
Operation-based Merging

Ernst Lippe

Software Engineering Research Centze, University of Utrecht

Norbert van Oosterom

Software Engineering Research Centre

e-mail: lippe@ serc,nl, oosterom(@ serc.nl

Abstract
Existing approaches for merging the results of

parallel development activities are limited. These ap-

proaches can be characterised as state-based: only

the initial and final states are considered. This paper

introduces operation-based merging, which uses the

operations that were performed during development,

In many cases operation-based merging has advan-

tages over state-based merging, because it automati-

cally respects the datii-~e invariank of the objects,

is extensible for arbitrary object types, provides bet-

ter conflict detection and altows for better support for

solving these conflicts. Several algorithms for conflict

detection are described and compared.

1 Introduction
Parallel activities, where each user has private copies of

shared data, occur frequently in many different kinds of

computer supported cooperative work. After a certain pe-

riod the results of these separate lines of development must

be integrated. In this paper this process is called merging.

Software development, where different versions of a pro-

gram source must be integrated, is an important example, but

merging problems arise in one form or another in all forms

of cooperative work. In general, merging is a complex pro-

cess, certainly when many interrelated objects are involved.

Merging depends on the semantics of the objects that are in-

volved: merging two program texts is different from merging

pictures.

Tool support for this merging process is desirable, but

hardly existent. This paper describes the approach to merg-

ing that is used in the CAMERA system Kip92, FLD+ 92],

a support system for cooperative work in loosely coupled
distributed environments. CAMERA contains an extensi-

ble Object Management System (OMS) that belongs to the

Permission to copy without fee all or part of this material is
granted provided that tha copias are not made or distributed for
direct commercial advantage, tha ACM copyright notice and the
title of ths publication and its data appear, and notice is givan
that copying is by ptrrmisaion of the Association for Computing
Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.
ACM-SDE-121921VA, USA
e 1992 ACM 0-89791-555-01921001 2/0078 ...$1 .50

group of object oriented databases. Techniques were needed

to merge developments that were performed on this database.

Because new data-types can be added by defining new chisses

the approach has to be extensible,

Existing approaches to merging are too limited for this

purpose. The next section of this paper give an overview of

existing merge tools. Existing merge techniques can be char-

acterised as being state-based, they only use the initial and

final state of a development. Furthermore, these techniques

can only be applied to a limited set of data-types.

In this paper we introduce a new approach called

operation-based merging. Operation-based merging is based

on the operations that were performed during the develop-

ments. Operation-based merging can in principle be applied

arbitrary abstract data-types, and guarantees that data-type

invariants are respected. Operation-based merging is intro-

duced in section 4. Later sections describe algorithms for

detecting and solving conflicts based on this approach.

2 Existing merge tools
Several systems are available that support some form of

merging. These systems mainly support merging of single

text files and are described in section 2.1. Merge tools pro-

viding support for more complex components are dealt with
in section 2.2. Unfortunately, most existing merge tools are

not very satisfactory. A list of deficiencies is identified in

section 2.3.

2.1 Text-based merge tools
Merging of ASCII text files is supported by several systems,

e.g. RCS [Tic85], Sun’s f i 1 emerget ool [AGMT86], and

78

DSEE ~C84]. All these systems are line-based, and at-

tempt to detect common lines and lines that have been in-

serted/deleted or moved. They do so by finding the longest

common subsequences between the texts to be merged.

These tools either use two way merging, which attempts

to merge the two final versions, or three way merging that

also uses the common ancestor of the versions to be merged.

Three way merging is far more powerful than two-way merg-

ing because more information is available. If a line is only

available in one of the versions, some two way merge algo-

rithms assume that this line has been added and by default

include it in the final merge result. This however is not al-

ways the desired behaviour. When the line has been deleted

in one of the final versions (but not in the other) the most ap-

propriate default behaviour is to delete the line in the merged

version. Three way merges are able to detect deletions, while

two way mergc?s obviously cannot. Furthermore, if a certain

line of a file has different values in both versions, two way

merges cannot make a decision which one to choose. Three

way merges can detect whether one of the values is equal

to the value of the line in the original tile, and use the other

value by default in the merged version.

In Tandem’s version control system [SK90] individ-

ual text lines are tagged with a unique identification and

recorded in a database. Modifications create new lines with

different identifications. These tags are used to detect in-

sertions/deletions, and this information is then be used to

perform merges. The algorithm currently does not seem to

handle the operation of moving lines to a different position.

2.2 Other merge tools
The combination of theUnix di f f program and Larry Wall’s

pat ch [Wa188] can be used to merge sets of text files. di f f

is used to generate context cliffs that list both the original and

the changed lines plus a small number of surrounding context

lines. pat ch can then be used to apply the cliffs to another

file hierarchy. pat ch has a certain amount of flexibility. The

files to which it is applied need not be identical to the ver-

sions that were used to compute the cliff. Differences, occur

if the receiver has already modified the original file. When

pat ch cannot find the original lines at the location it expects,

it examines the neighborhood of this location. If matching

lines are found, it applies the delta at this modified location.

