
1 The Essence of ML Type Inference

By François Pottier and Didier Rémy

1.1 What is ML?

The name “ML” appeared during the late seventies. It then referred to a
general-purpose programming language that was used as a meta-language
(whence its name) within the theorem prover LCF (Gordon, Milner, and
Wadsworth, 1979b). Since then, several new programming languages, each
of which offers several different implementations, have drawn inspiration
from it. So, what does “ML” stand for today?

For a semanticist, “ML” might stand for a programming language fea-
turing first-class functions, data structures built out of products and sums,
mutable memory cells called references, exception handling, automatic mem-
ory management, and a call-by-value semantics. This view encompasses the
Standard ML (Milner, Tofte, and Harper, 1990) and Caml (Leroy, 2000) fami-
lies of programming languages. We refer to it as ML-the-programming-language.

For a type theorist, “ML” might stand for a particular breed of type sys-
tems, based on the simply-typed λ-calculus, but extended with a simple form
of polymorphism introduced by let declarations. These type systems have
decidable type inference; their type inference algorithms crucially rely on
first-order unification and can be made efficient in practice. In addition to
Standard ML and Caml, this view encompasses programming languages
such as Haskell (Peyton Jones, 2003a) and Clean (Brus, van Eekelen, van
Leer, and Plasmeijer, 1987), whose semantics is rather different—indeed, it
is nonstrict and pure (Sabry, 1998)—but whose type system fits this descrip-
tion. We refer to it as ML-the-type-system. It is also referred to as Hindley and
Milner’s type discipline in the literature.

Code for this chapter may be found at http://pauillac.inria.fr/~remy/mlrow/.
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For us, “ML” might also stand for the particular programming language
whose formal definition is given and studied in this chapter. It is a core
calculus featuring first-class functions, local definitions, and constants. It is
equipped with a call-by-value semantics. By customizing constants and their
semantics, one may recover data structures, references, and more. We refer
to this particular calculus as ML-the-calculus.

Why study ML-the-type-system today, such a long time after its initial dis-
covery? One may think of at least two reasons.

First, its treatment in the literature is often cursory, because it is considered
either as a simple extension of the simply-typed λ-calculus (TAPL Chapter 9)
or as a subset of Girard and Reynolds’ System F (TAPL Chapter 23). The for-
mer view is supported by the claim that local definitions, which distinguish
ML-the-type-system from the simply-typed λ-calculus, may be understood
as a simple textual expansion facility. However, this view only tells part of
the story, because it fails to give an account of the principal types property
enjoyed by ML-the-type-system, leads to a naïve type inference algorithm
whose time complexity is exponential even for non-contrived programs, and
breaks down when the language is extended with side effects, such as state
or exceptions. The latter view is supported by the fact that every type deriva-
tion within ML-the-type-system is also a valid type derivation within an
implicitly-typed variant of System F. Such a view is correct, but again fails
to give an account of type inference for ML-the-type-system, since type in-
ference for System F is undecidable (Wells, 1999).

Second, existing accounts of type inference for ML-the-type-system (Mil-
ner, 1978; Damas and Milner, 1982; Tofte, 1988; Leroy, 1992; Lee and Yi, 1998;
Jones, 1999) usually involve heavy manipulations of type substitutions. Such
an ubiquitous use of type substitutions is often quite obscure. Furthermore,
actual implementations of the type inference algorithm do not explicitly ma-
nipulate substitutions; instead, they extend a standard first-order unification
algorithm, where terms are updated in place as new equations are discov-
ered (Huet, 1976). Thus, it is hard to tell, from these accounts, how to write
an efficient type inference algorithm for ML-the-type-system. Yet, in spite of
the increasing speed of computers, efficiency remains crucial when ML-the-
type-system is extended with expensive features, such as Objective Caml’s
object types (Rémy and Vouillon, 1998) or polymorphic methods (Garrigue
and Rémy, 1999).

For these reasons, we believe it is worth giving an account of ML-the-type-
system that focuses on type inference and strives to be at once elegant and
faithful to an efficient implementation, such as Rémy’s (1992a). In this presen-
tation, we forego type substitutions and instead put emphasis on constraints,
which offer a number of advantanges. First, constraints allow a modular
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presentation of type inference as the combination of a constraint generator
and a constraint solver. Such a decomposition allows reasoning separately
about when a program is correct, on the one hand, and how to check whether
it is correct, on the other hand. It has long been standard in the setting of
the simply-typed λ-calculus (TAPL Chapter 22). In the setting of ML-the-
type-system, such a decomposition is provided by the reduction of typabil-
ity problems to acyclic semi-unification problems (Henglein, 1993; Kfoury,
Tiuryn, and Urzyczyn, 1994). This approach, however, was apparently never
used in actual implementations of ML-the-programming-language, although
it did find applications in the closely related area of program analysis (Fäh-
ndrich, Rehof, and Das, 2000). In this chapter, we give a constraint-based
description of a “classic” implementation of ML-the-type-system, which is
based on first-order unification and on a mechanism for creating and in-
stantiating principal type schemes. Second, it is often natural to define and
implement the solver as a constraint rewriting system. Then, the constraint
language allows reasoning not only about correctness—is every rewriting
step meaning-preserving?—but also about low-level implementation details,
since constraints are the data structures manipulated throughout the type in-
ference process. For instance, describing unification in terms of multi-equations (Jouan-
naud and Kirchner, 1991) allows reasoning about the sharing of nodes in
memory, which a substitution-based approach cannot account for. Last, con-
straints are more general than type substitutions, and allow smoothly ex-
tending of ML-the-type-system with recursive types, rows, subtyping, and
more.

Before delving into the details of this new presentation of ML-the-type-
system, however, it is worth recalling its standard definition. Thus, in what
follows, we first define the syntax and operational semantics of the program-
ming language ML-the-calculus, and equip it with a type system, known as
Damas and Milner’s type system.

1.1.1 ML-the-calculus

The syntax of ML-the-calculus is defined in Figure 1-1. It is made up of sev-
eral syntactic categories.

Identifiers group several kinds of names that may be referenced in a pro-
gram: variables, memory locations, and constants. We let x and y range over
identifiers. Variables—sometimes also called program variables to avoid ambiguity—
are names that may be bound to values using λ or let binding forms; in
other words, they are names for function parameters or local definitions.
We let z and f range over program variables. We sometimes write for
a program variable that does not occur free within its scope: for instance,
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x,y ::= Identifiers:
z Variable
m Memory location
c Constant

t ::= Expressions:
x Identifier
λz.t Function
t t Application
let z = t in t Local definition

v,w ::= Values:
z Variable

m Memory location
λz.t Function
c v1 . . . vk Data

c ∈ Q+ ∧ k ≤ a(c)

c v1 . . . vk Partial application
c ∈ Q− ∧ k < a(c)

E ::= Evaluation Contexts:
[] Empty context
E t Left side of an application
v E Right side of an application
let z = E in t Local definition

Figure 1-1: Syntax of ML-the-calculus

λ .t stands for λz.t, provided z is fresh for t. Memory locations are names
that represent memory addresses. Memory locations never appear in source
programs, that is, programs that are submitted to a compiler. They only ap-
pear during execution, when new memory blocks are allocated. Constants are
fixed names for primitive values and operations, such as integer literals and
integer arithmetic operations. Constants are elements of a finite or infinite
set Q. They are never subject to α-conversion. Program variables, memory
locations, and constants belong to distinct syntactic classes and may never
be confused.

The set of constants Q is kept abstract, so most of our development is in-
dependent of its concrete definition. We assume that every constant c has a
nonnegative integer arity a(c). We further assume that Q is partitioned into
subsets of constructors Q+ and destructors Q−. Constructors and destructors
differ in that the former are used to form values, while the latter are used to
operate on values.

1.1.1 EXAMPLE [INTEGERS]: For every integer n, one may introduce a nullary
constructor n̂. In addition, one may introduce a binary destructor +̂, whose
applications are written infix, so t1 +̂ t2 stands for the double application
+̂ t1 t2 of the destructor +̂ to the expressions t1 and t2. 2

Expressions—also known as terms or programs—are the main syntactic cat-
egory. Indeed, unlike procedural languages such as C and Java, functional
languages, including ML-the-programming-language, suppress the distinc-
tion between expressions and statements. Expressions include identifiers, λ-
abstractions, applications, and local definitions. The λ-abstraction λz.t repre-
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sents the function of one parameter named zwhose result is the expression t,
or, in other words, the function that maps z to t. Note that the variable z is
bound within the term t, so (for instance) λz1.z1 and λz2.z2 are the same
object. The application t1 t2 represents the result of calling the function t1

with actual parameter t2, or, in other words, the result of applying t1 to t2.
Application is left-associative, that is, t1 t2 t3 stands for (t1 t2) t3. The
construct let z = t1 in t2 represents the result of evaluating t2 after bind-
ing the variable z to t1. Note that the variable z is bound within t2, but not
within t1, so for instance let z1 = z1 in z1 and let z2 = z1 in z2 are
the same object. The construct let z = t1 in t2 has the same meaning as
(λz.t2) t1, but is dealt with in a more flexible way by ML-the-type-system.
To sum up, the syntax of ML-the-calculus is that of the pure λ-calculus, ex-
tended with memory locations, constants, and the let construct.

Values form a subset of expressions. They are expressions whose evalua-
tion is completed. Values include identifiers, λ-abstractions, and applications
of constants, of the form c v1 . . . vk, where k does not exceed c’s arity if c
is a constructor, and k is smaller than c’s arity if c is a destructor. In what
follows, we are often interested in closed values, that is, values that do not
contain any free program variables. We use the meta-variables v and w for
values.

1.1.2 EXAMPLE: The integer literals . . . , −̂1, 0̂, 1̂, . . . are nullary constructors, so
they are values. Integer addition +̂ is a binary destructor, so it is a value,
and so is every partial application +̂ v. Thus, both +̂ 1̂ and +̂ +̂ are values.
An application of +̂ to two values, such as 2̂+̂2̂, is not a value. 2

1.1.3 EXAMPLE [PAIRS]: Let (·, ·) be a binary constructor. If t1 are t2 are expres-
sions, then the double application (·, ·) t1 t2 may be called the pair of t1 and
t2, and may be written (t1,t2). By the definition above, (t1,t2) is a value if
and only if t1 and t2 are both values. 2

Stores are finite mappings from memory locations to closed values. A store
µ represents what is usually called a heap, that is, a collection of values, each
of which is allocated at a particular address in memory and may contain
pointers to other elements of the heap. ML-the-programming-language al-
lows overwriting the contents of an existing memory block—an operation
sometimes referred to as a side effect. In the operational semantics, this ef-
fect is achieved by mapping an existing memory location to a new value. We
write ∅ for the empty store. We write µ[m 7→ v] for the store that maps m to
v and otherwise coincides with µ. When µ and µ ′ have disjoint domains, we
write µµ ′ for their union. We write dom(µ) for the domain of µ and range(µ)

for the set of memory locations that appear in its codomain.
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The operational semantics of a purely functional language, such as the
pure λ-calculus, may be defined as a rewriting system on expressions. Be-
cause ML-the-calculus has side effects, however, we define its operational
semantics as a rewriting system on configurations. A configuration t/µ is a
pair of an expression t and a store µ. The memory locations in the domain
of µ are considered bound within t/µ, so (for instance) m1/(m1 7→ 0̂) and
m2/(m2 7→ 0̂) are the same object. In what follows, we are often interested in
closed configurations, that is, configurations t/µ such that t has no free pro-
gram variables and every memory location that appears within t or within
the range of µ is in the domain of µ. If t is a closed source program, its eval-
uation begins within an empty store—that is, with the configuration t/∅.
Because source programs do not contain memory locations, this is a closed
configuration. Furthermore, we shall see that all reducts of a closed config-
uration are closed as well. Note that, instead of separating expressions and
stores, it is possible to make store fragments part of the syntax of expres-
sions; this idea, proposed in (Crank and Felleisen, 1991), is reminiscent of
the encoding of reference cells in process calculi (Turner, 1995; Fournet and
Gonthier, 1996).

A context is an expression where a single subexpression has been replaced
with a hole, written []. Evaluation contexts form a strict subset of contexts. In
an evaluation context, the hole is meant to highlight a point in the program
where it is valid to apply a reduction rule. Thus, the definition of evaluation
contexts determines a reduction strategy: it tells where and in what order re-
duction steps may occur. For instance, the fact that λz.[] is not an evaluation
context means that the body of a function is never evaluated—that is, not
until the function is applied. The fact that t E is an evaluation context only
if t is a value means that, to evaluate an application t1 t2, one should fully
evaluate t1 before attempting to evaluate t2. More generally, in the case of
a multiple application, it means that arguments should be evaluated from
left to right. Of course, other choices could be made: for instance, defining
E ::= . . . | t E | E v | . . . would enforce a right-to-left evaluation order,
while defining E ::= . . . | t E | E t | . . . would leave the evaluation order
unspecified, effectively allowing reduction to alternate between both subex-
pressions, and making evaluation nondeterministic. The fact that let z =

v in E is not an evaluation context means that the body of a local defini-
tion is never evaluated—that is, not until the definition itself is reduced. We
write E [t] for the expression obtained by replacing the hole in E with the
expression t.

Figure 1-2 defines first a relation −→ between configurations, then a rela-
tion −� between closed configurations. If t/µ −→ t ′/µ ′ or t/µ −� t ′/µ ′

holds, then we say that the configuration t/µ reduces to the configuration
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(λz.t) v −→ [z 7→ v]t (R-BETA)

let z = v in t −→ [z 7→ v]t (R-LET)

t/µ
δ

−→ t ′/µ ′

t/µ −→ t ′/µ ′
(R-DELTA)

t/µ −→ t ′/µ ′

dom(µ ′′) # dom(µ ′)

range(µ ′′) # dom(µ ′ \ µ)

t/µµ ′′ −→ t ′/µ ′µ ′′
(R-EXTEND)

t/µ −→ t ′/µ ′

E [t]/µ −� E [t ′]/µ ′
(R-CONTEXT)

Figure 1-2: Semantics of ML-the-calculus

t ′/µ ′; the ambiguity involved in this definition is benign. If t/µ −→ t ′/µ

holds for every store µ, then we write t −→ t ′ and say that the reduction is
pure.

The semantics need not be deterministic. That is, a configuration may re-
duce to two different configurations. In fact, our semantics is deterministic

only if the relation
δ

−→, which is a parameter to our semantics, is itself de-
terministic. As explained above, the semantics could also be made nondeter-
ministic by a different choice in the definition of evaluation contexts.

The key reduction rule is R-BETA, which states that a function application
(λz.t) v reduces to the function body, namely t, where every occurrence of
the formal argument z has been replaced with the actual argument v. The λ

construct, which prevented the function body t from being evaluated, dis-
appears, so the new term may (in general) be further reduced. Because ML-
the-calculus adopts a call-by-value strategy, rule R-BETA is applicable only if
the actual argument is a value v. In other words, a function cannot be in-
voked until its actual argument has been fully evaluated. Rule R-LET is very
similar to R-BETA. Indeed, it specifies that let z = v in t has the same
behavior, with respect to reduction, as (λz.t) v. We remark that substitution
of a value for a program variable throughout a term is expensive, so R-BETA

and R-LET are never implemented literally: they are only a simple specifi-
cation. Actual implementations usually employ runtime environments, which
may be understood as a form of explicit substitutions (Abadi, Cardelli, Curien,
and Lévy, 1991; Hardin, Maranget, and Pagano, 1998). Note that our choice
of a call-by-value reduction strategy is fairly arbitrary, and has essentially no
impact on the type system; the programming language Haskell, whose re-
duction strategy is known as lazy or call-by-need, also relies on Hindley and
Milner’s type discipline.

Rule R-DELTA describes the semantics of constants. It states that a certain
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relation
δ

−→ is a subset of −→. Of course, since the set of constants is un-

specified, the relation
δ

−→ must be kept abstract as well. We require that, if

t/µ
δ

−→ t ′/µ ′ holds, then

(i) t is of the form c v1 . . . vn, where c is a destructor of arity n; and

(ii) dom(µ) is a subset of dom(µ ′).

Condition (i) ensures that δ-reduction concerns full applications of destruc-
tors only, and that these are evaluated in accordance with the call-by-value
strategy. Condition (ii) ensures that δ-reduction may allocate new memory
locations, but not deallocate existing locations. In particular, a “garbage col-
lection” operator, which destroys unreachable memory cells, cannot be made
available as a constant. Doing so would not make much sense anyway in the
presence of R-EXTEND. Condition (ii) allows proving that, if t/µ reduces to
t ′/µ ′, then dom(µ) is a subset of dom(µ ′); this is left as an exercise to the
reader.

Rule R-EXTEND states that any valid reduction is also valid in a larger
store. The initial and final stores µ and µ ′ in the original reduction are both
extended with a new store fragment µ ′′. The rule’s second premise requires
that the domain of µ ′′ be disjoint with that of µ ′ (and, consequently, also
with that of µ), so that the new memory locations are indeed undefined in
the original reduction. (They may, however, appear in the image of µ.) The
last premise ensures that the new memory locations in µ ′′ do not accidentally
carry the same names as the locations allocated during the original reduction
step, that is, the locations in dom(µ ′\µ). The notation A # B stands for A∩B =

∅.
Rule R-CONTEXT completes the definition of the operational semantics by

defining −� , a relation between closed configurations, in terms of −→. The
rule states that reduction may take place not only at the term’s root, but also
deep inside it, provided the path from the root to the point where reduction
occurs forms an evaluation context. This is how evaluation contexts deter-
mine an evaluation strategy. As a purely technical point, because −� relates
closed configurations only, we do not need to require that the memory lo-
cations in dom(µ ′ \ µ) be fresh for E : indeed, every memory location that
appears within E must be a member of dom(µ).

