
Compiling logic programs to Cusing GNU C as a portable assemblerFergus Henderson, Thomas Conway, and Zoltan Somogyiffjh,conway,zsg@cs.mu.OZ.AUFax: +61 3 348 1184, Phone: +61 3 282 2401Department of Computer Science, University of MelbourneParkville, 3052 Victoria, AustraliaAbstractThis paper discusses the merits of using C, and in particular GNU C, as an intermediate targetlanguage for the compilation of logic programs, and describes the approach we have taken in theimplementation of Mercury. We start with a simple approach using ANSI C, and investigate avariety of improvements on this basic approach.Keywords: compilation techniques, programming language implementation, logic programminglanguages, Mercury, C, GNU C.1 IntroductionThere are many di�erent ways of implementing a logic programming language, each with its ownadvantages and disadvantages. Each method makes its own trade-o�s in terms of simplicity, portability,interactivity, compilation time, code size, speed at runtime, ease of debugging, interoperation withother languages, and so on. The choice of a particular method must be governed by the relative weightsplaced on these di�erent trade-o�s. This paper discusses the approach we took in the implementation ofMercury [11, 12], a new purely declarative logic programming language. We wanted an implementationthat would be a useful and practical tool for building large applications. For our purposes in this paper,the two most important criteria were portability and e�ciency of the generated code, and we chose toimplement Mercury using C as an intermediate target language.Although this paper is primarily about using C as an intermediate language, we use the Mercuryimplementation as an example, so section 2 gives some background information on Mercury. Section 3explains why we chose to compile to C. Section 4 describes our basic compilation scheme using ANSI C,while section 5 discusses how we can take advantage of some GNU C extensions to improve e�ciency.Section 6 discusses memory allocation. Section 7 gives a brief performance comparison.For more information on the Mercury execution model, see [11, 12]; for more information on the Mercurycode generator, see [4].2 MercuryMercury is a new, purely declarative logic programming language. Like Prolog and other existing logicprogramming languages, it is a very high-level language that allows programmers to concentrate onthe problem rather than the low-level details such as memory management. Unlike Prolog, which isoriented towards exploratory programming, Mercury is designed for the construction of large, reliable,e�cient software systems by teams of programmers.The main features of Mercury are:� Mercury is purely declarative: predicates in Mercury do not have non-logical side e�ects.� Mercury is a strongly typed language. Mercury's type system is based on many-sorted logic withparametric polymorphism, very similar to the type systems of modern functional languages suchas ML and Haskell. Programmers must declare the types they need using declarations such as1

:- type list(T) ---> [] ; [T | list(T)].:- type maybe(T) ---> yes(T) ; no.They must also declare the type signatures of the predicates they de�ne, for example:- pred append(list(T), list(T), list(T)).The compiler infers the types of all variables in the program. Type errors are reported at compiletime.� Mercury is a strongly moded language. The programmer must declare the instantiation state ofthe arguments of predicates at the time of the call to the predicate and at the time of the successof the predicate. Currently only a subset of the intended mode system is implemented. Thissubset e�ectively requires arguments to be either fully input (ground at the time of call and atthe time of success) or fully output (free at the time of call and ground at the time of success).A predicate may be usable in more than one mode. For example, append is usually used in atleast these two modes::- mode append(in, in, out).:- mode append(out, out, in).If a predicate has only one mode, the mode information can be given in the predicate declaration.:- pred factorial(int::in, int::out).The compiler will infer the mode of each call, uni�cation and other builtin in the program. It willreorder the bodies of clauses as necessary to �nd a left to right execution order; if it cannot doso, it rejects the program. Like type-checking, this means that a large class of errors are detectedat compile time.� Mercury has a strong determinism system. For each mode of each predicate, the programmershould declare whether the predicate will succeed exactly once (det), at most once (semidet), atleast once (multi) or an arbitrary number of times (nondet). These declarations are attached tomode declarations like this::- mode append(in, in, out) is det.:- mode append(out, out, in) is multi.:- pred factorial(int::in, int::out) is det.The compiler will try to prove the programmer's determinism declaration using a simple, pre-dictable set of rules that seems su�cient in practice (the problem in general is undecidable). If itcannot do so, it rejects the program.As with types and modes, determinism checking catches many program errors at compile time.� Mercury has a simple module system.� Mercury supports higher-order programming, with closures, currying, and lambda expressions.For more information on Mercury, see the home page of the Mercury project at<http://www.cs.mu.oz.au/~zs/mercury.html>.
2

