfaill] = TFAIL
Eempty] EMPTY
EICT = READC
EIE;F = EIE] > E[F
EE,F] = £[F] @ £[E]

As an example, the meaning of the grammar w(AS.a"; a',S) is the relation

w(AS.(READ a U
and Br S is the list-valued function

W(AS.(READ a >

The above semantics might be the most intuitive but is not unique. There is different

one which is not as obvious.

S s READ a))

S © READ a))

5.3.2 Direct semantics a la Salter and Jones

The semantics of Salter and Jones results from defining elementary relations as the graph
of elementary functions. This has the advantage that the peephole laws become applica-
ble, but on the other hand it requires the introduction of a special error input A.

EMPTY i

FAIL 1

READ C (C' =+ 1)
EOS i

A whole spectrum of possible semantics
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A

(C=C)—=ilA
(=[] —[true] [ []

results when defining some relations as graphs
and others as choices. We now continue by transforming the direct semantics of de Vink.



5.4 Introducing success continuations

As a first step towards a continuation semantics for B we introduce success continuations.
The intuition behind the transformation is to make the implicit evaluation order of (0 ©
f) 1 explicit by turning f € input — inputx into a function Conc f € success —
success which takes o € success = input — Bx as an argument that is called after
successful evaluation of f:

Concfo = ocof

A left-inverse for Conc is not needed, but note that Conc is strict. The meaning of a
complete script is calculated as follows:

M script E]

= unfold
EOS © &[E]

= fold
Conc &[E] EOS

= assume fusion Conc £[E] = &[E]
E[E] EOS

= everything needs a continuation
E[ED (EOS 1)

where EOS ¢ i = (i=11) = [true] [ []. For the moment, we do NOT assume that the
continuation argument is available at compile-time, see §5.6.1.

Specializing the fusion law to verify our wish Conc EIE] = EE], we get
Conc &£[E] =&[E] & Conc FAIL = FAIL A
Conc EMPTY = EMPTY A
Conc (READ C) =READ C A
Conc (séq (e, f)) =seq (Conc e,Conc f) A
Conc (e 3 f) = (Conc e > Conc f)
We start by deriving new versions of the elementary actions. First FAIL and EMPTY;

Conc FAIL o i Conc EMPTY ¢ 1
= unfold = unfold

(0 @ FAIL) i (0 @ EMPTY) i
= evaluate = evaluate

[] oi
= synthesize = synthesize

FAIL o i EMPTY 0 i
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In this way we have found two new instructions FAIL ¢ i =[] and EMPTY ¢ i = 0 i.

For READ C two cases have to be considered.

Conc (READ C) o (C =+ 1) Conc (READ C) o (C' 1)
= unfold = unfold

(0 ©@ READ C) (C =+ 1) (0 © READ C) (C >+ 1)
= evaluate = evaluate

(4#/ o 0% o READ C) (C >+ 1) (4/ o 0% o READ C) (C' >+ 1)
= evaluate = evaluate

(4/ o ox) [i] (4 /o 0%) []
= evaluate = evaluate

oi []
= synthesize = synthesize

READ C ¢ (C >+ 1) READ C o (C' #1)

In the above definition of READ C the purpose of the success continuation ¢ is quite
clear; after a symbol has been recognized successfully, evaluation continues with o.

For composite actions we have to consider Conc o ® and Conc o >>.

Conc(ex>f)oi

Conc (eof) o = unfold

= unfold (c@e>1f)1
coeof = evaluate

= fold twice (H4/00%) (ei+fi)
Conc f (Conc e o) = evaluate

= synthesize (c@ei)# (co@fi)
(Conc fo Conce) o = synthesize

(Conce> Concf)oi

Hence the fusion law gives us a new semantics.

M[] € script = (input — Bx)
Mlscript E] i = (EOS® £[E]) i
E[] € expr — (success — success)
E[fail] = TFAIL
Elempty] = EMPTY
E[CT = read C

E[E;FI = EIE] > EIF]
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EIEF] = ¢&[E] - EIF]

with semantic actions

EOSoi1 = i=[]— [true][[]
READCo (C'H#1i) = (C=C)—=(ci) ]
FAILoi = []
EMPTYoi = oi
(ex>»floi = eciHfoi
(eof)oi = e(fo)i

5.5 Introducing failure continuations

In the previous semantics a choice e > f is defined as
(ex>»floi = eci#foi

This definition of > disguises an implicit evaluation order, first evaluate e o i then f o 1,
that needs to be exposed by introducing (failure) continuations, an argument that is
called after unsuccessful termination of e o i. The function Conc maps an abstract
success continuation & into a concrete continuation & = Conc ¢ that expects a failure
continuation.

Concoie = oiHo

The left-inverse Abs of Conc takes such a concrete continuation back into an abstract
continuation.

Abs ¢
= o6=Conc ¢
Abs (Conc 6) 1
= wish
Gi
= aim at folding Conc
Gi+H1]
= fold Conc
Conc 61i]]
= Conc6=0

oill
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From which we conclude that Abs 01 = 01 [] is a suitable left-inverse of Conc.

