
Foreign Language Interoperability and

Annotations for Code Generation in C-- The title
should be
improved(DRAFT)

Fermı́n J. Reig Galilea∗

Department of Computing Science
University of Glasgow
reig@dcs.gla.ac.uk

April 24, 2001

Abstract
Problem

with listings
pack-

age:1)beginning
of text 2)
keywords

Keywords:

1 Introduction

Give a little bit of background about C-- ([JRR99, RPJ00]). Emphasis
on the decoupling of the back end, since this is a recurring theme in other
parts of the paper.

Contributions:

• C-- provides interoperability with C via foreign but C--’s stack
walking interface is inadequate for situations where C-- interoper-
ates with foreign code, or foreign runtime systems. We explain the
limitations and propose an alternative. Implemented and tested in
a C-- back end for OCaml[?].

• Monolithic compilers share information between different phases via
constructs of the intermediate language(s), symbol tables, files (for
cross-module optimizations), or other means. When the back end is
decoupled from the rest of the compiler—as is the case in a C-- back
end—the only way to communicate program properties to the back
end is via C-- language constructs. At present C-- lacks the syntax
to do this. We propose constructs (annotations) to convey several
program properties to the back end. Some of them are implemented
in cmmc, but the OCaml front end makes only limited use of them.

2 Stack Scanning and Unwinding (Back-
ground)

(General background, not specific to C--)

∗Funded by Gobierno de Navarra.

1



Definition 1 Stack scanning. Traverse the stack of activation frames,
inspecting and possibly modifying their contents.

Garbage collection The local variables of a procedure form most of
the root set of pointers to heap-allocated objects.1 Local variables are
assigned to registers or frame locations by the compiler. The garbage
collector scans the stack of activation frames looking for roots. Copying
collectors[Jon96] also modify the frames.

Definition 2 Stack unwinding. Unroll (?) the stack of activation frames,
possibly resuming execution at a previous point in the call chain.

Exception handling When an exception is raised, we unwind until
the first activation where a handler is in scope and transfer control to the
handler[RPJ00]. Depending on the language, other actions have to be
executed as the stack is unwound. In C++ we need to invoke destructors
for objects that go out of scope. Add a

reference for
C++ EH and

destructors

To unwind the stack we must know how to 1) navigate from an ac-
tivation to the activation of its caller 2) decide whether a handler is in
scope.

To scan the stack we need to know 1) how to position ourselves at
the topmost activation 2) how to navigate to the the caller 3) the exact
location in the frame (or registers) of roots (for accurate collectors only).

2.1 Garbage Collection

To inspect activation frames conservative collectors[BW88] need little or
no support from the compiler: they scan the whole stack.

They do need to know about the stack limits, though. Q: How
you tell the Boehm collector about this?

Type-accurate and liveness-accurate collectors[ADM98]scan only those ToDo:Briefly
describe

advantages of
accurate

collection.

locations that are known to contain roots at the point where a procedure is
suspended for garbage collection. A procedure is suspended when it makes
a call, and is resumed when the callee returns. In multithreaded languages
like Java, threads may be stopped for garbage collection at other points
than calls[SLC99]. An accurate collector needs to know the liveness and
exact location of roots (registers, frame slots).

The compiler can emit frame descriptors that contain root locations.
It emits a descriptor for every point where a procedure can be suspended
for garbage collection. The back end knows this information.

2.2 Exception Handling

Descriptors for exception handling tell whether a handler is in scope and,
if so, where to transfer control to. They may contain other information,
like what destructors have to be called. The front end (or the middle end)
of the compiler knows this information.

In compilers for languages with GC and exceptions, descriptors (for
call sites) can contain both GC and EH information. Or we can have
separate descriptors.

Q: What is typical: unified or separate descriptors for GC and
EH? This is relevant for C--, since the back end is decoupled.

1Others are: global variables, foreign roots.

2



3 Garbage Collection and Exception Han-
dling in C--

[JRR99, RPJ00] propose a C-- run-time system so that a garbage collector
can scan the stack or an exception dispatcher can unwind it.

The following two procedures are provided: Have a figure
with procedure

names and
descriptions.

cmm_first_activation

• , to position ourselves at the topmost C-- activation.

cmm_next_activation

• , to move to the caller of the current activation.

I actually prefer the names cmm topmost activation and cmm prev activation. . .