This approach only works if the lines at this location have

not been modified themselves. Although, pat ch is useful in

many practical circumstances, it is still rather limited. When

deltas cannot be applied they must be handled manually.

Horwitz and Reps [HPR88, HPR89] have developed a

method for merging programs in a very simple language that

is based on the semantics of this language. This approach is

very interesting but unfortunately only works for a limited

language. It is not yet clear if this approach can be extended

to handte “real” programming kmguages.

Sun’s NSE [CFH88] provides merging of environments.

An environment contains a set of tiles plus some specialised

objects. During the merging process NSE compares the con-

tents of the environments and it invokes a file merge tool

for merging individual text files. NSE also contains small

databases, essentially no more than a list of (key,value) pairs.

NSE provides tools to merge these.

Westfechtel [Wes91] has developed a method for merg-

ing trees. This method can be used to merge programs (rep-

resented as parse trees). This method differs from simpler

methods because it can handle certain contextual dependen-

cies, e.g. it tracks the declaration and use of identifiers, Thus

it is able to merge developments where identifiers have been

renamed.

The PACT merge tool [PAC89] provides support for

merging composite objects in PCTE 133CM90]. It is used

to merge composite objects that have a similar structure, de-

scribed by the same merging template. It only merges struc-

tural links, and cannot be used to merge the contents of the

atomic objects that form the composite object.

2.3 Deficiencies
The main deficiencies of these systems can be summed up as

follows:

●

●

●

Line based tools particularly suffer from the following

problems:

They cannot handte multiple changes within a

single line. Thus if a line has been modified in

both lines of development, only one of the ver-

sions can be selected. The other version must be

integrated manually. Since some tools do not sup-

port edit operations while merging, this requires

an explicit separate bookkeeping by the users,

which is a cumbersome and error-prone process.

There are several operations that change the con-

tents of many lines, without having a real seman-

tic meaning. Examples are the pretty-printing of

a program and the reformatting of a text to give

all lines a similar length. In this case merging

tools flag many lines as changed and detect many

conflicts.

A similar problem exists when in a program the

indentation is changed, e.g. when an if statement

is added around an existing sequence of state-

ments. The indentation of all lines is changed, and

therefore all these lines are regarded as changed

during the merge.

The merging applies only to a limited set of types. Most

merge tools are limited to merging texts. Furthermore,

merge tools for merging structured sets of objects are

hardly available. The PACT merge tool handles the

relationships between arbitrary types of objects but

cannot merge the contents of any object type.

These merge-tools do not offer much help when con-

flicts are detected. In most cases when a conflict arises
the user must choose a value tlom one of the lines of

development and if necessary perform manual editing

afterwards.

79

● The merge-tools are state-based in the sense that they

use no information about actual developments, but only

information about the initial and final states. This can

lead to unnecessary conflicts, conflicts that go unno-

ticed, and to incorrect results. An example of the tirst

conflict occurs when in both lines of development the

resulting source is pretty-printed. Even when the “real”

modifications do not conflict, pretty-printing leads to

conflicts. An example of the second type is when one

user changes the name of a procedure while the other

adds a new call to this procedure. After merging there

is one call with the old procedure name. An exam-

ple of the third is a counter for the total time that has

been spent by programmers on a project. In each line

of development programmers will regularly invoke an

operation to increment the local value of the counter

with the time that has been spent in this line of devel-

opment. State based merges will not detect a conflict

when an equal amount of time that has been spent in

each line of development, but will simply use the re-

sulting value of the counter. When the amount of time

differs, state-based merges will offer the user the se-

lection between one of the two final values, but not the

option to add the sum of the increments, which would

be the correct answer.
● Most merge-tools offer hardly any support for merging

modifications that change the structure among objects.

For example, none of the file-based merge systems ap-

pears to be able to automatically merge developments

where files are moved to a different directory.

3 Design goals
The design goals for a merge procedure for the CAMERA

system were the following:

● The technique should give flexible support for differ-

ent object types, thus not be restricted to merging a

specific class of objects. It should also be possible to

merge instances of user defined classes.
● Detect as many conflicts as possible, and attempt to

resolve them automatically. Extensive support is more

important than execution speed. Merging is a difficult

process where every bit of support is helpful. Further-

more, merging does not occur very frequently.

o Completely automatic merging is not possible due to

the only partially known semantics of objects and
changes. Therefore user intervention cannot atways

be avoided. The merge tool must have a good user

interface, in order to present conflicts and to show po-

tentiat solutions. Furthermore, the number of decisions

on how conflicts are to be solved must be minimised.

4 Operation-based merging
All existing merge tools are state-based. The operations that

have been performed in each line of development are ignored:

only the end-results count. The previous sections have shown

the problems with the state-based approach.

We therefore propose a different approach based on the

operations that were performed. In CAMERA these oper-

ations are recorded in the form of transformations. Trans-

formations are composed of sequences of OMS-operations

that are called primitive transformations. Transformations

are treated as functions, that take an initial state of the OMS

as input and return a new OMS state as result. Thus T.(s)

is the state that is the result of a line of development whose

operations are recorded in T= when the starting point was

the states.