3 Why compile to C?Since Mercury is in many respects similar to Prolog, one possible way | perhaps the simplest way| of implementing Mercury would be to write a translator from Mercury to Prolog. Indeed, we didstart o� by writing a very simple translator which translated a subset of Mercury to Prolog by juststripping away the additional declarations. However, although the semantics of Mercury are similar tothose of pure Prolog, there are quite a few di�erences. For example, Prolog's if-then-else construct isnon-logical, because it prunes away all but the �rst solution to the condition of the if-then-else, whereasMercury's if-then-else does not prune away these solutions unless it is safe to do so.It would be possible to write a more sophisticated translator which did the proper type, mode, anddeterminism checking required by Mercury and then translated to Prolog in a way that took the se-mantic di�erences between Mercury and Prolog into account. This sort of approach was taken in theimplementation of G�odel [7], which despite signi�cant syntactic di�erences is semantically a lot closerto Mercury than Prolog is. However, this approach would not allow us to achieve the performance wewanted. Right from the very start, high performance was a key goal for the Mercury implementation.Because Mercury has strong static type, mode, and determinism systems, a good Mercury compilerwould be able to produce very e�cient code by taking advantage of the type, mode, and determinisminformation that was available at compile time. An implementation that compiled to Prolog could nottake advantage of this information.Performance considerations also ruled out the use of an interpreter, or an implementation that compiledto byte-code and then interpreted the byte-code.Compiling directly to assembler or machine code could potentially produce maximally e�cient code,but would require an extremely large amount of work, and would make porting very di�cult. A lotof this work would be reimplementing standard code generation and optimization techniques includinginstruction selection, instruction scheduling, and so on. The manpower we had available was notsu�cient to do a good job of this for even a single architecture in the time available.The natural choice which remained was compiling to C. Weiner and Ramakrishnan described an op-timizing Prolog compiler which generated C code as early as 1988 [14]; like the Mercury compiler, itwas designed to take advantage of information about types, modes, and determinism. However, unlikeMercury it appears that these annotations were not checked for correctness by the compiler, but wereonly for optimization. (An even earlier paper by Nilsson, from 1983, describes compilation into Pascal[10].)With the widespread availability of good C compilers, and because C o�ers a variety of features thatmake it useful as a low-level target language, compilation to C has become an increasingly popular choicefor language implementors. Programming language implementations that use C as an intermediatelanguage include wamcc [3], jc (an implementation of Janus) [5], KL1 [2], Turbo Erlang [6], Gofer[8], ghc (the Glasgow Haskell compiler) [9], cfront (the original C++ implementation), several Ei�elimplementations, and a variety of others. C is high-level enough to make it easy to generate code, butlow-level enough to express low-level optimizations, and for C compilers to generate very e�cient code.4 Compilation to ANSI CC does have some serious drawbacks as a target when compiling a logic programming language. Themajor problem is that C doesn't have any support for backtracking. Function calls in C obey a simplemodel in which local variables can be allocated on the stack on function entry, and deallocated onfunction exit. Backtracking in logic programming requires a more complicated model. When a non-deterministic predicate succeeds, control must return to the caller, but the storage for local variablesmust not be deallocated, since the predicate may be re-entered on backtracking.This means that implementations of logic programming languages that work by compiling to C mustdo their own stack management, at least for non-deterministic predicates. Since C compilers typicallydon't do a very good job of last-call optimization, which is often very important for logic programs, it is3

also desirable for the implementation to do its own stack management even for deterministic predicates.4.1 The Mercury abstract machineThe Mercury compiler compiles code �rst to a simpli�ed parse tree, known as the HLDS (high leveldata structure), then to a low-level imperative intermediate form, known as the LLDS (low level datastructure), and then transforms the LLDS into C code. The LLDS de�nes instructions for a simpleabstract machine which we call the MAM (Mercury abstract machine).The Mercury abstract machine has three main memory areas: the det stack, the nondet stack, andthe heap. It has �ve special-purpose registers: sp (the det stack pointer), maxfr (which points to thetopmost frame on the nondet stack), curfr (which points to the frame on the nondet stack used by thecurrent procedure), hp (the heap pointer), and succip (the \success instruction pointer", which holdsthe return address). It also has a set of general-purpose registers r1, r2, r3, . . . , which are used forargument passing and as temporaries.The instruction set consists of assignments, labels, gotos, and conditional gotos, plus some other in-structions that could in principle be synthesized from these. The source and destination of assignmentscan be complicated expressions involving constants, registers, arithmetic and comparison operations,pointer dereferencing, and the addresses of labels.The Mercury abstract machine is discussed in more detail in our previous work [11, 12], which describeshow the HLDS is transformed to the LLDS, and why the MAM has those particular memory areas andregisters. This paper is concerned with how the LLDS code can be transformed to e�cient C code.4.2 The basic modelThe Mercury implementation provides several di�erent methods of implementing the Mercury abstractmachine. All these methods map the various MAM registers onto a single set of general-purpose registersmr0, mr1, In the basic model, these \variables" are actually references to the elements of a singleglobal array of \registers". (We use an array rather than independent global variables because thearray can be pointed to by a single real register, which allows the C compiler to generate better code.)Mercury abstract machine expressions are mapped to C expressions in a very straightforward way.Implementing MAM labels and gotos is not so easy, however. They cannot be implemented as C labelsand gotos, since in C it is not possible to take the address of a label. Instead, each labelled basic blockin the Mercury abstract machine code is translated into a single C function. These C functions take noparameters, but return a continuation address. MAM gotos are translated into C return statements. Adriver function in the runtime system, similar to the following simpli�ed example, does the necessarydispatching to transfer control from one C function to the next:typedef void * Func(void);void driver(Func *entry_point) {register Func *fp = entry_point;while (fp != NULL) {fp = (Func *) (*fp)();}}In comparison with what could be achieved by compiling directly to machine code, the basic modelis quite ine�cient. Since the Mercury abstract machine registers are represented as global variables,accessing them is a lot more expensive than accessing real machine registers would be. The cost ofMAM gotos is one C function call and return plus one iteration of the driver loop | in other words, atest and three or four branches, plus some stack manipulation and so forth in the C function prologueand epilogue. 4