This is the descriptor (other fields are not exported, since the GC does
not need them).

struct cmm_gc_descriptor {

unsigned root_count;

unsigned root_offsets[1];

};

An accurate garbage collector would scan the stack like this:

a = cmm_first_activation()

for(;;) {

descr = cmm_get_descriptor(a);

/* Scan roots in this activation */

for(i=0; i < descr->root_count; i++) {

<... descr->root_offsets[i] ...>

/* Stop if there are no more C-- activations */

if(a = cmm_next_activation(a) == NULL) break;

} /* for */

(cmm_get_descriptor finds the descriptor corresponding to the cur-
rent activation.)

3.1 Dealing with Language Interoperability

However, this interface does not suffice for all front end needs. In partic-
ular:

There is an implicit assumption that the C-- stack is one sin-
gle, contiguous region of memory. Several modern program-
ming languages allow foreign calls and callbacks. A certain
implementation may choose to use a single stack, and then we
have interleaving chunks of C-- and foreign frames. For ex-
ample OCaml implements it this way (How about Mercury?
Others?). Insert picture

of a stack here.
When we are unwinding the C-- stack and we make a transition from a

C-- stack section to a foreign stack section, the caller’s frame is not a C--

frame, and we cannot unwind directly to it using cmm_next_activation.
It is not clear what the behaviour of cmm_next_activation would be:
maybe it gets stuck (crash), or maybe it signals that we have reached the

3



bottom C-- frame, when this is not true. It is up to the front end runtime
to decide what is the correct thing to do: this is a policy decision and C--

provides mechanisms. Two alternatives:

1. Skip the foreign stack chunk.2

2. Scan the foreign chunk via a call to a foreign runtime.

It may even be the case that C-- is the foreign code! (maybe
main is Java, and via a FFI we call OCaml code —that happens
to be compiled via C--): the “master” garbage collector starts
on a non-C-- stack chunk. In this case, there never was a call
to cmm_first_activation! Nor to cmm_yield, for that matter;
when the collector encounters the first foreign stack chunk, it
lets the OCaml/C-- collector take over for a while. At this
point, all we have is a pointer to the C-- frame in the call
stack, and a return address to some C-- code (that we can use
to get a C-- descriptor).

And similarly for exception handling (skip or foreign unwind). The
point is that the front end decides what action is appropriate (C-- does
not know).

N.B. The focus of this discussion is on language interoperation where
we have two separate garbage collectors or the exception handling mech-
anisms differ. GCJ and g++ share the same code generator and use the
same EH mechanism, so they have an easier task. In particular the GCJ
pages say:

“You can throw a Java exception from C++ using the ordinary
throw construct, and this exception can be caught by Java
code. Similarly, you can catch an exception thrown from Java
using the C++ catch construct.

Note that currently you cannot mix C++ catches and Java
catches in a single C++ translation unit. We do intend to fix
this eventually.”

Like GCJ, MS .net provides a unified mechanism for inter-language
cooperation. This could be discussed here, but maybe all of this can go to
related work.

3.2 Let the Front End Decide
Need a better
section title.cmm_next_activation

tries to hide too much. Proposal: let the front end have more control of
the unwinding process.

Other than by cmm_next_activation failing, how do we know that we
have reached the bottom activation of a C-- stack section? I can think of
four ways:

• The return address stored in the current frame is to a special callback
routine in the (front end) runtime.

• The descriptor of the caller is somehow marked as special. OCaml
does this: the descriptor contains a negative frame size.

2This is what OCaml does for garbage collection. Foreign calls and callbacks happen via
runtime stubs. OCaml has an opportunity to do some bookkeeping at these points, and it
records the beginning and end of the foreign stack chunk.

4



cmm_get_descriptor

• fails to find the descriptor of the caller of the current activation
(returns NULL).

• By inspecting the value of the sp. OCaml uses this method to de-
termine which is the bottom activation.

So, we will let the front end runtime figure it out itself. What does
cmm_next_activation do?

1. Get the descriptor for the caller of the current activation (using the
current descriptor, locate the return address in the current frame;
using this return address as key, lookup descriptor in table).