1.1.4 EXAMPLE [INTEGERS, CONTINUED]: The operational semantics of integer ad-
dition may be defined as follows:

k̂1 +̂ k̂2
δ

−→ ̂k1 + k2 (R-ADD)

The left-hand term is the double application +̂ k̂1 k̂2, while the right-hand
term is the integer literal k̂, where k is the sum of k1 and k2. The distinction
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between object level and meta level (that is, between k̂ and k) is needed here
to avoid ambiguity. 2

1.1.5 EXAMPLE [PAIRS, CONTINUED]: In addition to the pair constructor defined
in Example 1.1.3, we may introduce two destructors π1 and π2 of arity 1. We
may define their operational semantics as follows, for i ∈ {1, 2}:

πi (v1,v2)
δ

−→ vi (R-PROJ)

Thus, our treatment of constants is general enough to account for pair con-
struction and destruction; we need not build these features explicitly into the
language. 2

1.1.6 EXERCISE [BOOLEANS, RECOMMENDED, FF, 9]: Let true and false be
nullary constructors. Let if be a ternary destructor. Extend the semantics
with

if true v1 v2
δ

−→ v1 (R-TRUE)

if false v1 v2
δ

−→ v2 (R-FALSE)

Let us use the syntactic sugar if t0 then t1 else t2 for the triple applica-
tion of if t0 t1 t2. Explain why these definitions do not quite provide the
expected behavior. Without modifying the semantics of if, suggest a new
definition of the syntactic sugar if t0 then t1 else t2 that corrects the
problem. 2

1.1.7 EXAMPLE [SUMS]: Booleans may in fact be viewed as a special case of the
more general concept of sum. Let inj1 and inj2 be unary constructors,
called respectively left and right injections. Let case be a ternary destructor,
whose semantics is defined as follows, for i ∈ {1, 2}:

case (inji v) v1 v2
δ

−→ vi v (R-CASE)

Here, the value inji v is being scrutinized, while the values v1 and v2,
which are typically functions, represent the two arms of a standard case
construct. The rule selects an appropriate arm (here, vi) based on whether
the value under scrutiny was formed using a left or right injection. The arm
vi is executed and given access to the data carried by the injection (here, v).
2

1.1.8 EXERCISE [F, 9]: Explain how to encode true, false and the if con-
struct in terms of sums. Check that the behavior of R-TRUE and R-FALSE

is properly emulated. 2

1.1.9 EXAMPLE [REFERENCES]: Let ref and ! be unary destructors. Let := be a
binary destructor. We write t1 := t2 for the double application := t1 t2.
Define the operational semantics of these three destructors as follows:
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ref v/∅
δ

−→ m/(m 7→ v) if m is fresh for v (R-REF)

!m/(m 7→ v)
δ

−→ v/(m 7→ v) (R-DEREF)

m := v/(m 7→ v0)
δ

−→ v/(m 7→ v) (R-ASSIGN)

According to R-REF, evaluating ref v allocates a fresh memory location
m and binds v to it. Because configurations are considered equal up to α-
conversion of memory locations, the choice of the name m is irrelevant, pro-
vided it is chosen fresh for v, so as to prevent inadvertent capture of the
memory locations that appear free within v. By R-DEREF, evaluating !m re-
turns the value bound to the memory location m within the current store. By
R-ASSIGN, evaluating m := v discards the value v0 currently bound to m

and produces a new store where m is bound to v. Here, the value returned
by the assignment m := v is v itself; in ML-the-programming-language, it is
usually a nullary constructor (), pronounced unit. 2

1.1.10 EXAMPLE [RECURSION]: Let fix be a binary destructor, whose operational
semantics is:

fix v1 v2
δ

−→ v1 (fix v1) v2 (R-FIX)

fix is a fixpoint combinator: it effectively allows recursive definitions of
functions. Indeed, the construct letrec f = λz.t1 in t2 provided by ML-
the-programming-language may be viewed as syntactic sugar for let f =

fix (λf.λz.t1) in t2. 2

1.1.11 EXERCISE [RECOMMENDED, FF, 9]: Assuming the availability of Booleans
and conditionals, integer literals, subtraction, multiplication, integer com-
parison, and a fixpoint combinator, most of which were defined in previous
examples, define a function that computes the factorial of its integer argu-
ment, and apply it to 3̂. Determine, step by step, how this expression reduces
to a value. 2

It is straightforward to check that, if t/µ reduces to t ′/µ ′, then t is not a
value. In other words, values are irreducible: they represent completed com-
putations. The proof is left as an exercise to the reader. The converse, how-
ever, does not hold: if t/µ is irreducible with respect to −� , then t is not
necessarily a value. In that case, the configuration t/µ is said to be stuck. It
represents a runtime error, that is, a situation that does not allow computation
to proceed, yet is not considered a valid outcome. A closed source program
t is said to go wrong if and only if the configuration t/∅ reduces to a stuck
configuration.

1.1.12 EXAMPLE: Runtime errors typically arise when destructors are applied to
arguments of an unexpected nature. For instance, the expressions +̂ 1̂ m and
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π1 2̂ and !3̂ are stuck, regardless of the current store. The program let z =

+̂ +̂ in z 1 is not stuck, because +̂ +̂ is a value. However, its reduct through
R-LET is +̂ +̂ 1, which is stuck, so this program goes wrong. The primary
purpose of type systems is to prevent such situations from arising. 2

1.1.13 REMARK: The configuration !m/µ is stuck if m is not in the domain of µ. In
that case, however, !m/µ is not closed. Because we consider −� as a rela-
tion between closed configurations only, this situation cannot arise. In other
words, the semantics of ML-the-calculus never allows the creation of dan-
gling pointers. As a result, no particular precautions need be taken to guard
against them. Several strongly typed programming languages do neverthe-
less allow dangling pointers in a controlled fashion (Tofte and Talpin, 1997;
Crary, Walker, and Morrisett, 1999b; DeLine and Fähndrich, 2001; Grossman,
Morrisett, Jim, Hicks, Wang, and Cheney, 2002). 2

1.1.2 Damas and Milner’s type system

ML-the-type-system was originally defined by Milner (1978). Here, we re-
produce the definition given a few years later by Damas and Milner (1982),
which is written in a more standard style: typing judgements are defined
inductively by a collection of typing rules. We refer to this type system as
DM.

We must first define types. In DM, types are terms built out of type con-
structors and type variables. Furthermore, they are first-order terms: that is, in
the grammar of types, none of the productions binds a type variable. This
situation is identical to that of the simply-typed λ-calculus.

We begin with several considerations concerning the specification of type
constructors.

First, we do not wish to fix the set of type constructors. Certainly, since
ML-the-calculus has functions, we need to be able to form an arrow type
T → T ′ out of arbitrary types T and T ′; that is, we need a binary type con-
structor →. However, because ML-the-calculus includes an unspecified set
of constants, we cannot say much else in general. If constants include integer
literals and integer operations, as in Example 1.1.1, then a nullary type con-
structor int is needed; if they include pair construction and destruction, as in
Examples 1.1.3 and 1.1.5, then a binary type constructor × is needed; and so
on.

Second, it is common to refer to the parameters of a type constructor by
position, that is, by numeric index. For instance, when one writes T → T ′, it
is understood that the type constructor → has arity 2, that T is its first pa-
rameter, known as its domain, and that T ′ is its second parameter, known as
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its codomain. Here, however, we refer to parameters by names, known as di-
rections. For instance, we define two directions domain and codomain and let
the type constructor → have arity {domain, codomain}. The extra generality af-
forded by directions is exploited in the definition of nonstructural subtyping
(Example 1.2.9) and in the definition of rows (§1.8).

Last, we allow types to be classified using kinds. As a result, every type con-
structor must come not only with an arity, but with a richer signature, which
describes the kinds of the types to which it is applicable and the kind of the
type that it produces. A distinguished kind ? is associated with “normal”
types, that is, types that are directly ascribed to expressions and values. For
instance, the signature of the type constructor → is {domain 7→ ?, codomain 7→
?} ⇒ ?, because it is applicable to two “normal” types and produces a “nor-
mal” type. Introducing kinds other than ? allows viewing some types as ill-
formed: this is illustrated, for instance, in §1.8. In the simplest case, however,
? is really the only kind, so the signature of a type constructor is nothing but
its arity (a set of directions), and every term is a well-formed type, provided
every application of a type constructor respects its arity.

1.1.14 DEFINITION: Let d range over a finite or denumerable set of directions. Let κ

range over a finite or denumerable set of kinds. Let ? be a distinguished kind.
Let K range over partial mappings from directions to kinds. Let F range over
a finite or denumerable set of type constructors, each of which has a signature
of the form K ⇒ κ. The domain of K is referred to as the arity of F, while κ is
referred to as its image kind. We write κ instead of K ⇒ κ when K is empty.
Let → be a type constructor of signature {domain 7→ ?, codomain 7→ ?} ⇒ ?. 2

The type constructors and their signatures collectively form a signature S.
In the following, we assume that a fixed signature S is given and that every
type constructor in it has finite arity, so as to ensure that types are machine
representable. However, in §1.8, we shall explicitly work with several distinct
signatures, one of which involves type constructors of denumerable arity.

A type variable is a name that is used to stand for a type. For simplicity, we
assume that every type variable is branded with a kind, or, in other words,
that type variables of distinct kinds are drawn from disjoint sets. Each of
these sets of type variables is individually subject to α-conversion: that is,
renamings must preserve kinds. Attaching kinds to type variables is only a
technical convenience: in practice, every operation performed during type
inference preserves the property that every type is well-kinded, so it is not
necessary to keep track of the kind of every type variable. It is only necessary
to check that all types supplied by the user, within type declarations, type
annotations, or module interfaces, are well-kinded.
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1.1.15 DEFINITION: For every kind κ, let Vκ be a disjoint, denumerable set of type
variables. Let X, Y, and Z range over the set V of all type variables. Let X̄ and
Ȳ range over finite sets of type variables. We write X̄Ȳ for the set X̄ ∪ Ȳ and
often write X for the singleton set {X}. We write ftv(o) for the set of free type
variables of an object o. 2

The set of types, ranged over by T, is the free many-kinded term algebra
that arises out of the type constructors and type variables. Types are given
by the following inductive definition:

1.1.16 DEFINITION: A type of kind κ is either a member of Vκ, or a term of the form
F {d1 7→ T1, . . . , dn 7→ Tn}, where F has signature {d1 7→ κ1, . . . , dn 7→ κn} ⇒
κ and T1, . . . ,Tn are types of kind κ1, . . . , κn, respectively. 2

As a notational convention, we assume that, for every type constructor F,
the directions that form the arity of F are implicitly ordered, so that we may
say that F has signature κ1 ⊗ . . .⊗ κn ⇒ κ and employ the syntax FT1 . . . Tn

for applications of F. Applications of the type constructor → are written infix
and associate to the right, so T → T ′ → T ′′ stands for T → (T ′ → T ′′).

In order to give meaning to the free type variables of a type, or, more gener-
ally, of a typing judgement, traditional presentations of ML-the-type-system,
including Damas and Milner’s, employ type substitutions. Most of our pre-
sentation avoids substitutions and uses constraints instead. However, we do
need substitutions on a few occasions, especially when relating our presen-
tation to Damas and Milner’s.

1.1.17 DEFINITION: A type substitution θ is a total, kind-preserving mapping of type
variables to types that is the identity everywhere but on a finite subset of V ,
which we call the domain of θ and write dom(θ). The range of θ, which we
write range(θ), is the set ftv(θ(dom(θ))). A type substitution may naturally be
viewed as a total, kind-preserving mapping of types to types. 2

If ~X and ~T are respectively a vector of distinct type variables and a vector
of types of the same (finite) length, such that, for every index i, Xi and Ti

have the same kind, then [~X 7→ ~T] denotes the substitution that maps Xi to
Ti for every index i and is the identity elsewhere. The domain of [~X 7→ ~T] is
a subset of X̄, the set underlying the vector ~X. Its range is a subset of ftv(T̄),
where T̄ is the set underlying the vector ~T. (These may be strict subsets: for
instance, the domain of [X 7→ X] is the empty set, since this substitution is the
identity.) Every substitution θ may be written under the form [~X 7→ ~T], where
X̄ = dom(θ). Then, θ is idempotent if and only if X̄ # ftv(T̄) holds.

As pointed out earlier, types are first-order terms. As a result, every type
variable that appears within a type T appears free within T. Things become
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Γ(x) = S

Γ ` x : S
(DM-VAR)

Γ ;z : T ` t : T ′

Γ ` λz.t : T → T ′
(DM-ABS)

Γ ` t1 : T → T ′ Γ ` t2 : T

Γ ` t1 t2 : T ′
(DM-APP)

Γ ` t1 : S Γ ;z : S ` t2 : T

Γ ` let z = t1 in t2 : T
(DM-LET)

Γ ` t : T X̄ # ftv(Γ)

Γ ` t : ∀X̄.T
(DM-GEN)

Γ ` t : ∀X̄.T

Γ ` t : [~X 7→ ~T]T
(DM-INST)

Figure 1-3: Typing rules for DM

more interesting when we introduce type schemes. As its name implies, a type
scheme may describe an entire family of types; this effect is achieved via
universal quantification over a set of type variables.

1.1.18 DEFINITION: A type scheme S is an object of the form ∀X̄.T, where T is a type
of kind ? and the type variables X̄ are considered bound within T. Any type
of the form [~X 7→ ~T]T is called an instance of the type scheme ∀X̄.T. 2

One may view the type T as the trivial type scheme ∀∅.T, where no type
variables are universally quantified, so types of kind ? may be viewed as a
subset of type schemes. The type scheme ∀X̄.T may be viewed as a finite way
of describing the possibly infinite family of its instances. Note that, through-
out most of this chapter, we work with constrained type schemes, a generaliza-
tion of DM type schemes (Definition 1.2.2).

Typing environments, or environments for short, are used to collect assump-
tions about an expression’s free identifiers.

1.1.19 DEFINITION: An environment Γ is a finite ordered sequence of pairs of a pro-
gram identifier and a type scheme. We write ∅ for the empty environment
and “;” for the concatenation of environments. An environment may be viewed
as a finite mapping from program identifiers to type schemes by letting Γ(x) =

S if and only if Γ is of the form Γ1;x : S; Γ2, where Γ2 contains no assumption
about x. The set of defined program identifiers of an environment Γ , written
dpi(Γ), is defined by dpi(∅) = ∅ and dpi(Γ ;x : S) = dpi(Γ) ∪ {x}. 2

To complete the definition of Damas and Milner’s type system, there re-
mains to define typing judgements. A typing judgement takes the form Γ `

t : S, where t is an expression of interest, Γ is an environment, which typi-
cally contains assumptions about t’s free program identifiers, and S is a type
scheme. Such a judgement may be read: under assumptions Γ , the expression t
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has the type scheme S. By abuse of language, it is sometimes said that t has
type S. A typing judgement is valid (or holds) if and only if it may be derived
using the rules that appear in Figure 1-3. An expression t is well-typed within
the environment Γ if and only if there exists some type scheme S such that
the judgement Γ ` t : S holds; it is ill-typed within Γ otherwise.

Rule DM-VAR allows fetching a type scheme for an identifier x from the en-
vironment. It is equally applicable to program variables, memory locations,
and constants. If no assumption concerning x appears in the environment
Γ , then the rule isn’t applicable. In that case, the expression x is ill-typed
within Γ . Assumptions about constants are usually collected in a so-called
initial environment Γ0. It is the environment under which closed programs are
typechecked, so every subexpression is typechecked under some extension
Γ of Γ0. Of course, the type schemes assigned by Γ0 to constants must be con-
sistent with their operational semantics; we say more about this later (§1.5).
Rule DM-ABS specifies how to typecheck a λ-abstraction λz.t. Its premise re-
quires the body of the function, namely t, to be well-typed under an extra
assumption that causes all free occurrences of z within t to receive a com-
mon type T. Its conclusion forms the arrow type T → T ′ out of the types of
the function’s formal parameter, namely T, and result, namely T ′. It is worth
noting that this rule always augments the environment with a type T—recall
that, by convention, types form a subset of type schemes—but never with a
nontrivial type scheme. Rule DM-APP states that the type of a function ap-
plication is the codomain of the function’s type, provided that the domain
of the function’s type is a valid type for the actual argument. Rule DM-LET

closely mirrors the operational semantics: whereas the semantics of the lo-
cal definition let z = t1 in t2 is to augment the runtime environment by
binding z to the value of t1 prior to evaluating t2, the effect of DM-LET is to
augment the typing environment by binding z to a type scheme for t1 prior to
typechecking t2. Rule DM-GEN turns a type into a type scheme by univer-
sally quantifying over a set of type variables that do not appear free in the
environment; this restriction is discussed in Example 1.1.20 below. Rule DM-
INST, on the contrary, turns a type scheme into one of its instances, which
may be chosen arbitrarily. These two operations are referred to as generaliza-
tion and instantiation. The notion of type scheme and the rules DM-GEN and
DM-INST are characteristic of ML-the-type-system: they distinguish it from
the simply-typed λ-calculus.

1.1.20 EXAMPLE: It is unsound to allow generalizing type variables that appear
free in the environment. For instance, consider the typing judgement z : X `

z : X (1), which, according to DM-VAR, is valid. Applying an unrestricted
version of DM-GEN to it, we obtain z : X ` z : ∀X.X (2), whence, by DM-
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INST, z : X ` z : Y (3). By DM-ABS and DM-GEN, we then have ∅ ` λz.

z : ∀XY.X → Y. In other words, the identity function has unrelated argument
and result types! Then, the expression (λz.z) 0̂ 0̂, which reduces to the stuck
expression 0̂ 0̂, has type scheme ∀Z.Z. So, well-typed programs may cause
runtime errors: the type system is unsound.

What happened? It is clear that the judgement (1) is correct only because
the type assigned to z is the same in its assumption and in its right-hand side.
For the same reason, the judgements (2) and (3)—the former of which may
be written z : X ` z : ∀Y.Y—are incorrect. Indeed, such judgements defeat
the very purpose of environments, since they disregard their assumption.
By universally quantifying over X in the right-hand side only, we break the
connection between occurrences of X in the assumption, which remain free,
and occurrences in the right-hand side, which become bound. This is correct
only if there are in fact no free occurrences of X in the assumption. 2

It is a key feature of ML-the-type-system that DM-ABS may only introduce
a type T, rather than a type scheme, into the environment. Indeed, this al-
lows the rule’s conclusion to form the arrow type T → T ′. If instead the
rule were to introduce the assumption z : S into the environment, then its
conclusion would have to form S → T ′, which is not a well-formed type.
In other words, this restriction is necessary to preserve the stratification be-
tween types and type schemes. If we were to remove this stratification, thus
allowing universal quantifiers to appear deep inside types, we would obtain
an implicitly-typed version of System F (TAPL Chapter 23). Type inference
for System F is undecidable (Wells, 1999), while type inference for ML-the-
type-system is decidable, as we show later, so this design choice has a rather
drastic impact.