An important notion in operation-based merging is com-

mutation of operation, that is defined as follows. Given an

equivalence relation (i.e. a reflexive, symmetric, and tran-

sitive relation) w, we define two operations T. and Tb to

commute locally on an input s if and only if T.(Tb (s)) %

Tb (T. (s)). In a similar way we define that two operations Ta

and Tb commute globally if and only if V x : T.(Tb(z)) s

Tb(Tc(s)).

Basic assumption for operation-based merging: When

two transformations commute locally on their initial state,

the final result is a good candidate for the result of the merge.

Using an equivalence relation instead of equality gives

added flexibility, that allows ignoring differences between

values that are not important from the user’s perspective. In

an implementation of an abstract data-type two vatues that are

not bit-wise equal can represent the same abstract value. In a

linked-listimplementation of the abstract data-type “set” sev-

eral different lists can represent the same abstract set value.

In this case using the equality on the implementation values

is not appropriate. The equivalence relation on the imple-

mentation values that represents the data-type equality on

the corresponding abstract values should probably be used
instead. In some cases, (see section 7 for an example), users

may even want to decide that two different abstract values

can be considered equivalent. In most cases the preferred

equivalence relation will simply represent the equality of the

abstract data-type.

Handling conflicts
In many cases two transformations commute locally. For

example, if T= and Tb operate on disjoint sets of objects,

operation-based merging integrates the transformations with-

out conflicts.

However, in other cases transformations do not commute

locally. In these cases we cannot merge automatically and

some form of user intervention will be necessary. One pos-

sibility is to allow the user to edit the two transformations
until they do commute. However, it is possible to offer more

assistance, by examination of the primitive transformations

constituting the transformation. In general, it can be expected

that only a very small subset of these primitive transforma-

tions actually conflicts. ‘fhese sets of conflicting primitive

transformations are isolated and presented to the user, to-

gether with possible suggested solutions. The details of this

process are described in section 5 and further.

Solving conflicts
When a set of conflicting primitive transformations has been

detected these conflicts must be solved by the user. The merge

tool illustrates the conflict by showing the state of the OMS

before application of the transformations, the two sets of con-

flicting primitive transformations (one set for each of the two

original transformations), and the two sti%es that are the re-

sults when these sets are applied indifferent orders. The user

can select one of the following approaches:

● Resolve conflicts by imposing an ordering on the prim-

itive transformations. For example, if a pretty-printer

is invoked on a source file in one development line

while small changes have been made to the file in the

other line, many conflicts can be avoided by fist ap-

plying the changes and then pretty-printing. Similarly,

if an identifier is changed in one line of development

(using a global substitute command) and a new use of

the old identifier is added in the other line of devel-

opment, the conflict can be solved by performing the

global substitute command last.

● Resolve conflicts by deleting a primitive transforma-

tion. When multiple calls to apretty-printer are a source

of conflicts, normally all but the last one can be deleted

without harm.

● Resolve conflicts by editing the transformation. If the

previous options are not sufficient it is also possible

to modify the transformations by medication of their

primitive transformations or the addition of new ones.

The last two solutions may change the existing conflicts. The

merge tool needs to check for this situation, and possibly

recalculate part of its commutation information.

4.1 Advantages of operation-based
merging

Operation-based merging could be attractive because

The approach is extensible, it can potentially be applied

to arbitrary object types (even user-defined types).

It can be used to merge entire object systems.

It can avoid several of the conflicts mentioned before.

Multiple updates to the same text line will not automat-

ically lead to conflicts. When as a final step in both lines

of development the source is pretty-printed, state-based

merging can detect conflicts that are only caused by the

pretty-printing. However, when pretty-printing is an

idempotent operation (which is very likely), operation-

based merging will not flag this as a conflict.

In some cases it can give more adequate merge-results

than a state-based approach. In the example of a time

●

●

●

●

counter (see previous section) that was incremented

in two different lines of development, operation-based

merging will increase the counter by the sum of the

increments.

It can detect conflicts that are not noted by state-based

approaches. As we have seen above, state-based ap-

proaches will not notice thepotentialconflict that arises

when the name of a procedure was changed in one line

of development and a new call to this procedure was

added in the other line of development. In this case

operation-based merging will detect a potential con-

flict, because the result of tirst substituting the new

name of the procedure for the old one and then in-

troducing a new catl is different from the result that

is obtained when these two operation are executed in

the reverse order. It is likely that the user will solve

this conflict by ordering these operations so that the

introduction is performed first.

It can offer more support for conflict resolution. A sin-

gle global operation, such as a global substitution or

pretty-printing, can introduce conflicts at many differ-

ent points. State-based tools will force the user to take

a decision about each local conflict (e.g. each conflict-

ing line). When such a conflict is presented the user

may not be aware that this conflict was caused by a

global operation. With operation-based merging the

global operation is presented as one unit. Only one

centrat decision is needed (e.g. to postpone the renam-

ing or to omit the pretty-printing). This decision will

be used to solve atl locat conflicts. Furthermore, with

operation-based merging the operation is presented in

the context that is similar to the one in which it was

originally performed. With state-based merging con-

flicts are normally presented in the order in which they

occur within the object, and it can be difficult to deter-

mine in what context these modifications were made.