2. Move pointer from current frame to caller’s frame (using the frame
size stored in the current descriptor).

So that the runtime can implement this itself, we expose more of the
C-- descriptor:

unsigned saved_retaddr;

unsigned frame_size;

And we also expose the fact that descriptors are keyed by the address
where procedures are suspended for garbage collection, and instead of

cmm_gc_descriptor *cmm_get_descriptor(activation *a);

we provide this

cmm_gc_descriptor *cmm_get_descriptor(code_addr ra);

Now the front end runtime implements cmm_next_activation itself
thus:

ra = *(sp + descr->saved_retaddr);

sp = sp + descr->frame_size;

descr = cmm_get_descriptor(ra);

and cmm_first_activation like this:

ra = <...>

sp = <...>

descr = cmm_get_descriptor(ra);

And here is cmm_next_activation when we have foreign stack sections:

ra = *(sp + descr->saved_retaddr);

if (<end of C-- section>) {

<...>

ra = <...>

sp = <...>

} else {

/* Normal case */

sp = sp + descr->frame_size;

}

descr = cmm_get_descriptor(ra);

Exposing saved_retaddr has other uses. Generational stack collection[CHL98]
aims to reduce the cost of scanning deep stacks in in generational collec-
tion. The collector patches the stored return address with the address of
a runtime stub. (OCaml uses a different technique, but it also involves
patching return addresses).

A detail that [JRR99] omits: Most likely there is a (hash) table
of descriptors indexed by return address. When is this table

5



built? Either at program start, or lazily, before the first garbage
collection cycle. Now, only C-- knows the exact format of the
descriptors, so there has to be a call for this in C--’s RTS, say
cmm_init_gc_descriptors.

If the front end runtime manages unwinding itself, it also has to
deal with callee-saves registers (update location as we unwind).
In OCaml there are no callee-saves, so I have not had to deal
with this. We could devote a subsection to discuss this.

BTW, I don’t use first activation, etc in the OCaml back end,
but the stuff described above. I haven’t even implemented first activation
and friends.

4 C-- Annotations

To tame the complexity of compiler construction, compilers are often or-
ganized as a pipeline of passes that operate on one or more intermediate
languages[KH89] (other references). 3Different phases of the compiler can
gather information useful for optimizations—the result of program anal-
ysis phases, profile-driven compilation, or programmer annotations. In
monolithic compilers, this is passed from early to later phases via con-
structs of the intermediate language(s), symbol tables, files (for cross-
module optimizations), or other means. (A piece of information can be
useful to the very last phases of code generation, like register allocation).

When the back end is decoupled from the rest of the compiler—as
is the case in a C-- back end—the only way to communicate program
properties to the back end is via C-- language constructs. Right now,
C-- lacks adequate syntax for this. We think it is essential that we can
express this in C--, so that aggressive optimizers for C-- can be built.

Another example: with VPO all the information you can pass
to the code generator/optimizer is whatever can be expressed as
RTLs. Norman can give more details.

Criterion 1 Do not throw away information that can be exploited for
low-level optimizations and that the C-- compiler cannot (easily) recover.

We are interested in widely-applicable optimizations, like register al-
location. Not interested at this stage in more specialized (less applicable)
things like, say, loop vectorization.

Although it would be a large effort to build a code generator that
has all the optimizations of gcc, in C-- we can compensate by
exploiting any information that the front end is able to collect.

Propose C-- syntax (annotations) for: calls to procedures that do not
return normally, calls to procedures that are guaranteed not to start a
garbage collection, calls to procedures that have no side effects, branch
probability, aliasing.

For each: what optimizations are enabled; why can’t C-- recover the
same information.

1. Some procedures do not return normally to their caller: they termi-
nate the program abruptly, or they raise an exception. The stan-
dard libraries of many programming languages usually contain some.

3Example: OCaml 3 uses seven different intermediate languages.

6



Examples of the former: C’s exit, abort, Java’s System.exit,
Haskell’s error. Examples of the latter: OCaml failwith. To name
just a few. A typical use:

if (some error condition) { abort(); }

Another example: in languages with run-time error checking the
compiler generates calls to non-terminating procedures (We may end
up with many of them in the C-- program). Ex:

if (array index > limit) {

/* Print error message and raise exception */

array_bounds_error();

}

What optimizations are possible? 1) Better register allocation: vari-
ables that are live across the call can be allocated to scratch (caller-
saves) registers 2) Any instructions immediately following the non-
returning call are unreachable code and can be removed.4

A procedure never returns if all its possible control paths end in a
statement that does not return: raise an exception5, call or tail call
a procedure that never returns. gcc[Sta92] allows this annotation.
Proposal for C--: no_return for call statements.