The loop termination test fp != NULL can be eliminated by using exit() or longjmp() to exit from theloop. A little care is required to make the driver function reentrant, so as to allow reentrant interfacing toC. In the Mercury runtime, we use longjmp(*jmp buf ptr) to exit the driver loop, where jmp buf ptris a global variable which points to a jmp buf which is a local variable in the driver function. To ensurereentrancy, the driver function saves the value of jmp buf ptr on entry and restores the old value onexit. This means we can allow C code called from Mercury code to call other Mercury code in turn.jmp_buf *jmp_buf_ptr;typedef void * Func(void);void driver(Func *entry_point) {register Func *fp = entry_point;jmp_buf* save_jmp_buf_ptr = jmp_buf;jmp_buf *save_jmp_buf_ptr = jmp_buf_ptr;jmp_buf local_jmp_buf;jmp_buf_ptr = &local_jmp_buf;if (setjmp(local_jmp_buf) == 0) {while (1) {fp = (Func *) (*fp)();}}/* we arrive here only after a `longjmp(*jmp_buf_ptr)' */jmp_buf_ptr = save_jump_buf_ptr;}The cost of the dispatch loop can be reduced a little further by unrolling:while (1) {fp = (Func *) (*fp)();fp = (Func *) (*fp)();fp = (Func *) (*fp)();fp = (Func *) (*fp)();fp = (Func *) (*fp)();fp = (Func *) (*fp)();fp = (Func *) (*fp)();fp = (Func *) (*fp)();}This reduces the overhead of the loop from one branch per iteration to one branch per eight iterations,and thus cuts the overall cost to a little more than two or three jumps per MAM goto, plus the functionprologue and epilogue code.One signi�cant drawback of the basic model model is that it is very hard for the C compiler to optimizethe code well, since the use of the driver loop makes it e�ectively impossible for the C compiler toanalyze the control
ow, and the use of global variables makes it very di�cult for the C compiler toanalyze the data
ow. Furthermore, the large number of function prologues and epilogues also has asigni�cant detrimental impact on code size.Another improvement is possible if a MAM label is only referred to from within its own block and itsaddress is not taken. One can then translate this MAM label into an ordinary C label, and an MAMgoto can be implemented as a C goto. This technique can also be applied to several consecutive labels ifthey have the property that all gotos to those labels are from within the blocks started by those labels.However, it is necessary to take the address of the label following each procedure call (other than tailcalls) so that when the called procedure has completed it can jump to that return address. Hence thepotential improvement from this optimization is limited.5

Version 0.5 of the Mercury compiler performs this optimization for the single-label case, but the imple-mentation is di�erent. The label is translated into while (1) f, and gotos to the label are translatedinto continue. To prevent undesirable looping, break; g is inserted at the end of the block before thenext label.What we have called the basic model is basically the same as the techniques used in Gofer [8].5 Compilation to GNU COne way of improving e�ciency is to take advantage of the features of GNU C. The GNU C compiler[13], gcc, is free software. It generates reasonably e�cient code, it is very widely available, and it hasbeen ported to many platforms. GNU C provides a variety of extensions over standard ANSI C, someof which are very useful if you are using it as a target language, since they allow you to generate moree�cient code.The extensions o�ered by gcc include� the ability to make direct use of the machine registers using global register variable declarations;� the ability to take the address of labels, and to later jump to those addresses; and� the ability to insert inline assembler code, and to specify the assembler name for a function.In the sections below, we explain how each of these extensions can be used to improve e�ciency.These extensions are a standard part of gcc and are available on all gcc ports. Nevertheless, despitegcc's widespread availability, relying on these extensions would reduce the portability of the code wegenerate. Rather than do this, we decided to use conditional compilation (i.e. #ifdef) so that thesefeatures are only exploited if particular macros (USE GCC GLOBAL REGISTERS, USE GCC NONLOCAL GOTOS,and USE ASM LABELS) are de�ned. As far as we know, our compiler is the �rst to emit C code that, withappropriate de�nitions of macros, can be compiled to either to exploit or not to exploit each particularGNU C extension.For example, local labels are declared and de�ned with macros Declare label(label) andDefine label(label). To take the address of a label, we use LABEL(label), and to jump to suchan address, we used GOTO(address). In the basic model, these macros are de�ned as follows.#define LABEL(label) (label)#define GOTO(address) return (address)#define Declare_label(label) static Code *label(void)#define Define_label(label) \GOTO(label); \} \static Code* label(void) {The Define label macro ends the current function and starts a new one. It includes a GOTO macro toensure that if control
ow drops through to the label, it will continue in the new function.We use some similar macros to de�ne labels that will be used as local or exported procedure entrypoints; in the basic model, the only di�erence is that for exported predicates, these use extern ratherthan static. The code to begin and end a section of generated code is also macroized.5.1 Global register variablesGNU C allows the programmer to declare that certain global variables occupy speci�c machine registers.For example, the declaration 6