The new semantics with failure continuations is derived by exploiting the fact that Abs o
Conc =1id.

M script E] i
= demand
M script E] i
= unfold
EME] (EOS 1) i
= A.C=id
(Abs o Conc o E[E]) (EOS L) i
= unfold
(Conc o E[E]) (EOS L) i[]
= assume Conc o £[E] = E[E] » Conce
(E[E] o Conc) (EOS L) i[]
get rid of Conc
EE] (EOS L) i)

where EOS is calculated by

EOSoig

Cone (EOS o) i@

EOS oi+H @
i=[]—=ltruel [ [] + o)

The necessary conditions to prove the claim Conc o E[E] = &[E] o Conc follow from
instantiating the induction principle for catamorphisms.

Conc o &[E] = E[E] o Conc &  Conc o FAIL = FAIL o Conc A
Conc o EMPTY = EMPTY s Conc A
Conc o READ C = READ Co Conc A
(Conco (6 f)=(2>f) o Conc
& Concoé=c¢eoConc A
Concof=1oConc) A
(Conco (éof)=(&of)oConc
& Concoé=¢eoConc A

Conc o f =f o Cone)

The simplest but most satisfactory cases are EMPTY and FAIL. Especially the concrete
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version of FAIL nicely demonstrates the intuition behind failure continuations being the
part of computation that has to be done upon failure.

Conc (EMPTY o)1 @ Conc (FAIL 0) 1 ¢
= unfold = unfold
EMPTY i+ ¢ FAILo i+ ¢
= evaluate = evaluate
oit o [l +Ho
= fold = evaluate
Concoig ©
= synthesize = synthesize
EMPTY (Conc o) i © FAIL (Conc o) i ©

Hence we have determined EMPTY o i @=01¢and FAIL 0 1 © = Q.

Just like for W, the naive choice of only requiring that Conc £[E] = E[E] would give
an unsatisfactory semantics. For EMPTY this amounts to showing Conc (EMPTY o) =
EMPTY ¢

Conc (EMPTY o) i ©
= unfold
EMPTY 61+ ¢
= evaluate
oit o
= synthesize
EMPTYo1i ¢

Taking EMPTY 0 i @ = 0 i + @ is not a sensible realization of an instruction that ‘does
nothing’.

For READ C we have to check two cases, one boils down to EMPTY, the other to FAIL.
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Conc (READ C o) (C =+ 1) Conc (READ C o) (C’ #+1)

= unfold = unfold
READ C 0 (C s+1) 4+ ¢ READ C 0 (C' 1) # ¢
= evaluate = evaluate
oiH o [+ o
= fold = evaluate
Concoig ©
= synthesize = synthesize
READ C (Conc o) (C 1) @ READ C (Conc o) (C' >+1i) @

For finding the concrete version of alternation and sequencing the induction hypothesis
must be used.

Conc ((é6>1) o)ig

= unfold

éci%floi%(p Conc (¢ (f 0))
= fold = IH

Conc (é 0) i (Conc (f 0) i ©) ¢ (Conc (f 0))
= IH twice = IH

¢ (Conc o) i (f (Conc o) i ©) ¢ (f (Conc 0))
= synthesize

(&> f) (Conc o) i

5.5.1 Recapitulation: Continuation style semantics

At this moment the semantic domains are defined as (when transforming the semantics
further the types success and failure will change accordingly):

e,f,g € action = success — success
0 € success = input — failure — Bx
@ € failure = Bx
recognizer = input — Bx

Our semantics employs two continuations, o € success and @ € failure. Computation
of f 01 @ proceeds according to o if f € action terminates successfully, and according
to @ if f fails. Thinking in terms of extending our backtrack language to full Prolog, the
input i can be thought of holding the values or bindings of variables.

EMPTYoci@ = oio
FAILoie@ = ¢
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READCo (C'H+1) @ = (C=C)—oiele (5.1)
(ex>floie = eoci(foig)
EOSocie = ({i=[]—=ltruel[[])# ¢

Evaluating a choice (e > f) o i @ effectively ‘pushes’ a new alternative on the stack ¢
of open alternatives; @' =f o0 1 @. An failing READ C or an explicit FAIL amounts to
executing a jump to the last open alternative on top of the stack. If no such alternative
exists then the whole computation ends in failure. The action EOS checks whether the
complete input has been recognized and tries the next open alternative after signalling
success.

The translation scheme is given by £[_] = (EMPTY,FAIL,READ,,>|, with M[] =
(parse]) where parse e 1 = e (EOS L) i []. An alternative definition we will use is
parseei=(e> DONE) (EOS L)1 L where DONE o1 ¢ = []. This latter definition
has the advantage that it is defined entirely in terms of functions, no lists appear in this
definition of parse.

5.5.2 Algebraic properties

From either of the above semantics we may derive some (rather obvious) algebraic prop-
erties for 5. The neutral element of sequencing is EMPTY, while the neutral element of
choice is FAIL.