(Often (almost always) the non-returning procedure is defined some-
where else, so the C-- compiler sees call sites but not definitions.
Without annotations, it cannot infer whether a procedure returns.)

2. (Relevant to garbage-collected languages only) Many procedures never
trigger a garbage collection—and for some of them this can be de-
termined statically. What procedures are guaranteed to never start
a collection? Those that do not allocate and only call or tail call
procedures that do not start a garbage collection. The compiler
emits a descriptor for every call site. However, for some of these
calls we are emitting an unnecessary descriptor. This 1) makes the
object code larger 2) slows down garbage collection: we have to
build a larger hash table (once), and we have to query a larger ta-
ble (each call to cmm_get_activation 3) wastes compilation time
for each useless descriptor that we emit (probably very little, but
who knows?). Proposal for C--: no_gc for call statements (Many
functions in the standard library of OCaml and other languages do
not start a garbage collection; foreign functions in OCaml can be
annotated as “noalloc”).

3. Branch probability. Some branches are not taken most of the time.
A good example: the run-time error checking examples of above
(array index, ...). Another one:

if (!allocate_memory(sz)) {

garbage_collection();

}

Optimization: register allocation. When the register allocator needs
to spill a variable or compiler-generated temporary, it selects a victim
according to a spill cost function that estimates the cost of adding
extra loads and stores. Statements that are executed more often

4For example, in the alpha, after a call instruction you may need an instruction to reload
a global pointer register.

5We include C’s longjmp in this category.

7



contribute more cost to the cost function. Having precise infor-
mation about branch probability helps to estimate spill costs accu-
rately. Optimization: modern processors predict forward jumps as
not taken. When we emit code for ifthenelse statements, we can
invert the condition and switch the branches. Optimization: in-
struction prefetching. Before the branch is taken (better, before the
condition is evaluated), prefetch the first instruction of the likely
branch. Branch probability in C--: if (expr prob), goto expr [label
prob]*, switch.

4. Some procedures do not perform side effects[JG91, BK00]. Opti-
mization: calls to these procedures are subject to code motion opti-
mizations (loop invariants, etc). What procedures are pure? Those
that only contain effect-free statements, where a call or tail call to
a procedure that does not have side effects is also a side effect free
statement. Examples: many in the standard library (mathemati-
cal functions, string manipulation, etc). gcc allows this annotation.
Proposal for C--: pure for call statements.

5. Memory aliasing. Optimizations: instruction scheduling[NHN95],
dead store elimination. Quite important for architectures like IA64,
where the compiler has a lot of weight in the final performance of
the code. Annotate loads, stores and calls[CK88]. If we want to
annotate calls, we need to come up with a good syntax for defining
sets of memory regions.

6. Data prefetching. Several architectures have data prefetch instruc-
tions (prefetch, prefectch for write). sgiCC allows programmer an-
notations for data prefetching. C9X has constructs that a compiler
can exploit for prefetching. Example. In C9X, the use of the static

keyword in this function prototype

float dot_product(float x[static 6], float y[static 6])

guarantees that x and y point to arrays containing at least six floats.
A C9X compiler can schedule a prefetch early within dot_product

or even before a call to this function. Proposal for C--: A statement
prefetch addr size [read/write] where addr is a C-- expression
of type native data pointer and size is a C-- expression (known at
compile-time?) of type int.

This list is not closed: as new architectures and new compiler opti-
mizations emerge, there will be new sensible annotation for C--.

cmmc understands no_gc, no_return.

5 Related work

MLRISC accepts memory region usage annotations in load expressions,
store and call statements. MLRISC does not try to interpret the region
annotations: it is up to the client to decide whether two regions may alias.
Also, the MLTree data structure is parametrized with client extensions.
For example, you can add a prefetch statement. The client has to give
the translation of the extension into target instructions. This is more
flexible than C-- annotations, but requires the client to do all the work
to generate the optimized code.

[Tar00] describes techniques to minimize the space occupied by GC
descriptors.

8



Acknowledgement

Lal George and Allen Leung have provided invaluable help with MLRISC.
Xavier Leroy.

References

[ADM98] Ole Agesen, David Detlefs, and J. Eliot B. Moss. Garbage col-
lection and local variable type-precision and liveness in Java
Virtual Machines. In Proceedings of the ACM SIGPLAN’98
Conference on Programming Language Design and Implementa-
tion (PLDI) [PLD98], pages 269–279. SIGPLAN Notices 33(5),
May 1998.