The merged result is more likely to be consistent from

the user’s point of view than with the state-based ap-

proach. Implementations of abstract data-types have an

internal binary representation that must satisfy certain

consistency requirements. In general, it is impossible

for state-based merge tools to merge the contents of

such an abstract data-type correctly unless the internal

binary format is known to the merge tool. However,

operation-based merging does not need information

about the internal representation because the opera-

tions of the data-type respect the data-type invariants

of the object.

Operation-based merging is more a general approach

than state-based merging. State-based merging can be

seen as a restricted form of operation-based merging,

that attempts to reconstruct transformations after the
fact. This is difficult, since there usually is more than

one function, that can be used to transform an initial

state into the final state. With operation-based merging

81

the operation that is actually used

actwlt function is known.

5 The merge process
This section describes the merge process,

is recorded, so the

Every transformation consists of a sequence of elemen-

tary steps called primitive transformations. E.g. T=X =

Ta,n Ta,n-l . . . Ta,l X. These are the smallest grain of oper-

ations that have been recorded.

Operation-based merging partitions the total set of the

primitive transformations from both lines of development

into sub-sets catled Mucks. The transformations in a block

may conflict with one another, while transformations from

different blocks by definition do not.

The algorithm requires as part of its input two decision

procedures to determine whether two given primitive trans-

formations commute globally and locally. Section 6 describes

some ways commutation can be computed.

The merge process starts with the partitioning of con-

flicting sets of primitive transformations in blocks using

global commutation properties (see section 5.1). The sec-

ond stap (see section 5.2 uses local commutation properties

for identification of conflicts, attempts to solve the conflicts

and presents the unsolved conflicts to the user.

5.1 Portioning of conflicts
The first step uses the globzd commutation decision proce-

dures to partion the primitive transformations (constituting

the transformations that are to be merged) in raw blocks,

These blocks are constructed by imposing an ordering

(actually a pre-ordering), named before, on the primitive

transformations, The predicate before (a, b) is true if primi-

tive transformation a must be performed before b. The before

relation is transitive. If two primitive transformations within

the same transformation conflict, the one with the lowest

index must be performed before the other. Cycles in the

before relation (i.e. before(a, b) A before(b, a)) indicate

merge conflicts, because a and b cannot be ordered and a

decision must be made. Conflicts between primitive trans-
formations a and b, that are part of different transformations

always lead to a cycle.

The before relation is used to determine the raw blocks.

Blocks form a partitioning of the union of the primitive trans-

formations in such a way that each block is the smallest set
such that each cycle is contained within one block. The before

relation on the primitive transformations can be used to define

a partial ordering on the blocks, which by abuse of notation

will also be called before. The before relation between blocks

B1 and Bz is defined by:

before(l?l, B2) z 3 tl E B1, ~ c B2 : before(tl, ~)

Different blocks can be ordered with respect to one another,

but obviously there cannot be any cycles among blccks. Thus,

the before relation on blocks is a true partiat ordering. A sin-

gle merge conflict occurs within one block, due to the way

blocks are constructed.

T.l Taz T.3 Th 1 ThZ Tbs

Tal ● e ●

Tat ● ●

Ta3 ● ●

Tbl ●

Tb2 ●

Thy ●

Figure 1: Example conflict matrix

Figure 2: Corresponding blocks for figure 1

Arrows represent the before relationships. Grey lines

indicate the resulting blocks.

An example is shown in figures 2 and 1. Based on the

conflict matrix (figure 1) three different blocks are found

(figure 2). The conflicts in the block containing Tal, Thl and

Tb2 must be solved before continuing with the other blocks.

The second block contains a single primitive transforma-

tion T.2. Such blocks do not pose any merging problems,

but their transformations can only be applied after those of

its predecessor blocks. In this example the blocks are com-

pletely ordered by the before relation, however, in general

the before relation only determines a partiat ordering on the

set of blocks.

The inputs for step 1 of the algorithm are formed by two

transformations plus a procedure to determine whether two

primitive transformations commute globally. It attempts to

minimise the number of catls to this procedure, because this

could bean expensive operation. Some methods to determine

whether two operations commute globally are described in

section 6.
For the description of the atgorithm we use the following

notation. The set of primitive transformations is denoted by

T. For each primitive transformation t, we will denote the

number of the transformations to which it belongs (either 1

or 2) with t. trn. Similarly, its index within this transforma-

tion will be notated as t.pos. The function confZict(ta, th)

returns true if the primitive transformations i!. and th do not

commute globatly.

Three different algorithms for computing raw blocks are

described and compared. The basic algorithm Ocompares atl

82

primitive transformations (1Z’I (1!l’I – 1)/2 pairs) and then

computes the transitive closure. The transitive closure can

be computed in 0(1 T ~) by using the WarshM algorithm

([CLR91]).