EMPTYoe = e e > FAIL
eo EMPTY = e FAIL>e = e

Il
o

Finally, FAIL is the left absorbing element of sequencing.
FAIL.e = FAIL
The fact that sequencing distributes from the right over choice is easily proved.
(e>flog = (eog)>(fog)

Surprisingly (?) distribution from the left, e o (f > g) = (e o f) > (e o g) does not
hold. A counter example is obtained by taking g = L; left factorization is not a safe
grammatical transformation in the context of backtrack parsers.

5.6 Making recursion explicit

In order to transform our semantics even further recursion in the source language explicit
must be made explicit. This is done by introducing nonterminal expressions call expr.

script == expr

expr = empty | fail | symbol'| call expr | expr; expr | expr,expr
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Recursive expressions are still represented by cyclic programs, but with the constraint that
each cycle is broken by a call. There is no way to warrant this by refining the syntax.
Instead of writing i(AS.a"; a",S) we should use w(AS.a"; a',call S)

5.6.1 Goal Stacking semantics

The translation of expressions is extended to deal with calls.
Elcall E] = CALL &£[E]

Informally calling an nonterminal call E means pushing the code for its body £[E] onto
the success continuation o. Therefore we define the associated action by

CALLecie@ = (eo)io

In the theorem proving literature this is known as goal stacking. The definition of CALL
makes clear why we cannot assume the success continuation to be available at compile-
time. That would mean that there is no operational difference with the previous semantics
without CALL. A concrete implementation based on goal stacking must use structure
copying for operator bodies. This approach will be pursued in section 5.10.1, leading to
the Recursive Backup Machine.

5.6.2 Goal Jumping

Now consider that before evaluating an operator call E, the current success continuation
is saved for later resumption on a dump continuation d. Then the body E is evaluated
(hence it must be of type success). When this evaluation is finished, control returns
to the previous continuation restored from the dump. Using this scheme, the success
continuation becomes available at compile-time. Under this scenario the success contin-
uation is only traversed but never modified so that structure sharing can be used. This
development will lead to the Warren Abstract Machine. We won't introduce the dump
continuation formally, but it would cause no real trouble if we would wish to do so.

The semantic domains for the goal jumping semantics are:

e,f,g € action = success — success
o € success = dump — dump
b€ dump = input — failure — Bx
@ € failure = Bx

According to the informal explanation we redefine the run-time operator CALL and define
RETURN as:

CALLco' 06i@ = o (6d)ie
RETURN 6 6i¢@ — 81
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Apart from taking an extra argument, the remaining operators remain unchanged:

EMPTY o d i@
FAILo b1 @
READ C o6 (C'>1) @
(ex>flodie
EOSodiog

The meaning of a script is now given by:

Mscript E] 1
E[fail]
Ellempty]
ElCT

Elcall E]
EME; Fl
E[E,F]

5.6.3 Refining alternation

A nice property of the goal jumping semantics is that for each choice (e > f) o, the success

cdio

P
(C=C)—(cdig)le
ecdi(fodieg)
(i=[]—=ltrue][[]) #H @

EIE] (EOS L) Li[]
FAIL

EMPTY

READ C

CALL (E[E] (RETURN 1))
E[E] > E[F]

EIE] o ETF]

continuation o is known at compile-time. This allows the following optimization:

(ex>flodie
:eoéi(foéicp)

~ TRYME_ELSE (fo)(eo)die

This can be realized by changing the compilation functions into

Mscript E] 1

EME] (EOS L) Lif]

Elempty] 0 = o
Elfaill o = FAILo
E[ClTo = READCo
Elcall E] 0 = CALL (£[E] (RETURN 1)) ¢
S[E;Fl o = TRYME.ELSE (£[F] o) (£[E] o)
EIE,;Fl o = E[E] (E[F] o)

As the more symmetric (e > f) is easier in proofs, we will not use this refined choice

semantics until we start developing the WAM.

106



5.6.4 Tail call elimination

Tail call elimination is an extremely important optimization, without this optimization
the time complexity for the definition u(AS.a',call S ; empty), would become quadratic
instead of linear in the length of the input [62]. Tail-call elimination simply follows from
the calculation

CALL ¢’ (RETURN ¢) 81 @
~ o' ((RETURN 0) 8) i @

o' d6ig

JUMP o6’ 081 @

which proves that we may replace CALL 0o RETURN by JUMP o. Tail call optimization
is a nice example of two functions that are declaratively equal but operationally drastically
different. Under a more operational interpretation, we may read tail call elimination as
“a subroutine call immediately followed by a return may be be replaced by an ordinary
jump”. One of the strong points of our approach is that important optimizations often
follow by expanding a few definitions and then just calculating. As we have the success
continuation available at compile time, we could modify £[_] such that tail call elimination
is done directly.