[BK00] Nick Benton and Andrew Kennedy. Monads, effects and trans-
formations. In Andrew Gordon and Andrew Pitts, editors, Elec-
tronic Notes in Theoretical Computer Science, volume 26. El-
sevier Science Publishers, 2000.

[BW88] Hans-Juergen Boehm and Mark Weiser. Garbage collection in
an uncooperative environment. Software Practice and Experi-
ence, 18(9):807–820, 1988.

[CHL98] Perry Cheng, Robert Harper, and Peter Lee. Generational stack
collection and profile-driven pretenuring. In Proceedings of the
ACM SIGPLAN’98 Conference on Programming Language De-
sign and Implementation (PLDI) [PLD98], pages 162–173. SIG-
PLAN Notices 33(5), May 1998.

[CK88] Keith D. Cooper and Ken Kennedy. Interprocedural side-effect
analysis in linear time. In Proceedings of the ACM SIGPLAN’88
Conference on Programming Language Design and Implemen-
tation (PLDI), pages 57–66, Atlanta, Georgia, 22–24 June 1988.
SIGPLAN Notices 23(7), July 1988.

[FH95] Chris W. Fraser and David R. Hanson. A Retargetable C Com-
piler: Design and Implementation. Benjamin/Cummings Pub.
Co., Redwood City, CA, USA, 1995.

[JG91] Pierre Jouvelot and David K. Gifford. Algebraic reconstruction
of types and effects. In Conference Record of the Eighteenth
Annual ACM Symposium on Principles of Programming Lan-
guages, pages 303–310, Orlando, Florida, January 21–23, 1991.
ACM SIGACT-SIGPLAN, ACM Press.

[Jon96] Richard E. Jones. Garbage Collection: Algorithms for Auto-
matic Dynamic Memory Management. Wiley, July 1996. With
a chapter on Distributed Garbage Collection by R. Lins.

[JRR99] Simon Peyton Jones, Norman Ramsey, and Fermin Reig. C--: a
portable assembly language that supports garbage collection. In
International Conference on Principles and Practice of Declar-
ative Programming, pages 1–28. LNCS 1702, September 1999.
Invited paper.

[KH89] Richard Kelsey and Paul Hudak. Realistic compilation by pro-
gram transformation – detailed summary. In Conference Record
of the Sixteenth Annual ACM Symposium on Principles of Pro-
gramming Languages, pages 281–292, Austin, Texas, January
11–13, 1989. ACM SIGACT-SIGPLAN, ACM Press.

9



[NHN95] Steven Novack, Joseph Hummel, and Alexandru Nicolau. A
simple mechanism for improving the accuracy and efficiency of
instruction-level disambiguation. In Languages and Compilers
for Parallel Computing, volume 1033 of LNCS, 1995.

[PLD98] Proceedings of the ACM SIGPLAN’98 Conference on Program-
ming Language Design and Implementation (PLDI), Montreal,
Canada, 17–19 June 1998. SIGPLAN Notices 33(5), May 1998.

[RPJ00] Norman Ramsey and Simon Peyton Jones. A single intermedi-
ate language that supports multiple implementations of excep-
tions. In Proceedings of the ACM SIGPLAN’00 Conference on
Programming Language Design and Implementation (PLDI),
pages 285–298, Vancouver, British Columbia, 18–21 June 2000.
SIGPLAN Notices 35(5), May 2000.

[SLC99] James M. Stichnoth, Guei-Yuan Lueh, and Michal Cierniak.
Support for garbage collection at every instruction in a Java
compiler. In Proceedings of the ACM SIGPLAN’99 Confer-
ence on Programming Language Design and Implementation
(PLDI), pages 118–127, Atlanta, Georgia, 1–4 May 1999. SIG-
PLAN Notices 34(5), May 1999.

[Sta92] Richard M. Stallman. Using and Porting GNU CC (Version
2.0). Free Software Foundation, February 1992.

[Tar00] David Tarditi. Compact garbage collection tables. In Tony
Hosking, editor, Proceedings of the Second International Sym-
posium on Memory Management, Minneapolis, MN, October
2000. ACM Press. ISMM is the successor to the IWMM series
of workshops.

10


	Introduction
	Stack Scanning and Unwinding (Background)
	Garbage Collection
	Exception Handling

	Garbage Collection and Exception Handling in C--
	Dealing with Language Interoperability
	Let the Front End Decide

	C-- Annotations
	Related work