1.1.21 EXERCISE [RECOMMENDED, F]: Build a type derivation for the expression
λz1.let z2 = z1 in z2. 2

1.1.22 EXERCISE [RECOMMENDED, F]: Let int be a nullary type constructor of sig-
nature ?. Let Γ0 consist of the bindings +̂ : int → int → int and k̂ : int, for
every integer k. Can you find derivations of the following valid typing judge-
ments? Which of these judgements are valid in the simply-typed λ-calculus,
where let z = t1 in t2 is syntactic sugar for (λz.t2) t1?

Γ0 ` λz.z : int → int
Γ0 ` λz.z : ∀X.X → X

Γ0 ` let f = λz.z+̂1̂ in f 2̂ : int
Γ0 ` let f = λz.z in f f 2̂ : int

Show that the expressions 1̂ 2̂ and λf.(f f) are ill-typed within Γ0. Could
these expressions be well-typed in a more powerful type system? 2
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DM enjoys a number of nice theoretical properties, which have practical
implications. First, under suitable hypotheses about the semantics of con-
stants, about the type schemes that they receive in the initial environment,
and—in the presence of side effects—under a slight restriction of the syntax
of let constructs, it is possible to show that the type system is sound: that
is, well-typed (closed) programs do not go wrong. This essential property ensures
that programs that are accepted by the typechecker may be compiled without
runtime checks. Furthermore, it is possible to show that there exists an algo-
rithm that, given a (closed) environment Γ and a program t, tells whether t
is well-typed with respect to Γ , and if so, produces a principal type scheme S.
A principal type scheme is such that (i) it is valid, that is, Γ ` t : S holds,
and (ii) it is most general, that is, every judgement of the form Γ ` t : S ′

follows from Γ ` t : S by DM-INST and DM-GEN. (For the sake of simplicity,
we have stated the properties of the type inference algorithm only in the case
of a closed environment Γ ; the specification is slightly heavier in the general
case.) This implies that type inference is decidable: the compiler does not require
expressions to be annotated with types. It also implies that, under a fixed en-
vironment Γ , all of the type information associated with an expression t may
be summarized in the form of a single (principal) type scheme, which is very
convenient.

1.1.3 Road map

Before proving the above claims, we first generalize our presentation by
moving to a constraint-based setting. The necessary tools, namely the con-
straint language, its interpretation, and a number of constraint equivalence
laws, are introduced in §1.2. In §1.3, we describe the standard constraint-
based type system HM(X) (Odersky, Sulzmann, and Wehr, 1999). We prove
that, when constraints are made up of equations between free, finite terms,
HM(X) is a reformulation of DM. In the presence of a more powerful con-
straint language, HM(X) is an extension of DM. In §1.4, we show that type
inference may be viewed as a combination of constraint generation and con-
straint solving, as promised earlier. Then, in §1.5, we give a type soundness
theorem. It is stated purely in terms of constraints, but—thanks to the results
developed in the previous sections—applies equally to HM(X) and DM.

Throughout this core material, the syntax and interpretation of constraints
are left partly unspecified. Thus, the development is parameterized with re-
spect to them—hence the unknown X in the name HM(X). We really describe
a family of constraint-based type systems, all of which share a common con-
straint generator and a common type soundness proof. Constraint solving,
however, cannot be independent of X: on the contrary, the design of an ef-
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ficient solver is heavily dependent on the syntax and interpretation of con-
straints. In §1.6, we consider constraint solving in the particular case where
constraints are made up of equations interpreted in a free tree model, and de-
fine a constraint solver on top of a standard first-order unification algorithm.

The remainder of this chapter deals with extensions of the framework. In
§1.7, we explain how to extend ML-the-calculus with a number of features,
including products, sums, references, recursion, algebraic data types, and re-
cursive types. Last, in §1.8, we extend the type language with rows and use
them to assign polymorphic type schemes to operations on records and vari-
ants.

1.2 Constraints

In this section, we define the syntax and logical meaning of constraints. Both
are partly unspecified. Indeed, the set of type constructors (Definition 1.1.14)
must contain at least the binary type constructor →, but might contain more.
Similarly, the syntax of constraints involves a set of so-called predicates on
types, which we require to contain at least a binary subtyping predicate ≤, but
might contain more. (The introduction of subtyping, which is absent in DM,
has little impact on the complexity of our proofs, yet increases the frame-
work’s expressive power. When subtyping is not desired, we interpret the
predicate ≤ as equality.) The logical interpretation of type constructors and
of predicates is left almost entirely unspecified. This freedom allows reason-
ing not only about Damas and Milner’s type system, but also about a family
of constraint-based extensions of it.

1.2.1 Syntax

We now define the syntax of constrained type schemes and of constraints,
and introduce some extra constraint forms as syntactic sugar.

1.2.1 DEFINITION: Let P range over a finite or denumerable set of predicates, each
of which has a signature of the form κ1 ⊗ . . .⊗κn ⇒ ·, where n ≥ 0. For every
kind κ, let =κ and ≤κ be distinguished predicates of signature κ ⊗ κ ⇒ ·. 2

1.2.2 DEFINITION: The syntax of type schemes and constraints is given in Figure 1-
4. It is further restricted by the following requirements. In the type scheme
∀X̄[C].T and in the constraint x ¹ T, the type T must have kind ?. In the con-
straint P T1 . . .Tn, the types T1, . . . ,Tn must have kind κ1, . . . , κn, respec-
tively, if P has signature κ1⊗ . . .⊗κn ⇒ ·. We write ∀X̄.T for ∀X̄[true].T, which
allows viewing DM type schemes as a subset of constrained type schemes.
2
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σ ::= type scheme:
∀X̄[C].T

C,D ::= constraint:
true truth
false falsity
P T1 . . .Tn predicate application
C ∧ C conjunction
∃X̄.C existential quantification
def x : σ in C type scheme introduction
x ¹ T type scheme instantiation

C,D ::= Syntactic sugar for constraints:
. . . As before
σ ¹ T Definition 1.2.3
let x : σ in C Definition 1.2.3
∃σ Definition 1.2.3
def Γ in C Definition 1.2.4
let Γ in C Definition 1.2.4
∃Γ Definition 1.2.4

Figure 1-4: Syntax of type schemes and constraints

We write T1 =κ T2 and T1 ≤κ T2 for the binary predicate applications
=T1 T2 and ≤T1 T2, and refer to them as equality and subtyping constraints,
respectively. We often omit the subscript κ, so T1 = T2 and T1 ≤ T2 are
well-formed constraints whenever T1 and T2 have the same kind. By con-
vention, ∃ and def bind tighter than ∧; that is, ∃X̄.C ∧ D is (∃X̄.C) ∧ D and
def x : σ in C ∧ D is (def x : σ in C) ∧ D. In ∀X̄[C].T, the type variables X̄ are
bound within C and T. In ∃X̄.C, the type variables X̄ are bound within C. The
sets of free type variables of a type scheme σ and of a constraint C, written
ftv(σ) and ftv(C), respectively, are defined accordingly. In def x : σ in C, the
identifier x is bound within C. The sets of free program identifiers of a type
scheme σ and of a constraint C, written fpi(σ) and fpi(C), respectively, are
defined accordingly. Note that x occurs free in the constraint x ¹ T.

The constraint true, which is always satisfied, mainly serves to indicate
the absence of a nontrivial constraint, while false, which has no solution,
may be understood as the indication of a type error. Composite constraints
include conjunction and existential quantification, which have their standard
meaning, as well as type scheme introduction and type scheme instantiation con-
straints, which are similar to Gustavsson and Svenningsson’s constraint ab-
stractions (2001). In order to be able to explain these last two forms, we must
first introduce a number of derived constraint forms:

1.2.3 DEFINITION: Let σ be ∀X̄[D].T. If X̄ # ftv(T ′) holds, then σ ¹ T ′ (read: T ′ is
an instance of σ) stands for the constraint ∃X̄.(D ∧ T ≤ T ′). We write ∃σ (read:
σ has an instance) for ∃X̄.D and let x : σ in C for ∃σ ∧ def x : σ in C. 2

Constrained type schemes generalize Damas and Milner’s type schemes,
while this definition of instantiation constraints generalizes Damas and Mil-
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ner’s notion of instance (Definition 1.1.18). Let us draw a comparison. First,
Damas and Milner’s instance relation is binary (given a type scheme S and a
type T, either T is an instance of S, or it isn’t), and is purely syntactic. For in-
stance, the type Y → Z is not an instance of ∀X.X → X in Damas and Milner’s
sense, because Y and Z are distinct type variables. In our presentation, on the
other hand, ∀X.X → X ¹ Y → Z is not an assertion; rather, it is a constraint,
which by definition is ∃X.(true ∧ X → X ≤ Y → Z). We later prove that it is
equivalent to ∃X.(Y ≤ X∧X ≤ Z) and to Y ≤ Z, and, if subtyping is interpreted
as equality, to Y = Z. That is, σ ¹ T ′ represents a condition on (the ground
types denoted by) the type variables in ftv(σ,T ′) for T ′ to be an instance of σ,
in a logical, rather than purely syntactic, sense. Second, the definition of in-
stantiation constraints involves subtyping, so as to ensure that any supertype
of an instance of σ is again an instance of σ (see rule C-EXTRANS on page 29).
This is consistent with the purpose of subtyping, which is to allow supplying
a subtype where a supertype is expected (TAPL Chapter 15). Third and last,
every type scheme σ is now of the form ∀X̄[C].T. The constraint C, whose free
type variables may or may not be members of X̄, is meant to restrict the set
of instances of the type scheme ∀X̄[C].T. This is evident in the instantiation
constraint ∀X̄[C].T ¹ T ′, which by Definition 1.2.3 stands for ∃X̄.(C∧T ≤ T ′):
the values that X̄ may assume are restricted by the requirement that C be
satisfied. This requirement vanishes in the case of DM type schemes, where
C is true. Our notions of constrained type scheme and of instantiation con-
straint are standard: they are exactly those of HM(X) (Odersky, Sulzmann,
and Wehr, 1999).

Let us now come back to an explanation of type scheme introduction and
instantiation constraints. In short, the construct def x : σ in C binds the name
x to the type scheme σ within the constraint C. If C contains a subconstraint
of the form x ¹ T, where this occurrence of x is free in C, then this subcon-
straint acquires the meaning σ ¹ T. Thus, the constraint x ¹ T is indeed an
instantiation constraint, where the type scheme that is being instantiated is
referred to by name. The constraint def x : σ in C may be viewed as an explicit
substitution of the type scheme σ for the name x within C. Later (§1.4), we use
such explicit substitutions to supplant typing environments. That is, where
Damas and Milner’s type system augments the current typing environment
(DM-ABS, DM-LET), we introduce a new let binding in the current constraint,
which, by Definition 1.4, expands to a new def binding; where it looks up
the current typing environment (DM-VAR), we employ an instantiation con-
straint. (The reader may wish to have a look ahead at Figure 1-9 on page 42.)
The point is that it is then up to a constraint solver to choose a strategy for
reducing explicit substitutions—for instance, one might wish to simplify σ

before substituting it for x within C—whereas the use of environments in
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standard type systems such as DM and HM(X) imposes an eager substitution
strategy, which is inefficient and thus never literally implemented. The use
of type scheme introduction and instantiation constraints allows separating
constraint generation and constraint solving without compromising efficiency,
or, in other words, without introducing a gap between the description of the
type inference algorithm and its actual implementation. Although the algo-
rithm that we plan to describe is not new (Rémy, 1992a), its description in
terms of constraints is: to the best of our knowledge, the only close relative
of our def constraints is to be found in (Gustavsson and Svenningsson, 2001).
An earlier work that contains similar ideas is (Müller, 1994). Fähndrich, Re-
hof, and Das’s instantiation constraints (2000) are also related, but may be
recursive and are meant to be solved using a semi-unification procedure, as
opposed to a unification algorithm extended with facilities for creating and
instantiating type schemes, as in our case.

In Damas and Milner’s type system, every type scheme S has a fixed,
nonempty set of instances. In a constraint-based setting, things are more
complex: given a type scheme σ and a type T, whether T is an instance of
σ (that is, whether the constraint σ ¹ T is satisfied) depends on the mean-
ing assigned to the type variables in ftv(σ,T). Similarly, given a type scheme,
whether some type is an instance of σ (that is, whether the constraint ∃Z.σ ¹

Z, where Z is fresh for σ, is satisfied) depends on the meaning assigned to
the type variables in ftv(σ). Because we do not wish to allow forming type
schemes that have no instances, we often use the constraint ∃Z.σ ¹ Z. In fact,
we later prove that it is equivalent to ∃σ, as defined above. We also use the
constraint form let x : σ in C, which requires σ to have an instance and at
the same time associates it with the name x. Because the def form is more
primitive, it is easier to work with at a low level, but it is no longer explicitly
used after §1.2; we always use let instead.

1.2.4 DEFINITION: Environments Γ remain as in Definition 1.1.19, except DM type
schemes S are replaced with constrained type schemes σ. The set of free pro-
gram identifiers of an environment Γ , written fpi(Γ), is defined by fpi(∅) = ∅

and fpi(Γ ;x : σ) = fpi(Γ)∪ fpi(σ). We write dfpi(Γ) for dpi(Γ)∪ fpi(Γ). We define
def ∅ in C as C and def Γ ;x : σ in C as def Γ in def x : σ in C. Similarly, we
define let ∅ in C as C and let Γ ;x : σ in C as let Γ in let x : σ in C. We define
∃∅ as true and ∃(Γ ;x : σ) as ∃Γ ∧ def Γ in ∃σ. 2

In order to establish or express certain laws of equivalence between con-
straints, we need constraint contexts. A constraint context is a constraint with
zero, one, or several holes, written []. The syntax of contexts is as follows:

C ::= [] | C | C ∧ C | ∃X̄.C | def x : σ in C | def x : ∀X̄[C].T in C
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The application of a constraint context C to a constraint C, written C[C], is
defined in the usual way. Because a constraint context may have any number
of holes, C may disappear or be duplicated in the process. Because a hole
may appear in the scope of a binder, some of C’s free type variables and free
program identifiers may become bound in C[C]. We write dtv(C) and dpi(C)

for the sets of type variables and program identifiers, respectively, that C may
thus capture. We write let x : ∀X̄[C].T in C for ∃X̄.C ∧ def x : ∀X̄[C].T in C.
(Being able to state such a definition is why we require multi-hole contexts.)
We let X range over existential constraint contexts, defined by X ::= [] | ∃X̄.X .

1.2.2 Meaning

We have defined the syntax of constraints and given an informal description
of their meaning. We now give a formal definition of the interpretation of
constraints. We begin with the definition of a model:

1.2.5 DEFINITION: For every kind κ, let Mκ be a nonempty set, whose elements
are called the ground types of kind κ. In the following, t ranges over Mκ, for
some κ that may be determined from the context. For every type constructor
F of signature K ⇒ κ, let F denote a total function from MK into Mκ, where
the indexed product MK is the set of all mappings of domain dom(K) that
map every d ∈ dom(K) to an element of MK(d). For every predicate P of
signature κ1 ⊗ . . . ⊗ κn ⇒ ·, let P denote a predicate on Mκ1

× . . . × Mκn
.

For every kind κ, we require the predicate =κ to be equality on Mκ and the
predicate ≤κ to be a partial order on Mκ. 2

For the sake of convenience, we abuse notation and write F for both the
type constructor and its interpretation; similarly for predicates.

By varying the set of type constructors, the set of predicates, the set of
ground types, and the interpretation of type constructors and predicates, one
may define an entire family of related type systems. We informally refer to
the collection of these choices as X. Thus, the type system HM(X), described
in §1.3, is parameterized by X.

The following examples give standard ways of defining the set of ground
types and the interpretation of type constructors.

1.2.6 EXAMPLE [SYNTACTIC MODELS]: For every kind κ, let Mκ consist of the
closed types of kind κ. Then, ground types are types that do not have any
free type variables, and form the so-called Herbrand universe. Let every type
constructor F be interpreted as itself. Models that define ground types and
interpret type constructors in this manner are referred to as syntactic. 2
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1.2.7 EXAMPLE [TREE MODELS]: Let a path π be a finite sequence of directions.
The empty path is written ε and the concatenation of the paths π and π ′ is
written π ·π ′. Let a tree be a partial function t from paths to type constructors
whose domain is nonempty and prefix-closed and such that, for every path
π in the domain of t, if the type constructor t(π) has signature K ⇒ κ, then
π · d ∈ dom(t) is equivalent to d ∈ dom(K) and, furthermore, for every d ∈

dom(K), the type constructor t(π·d) has image kind K(d). If π is in the domain
of t, then the subtree of t rooted at π, written t/π, is the partial function π ′ 7→
t(π · π ′). A tree is finite if and only if it has finite domain. A tree is regular if
and only if it has a finite number of distinct subtrees. Every finite tree is thus
regular. Let Mκ consist of the finite (resp. regular) trees t such that t(ε) has
image kind κ: then, we have a finite (resp. regular) tree model.

If F has signature K ⇒ κ, one may interpret F as the function that maps
T ∈ MK to the ground type t ∈ Mκ defined by t(ε) = F and t/d = T(d)

for d ∈ dom(T), that is, the unique ground type whose head symbol is F and
whose subtree rooted at d is T(d). Then, we have a free tree model. Note
that free finite tree models coincide with syntactic models, as defined in the
previous example. 2

Rows (§1.8) are interpreted in a tree model, albeit not a free one. The fol-
lowing examples suggest different ways of interpreting the subtyping pred-
icate.