An implementation pitfall

An obvious implementation for the current semantics would be to define each instruction
as a C [53] procedure:

typedef void (*cont) (void);
void JUMP (cont sigma){
(*¥sigma) O ;
s

However since most C-compilers do not do tail-call optimization for the call (*sigma) () ;
the resulting implementation will still manifest a quadratic behavior | The m88k code
generated by GCC on the DG Aviion for JUMP for example is

_JUMP:
subu r31,r31,0x0028 ; 40
st rl,r31,0x0024 ; 36
@Locs.al:
jsr r2
@Locs.bO:
1d r1,r31,0x0024 ; 36
jmp.n rl
addu r31,r31,0x0028 ; 40
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whereas the required code is simply _JUMP: jmp r2 .

Example

Using both tail-call elimination and refined choice, the grammar p(AS.a"; a',a"; a',call S ;
a",a",call S) compiles into:

S = (TRYME_ELSE S’ o READ a o RETURN) L

S' = (TRYJME_ELSE S” ¢ READ a o READ a o RETURN) L
S" = (TRYME_ELSE $" o READ ao JUMP S) L
s (READ a o READ ao JUMP S) L

In WAM parlance, RETURN means proceed, JUMP means execute and CALL means
call. The local stack of the WAM is represented by the dump and the failure continuation.
The input abstracts away from the global stack and the trail. The READ instruction
represents the get-, put-, and indexing instruction classes. After introducing the cut, we
will show how the dump and failure continuations can be defunctionalized into linked lists
which then can be merged into a single stack. We then also show how TRY_ME_ELSE can
be refined into the triple TRY_ME_ELSE,RETRY_ ME_ELSE and TRUST_ME_ELSE_FAIL.

5.7 Introducing the ‘cut’

In this section we will extend B with the notorious cut operator, the semantics of which
are most easily described using a dump since it provides us with entrance and exit points
in the evaluation of operator bodies.

The intended meaning of the ! operator is to restore the failure continuation that was
active at the time the operator was called in whose body the cut appears. Hence, eval-
uation of a ! discards the alternatives that have been generated since the body in which
the cut appears has been entered. An obvious way to obtain this behavior is by adding
an extra argument, the cut continuation ¢ which is that old failure continuation. So now
we have as semantic domains:

o',0 € success = cut— dump — dump
dedump = input — failure — Bx
@ € failure = Bx
¢ €ecut = failure

Executing a CUT amounts to restoring the failure continuation ¢ as it was at the moment
of entering the current operator, thereby ‘cutting’ all choices ¢ that were made since.

ENl = cut
CUTodpsio = cdpdid
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When an operator is called we save the success continuation as well as the current cut
continuation on the dump, and set the current cut continuation to the failure continuation.
Upon exit the success and cut continuation are restored as they existed just before the
call.

CALLo' o pdie = o' o(cdpdie
RETURN G b 5i@ — 81

For operators whose bodies do not contain !'s, saving and restoring the cut continuation
is not needed. The dump can be interpreted as a list of pairs (success,failure) or
equivalently as a pair of lists of respective types. We will use this intuition in the next
section when presenting a more efficient implementation for CUT.

The remaining equations essentially remain the same, taking care of the additional cut
continuation.

EMPIYopdip = oddie
FAILod d1ie ()
READ Co ¢ 8 (C' =+1) @ (C=C)—=(ocddiglle
(ex>flodpdie eocpdi(foddiep)
EOSodpdie = (i=[l—=Tltruelll]) # o

The meaning of a script is now defined as:
MIE]i = &E[E](EOS L) L L iT]
We still have that CALL o’ o RETURN = JUMP o’ holds, but now

JUMP o' cpdip = o @die

5.7.1 Alternative definition for !

In [32] an alternative implementation for ! is given. Instead of saving/restoring the failure
continuation on function entry/exit, any expression whose choice-points are to be cut can
be bracketed. This allows one to use cuts without the overhead of the associated function
call. In order to model this we add a new production to our grammar:

expr u=
- {expr}
|

Informally the meaning of the expression E,{F},G is the same as E,call F,G. but without
a runtime function call. Hence CALL expressions need only be used for recursive rules.
Formally the meaning of this new construct is given by:

EHE]] = SAVECPoE[E] o CUTTO
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The action SAVECP saves the current failure continuation on top of the cut stack, as
before CUT replaces the current failure continuation by the failure continuation on top
of the cut stack, while the action CUTTO pops the topmost element from the cut stack.
Since we partitioned the dump into two stacks this requires that ¢ € cut = failurex.

SAVECPo b di@ = o(o+¢)dieg
CUT o (@ d)die = o(e>¢d)die
CUTTOc (@) di@ = odpdie

5.7.2 Some folk theorems

To illustrate our semantics for !, we prove some folk theorems [31, 9] from the Prolog
community. The first two follow directly from the fact that CUT c @ 8i @ =0 @ 81 o.

EN,M = £ (Folk1)
Elcall (E; (M, F))] = E&lcall (E; F)] (Folk2)

The following more interesting ones allow systematical introduction and removal of cuts.