register int x __asm__("ebx");speci�es that the variable x is really just a name for the machine register named \ebx". Since theregisters which can be used vary between di�erent architecture, code that uses global register variablesmust be conditional on CPU type, but this is easy to accomplish.If USE GCC GLOBAL REGISTERS is de�ned, and GNU C global registers variables are available on theparticular platform in question, then we arrange for the �rst few virtual registers (mr0, mr1, . . .) to bedeclared as global register variables. For example, here's the code we use for the i386 architecture.#define NUM_REAL_REGS 3register Word mr0 __asm__("esi");register Word mr1 __asm__("ebx");register Word mr2 __asm__("edi");The number of global register variables we can use depends on the hardware architecture and thecon�guration of gcc. To simplify calls to C library functions, at the moment we exploit only registersthat gcc designates to be callee-save; this means that we do not have to save and restore the registersbefore each call to a C function. We use 3 registers on x86s, 7 ($9{$14) on Alphas, 8 (s0{s7) on MIPSprocessors, and 10 (i0{i5 and l1{l4) on SPARCs.The use of global register variables on SPARCs is complicated by the SPARC's sliding register windows.The SPARCs registers are divided into 4 groups of 8: global registers, input registers, local registers,and output registers. Only the global registers retain the same value in the caller and callee of a Cfunction; the other groups are remapped, so that on function entry, the output registers become the newinput registers, and on function exit, the input registers and local registers are restored. However, of theSPARC's 8 global registers, one is hardwired to zero, g1-g4 are caller-save, and g5-g7 are "reserved for theoperating system" and get clobbered by the assembler routines which do integer multiplication, division,and modulus. Unlike wamcc [3], which uses g1, g5, g6, and g7, and carefully avoids the use of integermultiplication, division, and modulus (it does those operations using
oating-point), we use the local andinput registers. We don't have to worry about calls to C functions such as printf(), since the allocation ofa new window of registers for the called function will protect the registers used by our virtual machine.We do have to make sure that for the few MAM operations which are are implemented as function calls,not macros, and which need access to the virtual machine registers, the function call is surrounded bycode that copies the registers to global variables and then back to registers where necessary. We usea pair of macros save transient registers() and restore transient registers() to do this. Formachines without register windows, these macros are de�ned to do nothing.The most frequently-used MAM registers are mapped to lowest numbered virtual registers. We obtainedaccurate register-use statistics by instrumenting the code generated for real Mercury programs withinstructions to count the number of uses of each register. This was done with more use of conditionalcompilation; the Mercury implementation contains code similar to the following:#ifdef __GNUC__#define LVALUE_SEQ(expr, lval) ((expr),(lval))#else#define LVALUE_SEQ(expr, lval) (*((expr),&(lval)))#endif#ifdef MEASURE_REGISTER_USAGE#define count_usage(num,reg) LVALUE_SEQ(num_uses[num]++, reg)#else#define count_usage(num,reg) (reg)#endif#define sp count_usage(0, mr0)#define succip count_usage(1, mr1) 7

No. Reg Usage Cumulative usage1 sp 32.63% 32.63%2 succip 12.09% 44.71%3 r1 11.87% 56.58%4 r2 11.20% 67.78%5 r3 10.49% 78.27%6 r4 8.67% 86.94%7 r6 4.49% 91.43%8 r5 4.03% 95.46%9 r7 1.97% 97.43%10 r8 0.94% 98.36%11 r9 0.47% 98.84%12 r10 0.27% 99.11%13 r11 0.19% 99.30%14 hp 0.19% 99.49%15 curfr 0.17% 99.66%16 r12 0.16% 99.82%17 r13 0.07% 99.89%18 maxfr 0.06% 99.95%19 r14 0.02% 99.97%20 r15 0.02% 99.98%21 r16 0.00% 99.99%22 r18 0.00% 99.99%23 r17 0.00% 100.00%24 r19 0.00% 100.00%25 r20 0.00% 100.00%26 r21 0.00% 100.00%Table 1: Register usage counts for the Mercury compiler#define r1 count_usage(2, mr2)#define r2 count_usage(3, mr3)...The LVALUE SEQ macro is needed so that registers can be used as lvalues (e.g. on the left hand side ofan assignment). LVALUE SEQ(expr,lval) has the e�ect of executing expr (for its side e�ects), and thenreturning lval as an lvalue. In ANSI C, a comma expression is not an lvalue, so the *((expr),&(lval))version must be used. But it is not possible to take the address of a register, so this won't work withGNU C if lval is a global register variable. Fortunately in GNU C comma expressions are lvalues, sothe simple (expr),(lval) version can be used.Table 1 shows the register-use statistics for a sample execution of the Mercury compiler itself. On theSPARC, with 10 real registers available, 98% of accesses to virtual registers are accesses to real registers.This is similar to the �gures reported for jc [5], where 10 real registers accounted for 95% of the registerreferences.On the 386, with only 3 real registers available, the �gure is only 57%. For the 386, we could probablydo a little better if we used callee-safe registers, or if we were compiling directly to assembler or machinecode, but the 386 only has 8 \general-purpose" registers, and some of these are needed for other purposessuch as temporary expression evaluation anyway, so we probably couldn't do that much better.5.2 Taking the addresses of labelsUsing GNU C's global register variables provides a quite reasonable solution to the e�ciency problemscaused by using C global variables for the abstract machine registers. However, we also need to address8