1.2.8 EXAMPLE [EQUALITY MODELS]: The simplest way of interpreting the sub-
typing predicate is to let ≤ denote equality on every Mκ. Models that do so
are referred to as equality models. When no predicate other than equality is
available, we say that the model is equality-only. 2

1.2.9 EXAMPLE [STRUCTURAL, NONSTRUCTURAL SUBTYPING]: Let a variance ν be
a nonempty subset of {−,+}, written − (contravariant), + (covariant), or ± (in-
variant) for short. Define the composition of two variances as an associative,
commutative operation with + as neutral element, ± as absorbing element
(that is, ±− = ±+ = ±± = ±), and such that −− = +. Now, consider a free
(finite or regular) tree model, where every direction d comes with a fixed
variance ν(d). Define the variance ν(π) of a path π as the composition of the
variances of its elements. Let 6 be a partial order on type constructors such
that (i) if F1 6 F2 holds and F1 and F2 have signature K1 ⇒ κ1 and K2 ⇒ κ2,
respectively, then K1 and K2 agree on the intersection of their domains and κ1

and κ2 coincide; and (ii) F0 6 F1 6 F2 implies dom(F0) ∩ dom(F2) ⊆ dom(F1).
Let 6+, 6−, and 6± stand for 6, >, and =, respectively. Then, define the
interpretation of subtyping as follows: if t1, t2 ∈ Mκ, let t1 ≤ t2 hold if and
only if, for every path π ∈ dom(t1) ∩ dom(t2), t1(π) 6ν(π) t2(π) holds. It is
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not difficult to check that ≤ is a partial order on every Mκ. The reader is
referred to (Amadio and Cardelli, 1993; Kozen, Palsberg, and Schwartzbach,
1995; Brandt and Henglein, 1997) for more details about this construction.
Models that define subtyping in this manner are referred to as nonstructural
subtyping models.

A simple nonstructural subtyping model is obtained by letting the direc-
tions domain and codomain be contra- and covariant, respectively; introduc-
ing, in addition to the type constructor →, two type constructors ⊥ and >

of signature ?; and letting ⊥ 6 → 6 >. This gives rise to a model where
⊥ is the least ground type, > is the greatest ground type, and the arrow
type constructor is, as usual, contravariant in its domain and covariant in
its codomain. This form of subtyping is called nonstructural because compa-
rable ground types may have different shapes: consider, for instance, ⊥ and
⊥ → >.

A typical use of nonstructural subtyping is in type systems for records.
One may, for instance, introduce a covariant direction content of kind ?, a
kind ◦, a type constructor abs of signature ◦, a type constructor pre of signa-
ture {content 7→ ?} ⇒ ◦, and let pre 6 abs. This gives rise to a model where
pre t ≤ abs holds for every t ∈ M?. Again, comparable ground types may
have different shapes: consider, for instance, pre > and abs. §1.8 says more
about typechecking operations on records.

Nonstructural subtyping has been studied, for example, in (Kozen, Pals-
berg, and Schwartzbach, 1995; Palsberg, Wand, and O’Keefe, 1997; Jim and
Palsberg, 1999; Pottier, 2001b; Su, Aiken, Niehren, Priesnitz, and Treinen,
2002; Niehren and Priesnitz, 2003).

An important particular case arises when any two type constructors re-
lated by 6 have the same arity (and thus also the same signatures). In that
case, it is not difficult to show that any two ground types related by subtyping
must have the same shape, that is, if t1 ≤ t2 holds, then dom(t1) and dom(t2)

must coincide. For this reason, such an interpretation of subtyping is usu-
ally referred to as atomic or structural subtyping. It has been studied in the
finite (Mitchell, 1984, 1991; Tiuryn, 1992; Pratt and Tiuryn, 1996; Frey, 1997;
Rehof, 1997; Kuncak and Rinard, 2003; Simonet, 2003) and regular (Tiuryn
and Wand, 1993) cases. Structural subtyping is often used in automated pro-
gram analyses that enrich standard types with atomic annotations without
altering their shape. 2

Many other kinds of constraints exist, which we lack space to list; see (Comon,
1993) for a short survey.

Throughout this chapter, we assume (unless otherwise stated) that the set
of type constructors, the set of predicates, and the model—which, together,
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φ |= def Γ in true (CM-TRUE)

P(φ(T1), . . . , φ(Tn))

φ |= def Γ in P T1 . . . Tn

(CM-PREDICATE)

φ |= def Γ in C1

φ |= def Γ in C2

φ |= def Γ in (C1 ∧ C2)
(CM-AND)

φ[~X 7→ ~t] |= def Γ in C

X̄ # ftv(Γ)

φ |= def Γ in ∃X̄.C
(CM-EXISTS)

φ |= def Γ1 in σ ¹ T ′

x 6∈ dpi(Γ2)

φ |= def Γ1;x : σ; Γ2 in x ¹ T ′

(CM-INSTANCE)

Figure 1-5: Meaning of constraints

form the parameter X—are arbitrary and fixed.
As usual, the meaning of a constraint is a function of the meaning of its

free type variables, which is given by a ground assignment. The meaning of
free program identifiers may be defined as part of the constraint, if desired,
using a def prefix, so it need not be given by a separate assignment.

1.2.10 DEFINITION: A ground assignment φ is a total, kind-preserving mapping from
V into M. Ground assignments are extended to types by φ(FT1 . . . Tn) =

F(φ(T1), . . . , φ(Tn)). Then, for every type T of kind κ, φ(T) is a ground type
of kind κ. Whether a constraint C holds under a ground assignment φ, writ-
ten φ |= C (read: φ satisfies C), is defined by the rules in Figure 1-5. A con-
straint C is satisfiable if and only if φ |= C holds for some φ. It is false if and
only if φ |= def Γ in C holds for no ground assignment φ and environment Γ .
2

Let us now explain the rules that define constraint satisfaction (Figure 1-
5). They are syntax-directed: that is, to a given constraint, at most one rule
applies. Which rule applies is determined by the nature of the first construct
that appears under a maximal def prefix. CM-TRUE states that a constraint
of the form def Γ in true is a tautology, that is, holds under every ground
assignment. No rule matches constraints of the form def Γ in false, which
means that such constraints do not have a solution. CM-PREDICATE states
that the meaning of a predicate application is given by the predicate’s inter-
pretation within the model. More specifically, if P’s signature is κ1 ⊗ . . . ⊗

κn ⇒ ·, then, by well-formedness of the constraint, every Ti is of kind κi, so
φ(Ti) is a ground type in Mκi

. By Definition 1.2.5, P denotes a predicate on
Mκ1

× . . . ×Mκn
, so the rule’s premise is mathematically well-formed. It is

independent of Γ , which is natural, since a predicate application has no free
program identifiers. CM-AND requires each of the conjuncts to be valid in
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isolation. The information in Γ is made available to each branch. CM-EXISTS

allows the type variables ~X to denote arbitrary ground types ~t within C, in-
dependently of their image through φ. We implicitly require ~X and~t to have
matching kinds, so that φ[~X 7→ ~t] remains a kind-preserving ground assign-
ment. The side condition X̄ # ftv(Γ)—which may always be satisfied by suit-
able α-conversion of the constraint ∃X̄.C—prevents free occurrences of the
type variables X̄ within Γ from being unduly affected. CM-INSTANCE con-
cerns constraints of the form def Γ in x ¹ T ′. The constraint x ¹ T ′ is turned
into σ ¹ T ′, where, according to the second premise, σ is Γ(x). Recall that
constraints of such a form were introduced in Definition 1.2.3. The environ-
ment Γ is replaced with a suitable prefix of itself, namely Γ1, so that the free
program identifiers of σ retain their meaning.

It is intuitively clear that the constraints def x : σ in C and [x 7→ σ]C have
the same meaning, where the latter denotes the capture-avoiding substitu-
tion of σ for x throughout C. As a matter of fact, it would have been possible
to use this equivalence as a definition of the meaning of def constraints, but
the present style is pleasant as well. This confirms our (informal) claim that
the def form is an explicit substitution form.

It is possible for a constraint to be neither satisfiable nor false. Consider,
for instance, the constraint ∃Z.x ¹ Z. Because the identifier x is free, CM-
INSTANCE is not applicable, so the constraint is not satisfiable. Furthermore,
placing it within the context let x : ∀X.X in [] makes it satisfied by every
ground assignment, so it is not false. In a standard first-order logic, the as-
sertions “C is satisfiable” and “C is false” are complementary. Here, however,
they may not be so; they are so when fpi(C) = ∅ holds.

Because constraints lie at the heart of our treatment of ML-the-type-system,
most of our proofs involve establishing logical properties of constraints. These
properties are usually not stated in terms of the satisfaction predicate |=,
which is too low-level. Instead, we reason in terms of entailment or equivalence
assertions. Let us first define these notions.

1.2.11 DEFINITION: We write C1 ° C2, and say that C1 entails C2, if and only if, for
every ground assignment φ and for every environment Γ , φ |= def Γ in C1

implies φ |= def Γ in C2. We write C1 ≡ C2, and say that C1 and C2 are
equivalent, if and only if C1 ° C2 and C2 ° C1 hold. 2

This definition measures the strength of a constraint by the set of pairs
(φ, Γ) that satisfy it, and considers a constraint stronger if fewer such pairs
satisfy it. In other words, C1 entails C2 when C1 imposes stricter require-
ments on its free type variables and program identifiers than C2 does. We
remark that C is false if and only if C ≡ false holds. It is straightforward
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to check that entailment is reflexive and transitive and that ≡ is indeed an
equivalence relation.

We immediately exploit the notion of constraint equivalence to define what
it means for a type constructor to be covariant, contravariant, or invariant
with respect to one of its parameters. Let F be a type constructor of signature
κ1 ⊗ . . . ⊗ κn ⇒ κ. Let i ∈ {1, . . . , n}. F is covariant (resp. contravariant, invari-
ant) with respect to its ith parameter if and only if, for all types T1, . . . ,Tn and
T ′

i of appropriate kinds, the constraint FT1 . . .Ti . . . Tn ≤ FT1 . . .T ′
i . . . Tn

is equivalent to Ti ≤ T ′
i (resp. T ′

i ≤ Ti, Ti = T ′
i). We let the reader check

the following facts: (i) in an equality model, these three notions coincide; (ii)
in an equality free tree model, every type constructor is invariant with re-
spect to each of its parameters; and (iii) in a nonstructural subtyping model,
if the direction d has been declared covariant (resp. contravariant, invariant),
then every type constructor whose arity includes d is covariant (resp. con-
travariant, invariant) with respect to d. In the following, we require the type
constructor → to be contravariant with respect to its domain and covariant with
respect to its codomain—a standard requirement in type systems with subtyp-
ing (TAPL Chapter 15). This requirement is summed up by the following
equivalence law:

T1 → T2 ≤ T ′
1 → T ′

2 ≡ T ′
1 ≤ T1 ∧ T2 ≤ T ′

2 (C-ARROW)

Note that this requirement bears on the interpretation of types and of the
subtyping predicate. In an equality free tree model, by (i) and (ii) above, it
is always satisfied. In a nonstructural subtyping model, it boils down to re-
quiring that the directions domain and codomain be declared contravariant
and covariant, respectively. In the general case, we do not have any know-
ledge of the model, and cannot formulate a more precise requirement. Thus,
it is up to the designer of the model to ensure that C-ARROW holds.

We also exploit the notion of constraint equivalence to define what it means
for two type constructors to be incompatible. Two type constructors F1 and
F2 with the same image kind are incompatible if and only if all constraints of
the form F1 ~T1 ≤ F2 ~T2 and F2 ~T2 ≤ F1 ~T1 are false. Note that in an equality
free tree model, any two distinct type constructors are incompatible. In the
following, we often indicate that a newly introduced type constructor must
be isolated. We implicitly require that, whenever both F1 and F2 are isolated,
F1 and F2 be incompatible. Thus, the notion of “isolation” provides a concise
and modular way of stating a collection of incompatibility requirements. We
require the type constructor → to be isolated.
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1.2.3 Reasoning with constraints

In this section, we give a number of equivalence laws that are often useful
and help understand the meaning of constraints. To begin, we note that en-
tailment is preserved by arbitrary constraint contexts, as stated by the follow-
ing theorem. As a result, constraint equivalence is a congruence. Throughout
this chapter, these facts are often used implicitly.

1.2.12 THEOREM [CONGRUENCE]: C1 ° C2 implies C[C1] ° C[C2]. 2

Next, we define what it means for a constraint to determine a set of type
variables. In short, C determines Ȳ if and only if, given a ground assignment
for ftv(C) \ Ȳ and given that C holds, it is possible to reconstruct, in a unique
way, a ground assignement for Ȳ. Determinacy appears in the equivalence
law C-LETALL on page 29 and is exploited by the constraint solver in §1.6.

1.2.13 DEFINITION: C determines Ȳ if and only if, for every environment Γ , two
ground assignments that satisfy def Γ in C and that coincide outside Ȳ must
coincide on Ȳ as well. 2

We now give a toolbox of constraint equivalence laws. It is worth noting
that they do not form a complete axiomatization of constraint equivalence—
in fact, they cannot, since the syntax and meaning of constraints is partly
unspecified.

1.2.14 THEOREM: All equivalence laws in Figure 1-6 hold. 2

Let us explain. C-AND and C-ANDAND state that conjunction is commu-
tative and associative. C-DUP states that redundant conjuncts may be freely
added or removed, where a conjunct is redundant if and only if it is entailed
by another conjunct. Throughout this chapter, these three laws are often used
implicitly. C-EXEX and C-EX* allow grouping consecutive existential quan-
tifiers and suppressing redundant ones, where a quantifier is redundant if
and only if it does not occur free within its scope. C-EXAND allows conjunc-
tion and existential quantification to commute, provided no capture occurs;
it is known as a scope extrusion law. When the rule is oriented from left to
right, its side-condition may always be satisfied by suitable α-conversion. C-
EXTRANS states that it is equivalent for a type T to be an instance of σ or
to be a supertype of some instance of σ. We remark that the instances of a
monotype are its supertypes, that is, by Definition 1.2.3, T ′ ¹ T and T ′ ≤ T
are equivalent. As a result, specializing C-EXTRANS to the case where σ is a
monotype, we find that T ′ ≤ T is equivalent to ∃Z.(T ′ ≤ Z∧Z ≤ T), for fresh
Z, a standard equivalence law. When oriented from left to right, it becomes
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C1 ∧ C2 ≡ C2 ∧ C1 (C-AND)

(C1 ∧ C2) ∧ C3 ≡ C1 ∧ (C2 ∧ C3) (C-ANDAND)

C1 ∧ C2 ≡ C1 if C1 ° C2 (C-DUP)

∃X̄.∃Ȳ.C ≡ ∃X̄Ȳ.C (C-EXEX)

∃X̄.C ≡ C if X̄ # ftv(C) (C-EX*)

(∃X̄.C1) ∧ C2 ≡ ∃X̄.(C1 ∧ C2) if X̄ # ftv(C2) (C-EXAND)

∃Z.(σ ¹ Z∧ Z ≤ T) ≡ σ ¹ T if Z 6∈ ftv(σ,T) (C-EXTRANS)

let x : σ in C[x ¹ T] ≡ let x : σ in C[σ ¹ T] (C-INID)

if x 6∈ dpi(C) and dtv(C) # ftv(σ) and {x}∪ dpi(C) # fpi(σ)

let Γ in C ≡ ∃Γ ∧ C if dpi(Γ) # fpi(C) (C-IN*)

let Γ in (C1 ∧ C2) ≡ (let Γ in C1) ∧ (let Γ in C2) (C-INAND)

let Γ in (C1 ∧ C2) ≡ (let Γ in C1) ∧ C2 if dpi(Γ) # fpi(C2) (C-INAND*)

let Γ in ∃X̄.C ≡ ∃X̄.let Γ in C if X̄ # ftv(Γ) (C-INEX)

let Γ1; Γ2 in C ≡ let Γ2; Γ1 in C (C-LETLET)

if dpi(Γ1) # dpi(Γ2) and dpi(Γ2) # fpi(Γ1) and dpi(Γ1) # fpi(Γ2)

let x : ∀X̄[C1 ∧ C2].T in C3 ≡ C1 ∧ let x : ∀X̄[C2].T in C3 if X̄ # ftv(C1) (C-LETAND)

let Γ ;x : ∀X̄[C1].T in C2 ≡ let Γ ;x : ∀X̄[let Γ in C1].T in C2 (C-LETDUP)

if X̄ # ftv(Γ) and dpi(Γ) # fpi(Γ)

let x : ∀X̄[∃Ȳ.C1].T in C2 ≡ let x : ∀X̄Ȳ[C1].T in C2 if Ȳ # ftv(T) (C-LETEX)

let x : ∀X̄Ȳ[C1].T in C2 ≡ ∃Ȳ.let x : ∀X̄[C1].T in C2 (C-LETALL)

if Ȳ # ftv(C2) and ∃X̄.C1 determines Ȳ

∃X.(T ≤ X∧ let x : X in C) ≡ let x : T in C if X 6∈ ftv(T,C) (C-LETSUB)

~X = ~T∧ [~X 7→ ~T]C ≡ ~X = ~T∧ C (C-EQ)

true ≡ ∃X̄.(~X = ~T) if X̄ # ftv(T̄) (C-NAME)

[~X 7→ ~T]C ≡ ∃X̄.(~X = ~T∧ C) if X̄ # ftv(T̄) (C-NAMEEQ)

Figure 1-6: Constraint equivalence laws
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an interesting simplification law: in a chain of subtyping constraints, an inter-
mediate variable such as Z may be suppressed, provided it is local, as wit-
nessed by the existential quantifier ∃Z. C-INID states that, within the scope
of the binding x : σ, every free occurrence of x may be safely replaced with σ.
The restriction to free occurrences stems from the side-condition x 6∈ dpi(C).
When the rule is oriented from left to right, its other side-conditions, which
require the context let x : σ in C not to capture σ’s free type variables or
free program identifiers, may always be satisfied by suitable α-conversion.
C-IN* complements the previous rule by allowing redundant let bindings
to be simplified. We remark that C-INID and C-IN* provide a simple proce-
dure for eliminating let forms. C-INAND states that the let form commutes
with conjunction; C-INAND* spells out a common particular case. C-INEX

states that it commutes with existential quantification. When the rule is ori-
ented from left to right, its side-condition may always be satisfied by suit-
able α-conversion. C-LETLET states that let forms may commute, provided
they bind distinct program identifiers and provided no free program iden-
tifiers are captured in the process. C-LETAND allows the conjunct C1 to be
moved outside of the constrained type scheme ∀X̄[C1 ∧ C2].T, provided it
does not involve any of the universally quantified type variables X̄. When
oriented from left to right, the rule yields an important simplification law:
indeed, taking an instance of ∀X̄[C2].T is less expensive than taking an in-
stance of ∀X̄[C1 ∧ C2].T, since the latter involves creating a copy of C1, while
the former does not. C-LETDUP allows pushing a series of let bindings into
a constrained type scheme, provided no capture occurs in the process. It is
not used as a simplification law but as a tool in some proofs. C-LETEX states
that it does not make any difference for a set of type variables Ȳ to be ex-
istentially quantified inside a constrained type scheme or part of the type
scheme’s universal quantifiers. Indeed, in either case, taking an instance of
the type scheme means producing a constraint where Ȳ is existentially quan-
tified. Together, C-LETEX and C-LETALL allow—in some situations only—to
hoist existential quantifiers out of the left-hand side of a let form.