An action e is called determinate if it can succeed in at most one way, more formally:

e ¢ does not terminate, e c @ 01 @ = 1, or
e efails, e 0 @ 61 @ =FAIL, or
e e succeeds but creates no choices, e 0 p di =0 d' i ¢

If action e is determinate it is not difficult to show (forec @ di@ =Landec @ die =
FAIL the proof is trivial) that:

(eoCUT)o @ b1 0@
T CUTog@die

cedie

ecpdie

The third folk theorem is direct from this property.
Elcall (E;F,1,G)] =&][call (E;F,G)] & £[F] determinate (Folk3)
This theorem is useful to make tail-call elimination applicable.

A choice e > f is called deterministic if

e c—=_1,o0r
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e ¢ =TFAIL, or

e ¢ is determinate and f = FAIL.

For deterministic choice we have the following theorem
Elcall (E; F)] =¢&Icall (E,!; F)] & £[E; F] deterministic (Folk4)

This theorem is particularly useful in cases like call (0"; ... ; 9") which according to (Folk4)
can be replaced by the much more efficient call (0"!; ...; 8,!; 9") The most intersting
case in the proof is when f = £[F] = FAIL and e = £[E] succeeds determinately.

(ex>flopdie
ec@dio

T (eoCUT)o @ dig

T ((eoCUT)>flo@die

Note that if we would also allow the transformation in case f = L then evaluation of
(e o CUT) > f might terminate where e > f does not.

Since the introduction of the cut has no fundamental influence on the derivations that
follow, we shall not take it into account in the remainder of this chapter.

5.8 Comparison with other continuation semantics

Two other denotational semantics for 5 containing cut based on continuation semantics
are those by de Bruin and de Vink [26] and by de Bakker [24]. The relevant part of the
former one can be stated in our notation as follows:

CUTodpio = odbid

CAlLeocdpie@ = e(Ap'.od)oie
FAILopio@ = o
(ex>flopie = ecdi(fodig)

This semantics makes no use of a dump continuation, but encodes successful termination
of CALL e by passing Ad’.0 ¢ as success continuation instead of just o, and therefore is
well suited for transformations towards a recomputing implementation as will be given in
§5.10. We should not forget to mention that this semantics was the source of inspiration
of our semantics.

The denotational semantics of de Bakker [24] can can be considered as an intermediate
between ours and that of de Bruin and de Vink [26]. Though it also employs a dump,
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successful termination of CALL e is encoded directly in the success continuation instead
of using RETURN. Denotationally this makes no difference as RETURN o = id.

CUTo¢dpdio = odpdid

CAlLeo dpdi@ = e(ApAOD) @ (0dd)io
FAILopdie@ = o

(e>flopdio = ecdpdi(foddie)

We believe that because our semantics is more structured than the above, it is both more
readable as well as more amenable to further transformations.

5.9 Concrete Semantics

In order to explain the Warren Abstract Machine [110], we will work with the concrete
semantics of expressions. As a first step, all pointers implicit in this representation will
be made explicit by specifying the abstract machine instructions using update schemes.
Next we show how the dump and the failure continuation can be merged into a single
stack, called the local stack by Warren. Measurements however indicate that a split stack
architecture seems to be superior to the single stack model (reduced locality, increased
complexity). Moreover we think that Appel's principle [3] holds here as well; the dump
and failure continuations should be heap- instead of stack allocated.

The defunctionalized continuations are described by the following algebraic data types.

o0 € Success == EMPTY Success | FAIL Success
| READ symbol Success
| CALL Success | RETURN Success
|  TRY_ME_ELSE Success
|  EOS Success | DONE Success
@ € Failure == CP Success Dump input Failure
d € Dump == DF Success Dump

As explained in Chapter 1, compiling a script is defined as
compile (script E) = TRY_ME_ELSE (DONE L) (£[E] (EOS 1))

where £[] € expr — Success — Success is similar to the semantics given in §5.6.3 ex-
cept that instead of using actions it uses the above defined constructors. When confusion
can arise whether symbols should be read as constructors or actions, we use grave ac-
cents for constructors and acute accents for actions. Completing the compiler correctness
diagram
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script ———&—— Success

MM %)\LPC olil

recognizer

automatically gives an interpreter for Success programs. Given
PCobdie@ = Slo] D3] i Flel

where S[_], D[] and F[.] map Success to success, Dump to dump and Fail to fail
respectively, we can derive by simple 'unfold-simplify-fold’ a version of PC that does not
use S[_], D[] or F[.]. We only show one step of this derivation.

PC (EMPTY ) §1i ¢
= unfold

SIEMPTY o] D[8] i Flol
= unfold

EMPTY Slo] DI8] i Fle]
= evaluate

Slol DI3] i Fle]
= fold

PCodio

The complete case distinction made by PC is given below.