Algorithm O

foralltl, ~E Tx T

before(~~, tz) := conf?ici(~~, $) A

(t~.trn # h.trn v tl.pos < ti.pos)

compute transitive closure of before

A disadvantage of Algorithm O is that it determines for all

pairs of primitive transformations, whether or not they con-

flict. This could bean expensive operation and it seems sensi-

ble to reduce the number of comparisons as much as possible.

This can be done by using the transitivity properties of before.

When it is known that before(a, b) A before(b, c) it can be

deduced that before(a, c). Thus in this case there is no need to

compare a and c in order to know whether before (a, c) holds.

The following two algorithms use this transitivity property

to reduce the number of comparisons.

They further attempt to minimise the number of compar-

isons by selecting the best candidates for these comparisons.

The algorithms differ only in the function new(i, j) that es-

timates the number of entries that can be filled in the before

matrix if primitive transformations i and j do not commute.

Algorithm 2 computes the exact number of entries while algo-

rithm 1 uses an approximation that only gives an upper-bound

for this value.

In the description of the algorithms the following auxil-

iary functions are used. A (i, j) computes the set of entries

of before that can be set to true when i and j do not com-

mute. S(i) (L(i)) computes the set of transformations that

are less (greater) than or equal to i according the ordering

that is determined by the current before matrix. To simplify

the description a special operator is introduced. For boolean

valued expression c and an integer or set-valued expression

v the value of c D v is v when c is true. Otherwise, its vatue

is O when v is integer-valued, or 0 when v is set-valued.

Both algorithms maintain a set uncornputed of the primi-

tive transformations in both transformations that have not yet

been compared. From this set they select the pair (i, j) with

the highest vatue of new. This pair (i, j) is removed from

uncomputed. If the corresponding primitive transformations

could add new entries to the before matrix it is computed

whether they actually conflict. If this is the case the before

matrix is updated.

Skeleton for Algorithm 1 and 2

uncomputed :=

{(u, v) : T x T I u.trn < v.trn V u.pos < v.pos}

foralltl, ~ E T x T

before(tl, ~) := false

while uncomputed # @do

select (i, j)from uncomputed

such that new(i, j)is mazimal

uncomput ed := uncomputed – {(i, j)}

if new(i, j) = O then exit

if confiict(i, j) then

foreach (p, q)in A(i,j)

before(p, q) := true

S(i) = {I!: T I before(t, i)} U {i}

.L(i) = {t: T I before(i, t)} U {i}

before(i, j) D (s(i) x L(j))) U

before(j, i) b (S(j) x L(i))

when i.trn # j .trn

before(i, j) D (S(i) x L(j)))

when i.irn = j.trn A i.pos < j.pos

before(j, i) P (S(j) x L(i)))

when i.trn = j.irn A i.pos > j.pos

Algorithm 1

new(i, j)

=(- before(i, j) D ([S(i)l l~(j)l)) +

(T before(j, i)b (] S(j)l]L(i)l)

when i.trn # j.trn

=(= before(i, j) D (lS(i)l [L(j) l))

when i.trn = j.trn A i.pos < j.pos

= (~ before(j, i) D (lS(j)/ lL(i)l))

when i.trn = j.trn A i.pos > j.pos

The function new for algorithm 1 is not very precise, in that

it only provides an upper-bound on the number of entries

that are added to the before matrix. A variant is algorithm

2 that uses the actual number of entries that are added. The

only essential difference is in the function new which omits

existing entries in before from the count.

Algorithm 2

new(i, j)

= I{(P, q) c A(i,j) I before(p, q) = false}l

The function new(i, j) can be implemented as an array.

When anew tuple (i, j) is added to before, at most those ele-

ments new(u, v) must be updated for which {i, j} n (S(u) U

S(V) UL(U)UL(V)) # O. Furthermorewhen new(u, v) = O

there is also no need to recompute new.

83

The selection of the i, j with the highest wdue of new can

be implemented by storing all values of new in an appropriate

data structure (e.g. a heap).

If the same primitive transformations have multiple oc-

currences in the transformations, it is better to convert

conflict to a memo function.

Performance of the algorithms

Algorithms 1 and 2 take in worst case 0(n2) global commu-

tation computations (usually better). Algorithm O always has

0(n2) global commutation computations and 0(n3) opera-

tions to compute the transitive closure.

In order to compare the algorithms a small simulation

study was performed. In these simulations a random conflict

matrix was used in which two elements conflicted with a

given probability p (i.e. a fraction of p entries of the conflict

matrix was true).

The results are shown in the figures 3,4, and 5.

1400

1200

1000

800

600

400

200

0

P = 0.5

Algorithm O —
Algorithm 1 -+---
Algorithm 2 .-Q---

-*#.-m-e-%--#*-H+ I
—
0 5 10 15 20 25 30 35 40 45 50

Transformation Size

Figure 3: Transformation size versus number of

commutation computations

The curves for Algorithms 1 and 2 overlap.