1.2.15 EXAMPLE: C-LETALL would be invalid without the condition that ∃X̄.C1 de-
termines Ȳ. Consider, for instance, the constraint let x : ∀Y.Y → Y in (x ¹

int → int ∧ x ¹ bool → bool) (1), where int and bool are incompatible nullary
type constructors. By C-INID and C-IN*, it is equivalent to ∀Y.Y → Y ≤

int → int ∧ ∀Y.Y → Y ≤ bool → bool which, by Definition 1.2.3, mean
∃Y.(Y → Y ≤ int → int) ∧ ∃Y.(Y → Y ≤ bool → bool), that is, true. Now,
if C-LETALL was valid without its side-condition, then (1) would also be
equivalent to ∃Y.let x : Y → Y in (x ¹ int → int ∧ x ¹ bool → bool), which
by C-INID and C-IN* is ∃Y.(Y → Y ≤ int → int ∧ Y → Y ≤ bool → bool).
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By C-ARROW and C-EXTRANS, this is int = bool, that is, false. Thus, the
law is invalid in this case. It is easy to see why: when the type scheme σ

contains a ∀Y quantifier, every instance of σ receives its own ∃Y quantifier,
making Y a distinct (local) type variable; when Y is not universally quan-
tified, however, all instances of σ share references to a single (global) type
variable Y. This corresponds to the intuition that, in the former case, σ is
polymorphic in Y, while in the latter case, it is monomorphic in Y. It is possible
to prove that, when deprived of its side-condition, C-LETALL is only an en-
tailment law, that is, its right-hand side entails its left-hand side. Similarly,
it is in general invalid to hoist an existential quantifier out of the left-hand
side of a let form. To see this, one may study the (equivalent) constraint
let x : ∀X[∃Y.X = Y → Y].X in (x ¹ int → int ∧ x ¹ bool → bool).

Naturally, in the above examples, the side-condition “true determines Y”
does not hold: by Definition 1.2.13, it is equivalent to “two ground assign-
ments that coincide outside Y must coincide on Y as well”, which is false as
soon as M? contains two distinct elements, such as int and bool here. There
are cases, however, where the side-condition does hold. For instance, we later
prove that ∃X.Y = int determines Y; see Lemma 1.6.7. As a result, C-LETALL

states that let x : ∀XY[Y = int].Y → X in C (1) is equivalent to ∃Y.let x : ∀X[Y =

int].Y → X in C (2), provided Y 6∈ ftv(C). The intuition is simple: because Y is
forced to assume the value int by the equation Y = int, it makes no difference
whether Y is or isn’t universally quantified. We remark that, by C-LETAND,
(2) is equivalent to ∃Y.(Y = int ∧ let x : ∀X.Y → X in C) (3). In an efficient
constraint solver, simplifying (1) into (3) before using C-INID to eliminate the
let form is worthwhile, since doing so obviates the need for copying the type
variable Y and the equation Y = int at every free occurrence of x inside C. 2

C-LETSUB is the analogue of an environment strengthening lemma: roughly
speaking, it states that, if a constraint holds under the assumption that x has
type X, where X is some supertype of T, then it also holds under the assump-
tion that x has type T. The last three rules deal with the equality predicate.
C-EQ states that it is valid to replace equals with equals; note the absence of
a side-condition. When oriented from left to right, C-NAME allows introduc-
ing fresh names ~X for the types ~T. As always, ~X stands for a vector of distinct
type variables; ~T stands for a vector of the same length of types of appropri-
ate kind. Of course, this makes sense only if the definition is not circular, that
is, if the type variables X̄ do not occur free within the terms T̄. When oriented
from right to left, C-NAME may be viewed as a simplification law: it allows
eliminating type variables whose value has been determined. C-NAMEEQ is
a combination of C-EQ and C-NAME. It shows that applying an idempotent
substitution to a constraint C amounts to placing C within a certain context.
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So far, we have considered def a primitive constraint form and defined
the let form in terms of def, conjunction, and existential quantification. The
motivation for this approach was to simplify the (omitted!) proofs of several
constraint equivalence laws. However, in the remainder of this chapter, we
work with let forms exclusively and never employ the def construct. This offers us
a few extra properties, stated in the next two lemmas. First, every constraint
that contains a false subconstraint must be false. Second, no satisfiable con-
straint has a free program identifier.

1.2.16 LEMMA: C[false] ≡ false. 2

1.2.17 LEMMA: If C is satisfiable, then fpi(C) = ∅. 2

1.2.4 Reasoning with constraints in an equality-only syntactic model

We have given a number of equivalence laws that are valid with respect to
any interpretation of constraints, that is, within any model. However, an im-
portant special case is that of equality-only syntactic models. Indeed, in that
specific setting, our constraint-based type systems are in close correspon-
dence with DM. In short, we aim to prove that every satisfiable constraint
admits a canonical solved form and to show that this notion corresponds to
the standard concept of a most general unifier. These results are exploited in
§1.3.3.

Thus, let us now assume that constraints are interpreted in an equality-
only syntactic model. Let us further assume that, for every kind κ, (i) there
are at least two type constructors of image kind κ and (ii) for every type con-
structor F of image kind κ, there exists t ∈ Mκ such that t(ε) = F. We refer to
models that violate (i) or (ii) as degenerate; one may argue that such models
are of little interest. The assumption that the model is nondegenerate is used
in the proof of Theorem 1.3.7.

A solved form is a conjunction of equations, where the left-hand sides are
distinct type variables that do not appear in the right-hand sides, possibly
surrounded by a number of existential quantifiers. Our definition is identi-
cal to Lassez, Maher and Marriott’s solved forms (1988) and to Jouannaud
and Kirchner’s tree solved forms (1991), except we allow for prenex existen-
tial quantifiers, which are made necessary by our richer constraint language.
Jouannaud and Kirchner also define dag solved forms, which may be expo-
nentially smaller. Because we define solved forms only for proof purposes,
we need not take performance into account at this point. The efficient con-
straint solver presented in §1.6 does manipulate graphs, rather than trees.
Type scheme introduction and instantiation constructs cannot appear within
solved forms; indeed, provided the constraint at hand has no free program
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identifiers, they can be expanded away. For this reason, their presence in the
constraint language has no impact on the results contained in this section.

1.2.18 DEFINITION: A solved form is of the form ∃Ȳ.(~X = ~T), where X̄ # ftv(T̄). 2

Solved forms offer a convenient way of reasoning about constraints be-
cause every satisfiable constraint is equivalent to one. This property is estab-
lished by the following lemma.

1.2.19 LEMMA: Let fpi(C) = ∅. Then, C is equivalent to either a solved form or
false. 2

It is possible to impose further restrictions on solved forms. A solved form
∃Ȳ.(~X = ~T) is canonical if and only if its free type variables are exactly X̄. This
is stated, in an equivalent way, by the following definition.

1.2.20 DEFINITION: A canonical solved form is a constraint of the form ∃Ȳ.(~X = ~T),
where ftv(T̄) ⊆ Ȳ and X̄ # Ȳ. 2

1.2.21 LEMMA: Every solved form is equivalent to a canonical solved form. 2

It is easy to describe the solutions of a canonical solved form: they are the
ground refinements of the substitution [~X 7→ ~T]. Hence, every canonical
solved form is satisfiable.

The following definition allows entertaining a dual view of canonical solved
forms, either as constraints or as idempotent type substitutions. The latter
view is commonly found in standard treatments of unification (Lassez, Ma-
her, and Marriott, 1988; Jouannaud and Kirchner, 1991) and in classic presen-
tations of ML-the-type-system.

1.2.22 DEFINITION: If [~X 7→ ~T] is an idempotent substitution of domain X̄, let ∃[~X 7→
~T] denote the canonical solved form ∃Ȳ.(~X = ~T), where Ȳ = ftv(T̄). An idem-
potent substitution θ is a most general unifier of the constraint C if and only if
∃θ and C are equivalent. 2

By definition, equivalent constraints admit the same most general unifiers.
Many properties of canonical solved forms may be reformulated in terms of
most general unifiers. By Lemmas 1.2.17, 1.2.19, and 1.2.21, every satisfiable
constraint admits a most general unifier.

1.3 HM(X)

Constraint-based type systems appeared during the 1980s (Mitchell, 1984;
Fuh and Mishra, 1988) and were widely studied during the following decade (Cur-
tis, 1990; Aiken and Wimmers, 1993; Jones, 1994; Smith, 1994; Palsberg, 1995;
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Trifonov and Smith, 1996; Fähndrich, 1999; Pottier, 2001b). We now present
one such system, baptized HM(X) because it is a parameterized extension
of Hindley and Milner’s type discipline; the meaning of the parameter X

was explained on page 22. Its original description is due to Odersky, Sulz-
mann, and Wehr (1999). Since then, it has been completed in a number of
works (Müller, 1998; Sulzmann, Müller, and Zenger, 1999; Sulzmann, 2000;
Pottier, 2001a; Skalka and Pottier, 2002). Each of these presentations intro-
duces minor variations. Here, we follow (Pottier, 2001a), which is itself in-
spired by (Sulzmann, Müller, and Zenger, 1999).

1.3.1 Definition

Our presentation of HM(X) relies on the constraint language introduced in
§1.2. Technically, our approach to constraints is less abstract than that of (Oder-
sky, Sulzmann, and Wehr, 1999). We interpret constraints within a model,
give conjunction and existential quantification their standard meaning, and
derive a number of equivalence laws (§1.2). Odersky et al., on the other hand,
do not explicitly rely on a logical interpretation; instead, they axiomatize con-
straint equivalence, that is, they consider a number of equivalence laws as ax-
ioms. Thus, they ensure that their high-level proofs, such as type soundness
and correctness and completeness of type inference, are independent of the
low-level details of the logical interpretation of constraints. Their approach is
also more general, since it allows dealing with other logical interpretations,
such as “open-world” interpretations, where constraints are interpreted not
within a fixed model, but within a family of extensions of a “current” model.
In this chapter, we have avoided this extra layer of abstraction, for the sake
of definiteness; however, the changes required to adopt Odersky et al.’s ap-
proach would not be extensive, since the forthcoming proofs do indeed rely
mostly on constraint equivalence laws, rather than on low-level details of the
logical interpretation of constraints.

Another slight departure from Odersky et al.’s work lies in the fact that we
have enriched the constraint language with type scheme introduction and in-
stantiation forms, which were absent in the original presentation of HM(X).
To prevent this addition from affecting HM(X), we require the constraints
that appear in HM(X) typing judgements to have no free program identifiers.
Note that this does not prevent them from containing let forms.

The type system HM(X) consists of a four-place judgement whose parame-
ters are a constraint C, an environment Γ , an expression t, and a type scheme
σ. A judgement is written C, Γ ` t : σ and is read: under the assumptions C

and Γ , the expression t has type σ. One may view C as an assumption about the
judgement’s free type variables and Γ as an assumption about t’s free pro-
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Γ(x) = σ C ° ∃σ

C, Γ ` x : σ
(HMX-VAR)

C, (Γ ;z : T) ` t : T ′

C, Γ ` λz.t : T → T ′
(HMX-ABS)

C, Γ ` t1 : T → T ′ C, Γ ` t2 : T

C, Γ ` t1 t2 : T ′

(HMX-APP)

C, Γ ` t1 : σ C, (Γ ;z : σ) ` t2 : T

C, Γ ` let z = t1 in t2 : T
(HMX-LET)

C ∧ D, Γ ` t : T X̄ # ftv(C, Γ)

C ∧ ∃X̄.D, Γ ` t : ∀X̄[D].T
(HMX-GEN)

C, Γ ` t : ∀X̄[D].T

C ∧ D, Γ ` t : T
(HMX-INST)

C, Γ ` t : T C ° T ≤ T ′

C, Γ ` t : T ′
(HMX-SUB)

C, Γ ` t : σ X̄ # ftv(Γ, σ)

∃X̄.C, Γ ` t : σ
(HMX-EXISTS)

Figure 1-7: Typing rules for HM(X)

gram identifiers. Recall that Γ now contains constrained type schemes, and
that σ is a constrained type scheme.

We would like the validity of a typing judgement to depend not on the
syntax, but only on the meaning of its constraint assumption. We enforce this
point of view by considering judgements equal modulo equivalence of their
constraint assumptions. In other words, the typing judgements C, Γ ` t : σ

and D, Γ ` t : σ are considered identical when C ≡ D holds. A judgement
is valid, or holds, if and only if it is derivable via the rules given in Figure 1-
7. Note that a valid judgement may involve an unsatisfiable constraint. A
program t is well-typed within the (closed) environment Γ if and only if a
judgement of the form C, Γ ` t : σ holds for some satisfiable constraint C. One
might wonder why we do not make the apparently stronger requirement that
C ∧ ∃σ be satisfiable; however, by inspection of the typing rules, the reader
may check that, if the above judgement is derivable, then C ° ∃σ must hold,
hence the two requirements are equivalent.

Let us now explain the rules. Like DM-VAR, HMX-VAR looks up the envi-
ronment to determine the type scheme associated with the program identi-
fier x. Its second premise plays a minor technical role: as noted in the previ-
ous paragraph, its presence helps simplify the definition of well-typedness.
HMX-ABS, HMX-APP, and HMX-LET are identical to DM-ABS, DM-APP, and
DM-LET, respectively, except that the assumption C is made available to ev-
ery subderivation. We recall that the type Tmay be viewed as the type scheme
∀∅[true].T (Definitions 1.1.18 and 1.2.2). As a result, types form a subset of
type schemes, which implies that Γ ;z : T is a well-formed environment and
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C, Γ ` t : T a well-formed typing judgement. To understand HMX-GEN, it
is best to first consider the particular case where C is true. This yields the
following, simpler rule:

D, Γ ` t : T X̄ # ftv(Γ)

∃X̄.D, Γ ` t : ∀X̄[D].T
(HMX-GEN’)

The second premise is identical to that of DM-GEN: the type variables that
are generalized must not occur free within the environment. The conclusion
forms the type scheme ∀X̄[D].T, where the type variables X̄ have become uni-
versally quantified, but are still subject to the constraint D. Note that the type
variables that occur free in D may include not only X̄, but also other type
variables, typically free in Γ . HMX-GEN may be viewed as a more liberal ver-
sion of HMX-GEN’, whereby part of the current constraint, namely C, need
not be copied if it does not concern the type variables that are being gener-
alized, namely X̄. This optimization is important in practice, because C may
be very large. An intuitive explanation for its correctness is given by the con-
straint equivalence law C-LETAND, which expresses the same optimization
in terms of let constraints. Because HM(X) does not use let constraints, the
optimization is hard-wired into the typing rule. As a last technical remark,
let us point out that replacing C∧∃X̄.D with C∧D in HMX-GEN’s conclusion
would not affect the set of derivable judgements; this fact may be established
using HMX-EXISTS and Lemma 1.3.1. HMX-INST allows taking an instance of
a type scheme. The reader may be surprised to find that, contrary to DM-
INST, it does not involve a type substitution. Instead, the rule merely drops
the universal quantifier, which amounts to applying the identity substitution
~X 7→ ~X. One should recall, however, that type schemes are considered equal
modulo α-conversion, so it is possible to rename the type scheme’s universal
quantifiers prior to using HMX-INST. The reason why this provides sufficient
expressive power appears in Exercise 1.3.2 below. The constraint D carried by
the type scheme is recorded as part of the current constraint in HMX-INST’s
conclusion. The subsumption rule HMX-SUB allows a type T to be replaced at
any time with an arbitrary supertype T ′. Because both T and T ′ may have
free type variables, whether T ≤ T ′ holds depends on the current assump-
tion C, which is why the rule’s second premise is an entailment assertion. An
operational explanation of HMX-SUB is that it requires all uses of subsump-
tion to be explicitly recorded in the current constraint. Note that HMX-SUB

remains a useful and necessary rule even when subtyping is interpreted as
equality: then, it allows exploiting the type equations found in C. Last, HMX-
EXISTS allows the type variables that occur only within the current constraint
to become existentially quantified. As a result, these type variables no longer
occur free in the rule’s conclusion; in other words, they have become local to
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the subderivation rooted at the premise. One may prove that the presence
of HMX-EXISTS in the type system does not augment the set of well-typed
programs, but does augment the set of valid typing judgements; it is a pleas-
ant technical convenience. Indeed, because judgements are considered equal
modulo constraint equivalence, constraints may be transparently simplified at
any time. (By simplifying a constraint, we mean replacing it with an equiva-
lent constraint whose syntactic representation is considered simpler.) Bearing
this fact in mind, one finds that an effect of rule HMX-EXISTS is to enable more
simplifications: because constraint equivalence is a congruence, C ≡ D im-
plies ∃X̄.C ≡ ∃X̄.D, but the converse does not hold in general. For instance,
there is in general no way of simplifying the judgement X ≤ Y ≤ Z, Γ ` t : σ,
but if it is known that Y does not appear free in Γ or σ, then HMX-EXISTS

allows deriving ∃Y.(X ≤ Y ≤ Z), Γ ` t : σ, which is the same judgement as
X ≤ Z, Γ ` t : σ. Thus, an interesting simplification has been enabled. Note
that X ≤ Y ≤ Z ≡ X ≤ Z does not hold, while, according to C-EXTRANS,
∃Y.(X ≤ Y ≤ Z) ≡ X ≤ Z does.