PC (EMPTYo)b6i@ = PCodieo
PC(FAILo)8i(CP o' 8'i' @) = PCo'8'i' ¢
PC(READ C) 66 (C1i)@ = PCodig
PC(READ C) o6 (C' i) (CPo'8'1' @) = PCo'd'i' @
PC(CALLo o) di¢@ = PCo(DFo'd)ie

PC (RETURN o) (DF ¢’ 8) i @
PC (TRYo' 0)8) i ¢

PCo' 6ig
PCo6i(CPo'd1¢)

PC(JUMPo'0)di@ = PCo'dig
PC(EOS0)di(CPo' 81" @) = ({i=I[]—-ltruell[])
+ (PC o' 8" 1 @)
PC (DONEo)bdi@ = []

5.9.1 Making pointers explicit

In order to merge the dump and the failure continuation we will assume that Dump and
Fail are realized by linked lists while Success is realized as a linear array of instructions.
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Under this interpretation we may visualize PC (CALL ¢ ¢’) & by the following picture,
where lowercase greek letters are associated with pointers. A denotes the location of the
second argument of PC.

PC A

CALL

0./

and PC ¢’ &' where &' = (DF o 8) by the picture:

PC A

5/

CALL DF

0_l

Hence changing the configuration as sketched in the first picture into that of the second,
models the equation:

PC(CALLo o')6i¢@ = PCo(DFo’'d)ie

An apparent advantage of explicitly introducing pointers is that the semantics can specify
that not the complete dump and failure continuations have to be stored in a dump frame,
but only pointers to them.

Update Schemes

The above picture can be formalized by using update schemes. From this description an
actual implementation is usually derived with very little effort.

PClo] o[CALL ¢']o" A[d]
=
PCl[o'] A[S'] 8'[DFo” 8]
Similarly the other instructions can be described, PC (JUMP o ¢') = PC 0 becomes

PClo] o[JUMP ¢']o"”
=
PC[o’]

The instruction RETURN returns to the continuation found on top of the dump stack,
PC (RETURN ¢) 4 = ¢’ 6’ where (DF ¢’ &') = §, pictorially

PCl[o] o[ RETURN o' A[§] &[DFo” §']
=
PClo"] A[S']
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Executing PC (TRYME_ELSE ¢’ 6) 61 @ =PC 001 ¢’ where o' =CP ¢’ 51 o,
creates a new a choice point consisting of the next alternative to be tried, a pointer to
the top of the dump stack, a pointer to the current choice point and a pointer to the
current input position.

PCl[o] o TRYME_ELSE ¢']o” A[d] I[i] D[e]
=
PCl[ o] Dl’'] @'[CPo'b1¢]

An explicit PC (FAIL 0) 61 @ =PC o' 8’ i’ @' where CP o' §' i’ @' = ¢, explores
the next open alternative by restoring the pointers found in the current choice point.

PCl[o] o[ FAIL Jo’ D] S[CPo"b1¢']
=
PCl[o"] A[S] I[i] Dle']

A successful PC (READ C o) 6 [C |j] @ =PC o0 6 j ¢ advances the input pointer over
the next character.
PClo] o[READ Clo’ I[i] i[C]j

=
PClo'] I[j]

Otherwise a failure occurs by backtracking to the next open alternative.

PClo]  olREAD Clo’ il ®le] iC'j ¢[CPo" 51" @]
=
PCl[o"] AlS] TI[i"] D[e']

5.9.2 Merging Dump and Failure

In the above description, no decision has been made on how space for the dump and the
failure continuation is allocated. One of the main characteristics of the WAM is that the
dump and failure continuation are merged into a single stack called the local stack.

The following set of update schemes refines the ones given earlier by allocating frames on
the local stack, where HP points to the last allocated frame.

The simplest case is CALL

PCl[o] o[CALL o']o"” A[d] HP[h]
=
PClo'] A[8'] HP[&'] §'[DFo”8]h

The RETURN instruction remains unchanged, the dump-frame cannot be reclaimed (but
gdetret)

PCl o] o[ RETURN Jo' A[d] &[DF o” §']

=

PClo" ] AlS']
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TRY_ME_ELSE allocates a choicepoint on the local stack.

PClo] o/[TRYME_ELSE o' ]c” A[b] I[i] ®[¢] HP[h]

=

PClo" ] Ole'] HP[@']
@'[CPc'd1i¢@]h

When backtracking the pointer HP can be reset to the position it had when the choice
point was created.

PClo] o[ FAIL Jo’ Dl ] @[CPd"d1¢']h
=
PC[o"] Ald] I[i] ®[e'] HP[h]

We leave READ and JUMP to the reader.

5.9.3 A split stack architecture

A simpler and probably faster machine results when the dump and the failure continuations
are kept seperate. The dump must still be realized by means of a linked list but the failure
stack can be implemented as a real stack. As a consequence, the pointer to the previous
choice point need not be saved. We only give the plans for the relevant instructions.

PClo] o[CALL ¢’]o” A[&§] HP[h]
=
PCl[o'] A[8'] HP[d'] d'[DFo”d]h

An advantage of the split stack architecture is that the dump can be trimmed when setting
a choice point.

PClo] ol TRYME_ELSE o’ ]o” A[b8] I[i] Dle]

=

PCl[o"] Ol '] HP[S]
@'[CPo'b1i]@

Upon failure the computational state is restored with the values found in the topmost
choice point.