the e�ciency costs associated with implementing each basic block as a separate function with a driverloop to transfer control between di�erent basic blocks.As noted in Section 4.2, by carefully optimizing the driver loop, the overhead of a MAM goto can bereduced to just over that of one C function return and call. Nevertheless, this is still a lot higher than thecost of a single jump instruction. Furthermore, as noted earlier the C function prologues and epiloguesconsume quite a bit of code space, and the consequent reduced locality leads to more instruction cachemisses.Fortunately, GNU C has another extension which can be used to address this problem. In GNU C, youcan take the address of a label using a pre�x && operator, and then later jump to it using a \computedgoto" statement such as goto *return address. This means that MAM gotos and labels can beimplemented as GNU C gotos and labels, avoiding the problems caused by the driver loop technique.So when USE GCC NONLOCAL GOTOS is de�ned, the macros mentioned at the start of Section 5 are de�nedas follows.#define LABEL(label) (&&label)#define GOTO(address) goto *(address);#define Declare_label(label) /* no declaration required */#define Define_label(label) label:One problem with generating code using these macros is that GNU C makes overly conservative assump-tions about labels whose addresses is taken, and as a result generates worse code for goto *(&&label)than for goto label. To avoid this, the Mercury compiler is careful to generates calls to a specializedmacro GOTO LABEL(label) rather than GOTO(LABEL(label)). In the basic model GOTO LABEL(label)is just the same as GOTO(LABEL(label)), but when using non-local gotos, it is de�ned as goto label,which keeps gcc's optimizer happy.Unfortunately there are some technical di�culties with the general technique of using non-local gotos.According to the GNU C manual, \totally unpredictable things will happen" if computed gotos jumpfrom one function to code in a di�erent function.The obvious way to avoid this would be to put all the code in a single function, and that is the approachtaken by jc [5]. But that approach prevents separate compilation, and in any case it is impracticalfor any but the smallest of programs, since many of gcc's optimizations take time and space that isquadratic (or worse) in the size of the function being optimized. (Disabling optimization would nothelp, since the loss of optimization would lead to less e�cient code than simply using the driver looptechnique.) Since we wanted Mercury to support programs of hundreds of thousands of lines of code,we did not consider that option to be feasible.However, considerable inspection of the gcc source code shows that despite what the GNU C manualsays, in most circumstances it is possible to use inter-function jumps quite safely provided you takesuitable precautions. This technique is not 100% portable, but we have used it quite successfully inthe Mercury implementation on a variety of systems, and the gains in e�ciency make it well worth thee�ort, especially since our use of conditional compilation means that we always have the driver looptechnique to fall back on for those few systems for which this technique doesn't work.The basic problem with inter-function jumps is that on entry to the middle of a function via an inter-function jump, the stack frame and the registers may not have been correctly set up in the way thatthe C compiler expects. The main precautions necessary to avoid trouble are (a) making sure that noneof the functions involved has any local variables and (b) making sure that the code has access to a bigenough stack frame to hold any spilled temporary values, by allocating a large stack frame in the driverfunction.This technique does run into trouble with position-independent code on CPUs which do not supportPC-relative addressing. On such CPUs the usual way C compilers generate position-independent codeis to reserve one register, often called the gp (global pointer) register, to hold a context pointer. Allaccesses to global variables are done via this register. Before calling a function, the register is set to theaddress of the function; the function prologue code can then adjust the value of the gp register based9

