
technicM contributions

-31 -

The Bes t Simple Code Genera t ion Techn ique for
WHILE, FOR, and DO Loops

Fores t Baske t t
Los Alamos Scient if ic Labo ra to ry .':,

ABSTRACT

This code genera t ion t echn ique for
WHILE, FOR, and DO loops is simple to imple-
ment and usua l ly r e su l t s in the bes t loop code in
the absence of flow ana lys i s . Also the t ech -
n ique makes it possible to move code from i n n e r
loops wi thout doing flow analysis and wi thout
e v e r moving code from a less f r e q u e n t l y e x e c u t e d
block to a more f r e q u e n t l y e x e c u t e d block.

T h e r e a re at leas t t h r ee th ings wrong with the follow-
ing obvious code genera t ion for WHILE, FOR, and DO (77)
loops.

loop:

finis:

compute termination condition
if condition then goto finis
body of' loop
compute increment if any
goto loop
rest of program

F i r s t , each execut ion of the loop r e q u i r e s the e x e c u -
t ion of two jump i n s t r u c t i o n s - - a condi t ional jump n e a r the
top of the loop and an uncondi t ional jump at the bottom of
the loop. The uncondi t iona l jump is u n n e c e s s a r y and
could be qui te expens ive for some inne r loops on some
machines .

Second, ff a machine is capable of para l le l execut ion
of i n d e p e n d e n t i n s t ruc t i ons like a CDC 6600 or 7600, an
IBM 360/91 or 370/195, or a CRAY-1, much of the oppor -
t u n i t y fo r para l le l execut ion of the computat ion of the
loop terminat ion condi t ion and the body of the loop is
lost by this s ty le of loop code.

T h i r d , ff one wants to e x t e n d a simple basic block
opt imizer to do code motion from inne r loops, this s ty le
of loop code r e q u i r e s execut ion f r e q u e n c y reformation to
avoid moving code from a less f r e q u e n t l y e x e c u t e d block to
a more f r e q u e n t l y e x e c u t e d block.

*Author's Address: Los Alamos Scientific Laboratory, P.O. Box 1663,
Los Alamos, New Mexico 87545.

-3Z-

There is a be t t e r technique that solves all these
problems. It has probably been descr ibed before but none
of the r ecen t books on compiler const ruct ion mention the
technique . This technique is i l lus t ra ted by the following
code :

loop:

f i n i s :

compute termination condition
if condition then goto finis
body of loop
compute increment if any
compute termination condition
if not condition then goto loop
r e s t of program

More code is r equ i r ed by this technique al though
the increase is normally quite small. Now each execution of
the loop requ i res execut ion of only one loop-associated
jump in s t ruc t i on - - t he conditional jump at the end of the
loop. Opportuni t ies for parallel execut ion of the loop body
and the loop control are now increased .

If a compiler d is t inguishes the loop label as being
gene ra t ed only for this type of loop cons t ruc t , then an as-
sociated basic block optimizer will be able to discover a
basic block tha t is an inner loop because it will begin with
such a label and end with a conditional jump to that label.
The basic block optimizer then can perform code motion
from inne r loops of this sort and always guarantee improve-
ment of the code.

The position r igh t before the label is a safe place to
move code out the top of the loop. Code in that position is
n e v e r execu ted ff the loop is executed zero times. Like-
wise, the position jus t af ter the conditional jump at the
bottom of the loop is a safe place to move code out the bot-
tom of the loop. For example, a basic block optimizer con-
ce rned with doing good r eg i s t e r allocation for basic blocks
could move loads (as well as loop invar ian t computations)
out the top of the loop and it could move stores out the
bottom of the loop.

Even without the optimizations mentioned above, this
code genera t ion technique will improve loop code and it is
easy to implement. In l e s s than a day the au tho r changed
the FOR loop code genera to r of a PASCAL compiler for
the CRAY-1 to use this t echnique , and the improvement in
execution time was noticeable in many programs.