PClo] ol FAIL]o' D[] ©[CP " 1]’
=
PC[c"] A[S] I[i] ®[e'] HP[3]

5.9.4 Multiple Choices

Analyzing the behavior of the WAM in case of a chain of choices, (e.g. our running
example)

S = (TRYME_ELSE S’ o READ a o RETURN) L
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S' = (TRYME_ELSE S” o READ a .« READ a - RETURN) L
S” = (TRYME_ELSE S” o READ a o JUMP S) L
S — (READ aoREAD aoJUMPS) L

shows that we can discriminate between S which sets up an initial fresh choicepoint, S’
and S” which overwrite that very same choicepoint with a another one differing only in
the success field, and S""’ which ignores the choicepoint.

Now if we redefine FAIL to leave the choicepoint as it is
PC (FAIL0) 6i(CP o’ 8" @) = PCo' &' i’ (CPo' & i @)

we can refine the above choice chain into

S = (TRYME_ELSE S' o READ a o RETURN) L

S" = (RETRY_ME_ELSE S” o READ a o READ a o RETURN) L
S” = (RETRYME_ELSE S" c READ ao JUMPS) L
s" (TRUST-ME_ELSE_FAIL o READ a o READ ao JUMP §) L

where TRY_ME_ELSE sets up a choicepoint
PC (TRYMEELSE 0 0’)861i@=PCo' 61 (CPcd1ie)
which is partially updated by subsequent RETRY_ME_ELSE's:
PC (RETRYME_ELSE 6 0') i (CP 6" 8" i’ @) =PC o' 851 (CP o d'i’ @),
until finally the choicepoint is removed by

PC (TRUST_ME_ELSE_FAIL 6) §1i (CP ¢’ 8’1’ @) =PC o5 1i o.

5.9.5 Determinate returns

In the above semantics, dump frames are only reclaimed when creating a choice point or
upon backtracking. Using a simple test it is also possible to reclaim stack space upon
a RETURN, provided it is determinate. This then would be the same as a RETURN is
a conventional imperative language. A return is determinate if it exits an operator body
which has no remaining choice-points. This is the case when the dump pointer A is
greater than the choice pointer ®. We don't believe this gains anything except space, in
an imperative language the return stack should be heap allocated as well.

This concludes our main discussion on the Warren Abstract Machine, and we now turn
to the Recursive Backup Machine.
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5.10 Recomputing the input

Equation (5.2), shows that that semantics is not single-threading [95] in the input as well
as in the success continuation, because they are copied when making a choice.

We redefine failure in order to make the semantics single threading in the input, and
this gives rise to several other redefinitions. The semantics can be made single threading
in the input if it is not saved when a choice is made, i.e. the input is abstracted from
the failure continuation. So we want to transform failure from Bx into a function of
type input — Bx. This could be done as before by inventing a number of injective
refinements, but we rather pursue a more informal way now. If the invariant 01 (0’ 1 @)
can be maintained, that is to say the topmost choicepoint always has the same input as
the current input, then obviously the input need not be saved when making a choice. We
then may simply pass the current input as an argument to the failure continuation.

Equation (5.1) shows that the invariant is destroyed when evaluating READ C ¢ (C =+
i) . The following derivation shows how this can be fixed.

READ Co (C = 1i) @
~ (READ C>> FAIL) ¢ (C =1) ¢

READ C 0 (C 1) (FAIL 0 (C ¥+ 1) @)
" 0i(FAIL o (C =+1i) @)

~ o1i (UNREAD C (FAIL 0) i ¢)

where UNREAD C 0 i @ = 0 (C > 1) @. From this derivation we can distillate a
General Principle For Implementing Backtracking:

Either the complete state is saved when making a choice, or the implementa-
tion recomputes some part of the state by letting every action that modifies
that part of the state, update the failure continuation such that the modifi-
cation will be undone upon backtracking.

Based on this principle we define the recomputing input semantics as follows. The se-
mantic domains are:

action = success — success
action™' = failure — failure
success = input — failure — Bx
failure = input — Bx

The semantic operators are given by

EMPTYocio@ = oig
FAILoig@ = @i
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READ Co (CH1) @ =
CALLeci@ =
(ex>floie =

EOSoi@ =
READ ' Coi =

(C=C'")= (ci(READ' C o)) [ ¢ (C1)
eocio

eoi(AM.fole)
(i=[]—=Ttrue][[]) # @i

© (C 1)

The meaning of a script is then defined as:

Mscript E]

i = (E[E] - EOS)L i (Ai.[])

5.10.1 Recomputing the success continuation

We now reformulate our semantics

such that it becomes recomputing in both input and
success. According to the principle of implementing backtracking making the semantics
recomputing in the success continuation and input, thus failure = success — input —
Bx, means that every single instruction that does not fail instantly, must update the failure
continuation with an inverse operation, since executing an instruction modifies the succes
continuation. In order to be able to be able manipulate continuations explicitly, concrete

semantics will be used for the success continuation.