on the o�set of the function from its global data (this o�set is known at static link time) so that thegp register points to the start of the global data. The gp register is also saved onto the stack and thenrestored after each function call. Since inter-function jumps don't set the gp register to the correctvalue, it is not possible to combine the use of position-independent code and inter-function jumps onsuch machines.On DEC Alphas running OSF/1, position-independent code is mandatory { all code must be PIC,regardless of whether it is in a shared library or whether it uses shared libraries | and so inter-functionjumps cannot be used. On SGI machines running IRIX 5, position-independent code is not mandatory,but is required for code that uses shared libraries, and for code that is to be placed inside a shared library.On IRIX 5 machines Mercury allows both options; shared libraries are used by default, but inter-functionjumps can be used for programs such as the Mercury compiler itself for which the performance gainis more important than the use of shared libraries. On SPARCs running Solaris, position independentcode is not required, although shared libraries that don't use PIC must be linked at runtime, and thisprevents runtime sharing of the code pages of such libraries. Nevertheless, for Mercury the performancebene�t of inter-function jumps more than makes up for this, and the slightly slower startup can alwaysbe avoided by linking statically if necessary. On DECstations running ULTRIX and on x86 PCs runningBSDI BSD/386 1.1, the OS does not support shared libraries and position-independent code is not used,so the problem does not arise. On x86 PCs running Linux, the situation would be similar to that withIRIX 5, except that the conservative garbage collector that is used by the Mercury compiler does notyet support shared libraries on Linux, and so Mercury just uses inter-function jumps.In summary, on four of the six platforms that we have ported Mercury to, the technique of using inter-function jumps does not cause any trouble; on one it interferes with the use of shared libraries; and onone it is not possible.It might be possible to use inline assembler or some other trick to ensure that the gp register is correctlyset up before doing inter-function jumps, but doing this does not appear to be easy, if it is possible atall.When exploiting GNU C's nonlocal gotos, one must decide how much code should be inside each Cfunction. The Mercury compiler has an option whereby the programmer can request that everything ina Mercury module should be put inside one C function. This is good for speed, since jumps within a Cfunction may be faster than jumps between C function, and is good for code size, since it minimizes thenumber of function prologues and epilogues. However, as noted by other researchers, using very largefunctions can cause gcc to slow down signi�cantly and to require much more memory. So by default, theMercury compiler emits several C functions for each Mercury module, with each C function containingat most a set number of Mercury procedures. (This number is also con�gurable using a command-lineoption.)5.3 Assembler labelsUsing GNU C nonlocal gotos to jump between di�erent C functions requires code in each function toknow the addresses of labels in other functions. This can be done in one of two ways. First, one canarrange for each C function to start with code that takes the addresses of its own labels, puts them intoglobal variables, and then returns. Cross-function jumps can get the addresses they need from thesevariables after an initialization routine has called all these functions at startup. The major disadvantageof this approach is that it requires paging in almost every page of the executable at program startup,to execute these initializations; this can lead to very signi�cant startup delays for large applications.To avoid this problem, we generate assembler labels directly into the code using inline asm code. Theinline assembler consists only of .globl directives and labels, which seem to be quite portable | sofar, they have worked on all the platforms we have ported to, without requiring any platform-speci�c#ifdefs. (The only #ifdef in this part of the code is the #ifdef USE ASM LABELS, which we use sothat we can turn disable the use of assembler labels if necessary.)We also use another GNU C extension to associate a C function name with the assembler name,10

extern void func(void) __asm__("asm_name");so that we can jump to the assembler label using just goto *func, without having to depend on thevagaries of how C function names are mapped to assembler label names (i.e. on whether or not Cfunction names get underscores prepended to them) for the particular platform.So in summary, if USE ASM LABELS is de�ned, the macros for local labels remain unchanged, but thecorresponding macros for exported procedure entry points are de�ned as follows.#define stringify(string) #string#define Declare_entry(label) \extern void label(void) __asm__("entry_" stringify(label))#define Define_entry(label) \} \label: __asm__(".globl entry_" stringify(label) "\n" \"entry_" stringify(label) ":"); \{#define ENTRY(label) (&label)These macros provide the same role for external entry points as the Declare label, Define label,and LABEL macros do for local labels.If the only reference to a piece of code is via an assembler label, the compiler may not realize thatthe code is reachable, and may optimize it away. To avoid this, we make sure all reachable labels arereferenced. Originally, we did this by arranging for the code at the start of each function to assign theaddresses of such labels to a volatile global variable. But now we instead use a dummy asm statementthat makes use of GNU C's extended inline asm.__asm__(""::"g"(&&label));The empty string ("") means the dummy asm statement has no assembler code, but the ::"g"(&&label)part means that it supposedly takes &&label as an input. We use this subterfuge to tell gcc that the labelis used, thus preventing an over-zealous gcc from optimizing away label and the code that followed.This technique is better than assigning to a global variable, because gcc doesn't generate any code forthe dummy asm statement.6 Memory allocationThe traditional way to allocate memory for the storage of terms is for the runtime system to de�ne alarge array and an associated variable, the heap pointer, which initially points to the start of the array.Allocating memory consists of incrementing the heap pointer and checking for over
ow; the pointer tothe newly allocated block is then usually tagged.On modern versions of Unix, the overhead of checking for heap over
ow can be eliminated through theuse of the mprotect system call, which allows the language implementation to ask the operating systemto make the page at the end of the array unaccessible. When the program dereferences a pointer intothis so-called \red zone", the kernel will send a signal to the process to notify it of the violation; theruntime system can then either terminate the program or initiate garbage collection.The easiest way to implement a garbage collector is to reuse someone else's. Hans Boehm and his grouphave made available their conservative garbage collector for C [1]. Since this package does not knowwhich words contain pointers and which contain other kinds of values, it cannot adjust pointers andtherefore performs no compaction. Like other conservative collectors, this system considers any word in11