A pleasant property of HM(X) is that strengthening a judgement’s con-
straint assumption preserves its validity. In other words, weakening a judge-
ment preserves its validity. It is worth noting that in traditional presentations,
which rely more heavily on type substitutions, the analogue of this result is
a type substitution lemma; see for instance (Tofte, 1988, Lemma 2.7), (Rémy,
1992a, Lemma 1), (Leroy, 1992, Proposition 1.2), (Skalka and Pottier, 2002,
Lemma 3.4). Here, the lemma further states that weakening a judgement
does not alter the shape of its derivation, a useful property when reasoning
by induction on type derivations.

1.3.1 LEMMA [WEAKENING]: If C ′ ° C, then every derivation of C, Γ ` t : σ may
be turned into a derivation of C ′, Γ ` t : σ with the same shape. 2

1.3.2 EXERCISE [RECOMMENDED, FF]: In some presentations of HM(X), HMX-
INST is replaced with the following variant:

C, Γ ` t : ∀X̄[D].T C ° [~X 7→ ~T]D

C, Γ ` t : [~X 7→ ~T]T
(HMX-INST’)

Show that HMX-INST’ is admissible in our presentation of HM(X)—that is,
if its premise is derivable according to the rules of Figure 1-7, then so is its
conclusion. 2

1.3.3 EXERCISE [F]: Give a derivation of true, ∅ ` λz.z : int → int. Give a deriva-
tion of true, ∅ ` λz.z : ∀X.X → X. Check that the former judgement also
follows from the latter via HMX-INST’ (Exercise 1.3.2), and determine which
derivation of true, ∅ ` λz.z : int → int this path gives rise to. 2
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Γ(x) = ∀X̄[D].T

C ∧ D, Γ ` x : T
(HMD-VARINST)

C, (Γ ;z : T) ` t : T ′

C, Γ ` λz.t : T → T ′
(HMD-ABS)

C, Γ ` t1 : T → T ′ C, Γ ` t2 : T

C, Γ ` t1 t2 : T ′

(HMD-APP)

C ∧ D, Γ ` t1 : T1 X̄ # ftv(C, Γ)

C ∧ ∃X̄.D, (Γ ;z : ∀X̄[D].T1) ` t2 : T2

C ∧ ∃X̄.D, Γ ` let z = t1 in t2 : T2

(HMD-LETGEN)

C, Γ ` t : T C ° T ≤ T ′

C, Γ ` t : T ′
(HMD-SUB)

C, Γ ` t : T X̄ # ftv(Γ,T)

∃X̄.C, Γ ` t : T
(HMD-EXISTS)

Figure 1-8: An alternate presentation of HM(X)

We do not give a direct type soundness proof for HM(X). Instead, in the
forthcoming sections, we prove that well-typedness in HM(X) is equivalent
to the satisfiability of a certain constraint, and use that characterization as a
basis for our type soundness proof. A direct type soundness result, based on
a denotational semantics, may be found in (Odersky, Sulzmann, and Wehr,
1999). Another type soundness proof, which follows Wright and Felleisen’s
syntactic approach (1994), appears in (Skalka and Pottier, 2002). Last, a hy-
brid approach, which combines some of the advantages of the previous two,
is given in (Pottier, 2001a).

1.3.2 An alternate presentation of HM(X)

The presentation of HM(X) given in Figure 1-7 has only four syntax-directed
rules out of eight. It is a good specification of the type system, but it is far
from an algorithmic description. As a first step towards such a description,
we provide an alternate presentation of HM(X), where generalization is per-
formed only at let expressions and instantiation takes place only at refer-
ences to program identifiers (Figure 1-8). It has the property that all judge-
ments are of the form C, Γ ` t : T, rather than C, Γ ` t : σ. The following
theorem states that the two presentations are indeed equivalent.

1.3.4 THEOREM: C, Γ ` t : T is derivable via the rules of Figure 1-8 if and only if
it is a valid HM(X) judgement. 2

This theorem shows that the rule sets of Figures 1-7 and 1-8 derive the
same monomorphic judgements, that is, the same judgements of the form
C, Γ ` t : T. The fact that judgements of the form C, Γ ` t : σ, where σ is
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a not a monotype, cannot be derived using the new rule set is a technical
simplification, without deep significance.

1.3.5 EXERCISE [FFF, 9]: Show that it is possible to simplify the presentation
of Damas and Milner’s type system in an analogous manner. That is, define
an alternate set of typing rules for DM, which allows deriving judgements
of the form Γ ` t : T; then, show that this new rule set is equivalent to
the previous one, in the same sense as above. Which auxiliary properties of
DM does your proof require? A solution is given in (Clément, Despeyroux,
Despeyroux, and Kahn, 1986). 2

1.3.3 Relating HM(X) with Damas and Milner’s type system

In order to explain our interest in HM(X), we wish to show that it is more
general than Damas and Milner’s type system. Since HM(X) really is a fam-
ily of type systems, we must make this statement more precise. First, ev-
ery member of the HM(X) family contains DM. Conversely, DM contains
HM(=), the constraint-based type system obtained by specializing HM(X)

to the setting of an equality-only syntactic model.
The first of these assertions is easy to prove, because the mapping from

DM judgements to HM(X) judgements is essentially the identity: every valid
DM judgement may be viewed as a valid HM(X) judgement under the trivial
assumption true. This statement relies on the fact that the DM type scheme
∀X̄.T is identified with the constrained type scheme ∀X̄[true].T, so DM type
schemes (resp. environments) form a subset of HM(X) type schemes (resp.
environments). Its proof is routine.

1.3.6 THEOREM: If Γ ` t : S holds in DM, then true, Γ ` t : S holds in HM(X). 2

We are now interested in proving that HM(=), as defined above, is con-
tained within DM. To this end, we must translate every HM(=) judgement
to a DM judgement. It turns out that this is possible if the original judge-
ment’s constraint assumption is satisfiable. The translation relies on the fact
that the definition of HM(=) assumes an equality-only syntactic model. In-
deed, in that setting, every satisfiable constraint admits a most general unifier
(Definition 1.2.22), whose properties we make essential use of.

Unfortunately, by lack of space, we cannot give the details of this transla-
tion, which are fairly involved. Let us merely say that, given a type scheme σ

and an idempotent type substitution θ such that ftv(σ) ⊆ dom(θ) and ∃θ ° ∃σ

hold, the translation of σ under θ is a DM type scheme, written
�
σ�θ. Its

meaning is intended to be the same as that of the HM(X) type scheme θ(σ).
The translation is extended to environments in such a way that

�
Γ �θ is de-
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fined when ftv(Γ) ⊆ dom(θ) holds. We are now ready to state the main theo-
rem.

1.3.7 THEOREM: Let C, Γ ` t : σ hold in HM(=). Let θ be a most general unifier
of C such that ftv(Γ, σ) ⊆ dom(θ). Then, �Γ �θ ` t : �σ�θ holds in DM. 2

Note that, by requiring θ to be a most general unifier of C, we also require C

to be satisfiable. Judgements that carry an unsatisfiable constraint cannot be
translated.

Together, Theorems 1.3.6 and 1.3.7 yield a precise correspondence between
DM and HM(=): there exists a compositional translation from each to the
other. In other words, they may be viewed as two equivalent formulations of
a single type system. One might also say that HM(=) is a constraint-based
formulation of DM. Furthermore, Theorem 1.3.6 states that every member
of the HM(X) family is an extension of DM. This explains our double inter-
est in HM(X), as an alternate formulation of DM, which we believe is more
pleasant, for reasons already discussed, and as a more expressive framework.

1.4 Constraint generation

We now explain how to reduce type inference problems for HM(X) to con-
straint solving problems. A type inference problem consists of a type envi-
ronment Γ , an expression t, and a type T of kind ?. The problem is to de-
termine whether there exists a satisfiable constraint C such that C, Γ ` t : T
holds. A constraint solving problem consists of a constraint C. The problem
is to determine whether C is satisfiable. To reduce a type inference problem
(Γ,t,T) to a constraint solving problem, we must produce a constraint C that
is both sufficient and necessary for C, Γ ` t : T to hold. Below, we explain how
to compute such a constraint, which we write �Γ ` t : T�. We check that it
is indeed sufficient by proving �Γ ` t : T�, Γ ` t : T. That is, the constraint
�Γ ` t : T� is specific enough to guarantee that t has type T under environ-
ment Γ . We say that constraint generation is sound. We check that it is indeed
necessary by proving that, for every constraint C, the validity of C, Γ ` t : T
implies C ° �Γ ` t : T�. That is, every constraint that guarantees that t has
type T under environment Γ is at least as specific as �Γ ` t : T�. We say
that constraint generation is complete. Together, these properties mean that
�Γ ` t : T� is the least specific constraint that guarantees that t has type T
under environment Γ .

We now see how to reduce a type inference problem to a constraint solving
problem. Indeed, if there exists a satisfiable constraint C such that C, Γ ` t : T
holds, then, by the completeness property, C ° �Γ ` t : T� holds, so �Γ `

t : T� is satisfiable. Conversely, by the soundness property, if �Γ ` t : T�
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is satisfiable, then we have a satisfiable constraint C such that C, Γ ` t : T
holds. In other words, t is well-typed with type T under environment Γ if
and only if 	Γ ` t : T
 is satisfiable.

The reader may be somewhat puzzled by the fact that our formulation
of the type inference problem requires an appropriate type T to be known
in advance, whereas the very purpose of type inference seems to consist in
discovering the type of t! In other words, we have made T an input of the con-
straint generation algorithm, instead of an output. Fortunately, this causes no
loss of generality, because it is possible to let T be a type variable X, cho-
sen fresh for Γ . Then, the constraint produced by the algorithm will contain
information about X. This is the point of the following exercise.

1.4.1 EXERCISE [RECOMMENDED, F]: Let X 6∈ ftv(Γ). Show that, if there exist a
satisfiable constraint C and a type T such that C, Γ ` t : T holds, then there
exists a satisfiable constraint C ′ such that C ′, Γ ` t : X holds. Conclude that,
given a closed environment Γ and an arbitrary type variable X, the term t is
well-typed within Γ if and only if 	Γ ` t : X
 is satisfiable. 2

This shows that providing T as an input to the constraint generation proce-
dure is not essential. We adopt this style because it is convenient. A some-
what naïve alternative would be to provide Γ and t only, and to have the
procedure return both a constraint C and a type T (Sulzmann, Müller, and
Zenger, 1999). It turns out that this does not quite work, because C and T
may mention “fresh” variables, which we must be able to quantify over, if
we are to avoid an informal treatment of “freshness”. Thus, the true alterna-
tive is to provide Γ and t only and to have the procedure return a type scheme
σ (Bonniot, 2002).

The existence of a sound and complete constraint generation procedure is
the analogue of the existence of principal type schemes in classic presentations
of ML-the-type-system (Damas and Milner, 1982). Indeed, a principal type
scheme is least specific in the sense that all valid types are substitution in-
stances of it. Here, the constraint 	Γ ` t : T
 is least specific in the sense
that all valid constraints entail it. More about principal types and principal
typings may be found in (Jim, 1996; Wells, 2002).

How do we perform constraint generation? A standard approach (Sulz-
mann, Müller, and Zenger, 1999; Bonniot, 2002) is to define 	Γ ` t : T
 by
induction on the structure of t. At every let node, following HMD-LETGEN,
part of the current constraint, namely D, is turned into a type scheme, namely
∀X̄[D].T, which is used to extend the environment. Then, at every occurrence
of the program variable that was bound at this let node, following HMD-
VARINST, this type scheme is retrieved from the environment, and a copy of
D is added back to the current constraint. If such an approach is adopted, it
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�
x : T� = x ¹ T�

λz.t : T� = ∃X1X2.(let z : X1 in
�
t : X2� ∧ X1 → X2 ≤ T)�

t1 t2 : T� = ∃X2.(
�
t1 : X2 → T� ∧

�
t2 : X2�)�

let z = t1 in t2 : T� = let z : ∀X[
�
t1 : X�].X in

�
t2 : T�

Figure 1-9: Constraint generation

is important to simplify the type scheme ∀X̄[D].T before it is stored in the envi-
ronment, because it would be inefficient to copy an unsimplified constraint.
In other words, in an efficient implementation of this standard approach,
constraint generation and constraint simplification cannot be separated.

Type scheme introduction and elimination constraints, which we introduced in
§1.2 but did not use in the specification of HM(X), are intended as a means of
solving this problem. By extending our vocabulary, we are able to achieve the
desired separation between constraint generation, on the one hand, and con-
straint solving and simplification, on the other hand, without compromising
efficiency. Indeed, by exploiting these new constraint forms, we may define a
constraint generation procedure whose time and space complexity is linear,
because it no longer involves copying subconstraints back and forth between
the environment and the constraint that is being generated. (It is then up to
the constraint solver to perform simplification and copying, if and when nec-
essary.) In fact, the environment is suppressed altogether: we define

�
t : T�

by induction on the structure of t—notice the absence of the parameter Γ .
Then, the constraint

�
Γ ` t : T� discussed above becomes syntactic sugar for

let Γ in
�
t : T�. We now employ the full constraint language: the program

identifiers that appear free in t may also appear free in
�
t : T�, as part of

instantiation constraints. They become bound when
�
t : T� is placed within

the context let Γ in []. A similar approach to constraint generation appears
in (Müller, 1994).

The defining equations for
�
t : T� appear in Figure 1-9. We refer to them

as the constraint generation rules. The definition is quite terse, and certainly
simpler than the declarative specification of HM(X) given in Figure 1-7; yet,
we prove below that the two are equivalent.

Before explaining the definition, we state the requirements that bear on
the type variables X1, X2, and X, which appear bound in the right-hand sides
of the second, third, and fourth equations. These type variables must have
kind ?. They must be chosen distinct (that is, X1 6= X2 in the second equa-
tion) and fresh for the objects that appear on the left-hand side—that is, the
type variables that appear bound in an equation’s right-hand side must not occur
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free in the term and type that appear in the equation’s left-hand side. Provided this
restriction is obeyed, different choices of X1, X2, and X lead to α-equivalent
constraints—that is, to the same constraint, since we identify objects up to
α-conversion—which guarantees that the above equations make sense. We
remark that, since expressions do not have free type variables, the freshness
requirement may be simplified to: type variables that appear bound in an
equation’s right-hand side must not appear free in T. However, this simpli-
fication would be rendered invalid by the introduction of open type annota-
tions within expressions. Note that we are able to state a precise (as opposed
to informal) freshness requirement. This is made possible by the fact that
t : T� has no free type variables other than those of T, which in turn de-

pends on our explicit use of existential quantification to limit the scope of
auxiliary variables.

Let us now review the four equations. The first equation may be read: x has
type T if and only if T is an instance of the type scheme associated with x. Note that
we no longer consult the type scheme associated with x in the environment—
indeed, there is no environment. Instead, we merely generate an instantiation
constraint, where x appears free. (For this reason, every program identifier
that occurs free within t typically also occurs free within


t : T�.) This con-

straint acquires its full meaning when it is later placed within a context of the
form let x : σ in []. This equation roughly corresponds to HMD-VARINST. The
second equation may be read: λz.t has type T if and only if, for some X1 and X2,
(i) under the assumption that z has type X1, t has type X2, and (ii) T is a supertype
of X1 → X2. Here, the types associated with z and t must be fresh type vari-
ables, namely X1 and X2, because we cannot in general guess them. These
type variables are bound so as to guarantee that the generated constraint is
unique up to α-conversion. They are existentially bound because we intend
the constraint solver to discover their value. Condition (i) is expressed by the
subconstraint let z : X1 in


t : X2�. This makes sense as follows.


t : X2�

typically contains a number of instantiation constraints bearing on z, of the
form z ¹ Ti. By wrapping it within the context let z : X1 in [], we effectively
require every Ti to be a supertype of X1. Note that z does not occur free in
the constraint let z : X1 in


t : X2�, which is necessary for well-formedness

of the definition, since it does not occur free in λz.t. This equation roughly
corresponds to HMD-EXISTS, HMD-ABS, and HMD-SUB. The third equation
may be read: t1 t2 has type T if and only if, for some X2, t1 has type X2 → T and
t2 has type X2. Here, the fresh type variable X2 stands for the unknown type
of t2. This equation roughly corresponds to HMD-APP. The last equation,
which roughly corresponds to HMD-LETGEN, may be read: let z = t1 in
t2 has type T if and only if, under the assumption that z has every type X such that
t1 : X� holds, t2 has type T. As in the case of λ-abstractions, the instantiation
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constraints bearing on z that appear within �t2 : T� are given a meaning via
a let prefix. The difference is that z may now be assigned a type scheme, as
opposed to a monotype. An appropriate type scheme is built as follows. The
constraint �t1 : X� is the least specific constraint that must be imposed on the
fresh type variable X so as to make it a valid type for t1. In other words,
t1 has every type X such that �t1 : X� holds, and none other. That is, the
type scheme ∀X[�t1 : X�].X, abbreviated σ in the following, is a principal type
scheme for t1. It is interesting to note that there is no question of which type
variables to generalize. Indeed, by construction, no type variables other than
X may appear free in �t1 : X�, so we cannot generalize more variables. On
the other hand, it is valid to generalize X, since it does not appear free any-
where else. This interesting simplification is inspired by (Sulzmann, Müller,
and Zenger, 1999), where a similar technique is used. Now, what happens
when �t2 : T� is placed inside the context let z : σ in []? When placed in-
side this context, an instantiation constraint of the form z ¹ T ′ acquires the
meaning σ ¹ T ′, which by definition of σ and by Lemma 1.4.6 (see below) is
equivalent to �t1 : T ′�. Thus, the constraint produced by the fourth equation
simulates a textual expansion of the let construct, where every occurrence
of z would be replaced with t1. Thanks to type scheme introduction and in-
stantiation constraints, however, this effect is achieved without duplication
of source code or constraints. In other words, constraint generation has linear
time and space complexity.

1.4.2 EXERCISE [F, 9]: Define the size of an expression, of a type, and of a con-
straint, viewed as abstract syntax trees. Check that the size of �t : T� is linear
in the sum of the sizes of t and T. 2

1.4.3 EXERCISE [RECOMMENDED, F, 9]: Compute and simplify, as best as you
can, the constraint �let f = λz.z in f f : T�. 2

We now state several properties of constraint generation. We begin with
soundness, whose statement was explained above.