Success =
\
\
\

EMPTY Success
FAIL Success
READ symbol Success

(Action > Action) Success

The following machine was first described by Koster [57]

PC (EMPTY o)1 @

PC (FAIL o) i @

PC (READ C o) (C>+1i) @
PC(READ Co)i @
PClex>fo)io

PC (EOS o) i@

EMPTY T oi
READ 'Cooi
(e >f) ¢ (eo)
(ex>"f) ¢ (fo)

= PCoi(EMPTY ! o)

= @ (FAIL o) i

= PCoi(READ' C o)

= ¢ (READ C o) i

= PC(eo)i(e' >fq)

= ({i=[]—-[truel [ []) # (¢ (EOS o) 1)

= ¢ (EMPTY o)1

= ¢ (READ C o) (C >+ 1)
PC (fo) (e>"1f o)
= @ (e>fo)

The meaning of a script should not be surprising:

Mlscript E]i = PC (E[E] (EOS 1)) 1
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5.10.2 Advantages and disadvantages of goal stacking versus goal
jumping

In the previous section we have argued that goal stacking needs a structure copying imple-
mentation of the success continuation, while goal jumping allows for a structure sharing
implementation of the success continuation. In [110] the advantages and disadvantages
of goal stacking relative to the above goal jumping approach are discussed. Perhaps the
most important remark made there is that goal jumping can be viewed as a source level
transformation on expressions by putting the constraint that bodies consist of at most

two subexpressions. A definition
call (Q,R,S)

is viewed as being transformed into: call (Q,call Dy) where Dy = call(R,call D) where
D, =S.

5.11 Conclusions and future work

In this chapter we have shown how various implementations of backtracking on conven-
tional serial machine architectures can be derived systematically from a continuation style
denotational semantics of a backtracking language. Using such a transformational ap-
proach makes the relationships that exists between various implementations crystal clear.
Presenting the implementations in a functional setting has the advantage that it allows
one to concentrate on the essentials of implementing backtracking without getting bogged
down in too much operational detail (although according to some one gets bogged down
in too much denotational detail).

The scope of our derivations can be broadened in at least three directions. Firstly by
extending the source language. The language used in this paper is quite limited, lacking
things such as meta-calls, unification etc. On the other hand we can extend the class of
target machines to which the derivation process heads. Currently we have in mind only
classical serial machine architectures, but it might be useful to try to derive compilation
schemes for logic languages suitable for implementation on parallel architectures.

Acknowledgements | would like to thank Maarten Fokkinga, Arie de Bruin and Ross
Paterson for their careful and constructive reading of earlier versions [69] of this chapter.
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Samenvatting

Er is sprake van een zekere mate aan discrepantie tussen de theorie van de semantiek van
programmeertalen en de praktijk van de vertalerbouw. Dit proefschrift poogt een brug te
slaan tussen deze twee werelden. Uitgaande van een formele semantiek wordt in een aantal
stappen een concrete implementatie berekend. In een formele semantiek wil je alleen
uitdrukken wat een programma betekent, bijvoorbeeld als functie van invoer naar uitvoer.
Een concrete implementatie moet juist precies aangeven hoe de berekening van de output
bij gegeven input plaats vindt. Een verfijningsstap van een abstracte naar een meer ope-
rationele semantiek bestaat meestal uit het zichtbaar maken van een impliciete evaluatie
volgorde door het introduceren van een continuatie. Een continuatie is een expliciete vorm
van een berekening die ‘later’ nog gedaan moet worden. Als alle noodzakelijke evaluatie
volgorde is vastgelegd kunnen er concrete realizaties worden gekozen voor continuaties
en andere semantische domeinen; stacks, verketende lijsten, machine code, registers etc.
We leiden vertalers af voor een eenvoudige functionele, een imperatieve en een logische
programmeertaal.

Voor het beschrijven van laagbijdegrondse operaties van abstracte machines gebruiken we
de update schemes van Hans Meijer. Het voordeel van update schemes is dat complexe
bewerkingen op pointers en arrays op abstracte wijze kunnen worden gedefinieerd. Ook
is het relatief eenvoudig een update scheme specificatie te implementeren in een concrete
taal als C. Een nadeel is dat update schemes zich minder goed lenen voor verificatie en
transformatie.

Als formalisme voor het definieren en transformeren van semantische functies gebruiken we
een variant van Squiggol, een calculus voor functies op algebraische datatypes ontwikkeld
door Richard Bird en Lambert Meertens. We mogen stellen dat het gebruik van Squiggol
een succes is voor wat betreft het werken met algebraische datatypes. De aanwezigheid
van functieruimtes gooit echter behoorlijk wat roet in het eten, een verschijnsel dat zich,
gelukkig, bij anderen ook voordoet. Het rekenen met functieruimtes is dan ook een van de
belangrijkste thema's voor verder onderzoek. Andere zaken die nadere aandacht verdienen
zijn mogelijke verbanden met partiele evaluatie , in het bijzonder het bepalen van de grens
tussen statische en dynamische berekeningen (bindig time analysis) en machine assistentie.
Wil de hier gepropageerde methode ook praktische waarde hebben is mechanische hulp
onontbeerlijk.
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