system variant meanSWI 1.00NU no declarations 1.72declarations 1.67wamcc 3.14Quintus 3.74SICStus compactcode, no declarations 2.02compactcode, declarations 1.88fastcode, no declarations 6.83fastcode, declarations 3.15Aquarius no declarations, no global analysis 9.87declarations, no global analysis 12.26no declarations, global analysis 18.42declarations, global analysis 19.00Mercury none grade, Boehm gc 6.36asm fast grade, Boehm gc 9.24none grade, no gc 13.39asm fast grade, no gc 36.52Table 2: Averages of benchmark speed ratiosthe address space containing the address of a cell to be a reference to that cell, even if it represents aninteger or
oating point value that happens to have the same bit pattern. The package can be told thatif there is a cell at (say) the address 0x400, it should consider occurrences of the bit patterns 0x401,0x402 and 0x403 to be references to the cell as well. This is very useful for implementations that storetags in the low order bits of pointers.The Boehm garbage collector uses its own implementation of malloc. Although this gc malloc hasbeen carefully tuned, it is still a general-purpose memory allocator, and it is signi�cantly slower than asimple increment of a heap pointer. To make the common case of allocating many small objects fast, theBoehm collector keeps an array of free lists of di�erent sizes. The system also allows calls to gc mallocto be inlined, so the common case reduces to just checking if the free list is empty, removing the �rstentry from the free list, and incrementing a counter of the number of words allocated. Nevertheless, forvery highly allocation-intensive benchmarks such as nrev, this is still a lot slower than a single registerincrement. For real programs, garbage collection is not likely to be a bottleneck, and inlining gc mallocwould most likely reduce performance, as the elimination of the call overhead would be outweighed bythe increase in instruction cache misses.The other drawback of the Boehm collector, which applies only to logic programming systems, is thatone cannot save the heap pointer when entering a choice point and restore it upon backtracking. Sinceblocks that are allocated consecutively in time are not necessarily consecutive in space, the overheadof keeping track of the blocks allocated since a certain point in time would be more than the possiblegain in all except the most heavily nondeterministic programs.The Mercury implementation currently has two implementations of the macro that allocates memoryon the heap: one increments a heap pointer without an over
ow check, relying on a red zone to catchover
ow, and one that calls gc malloc. We are working on our own native garbage collector, which willbe invoked by the red zone signal handler.7 PerformanceWe measured the performance of several logic programming implementations on a suite of ten standardsmall benchmarks; converted the raw times to speedups over SWI-Prolog, and calculated the harmonicmean of these speedups. The results are shown in table 2 (reproduced from [12]). The benchmarkplatform was a SPARCserver 1000 with four 50 MHz SuperSPARC processors, each rated at 60.312

System variant run timeNU-Prolog no declarations 116 sSICStus compactcode, no declarations 101 sSICStus fastcode, no declarations 71.1sMercury asm fast grade, Boehm gc 18.5sTable 3: The Mercury compiler as a large benchmarkSPECint92.The results show that the computational model of the language and the amount of e�ort put intooptimization are more important for good performance than the compilation target (bytecode, C ormachine code). Mercury being the fastest system does not prove the superiority of compiling to C,since wamcc also compiles to C, and also exploits all three GNU C extensions we discussed, yet it isslower than Quintus Prolog, a bytecoded system. On the other hand, our data does not prove thesuperiority of compiling directly to native code either.Our data does show the usefulness of the GNU C extensions. The \none" grade of the Mercury compileruses none of the extensions, whereas the \asm fast" grade uses all three (global register variables,inter-function jumps, and assembler labels); the asm fast grade is 170% faster. Assembler labels areirrelevant to small benchmarks, since their code �ts in a single C function; this extension bene�ts onlylarge programs. Of the two remaining extensions, our experience suggests that global register variablesimprove performance signi�cantly more than inter-function jumps do, but one cannot measure this onSPARCs because one cannot use any of the registers a�ected by register window operations as globalregister variables.The results also show that although the use of Boehm's conservative garbage collector is convenient,it does impose signi�cant overheads. These overheads are exaggerated by our small benchmarks. Toobtain accurate times, each benchmark had to be executed thousands, even millions of times, in atest harness that e�ectively mimics a failure-driven loop. Since the Boehm collector cannot recovermemory on backtracking, it does a signi�cant number of otherwise useless collections. This e�ect ismuch less signi�cant in real programs, as shown by our experiments using the Mercury compiler itselfas a benchmark program.The Mercury compiler is written in the intersection of three languages, Mercury, NU-Prolog and SICStusProlog, and can be executed by any one of these systems. (We implemented the compiler this way toease bootstrapping.) Table 3 shows the time taken by the Mercury compiler to compile a 400 line source�le, when the compiler is executed by each of these three systems. While the small benchmarks showthe asm fast grade of Mercury with Boehm gc to be 1.35 times the speed of SICStus fastcode, the largebenchmark shows the ratio to be 3.84. Comparing Mercury asm fast with Boehm gc to with SICStuscompactcode yields broadly similar although not so striking results (a speedup of 4.57 on the smallbenchmarks vs 5.46 on the large program) as does a comparison against NU-Prolog (5.37 vs 6.27). Thisshows that at least some large programs (e.g. the Mercury compiler) are not as allocation intensive asthe standard small benchmarks we used (crypt, deriv, nrev, poly, primes, qsort, two versions of queens,query, and tak), and therefore the use of a non-compacting conservative garbage collector is not as badit may seem at �rst sight.NU-Prolog produces a 2.1 Mb save �le when compiling the Mercury compiler. SICStus compactcodeproduces a 4.8 Mb save �le, while SICStus fastcode produces an 8.1 Mb executable. Mercury producesa 2.2 Mb executable, which shows that compilation to C per se need not incur any space penalties.Of course, the main reason for the small size of the Mercury executable is that the Mercury executionmodel simply does not need many of the operations that are required to execute Prolog (dereferencing,trailing etc), and can therefore omit the code to perform these operations.
13