P = 0.5
1e+08 I 3

al

5 1e+03
1%
* 1e+02

1e+Ol

..d”’
...

T

,,.”

1 10 100
Transformation Size

Figure 4: Transformation size versus number of accesses to

before array

Total Transformation Size = 50
1400

0
.E 1200 ‘(
a

\
Algorithm O —

g 1000 -, Algorithm 1 -+---- -
E Algorithm 2 -=--

G 800 \

c ‘\
0.— 600 - \,
R
3

400 -
\

E
E

‘“%,
8 200 %____ 1+2
* —-m-—--5.—.__=+ .__.+)

o
0 0.2 0.4 0.8 1

Probabili!y6

Figure 5: Conflict probability versus number of

commutation computations

The curves for Algorithms 1 and 2 overlap.

When conflict can be computed cheaply, algorithm O is the

obvious candidate. However, it can be expected that the cost

of these computations is far from negligible. Algorithms 1

and 2 avoid many unnecessary comparisons. Algorithm 2 on

the other hand is very expensive, while the complexity of

algorithm 1 is similar to that of algorithm O (0(rL3)).

In summary, when the computation of conflicts between

primitive transformations is expensive, algorithm 1 is most

suitable. Otherwise, algorithm O is to be preferred.

5.2 Identifying and solving conflicts
The second step takes as input the raw blocks that were found

in the first step, and lccates the conflicts between the primitive

transformations in each block. The fist step has only used the

global commutation behaviour of the primitive transforma-

tions. It is well possible that two transformations that do not

commute globatly nevertheless commute locally for a large

set of inputs.

The second step works on one raw block at a time, and de-

termines the primitive transformations that are truly conflict-

ing. This step atso uses information about local commutation

behaviour of the transformation.
In order to locate conflicts the merge tool examines atl

weaves of the primitive transformations that must be merged.

A weave (sometimes called interleaving) is a permutation of

the union of the primitive transformations in both transfor-

mations in which the original order of the prhnitive transfor-

mations is respected. Thus in a weave ‘l’=,i must occur before

Ta,i+l.

If we set out a grid with the primitive transformations for

T. on one axis and the primitive transformations for Tb on

the other, every weave corresponds to a path in this grid.

84

A point in this grid represents a set of values, the origin rep-

resents the original value X and the set of values at some

other point are obtained by applying all transformations, that

are represented by paths from the origin to this point, to the

original value X. If the set of values at every point contains

precisely one value, then the operations T. and Tb commute.

Conversely if T= and Tb do not commute there is a point that

contains more than one value. A point is catled single-valued

if its set of values contains one element, otherwise the point

is multiple-valued.

The frontier set
Now we can take the set of multiple valued points that have

only single-valued points on all paths from the origin to this

point, we call this set the~rontier set. This frontier set gives

useful information about which primitive transformations in

T. and Tb actually do conflict. For a frontier POhIt z~,j

its value set contains two different values: Ta,i(w– 1,j) and

Tb,j(Z~,j_l). SO T=,i and Tb,j do IIOt COttlnlUkOIl W-1,j-1.
The information about the frontier set can help the user

to decide how this conflict should be solved. A list of the
decisions that a user can make was given in section 4. The

first possible decision is to impose an ordering on the prim-

itive transformations, i.e. to state that Ta,i must always be

performed before (or after) ‘Tb,j. In this case the merge tool

only considers weaves that satisfy this constraint. The other

decisions change the original transformations. When a fron-

tier point is “resolved, anew frontier is defined. This frontier

will is computed and presented to the user, until all conflicts
have been resolved.

In many cases the primitive transformations in a com-

pound transformation can be performed in a different or-

der without affecting the outcome of the transformation, be-

cause the primitive transformations locally commute with

each other. This can be used to move the frontier points away

from the origin. When the frontier points are far removed

from the origin, the user probably needs to make fewer deci-

sions.

6 Computation of commutation be-
haviour

The algorithms in the previous sections assume that there is

some procedure to determine whether two transformations

commute (locally or globally). The merge tool needs infor-
mation about the properties of the primitive transformations.

Normally, this information will be supplied by the user when

anew abstract data-type is defined.

The decision procedures must be conservative, they must

never erroneously declare that there is no conflict. However,

they may err on the safe side by declaring that there is a poten-

tial conflict even when this is not the case. Depending on the

transformations this may lead to spurious conflict warnings

by the merge tool.

In general, a more conservative decision procedure is

faster than a less conservative one. When we have two primi-

tive transformations that only read and write the attributes of

one object, it is safe to say that they commute when they are

applied to different objects. Thus a quick and dirty answer’

of the decision procedure would be to indicate a potential

conflict when they are applied to the same object, and to in-

dicate no conflicts when they are applied to different objects.

It is possible that the two primitive transformations do not

conflict even when applied to the same object, but this will

require some additional computations.

In the implementation of these decision procedures there

is a trade-off between the execution time and the number of

unnecessary conflict w,arnings.

The remainder of this section describes several ap-

proaches for making these decision procedures available to

the merge tool.