1.4.4 THEOREM [SOUNDNESS]: let Γ in �t : T�, Γ ` t : T. 2

The following lemmas are used in the proof of the completeness property
and in a number of other occasions. The first two state that �t : T� is covari-
ant with respect to T. Roughly speaking, this means that enough subtyping
constraints are generated to achieve completeness with respect to HMD-SUB.

1.4.5 LEMMA: �t : T� ∧ T ≤ T ′ ° �t : T ′�. 2

1.4.6 LEMMA: X 6∈ ftv(T) implies ∃X.(�t : X� ∧ X ≤ T) ≡ �t : T�. 2
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The next lemma gives a simplified version of the second constraint genera-
tion rule, in the specific case where the expected type is an arrow type. Then,
fresh type variables need not be generated; one may directly use the arrow’s
domain and codomain instead.

1.4.7 LEMMA: �λz.t : T1 → T2� is equivalent to let z : T1 in �t : T2�. 2

We conclude with the completeness property. The theorem states that if,
within HM(X), t has type T under assumptions C and Γ , then C must be
at least as specific as let Γ in �t : T�. The statement requires C and Γ to
have no free program identifiers, which is natural, since they are part of an
HM(X) judgement. The hypothesis C ° ∃Γ excludes the somewhat patholog-
ical situation where Γ contains constraints not apparent in C. This hypothesis
vanishes when Γ is the initial environment; see Definition 1.5.2.

1.4.8 THEOREM [COMPLETENESS]: Let C ° ∃Γ . Assume fpi(C, Γ) = ∅. If C, Γ ` t :

T holds in HM(X), then C entails let Γ in �t : T�. 2

1.5 Type soundness

We are now ready to establish type soundness for our type system. The state-
ment that we wish to prove is sometimes known as Milner’s slogan: well-typed
programs do not go wrong (Milner, 1978). Below, we define well-typedness in
terms of our constraint generation rules, for the sake of convenience, and
establish type soundness with respect to that particular definition. Theo-
rems 1.3.6 and 1.4.8 imply that type soundness also holds when well-typedness
is defined with respect to the typing judgements of DM or HM(X). We estab-
lish type soundness by following Wright and Felleisen’s so-called syntactic
approach (1994). The approach consists in isolating two independent proper-
ties. Subject reduction, whose exact statement will be given below, implies that
well-typedness is preserved by reduction. Progress states that no stuck con-
figuration is well-typed. It is immediate to check that, if both properties hold,
then no well-typed program can reduce to a stuck configuration. Subject re-
duction itself depends on a key lemma, usually known as a (term) substitution
lemma. Here is a version of this lemma, stated in terms of the constraint gen-
eration rules.

1.5.1 LEMMA: let z : ∀X̄[�t2 : T2�].T2 in �t1 : T1� entails �[z 7→ t2]t1 : T1�. 2

Before going on, let us give a few definitions and formulate several re-
quirements. First, we must define an initial environment Γ0, which assigns a
type scheme to every constant. A couple of requirements must be made to
ensure that Γ0 is consistent with the semantics of constants, as specified by
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δ
−→. Second, we must extend constraint generation and well-typedness to
configurations, as opposed to programs, since reduction operates on configu-
rations. Last, we must formulate a restriction to tame the interaction between
side effects and let-polymorphism, which is unsound if unrestricted.

1.5.2 DEFINITION: Let Γ0 be an environment whose domain is the set of constants
Q. We require ftv(Γ0) = ∅, fpi(Γ0) = ∅, and ∃Γ0 ≡ true. We refer to Γ0 as the
initial typing environment. 2

1.5.3 DEFINITION: Let ref be an isolated, invariant type constructor of signature
? ⇒ ?. A store type M is a finite mapping from memory locations to types. We
write ref M for the environment that maps every m ∈ dom(M) to ref M(m).
Assuming dom(µ) and dom(M) coincide, the constraint �µ : M� is defined
as the conjunction of the constraints �µ(m) : M(m)�, where m ranges over
dom(µ). Under the same assumption, the constraint �t/µ : T/M� is defined
as �t : T� ∧ �µ : M�. A configuration t/µ is well-typed if and only if there exist
a type T and a store type M such that dom(µ) = dom(M) and the constraint
let Γ0; ref M in �t/µ : T/M� is satisfiable. 2

The type ref T is the type of references (that is, memory locations) that
store data of type T (TAPL Chapter 13). It must be invariant in its parameter,
reflecting the fact that references may be read and written.

A store is a complex object: it may contain values that indirectly refer to
each other via memory locations. In fact, it is a representation of the graph
formed by objects and pointers in memory, which may contain cycles. We
rely on store types to deal with such cycles. In the definition of well-typedness,
the store type M imposes a constraint on the contents of the store—the value
µ(m) must have type M(m)—but also plays the role of a hypothesis: by plac-
ing the constraint �t/µ : T/M� within the context let ref M in [], we give
meaning to free occurrences of memory locations within �t/µ : T/M�, and
stipulate that it is valid to assume that m has type M(m). In other words, we
essentially view the store as a large, mutually recursive binding of locations
to values. Since no satisfiable constraint may have a free program identifier
(Lemma 1.2.17), every well-typed configuration must be closed. The context
let Γ0 in [] gives meaning to occurrences of constants within �t/µ : T/M�.

We now define a relation between configurations that plays a key role in
the statement of the subject reduction property. The point of subject reduc-
tion is to guarantee that well-typedness is preserved by reduction. However,
such a simple statement is too weak to be amenable to inductive proof. Thus,
for the purposes of the proof, we must be more specific. To begin, let us con-
sider the simpler case of a pure semantics, that is, a semantics without stores.
Then, we must state that if an expression t has type T under a certain con-
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straint, then its reduct t ′ has type T under the same constraint. In terms
of generated constraints, this statement becomes: let Γ0 in �t : T� entails
let Γ0 in �t ′ : T�. Let us now return to the general case, where a store is
present. Then, the statement of well-typedness for a configuration t/µ in-
volves a store type M whose domain is that of µ. So, the statement of well-
typedness for its reduct t ′/µ ′ must involve a store type M ′ whose domain is
that of µ ′—which is larger if allocation occurred. The types of existing mem-
ory locations must not change: we must request that M and M ′ agree on
dom(M), that is, M ′ must extend M. Furthermore, the types assigned to new
memory locations in dom(M ′) \ dom(M) might involve new type variables,
that is, variables that do not appear free in M or T. We must allow these
variables to be hidden—that is, existentially quantified—otherwise the en-
tailment assertion cannot hold. These considerations lead us to the following
definition:

1.5.4 DEFINITION: t/µ v t ′/µ ′ holds if and only if, for every type T and for every
store type M such that dom(µ) = dom(M), there exist a set of type variables
Ȳ and a store type M ′ such that Ȳ # ftv(T,M) and ftv(M ′) ⊆ Ȳ ∪ ftv(M) and
dom(M ′) = dom(µ ′) and M ′ extends M and

let Γ0; ref M in �t /µ : T/M �
° ∃Ȳ.let Γ0; ref M ′ in �t ′/µ ′ : T/M ′�.

The relation v is intended to express a connection between a configuration
and its reduct. Thus, subject reduction may be stated as: (−�) ⊆ (v), that is,
v is indeed a conservative description of reduction. 2

We have introduced an initial environment Γ0 and used it in the defini-
tion of well-typedness, but we haven’t yet ensured that the type schemes
assigned to constants are an adequate description of their semantics. We now

formulate two requirements that relate Γ0 with
δ

−→. They are specializations
of the subject reduction and progress properties to configurations that in-
volve an application of a constant. They represent proof obligations that must

be discharged when concrete definitions of Q,
δ

−→, and Γ0 are given.

1.5.5 DEFINITION: We require (i) (
δ

−→) ⊆ (v); and (ii) if the configuration c v1

. . . vk/µ (where k ≥ 0) is well-typed, then either it is reducible, or c v1 . . .

vk is a value. 2

The last point that remains to be settled before proving type soundness is
the interaction between side effects and let-polymorphism. The following
example illustrates the problem:

let r = ref λz.z in let = (r := λz.(z +̂ 1̂)) in !r true
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This expression reduces to true +̂ 1̂, so it must not be well-typed. Yet, if nat-
ural type schemes are assigned to ref, !, and := (see Example 1.7.5), then
it is well-typed with respect to the rules given so far, because r receives the
polymorphic type scheme ∀X.ref (X → X), which allows writing a function of
type int → int into r and reading it back with type bool → bool. The problem
is that let-polymorphism simulates a textual duplication of the let-bound
expression ref λz.z, while the semantics first reduces it to a value m, caus-
ing a new binding m 7→ λz.z to appear in the store, then duplicates the
address m. The new store binding is not duplicated: both copies of m re-
fer to the same memory cell. For this reason, generalization is unsound in
this case, and must be restricted. Many authors have attempted to come up
with a sound type system that accepts all pure programs and remains flex-
ible enough in the presence of side effects (Tofte, 1988; Leroy, 1992). These
proposals are often complex, which is why they have been abandoned in
favor of an extremely simple syntactic restriction, known as the value restric-
tion (Wright, 1995).

1.5.6 DEFINITION: A program satisfies the value restriction if and only if all subex-
pressions of the form let z = t1 in t2 are in fact of the form let z =

v1 in t2. In the following, we assume that either all constants have pure
semantics, or all programs satisfy the value restriction. 2

Put slightly differently, the value restriction states that only values may be
generalized. This eliminates the problem altogether, since duplicating values
does not affect a program’s semantics. Note that any program that does not
satisfy the value restriction can be turned into one that does and has the same
semantics: it suffices to change let z = t1 in t2 into (λz.t2) t1 when t1

is not a value. Of course, such a transformation may cause the program to
become ill-typed. In other words, the value restriction causes some perfectly
safe programs to be rejected. In particular, in its above form, it prevents gen-
eralizing applications of the form c v1 . . . vk, where c is a destructor of
arity k. This is excessive, because many destructors have pure semantics;
only a few, such as ref, allocate new mutable storage. Furthermore, we use
pure destructors to encode numerous language features (§1.7). Fortunately, it
is easy to relax the restriction to allow generalizing not only values, but also
a more general class of nonexpansive expressions, whose syntax guarantees
that such expressions cannot allocate new mutable storage (that is, expand
the domain of the store). The term nonexpansive was coined by Tofte (1988).
Nonexpansive expressions may include applications of the form c t1 . . . tk,
where c is a pure destructor of arity k and t1, . . . ,tk are nonexpansive. Ex-
perience shows that this slightly relaxed restriction is acceptable in practice.
Some limitations remain: for instance, “constructor functions” (that is, func-
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tions that do not allocate mutable storage and build a value) are regarded
as ordinary functions, so their applications are considered potentially expan-
sive, even though a naked constructor application would be a value and thus
considered nonexpansive. For instance, in the expression let f = c v in
let z = f w in t, where c is a constructor of arity 2, the partial application
c v, to which the name f is bound, is a constructor function (of arity 1). The
program variable z cannot receive a polymorphic type scheme, because f w
is not a value, even though it has the same semantic meaning as c v w, which
is a value. A recent improvement to the value restriction (Garrigue, 2003)
provides a partial remedy. Technically, the effect of the value restriction (as
stated in Definition 1.5.6) is summarized by the following result.

1.5.7 LEMMA: Under the value restriction, the production E ::= let z = E in
t may be suppressed from the grammar of evaluation contexts (Figure 1-1)
without altering the operational semantics. 2

We are done with definitions and requirements. We now come to the type
soundness results.

1.5.8 THEOREM [SUBJECT REDUCTION]: (−�) ⊆ (v). 2

Subject reduction ensures that well-typedness is preserved by reduction.

1.5.9 COROLLARY: Let t/µ −� t ′/µ ′. If t/µ is well-typed, then so is t ′/µ ′. 2

Let us now state the progress property.

1.5.10 THEOREM [PROGRESS]: If t/µ is well-typed, then either it is reducible, or t
is a value. 2

We may now conclude:

1.5.11 THEOREM [TYPE SOUNDNESS]: Well-typed source programs do not go wrong.
2

Let us recall that this result holds only if the requirements of Definition 1.5.5
are met. In other words, some proof obligations remain to be discharged

when concrete definitions of Q,
δ

−→, and Γ0 are given. This is illustrated by
several examples in §1.7 and §1.8.

1.6 Constraint solving

We have introduced a parameterized constraint language, given equivalence
laws that describe the interaction between its logical connectives, and ex-
ploited them to prove theorems about type inference and type soundness,
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which are valid independently of the nature of primitive constraints—the so-
called predicate applications. However, there would be little point in propos-
ing a parameterized constraint solver, because much of the difficulty of de-
signing an efficient constraint solver precisely lies in the treatment of primi-
tive constraints and in its interaction with let-polymorphism. For this rea-
son, in this section, we focus on constraint solving in the setting of an equality-
only free tree model. Thus, the constraint solver developed here allows per-
forming type inference for HM(=) (that is, for Damas and Milner’s type
system) and for its extension with recursive types. Of course, some of its
mechanisms may be useful in other settings. Other constraint solvers used
in program analysis or type inference are described e.g. in (Aiken and Wim-
mers, 1992; Niehren, Müller, and Podelski, 1997; Fähndrich, 1999; Melski and
Reps, 2000; Müller, Niehren, and Treinen, 2001; Pottier, 2001b; Nielson, Niel-
son, and Seidl, 2002; McAllester, 2002, 2003; Simonet, 2003).

We begin with a rule-based presentation of a standard, efficient first-order
unification algorithm. This yields a constraint solver for a subset of the con-
straint language, deprived of type scheme introduction and instantiation
forms. On top of it, we build a full constraint solver, which corresponds to
the code that accompanies this chapter.

1.6.1 Unification

Unification is the process of solving equations between terms. We present a
unification algorithm due to Huet (1976), whose time complexity is quasi-
linear. The specification, a (nondeterministic) system of constraint rewriting
rules, is almost the same for finite and regular tree models: only one rule,
which implements the occurs check, must be removed in the latter case. In
other words, the algorithm works with possibly cyclic terms, and does not
rely in an essential way on the occurs check. In order to more closely re-
flect the behavior of the actual algorithm, which relies on a union-find data
structure (Tarjan, 1975), we modify the syntax of constraints by replacing
equations with multi-equations. A multi-equation is an equation that involves
an arbitrary number of types, as opposed to exactly two.

1.6.1 DEFINITION: Let there be, for every kind κ and for every n ≥ 1, a predi-
cate =n

κ , of signature κn ⇒ ·, whose interpretation is (n-ary) equality. The
predicate constraint =n

κ T1 . . . Tn is written T1 = . . . = Tn, and called a
multi-equation. We consider the constraint true as a multi-equation of length 0

and let ε range over all multi-equations. In the following, we identify multi-
equations up to permutations of their members, so a multi-equation ε of kind
κ may be viewed as a finite multiset of types of kind κ. We write ε = ε ′ for
the multi-equation obtained by concatenating ε and ε ′. 2



1.6 Constraint solving 51

Thus, we are interested in the following subset of the constraint language:

U ::= true | false | ε | U ∧ U | ∃X̄.U

Equations are replaced with multi-equations; no other predicates are avail-
able. Type scheme introduction and instantiation forms are absent.

1.6.2 DEFINITION: A multi-equation is standard if and only if its variable members
are distinct and it has at most one nonvariable member. A constraint U is
standard if and only if every multi-equation inside U is standard and every
variable that occurs (free or bound) in U is a member of at most one multi-
equation inside U. 2

A union-find algorithm maintains equivalence classes (that is, disjoint sets)
of variables, and associates, with each class, a descriptor, which in our case is
either absent or a nonvariable term. Thus, a standard constraint represents a
state of the union-find algorithm. A constraint that is not standard may be
viewed as a superposition of a state of the union-find algorithm, on the one
hand, and of control information, on the other hand. For instance, a multi-
equation of the form ε = T1 = T2, where ε is made up of distinct variables
and T1 and T2 are nonvariable terms, may be viewed, roughly speaking,
as the equivalence class ε = T1, together with a pending request to solve
T1 = T2 and to update the class’s descriptor accordingly. Because multi-
equations encode both state and control, our specification of the unification
algorithm remains rather abstract. It would be possible to give a lower-level
description, where state (standard conjunctions of multi-equations) and con-
trol (pending binary equations) are distinguished.

1.6.3 DEFINITION: Let U be a conjunction of multi-equations. Y is dominated by X
with respect to U (written: Y ≺U X) if and only if U contains a conjunct of the
form X = F~T = ε, where Y ∈ ftv(T̄). U is cyclic if and only if the graph of ≺U

exhibits a cycle. 2

The specification of the unification algorithm consists of a set of constraint
rewriting rules, given in Figure 1-10. Rewriting is performed modulo α-conversion,
modulo permutations of the members of a multi-equation, modulo commu-
tativity and associativity of conjunction, and under an arbitrary context. The
specification is nondeterministic: several rule instances may be simultane-
ously applicable.

