~31-~

technical contributions

* Author's Address:

The Best Simple Code Generation Technique for
WHILE, FOR, and DO Loops

Forest Baskett
Los Alamos Scientific Laboratory *

ABSTRACT

This code generation technique for
WHILE, FOR, and DO loops is simple to imple-
ment and usually results in the best loop code in
the absence of flow analysis. Also the tech-
nique makes it possible to move code from inner
loops without doing flow analysis and without
ever moving code from a less frequently executed
block to a more frequently executed block.

There are at least three things wrong with the follow-
ing obvious code generation for WHILE, FOR, and DO (77)
loops.

loop: compute termination condition
if condition then goto finis
body of loop
compute increment if any
goto loop

finis: rest of program

First, each execution of the loop requires the execu-
tion of two jump instructions--a conditional jump near the
top of the loop and an unconditional jump at the bottom of
the loop. The unconditional jump is unnecessary and
could be quite expensive for some inner loops on some
machines.

Second, if a machine is capable of parallel execution
of independent instructions like a CDC 6600 or 7600, an
IBM 360/91 or 370/195, or a CRAY-1, much of the oppor-
tunity for parallel execution of the computation of the
loop termination condition and the body of the loop is
lost by this style of loop code.

Third, if one wants to extend a simple basic block
optimizer to do code motion from inner loops, this style
of loop code requires execution frequency information to
avoid moving code from a less frequently executed block to
a more frequently executed block.

Los Alamos, New Mexico 87545.

Los Alamos Scientific Laboratory, P.O. Box 1663,

-32

There is a better technique that solves all these
problems. It has probably been described before but none
of the recent books on compiler construction mention the
technique. This technique is illustrated by the following
code:

compute termination condition

if condition then goto finis
loop: body of loop

compute increment if any

compute termination condition

if not condition then goto loop
finis: rest of program

More code is required by this technique although
the increase is normally quite small. Now each execution of
the loop requires execution of only one loop-associated
jump instruction--the conditional jump at the end of the
loop. Opportunities for parallel execution of the loop body
and the loop control are now increased.

If a compiler distinguishes the loop label as being
generated only for this type of loop construct, then an as-
sociated basic block optimizer will be able to discover a
basic block that is an inner loop because it will begin with
such a label and end with a conditional jump to that label.
The basic block optimizer then can perform code motion
from inner loops of this sort and always guarantee improve-
ment of the code.

The position right before the label is a safe place to
move code out the top of the loop. Code in that position is
never executed if the loop is executed zero times. Like-
wise, the position just after the conditional jump at the
bottom of the loop is a safe place to move code out the bot-
tom of the loop. For example, a basic block optimizer con-
cerned with doing good register allocation for basic blocks
could move loads (as well as loop invariant computations)
out the top of the loop and it could move stores out the
bottom of the loop.

Even without the optimizations mentioned above, this
code generation technique will improve loop code and it is
easy to implement. In less than a day the author changed
the FOR loop code generator of a PASCAL compiler for
the CRAY-1 to use this technique, and the improvement in
execution time was noticeable in many programs.