6.1 Computation of global commutation
There is a trade-off here between the amount of work that

is done in the fist step of the merge algorithm that uses

global commutation information and the second step that

also uses local commutation. The global commutation infor-

mation does not need to be very precise, when that is too

expensive the next step corrects any overly conservative es-

timates. In general, it seems wise to use a fast but possibly

imprecise decision procedure for global commutation, and

a more precise procedure for local commutation. When the

globtd commutation procedure is too conservative the next

step in the merging is more expensive of course.

There are severat ways to determine global commuta-

tion information. Of course severat of these methods can be

combined. The following approaches could be used:

●

●

●

Using user supplied hook functions. The user can de-

fine one or several predefine procedures that deter-

mine whether two transformations commute. These

are then called by the merging process.

Using information about read/wrire sets. A read set

is the part of the OMS (i.e. a set of object-attributes

and relation tuples) that is examined by the operation.

Similarly the write set is the part of the OMS that is

modified by the operation. Two operations commute

globally when the read set of one is disjoint with the

write set of the other. One problem here is that it is

usually hard to determine the read and write sets in-

dependently from the state of the OMS on which the
operation is applied.

Using a special rule base in which a user can declare

which transformations commute, or a format specifica-

.

85

tion of the methods from which the system can deduce

there commutation behaviour.

6.2 Computation of local commutation
The same procedures as for globat commutation can be used.

There is one additional possibility:

● Execute the transformations and see whether the re-

sulting OMS is the same.

7 Problems
This section describes some of the problems that may occur

when using operation-based merging.

Replaying transformations
“Replaying” transformations can pose problems with respect

to the reproducibility of the results. Well-behaved primitive

transformations are functional with respect to the OMS, i.e.

the resulting OMS state is a (mathematical) function of the
initial state and the arguments of the transformation. Non

well-behaved transformations are not repayable on differ-

ent occurrences they may result in different final states of

the OMS when applied to the same initial OMS state. Not

all operations on the OMS however are well-behaved. There

are two main reasons why a primitive transformation is not

well-behaved: user input and object creation. The result of a

transformation that depends on user input, is not reproducible

because the user input may vary from time to time. Object

creation in CAMERA requires the generation of a unique

object identifier. Thus when the same transformation is re-

played multiple times, the objects may have a different object

identifier each time.

One solution to the problems due to user interaction is

by recording the user input, and supplying it as an additional

input during the replay of transformations. In the current

CAMERA OMS this problem has been avoided by making

it illegal for methods in the OMS to communicate with the

user directly, All communication is performed by tools that

are implemented outside the OMS. These tools then send

messages to the OMS. The execution of these messages will

not involve any user-interaction.

The problem with the creation of object identifiers could

potentially be solved in two different ways. The first method

registers for a transformation which object identifiers were

created when this transformation was originally executed.

When the transformation is replayed, objects with the same

identifiers will be created. With this method complications

arise when the replayed transformations create a different

number of objects than they did originally. The second ap-

proach uses equivalence of the end-results instead of strict

equality (see the definition of commutation in section 4). In

this case two OMSes are compared modulo the vatues of the

object identifiers. Two OMSes are considered equivalent if

and only if there is a bijective mapping between their object

identifiers, that transforms them into each other. The current

merge tool uses the latter approach.

Redundant operations
Transformations can contain a number of primitive transfor-

mations that are redundant. If for two primitive transforma-

tions T.,i ~d Ta,j itholds that Ta,j(Ta,i(z)) = Ta,j(~)

the primitive transformation T.,i can safely be omitted from

the transformation. Examples of redundant transformations

are operations on objects that are deleted later on, and update

operations whose results are overwritten by later updates.

Removing redundant transformations is attractive because ic

● speeds up conflict detection

● removes unnecessary conflicts

In certain applications redundant operations may occur fre-

quently. A user may tirst try out one approach and then decide

to follow a different one. In this case the modifications that

were specific to the tirst approach become redundant. For this

type of applications a pre-processing phase could be added

to operation-based merging to remove redundant operations.

Reusability of operations
Operation-based merging depends on there-usability of op-

erations. The recorded operations must bereplayable on other

OMSes and should adequately represent the user’s intention.

Different operations may have the same result in the origi-

nal OMS, but behave differently under other circumstances.

An edit operation on a text file can be modelled in different

ways. The operation can be modelled as a value replacement

of the entire file with its new value. This approach gives un-

satisfactory results with respect to merging. Edit operations

on the same object in different lines of development always

lead to conflicts. A slightly better approach treats a file as

a sequence of characters and uses operations that insert or

delete bytes at certain positions in this file. Another approach

uses operations that are based on modifications to lines in this

file. This is the level at which most text merge tools operate.

A more sophisticated approach uses a richer set of operations

that also use the structure of the text. A text may have an

intemat structure, e.g. a division in chapters and sections,

or an even more complicated structure as a program source

text. Operations that use this structure have a higher degree

of reusability, e.g. it is much more useful to record that a

user has replaced the second paragraph of section 1.2 than

to record that some bytes at a specific offset in the file have

been modified.