8 Conclusions and further workOur performance results are too coarse to argue conclusively either the superiority of native codecompilation over compilation to C or vice versa when the system that compiles to C exploits GNU Cextensions. Our opinion is that compilation to GNU C loses a few percent of speed compared to ahighly optimizing compiler that generates machine code directly, but that this consideration is muchless important than the advantages enjoyed brought by compilation to C. These include the fact thatmuch less work is required on the part of compiler writers, who can spend the extra time on otheraspects of the system, and the greatly increased portability of the resulting system. We have shownthat portability can be maximized through a modular approach to the implementation of the virtualmachine that makes intensive use of C macros.Our paper shows ways to compile logic programs to C using C as a portable assembler. One can alsogenerate C code in a manner that uses C as a higher level language. Weiner and Ramakrishnan [14] havedescribed an alternative approach using continuations, with assembler routines to construct a closureand to execute a closure. We are currently investigating a similar continuation-based approach usingGNU C's nested functions extension for constructing and executing the closures, as an alternative tothe approach that we currently use, which we have described in this paper. This new approach, whichhas some similarities to the approach taken by Nilsson in a paper that proposed the compilation ofProlog to Pascal [10], has the potential to make debugging with gdb a practical proposition.References[1] H. Boehm and M. Weiser. Garbage collection in an uncooperative environment. Software Practiceand Experience, 18:807{820, 1988.[2] T. Chikayama, T. Fujise, and D. Sekita. A portable and e�cient implementation of KL1. InICOT/NSF Workshop on Parallel Logic Programming and its Programming Environments, CIS-TR-94-04, Department of Computer Information Science, Oregon, 1994.[3] P. Codognet and D. Diaz. wamcc: Compiling Prolog to C. In Proceedings of the Twelfth Interna-tional Conference on Logic Programming, pages 317{331, Kanagawa, Japan, June 1995.[4] T. Conway, F. Henderson, and Z. Somogyi. Code generation for mercury. In Proceedings of theTwelfth International Conference on Logic Programming, Portland, Oregon, December 1995.[5] D. Gudeman, S. K. Debray, and K. DeBosschere. jc: an e�cient and portable sequential im-plementation of Janus. In Proceedings of the International Conference and Symposium on LogicProgramming, pages 399{416, Washington, D.C., November 1992.[6] B. Hausman. Carpe diem, some implementation aspects of Turbo Erlang. In Proceedings of theWorkshop on Practical Implementations and Systems Experience in Logic Programming, pages1{12, Budapest, Hungary, June 1993.[7] P. M. Hill and J. W. Lloyd. The G�odel programming language. MIT Press, 1994.[8] M. P. Jones. The implementation of the Gofer functional programming system. Technical ReportResearch Report YALEU/DCS/RR-1030, Yale University, New Haven, Connecticut, USA, May1994.[9] S. L. P. Jones, C. Hall, K. Hammond, W. Partian, and P. Wadler. The Glasgow Haskell compiler: atechnical overview. In Proceedings of the UK Joint Framework for Information Technology (JFIT)Technical Conference, Keele, 1993.[10] J. F. Nilsson. On the compilation of a domain-based Prolog. In Proceedings of the Ninth IFIPCongress, pages 293{298, Paris, France, 1983.[11] Z. Somogyi, F. Henderson, and T. Conway. The execution algorithm of Mercury, an e�cient purelydeclarative logic programming language. Journal of Logic Programming. To appear.14

[12] Z. Somogyi, F. Henderson, and T. Conway. The implementation of Mercury, an e�cient purelydeclarative logic programming language. In Proceedings of the ILPS '94 Postconference Workshopon Implementation Techniques for Logic Programming Languages, Syracuse, New York, November1994.[13] R. Stallman. Using and porting the GNU CC compiler. The Free Software Foundation, 1989{1995.[14] J. Weiner and S. Ramakrishnan. A piggy-back compiler for Prolog. In Proceedings of the SIGPLAN'88 Conference on Programming Language Design and Implementation, pages 288{296, Atlanta,Georgia, June 1988.

15