The requirement that operations must be re-usable im-

poses a certain overhead on users, since they may have supply

extra information and/or have to define new operations. For

example, take the operation that moves a text paragraph A to
a different location between two other paragraphs B and C.
The user’s intention may have been to add A immediately af-

ter B or immediately before C, For the concrete version that

the user’s sees during this operation, there is no difference

between these cases. Thus potentially this operation could

be represented by the primitive transformations that inserts

86

A after B or by the one that inserts A before C. However,

these two primitive transformations will behave differently

during merging. When in the other line of development B or

C are moved or when a new paragraph is inserted between

them, the end-result will depend on the choice of the prim-

itive transformation. In order to obtain optimal results with

operation-based merging both choices should be available to

the user. Instead of one operation to move paragraphs there

should be two slightly different ones (insert before and insert

after). The selection of the correct operation puts an extra

load on the user.

8 Conclusions
Existing merge tools are either very crude, or very sophisti-

cated but of limited applicability. Operation-based merging

is an attractive attemative. It uses semantic knowledge about

the objects and their operations. Addhionatly, it is extensible,

new object types and operations can be added and these can

then be merged as well. Because operation-based merging

uses the operations of a data-type it automatically maintains

its data-type invariant.

We believe that the concept of operation-based merging

provides an elegant framework for attacking the problem of

merging different lines of development. The main slogans

of this paradigm are “merging = composition of operations

from each development line” and “merge-conflict = com-

mutation conflict”. Operation-based merging is certainly no

panacea for all merge problems. For a fixed and well known

domain it is certainly possible to construct better merge tools.

But even in this case, we believe that it can serve as a useful

starting point.

In our opinion the main niche for operation-based merge

tools are extendible systems to which new data-types can be

added. Most object management systems fall into this cate-

gory.

A prototjpe of the merge tool has been implemented as

part of the CAMERA system. It is currently used to evatuate

the ideas that were presented in this paper.

Acknowledgements
We would like to thank Gert Florijn and Doaitse Swierstra

for their comments.

References
[AGMT86]

[CFH88]

Evan Adams, Wayne Gramlich, Steven S.

Muchnick, and Soren Tirting. SunPro: Engi-

neering a practical program development envi-

ronment. In Reidar Conradi, Tor M. Didriksen,

and Dag H. Wanvik, editors, Advanced Pro-

gramming Environments, pages 86–96. Springer

Verlag, June 1986. Proceedings of an Intern-

ational Workshop. Trondheim, Norway.

William Courington, Jonathan Feiber, and
Mashiro Honda. NSE highlights, NSE tackles

[CLR91]

@3CM90]

~D+92]

[HPR88]

[HPR89]

LC84]

&ip92]

[PAC89]

[SK90]

[Tic85]

[wa188]

[Wes91]

large-scale programming issues. SunTechnol-

ogy, pages 49–53, Winter 1988.

Thomas H. Cormen, Charles E. Leiserson, and

Ronald L R@est. Introduction to Algorithms.

MIT Press, 1991.

ECMA. Portable common tool environment

(pcte) abstract specification, December 1990.

Standard ECMA-149.

Gert Florijn, Ernst Lippe, Atze Dijkstra, Norbert

van Oosterom, and Doaitse Swierstra. Camera

Cooperation in open distributed environments.

In EurOpen and USENIX Spring 1992 Work-

shop; Jersey, Channel Islands, April 1992.

Susan Horwitz, Jan Prins, and Thomas Reps. In-

tegrating non-interfering versions of programs.

In Proceedings of the SIGPLAN 88 Symposium

on the Principles of Programming Languages,

1988.

Susan Horwitz, Jan Prins, and Thomas Reps. In-

tegrating non-interfering versions of programs.

ACM Transactions on Programming Languages

and Systems, 11(3):345–387, July 1989.

D.B. Leblang and Robert P. Chase, Jr.

Computer-aided software engineering in a dis-

tributed workstation environment. In P. Hender-

son, editor, SigplanlSigsoft Software Engineer-

ing Symposium on Practical Software Develop-

mentEnvironments, pages 104-112. ACM, May

1984. In Sigplan Notices.

Ernst Lippe. CAMERA: Supporting Distributed

Cooperative Work. PhD thesis, University of

Utrecht, 1992.

PACT. Configuration Management Guide, De-

cember 1989.

Christopher R. Sheedy and Stephanie L. Ki-

noshita. Version management tool. Tandem cor-

poration; US patent nr 4,912,637, March 1990.

Walter F. Tichy. RCS — a system for ver-

sion control. Software Practice and Experience,
15(7):637+54, July 1985.

Larry Wall. Patch – a program to apply cliffs to

original files, 1988.

Bernhard Westfechtel. !Nructure-orientedmerg-

ing of revisions of software documents. In Pe-

ter H. Feiler, editor, Proceedings of the 3rd In-

ternational Workshop on Software Configura-

tion Management, pages 68–79, 1991.

87