S-EXAND is a directed version of C-EXAND, whose effect is to float up all
existential quantifiers. In the process, all multi-equations become part of a
single conjunction, possibly causing rules whose left-hand side is a conjunc-
tion of multi-equations, namely S-FUSE and S-CYCLE, to become applicable.
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(∃X̄.U1) ∧ U2 → ∃X̄.(U1 ∧ U2) (S-EXAND)

if X̄ # ftv(U2)

X = ε ∧ X = ε ′ → X = ε = ε ′ (S-FUSE)

X = X = ε → X = ε (S-STUTTER)

F~X = F~T = ε → ~X = ~T∧ F~X = ε (S-DECOMPOSE)

FT1 . . . Ti . . . Tn = ε → ∃X.(X = Ti ∧ FT1 . . . X . . . Tn = ε) (S-NAME-1)

if Ti 6∈ V ∧X 6∈ ftv(T1,...,Tn,ε)

F~T = F ′ ~T ′ = ε → false (S-CLASH)

if F 6= F′

T → true (S-SINGLE)

U ∧ true → U (S-TRUE)

U → false (S-CYCLE)

if the model is syntactic and U is cyclic

U [false] → false (S-FAIL)

if U 6= []

Figure 1-10: Unification

S-FUSE identifies two multi-equations that share a common variable X, and
fuses them. The new multi-equation is not necessarily standard, even if the
two original multi-equations were. Indeed, it may have repeated variables or
contain two nonvariable terms. The purpose of the next few rules, whose left-
hand side consists of a single multi-equation, is to deal with these situations.
S-STUTTER eliminates redundant variables. It only deals with variables, as
opposed to terms of arbitrary size, so as to have constant time cost. The
comparison of nonvariable terms is implemented by S-DECOMPOSE and S-
CLASH. S-DECOMPOSE decomposes an equation between two terms whose
head symbols match. It produces a conjunction of equations between their
subterms, namely ~X = ~T. Only one of the two terms remains in the original
multi-equation, which may thus become standard. The terms ~X are copied—
there are two occurrences of ~X on the right-hand side. For this reason, we
require them to be type variables, as opposed to terms of arbitrary size. (We
slightly abuse notation by using ~X to denote a vector of type variables whose
elements are not necessarily distinct.) By doing so, we allow explicitly rea-
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soning about sharing: since a variable represents a pointer to an equivalence
class, we explicitly specify that only pointers, not whole terms, are copied. As
a result of this decision, S-DECOMPOSE is not applicable when both terms at
hand have a nonvariable subterm. S-NAME-1 remedies this problem by in-
troducing a fresh variable that stands for one such subterm. When repeatedly
applied, S-NAME-1 yields a unification problem composed of so-called small
terms only—that is, where sharing has been made fully explicit. S-CLASH

complements S-DECOMPOSE by dealing with the case where two terms with
different head symbols are equated; in a free tree model, such an equation is
false, so failure is signaled. S-SINGLE and S-TRUE suppress multi-equations
of size 1 and 0, respectively, which are tautologies. S-CYCLE is the occurs
check: that is, it signals failure if the constraint is cyclic. It is applicable only in
the case of syntactic unification, that is, when ground types are finite trees. It
is a global check: its left-hand side is an entire conjunction of multi-equations.
S-FAIL propagates failure; U ranges over unification constraint contexts.

The constraint rewriting system in Figure 1-10 enjoys the following proper-
ties. First, rewriting is strongly normalizing, so the rules define a (nondeter-
ministic) algorithm. Second, rewriting is meaning-preserving. Third, every
normal form is either false or of the form ∃X̄.U, where U is satisfiable. The
latter two properties indicate that the algorithm is indeed a constraint solver.

1.6.4 LEMMA: The rewriting system → is strongly normalizing. 2

1.6.5 LEMMA: U1 → U2 implies U1 ≡ U2. 2

1.6.6 LEMMA: Every normal form is either false or of the form X [U], where X is an
existential constraint context, U is a standard conjunction of multi-equations
and, if the model is syntactic, U is acyclic. These conditions imply that U is
satisfiable. 2

1.6.2 A constraint solver

On top of the unification algorithm, we now define a constraint solver. Its
specification is independent of the rules and strategy employed by the unifi-
cation algorithm. However, the structure of the unification algorithm’s nor-
mal forms, as well as the logical properties of multi-equations, are exploited
when performing generalization, that is, when creating and simplifying type
schemes. Like the unification algorithm, the constraint solver is specified in
terms of a reduction system. However, the objects that are subject to rewrit-
ing are not just constraints: they have more complex structure. Working with
such richer states allows distinguishing the solver’s external language—namely,
the full constraint language, which is used to express the problem that one
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wishes to solve—and an internal language, introduced below, which is used
to describe the solver’s private data structures. In the following, C and D

range over external constraints, that is, constraints that were part of the solver’s
input. External constraints are to be viewed as abstract syntax trees, sub-
ject to no implicit laws other than α-conversion. As a simplifying assump-
tion, we require external constraints not to contain any occurrence of false—
otherwise the problem at hand is clearly false. Internal data structures include
unification constraints U, as previously studied, and stacks, whose syntax is
as follows:

S ::= [] | S[[] ∧ C] | S[∃X̄.[]] | S[let x : ∀X̄[[]].T in C] | S[let x : σ in []]

In the second and fourth productions, C is an external constraint. In the last
production, we require σ to be of the form ∀X̄[U].X, and we demand ∃σ ≡

true. Every stack may be viewed as a one-hole constraint context (page 21):
indeed, one may interpret [] as the empty context and ·[·] as context compo-
sition, which replaces the hole of its first context argument with its second
context argument. A stack may also be viewed, literally, as a list of frames.
Frames may be added and deleted at the inner end of a stack, that is, near
the hole of the constraint context that it represents. We refer to the four kinds
of frames as conjunction, existential, let, and environment frames, respectively.
A state of the constraint solver is a triple S;U;C, where S is a stack, U is a
unification constraint, and C is an external constraint. The state S;U;C is to
be understood as a representation of the constraint S[U ∧ C], that is, the con-
straint obtained by placing both U and C within the hole of the constraint
context S. The notion of α-equivalence between states is defined accordingly.
In particular, one may rename type variables in dtv(S), provided U and C are
renamed as well. In short, the three components of a state play the following
roles. C is an external constraint that the solver intends to examine next. U

is the internal state of the underlying unification algorithm: one might think
of it as the knowledge that has been obtained so far. S tells where the type
variables that occur free in U and C are bound, associates type schemes with
the program variables that occur free in C, and records what should be done
after C is solved. The solver’s initial state is usually of the form []; true;C,
where C is the external constraint that one wishes to solve—that is, whose
satisfiability one wishes to determine. If the constraint to be solved is of the
form let Γ0 in C, and if the type schemes that appear within Γ0 meet the
requirements that bear on environment frames, as defined above, then it is
possible to pick let Γ0 in []; true;C as an initial state. For simplicity, we make
the (unessential) assumption that states have no free type variables.

The solver consists of a (nondeterministic) state rewriting system, given in
Figure 1-11. Rewriting is performed modulo α-conversion. S-UNIFY makes
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S;U;C → S;U ′;C (S-UNIFY)

if U → U′

S;∃X̄.U;C → S[∃X̄.[]];U;C (S-EX-1)

if X̄ # ftv(C)

S[(∃X̄.S ′) ∧ D];U;C → S[∃X̄.(S ′ ∧ D)];U;C (S-EX-2)

if X̄ # ftv(D)

S[let x : ∀X̄[∃Ȳ.S ′].T in D];U;C → S[let x : ∀X̄Ȳ[S]. ′T in D];U;C (S-EX-3)

if Ȳ # ftv(T)

S[let x : σ in ∃X̄.S ′];U;C → S[∃X̄.let x : σ in S ′];U;C (S-EX-4)

if X̄ # ftv(σ)

S;U;T1 = T2 → S;U ∧ T1 = T2; true (S-SOLVE-EQ)

S;U;x ¹ T → S;U;S(x) ¹ T (S-SOLVE-ID)

S;U;C1 ∧ C2 → S[[] ∧ C2];U;C1 (S-SOLVE-AND)

S;U;∃X̄.C → S[∃X̄.[]];U;C (S-SOLVE-EX)

if X̄ # ftv(U)

S;U; let x : ∀X̄[D].T in C → S[let x : ∀X̄[[]].T in C];U;D (S-SOLVE-LET)

if X̄ # ftv(U)

S[[] ∧ C];U; true → S;U;C (S-POP-AND)

S[let x : ∀X̄[[]].T in C];U; true → S[let x : ∀X̄X[[]].X in C];

U ∧ X = T; true (S-NAME-2)

if X 6∈ ftv(U,T)∧T 6∈ V

S[let x : ∀X̄Y[[]].X in C];Y = Z = ε ∧ U; true → S[let x : ∀X̄Y[[]].θ(X) in C];

Y∧ Z = θ(ε) ∧ θ(U); true (S-COMPRESS)

if Y 6= Z ∧θ = [Y 7→ Z]

S[let x : ∀X̄Y[[]].X in C];Y = ε ∧ U; true → S[let x : ∀X̄[[]].X in C]; ε ∧ U; true (S-UNNAME)

if Y 6∈ X ∪ ftv(ε,U)

S[let x : ∀X̄Ȳ[[]].X in C];U; true → S[∃Ȳ.let x : ∀X̄[[]].X in C];U; true (S-LETALL)

if Ȳ # ftv(C)∧∃X̄.U determines Ȳ

S[let x : ∀X̄[[]].X in C];U1 ∧ U2; true → S[let x : ∀X̄[U2].X in []];U1;C (S-POP-LET)

if X̄ # ftv(U1)∧∃X̄.U2 ≡ true

S[let x : σ in []];U; true → S;U; true (S-POP-ENV)

Figure 1-11: A constraint solver
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the unification algorithm a component of the constraint solver, and allows
the current unification problem U to be solved at any time. Rules S-EX-1 to S-
EX-4 float existential quantifiers out of the unification problem into the stack,
and through the stack up to the nearest enclosing let frame, if there is any, or
to the outermost level, otherwise. Their side-conditions prevent capture of
type variables, and may always be satisfied by suitable α-conversion of the
left-hand state. If S;U;C is a normal form with respect to these five rules,
then U must be either false or a conjunction of standard multi-equations,
and every type variable in dtv(S) must be either universally quantified at a
let frame, or existentially bound at the outermost level. (Recall that, by as-
sumption, states have no free type variables.) In other words, provided these
rules are applied in an eager fashion, there is no need for existential frames to
appear in the machine representation of stacks. Instead, it suffices to maintain, at
every let frame and at the outermost level, a list of the type variables that are
bound at this point; and, conversely, to annotate every type variable in dtv(S)

with an integer rank, which allows telling, in constant time, where the vari-
able is bound: type variables of rank 0 are bound at the outermost level, and
type variables of rank k ≥ 1 are bound at the kth let frame down in the stack S.
The code that accompanies this chapter adopts this convention. Ranks were
initially described in (Rémy, 1992a), and also appear in (McAllester, 2003).

Rules S-SOLVE-EQ to S-SOLVE-LET encode an analysis of the structure of
the third component of the current state. There is one rule for each possible
case, except false, which by assumption cannot arise, and true, which is dealt
with further on. S-SOLVE-EQ discovers an equation and makes it available to
the unification algorithm. S-SOLVE-ID discovers an instantiation constraint
x ¹ T and replaces it with σ ¹ T, where the type scheme σ = S(x) is the type
scheme carried by the nearest environment frame that defines x in the stack
S. It is defined as follows:

S[[] ∧ C](x) = S(x)

S[∃X̄.[]](x) = S(x) if X̄ # ftv(S(x))

S[let y : ∀X̄[[]].T in C](x) = S(x) if X̄ # ftv(S(x))

S[let y : σ in []](x) = S(x) if x 6= y
S[let x : σ in []](x) = σ

If x ∈ dpi(S) does not hold, then S(x) is undefined and the rule is not applica-
ble. If it does hold, then the rule may always be made applicable by suitable
α-conversion of the left-hand state. Recall that, if σ is of the form ∀X̄[U].X,
where X̄ # ftv(T), then σ ¹ T stands for ∃X̄.(U ∧ X = T). The process of
constructing this constraint is informally referred to as “taking an instance
of σ”. In the worst case, it is just as inefficient as textually expanding the
corresponding let construct in the program’s source code, and leads to ex-
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ponential time complexity (Mairson, Kanellakis, and Mitchell, 1991). In prac-
tice, however, the unification constraint U is often compact, because it was
simplified before the environment frame let x : σ in [] was created, which
explains why the solver usually performs well. (The creation of environment
frames, performed by S-POP-LET, is discussed below.) S-SOLVE-AND dis-
covers a conjunction. It arbitrarily chooses to explore the left branch first,
and pushes a conjunction frame onto the stack, so as to record that the right
branch should be explored afterwards. S-SOLVE-EX discovers an existential
quantifier and enters it, creating a new existential frame to record its exis-
tence. Similarly, S-SOLVE-LET discovers a let form and enters its left-hand
side, creating a new let frame to record its existence. The choice of examining
the left-hand side first is not arbitrary. Indeed, examining the right-hand side
first would require creating an environment frame—but environment frames
must contain simplified type schemes of the form ∀X̄[U].X, whereas the type
scheme ∀X̄[D].T is arbitrary. In other words, our strategy is to simplify type
schemes prior to allowing them to be copied by S-SOLVE-ID, so as to avoid
any duplication of effort. The side-conditions of S-SOLVE-EX and S-SOLVE-
LET may always be satisfied by suitable α-conversion of the left-hand state.

Rules S-SOLVE-EQ to S-SOLVE-LET may be referred to as forward rules,
because they “move down into” the external constraint, causing the stack
to grow. This process stops when the external constraint at hand becomes
true. Then, part of the work has been finished, and the solver must examine
the stack in order to determine what to do next. This task is performed by
the last series of rules, which may be referred to as backward rules, because
they “move back out”, causing the stack to shrink, and possibly schedul-
ing new external constraints for examination. These rules encode an analysis
of the structure of the innermost stack frame. There are three cases, corre-
sponding to conjunction, let, and environment frames. The case of existential
stack frames need not be considered, because rules S-EX-2 to S-EX-4 allow
either fusing them with let frames or floating them up to the outermost level,
where they shall remain inert. S-POP-AND deals with conjunction frames.
The frame is popped, and the external constraint that it carries is scheduled
for examination. S-POP-ENV deals with environment frames. Because the
right-hand side of the let construct at hand has been solved—that is, turned
into a unification constraint U—it cannot contain an occurrence of x. Further-
more, by assumption, ∃σ is true. Thus, this environment frame is no longer
useful: it is destroyed. The remaining rules deal with let frames. Roughly
speaking, their purpose is to change the state S[let x : ∀X̄[[]].T in C];U; true
into S[let x : ∀X̄[U].T in []]; true;C, that is, to turn the current unification con-
straint U into a type scheme, turn the let frame into an environment frame,
and schedule the right-hand side of the let construct (that is, the external con-
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straint C) for examination. In fact, the process is more complex, because the
type scheme ∀X̄[U].T must be simplified before becoming part of an environ-
ment frame. The simplification process is described by rules S-NAME-2 to
S-POP-LET. In the following, we refer to type variables in X̄ as young and to
type variables in dtv(S) \ X̄ as old. The former are the universal quantifiers of
the type scheme that is being created; the latter contain its free type variables.

S-NAME-2 ensures that the body T of the type scheme that is being cre-
ated is a type variable, as opposed to an arbitrary term. If it isn’t, then it is
replaced with a fresh variable X, and the equation X = T is added so as to
recall that X stands for T. Thus, the rule moves the term T into the current
unification problem, where it potentially becomes subject to S-NAME-1. This
ensures that sharing is made explicit everywhere. S-COMPRESS determines
that the (young) type variable Y is an alias for the type variable Z. Then, every
free occurrence of Y other than its defining occurrence is replaced with Z. In
an actual implementation, this occurs transparently when the union-find al-
gorithm performs path compression (Tarjan, 1975, 1979). We note that the rule
does not allow substituting a younger type variable for an older one: indeed,
that would make no sense, since the younger variable could then possibly es-
cape its scope. In other words, in implementation terms, the union-find algo-
rithm must be slightly modified so that, in each equivalence class, the repre-
sentative element is always a type variable with minimum rank. S-UNNAME

determines that the (young) type variable Y has no occurrences other than its
defining occurrence in the current type scheme. (This occurs, in particular,
when S-COMPRESS has just been applied.) Then, Y is suppressed altogether.
In the particular case where the remaining multi-equation ε has cardinal 1,
it may then be suppressed by S-SINGLE. In other words, the combination of
S-UNNAME and S-SINGLE is able to suppress young unused type variables
as well as the term that they stand for. This may, in turn, cause new type
variables to become eligible for elimination by S-UNNAME. In fact, assum-
ing the current unification constraint is acyclic, an inductive argument shows
that every young type variable may be suppressed unless it is dominated ei-
ther by X or by an old type variable. (In the setting of a regular tree model,
it is possible to extend the rule so that young cycles that are not dominated
either by X or by an old type variable are suppressed as well.) S-LETALL

is a directed version of C-LETALL. It turns the young type variables Ȳ into
old variables. How to tell whether ∃X̄.U determines Ȳ is discussed later (see
Lemma 1.6.7). Why S-LETALL is an interesting and important rule will be ex-
plained shortly. S-POP-LET is meant to be applied when the current state has
become a normal form with respect to S-UNIFY, S-NAME-2, S-COMPRESS, S-
UNNAME, and S-LETALL, that is, when the type scheme that is about to be
created is fully simplified. It splits the current unification constraint into two
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components U1 and U2, where U1 is made up entirely of old variables—as
expressed by the side-condition X̄ # ftv(U1)—and U2 constrains young vari-
ables only—as expressed by the side-condition ∃X̄.U2 ≡ true. Note that U2

may still contain free occurrences of old type variables, so the type scheme
∀X̄[U2].X that appears on the right-hand side is not necessarily closed. It is
not obvious why such a decomposition must exist; Lemma 1.6.10 proves that
it does. Let us say, for now, that S-LETALL plays a role in guaranteeing its
existence, whence part of its importance. Once the decomposition U1 ∧ U2

is obtained, the behavior of S-POP-LET is simple. The unification constraint
U1 concerns old variables only, that is, variables that are not quantified in
the current let frame; thus, it need not become part of the new type scheme,
and may instead remain part of the current unification constraint. This is
justified by C-LETAND and C-INAND* and corresponds to the difference
between HMX-GEN’ and HMX-GEN discussed in §1.3. The unification con-
straint U2, on the other hand, becomes part of the newly built type scheme
∀X̄[U2].X. The property ∃X̄.U2 ≡ true guarantees that the newly created envi-
ronment frame meets the requirements imposed on such frames. Note that,
the more type variables are considered old, the larger U1 may become, and
the smaller U2. This is another reason why S-LETALL is interesting: by al-
lowing more variables to be considered old, it decreases the size of the type
scheme ∀X̄[U2].X, making it cheaper to instantiate.

To complete our description of the constraint solver, there remains to ex-
plain how to decide when ∃X̄.U determines Ȳ, since this predicate occurs in
the side-condition of S-LETALL. The following lemma describes two impor-
tant situations where, by examining the structure of an equation, it is possible
to discover that a constraint C determines some of its free type variables Ȳ
(Definition 1.2.13). In the first situation, the type variables Ȳ are equated with
or dominated by a distinct type variable X that occurs free in C. In that case,
because the model is a free tree model, the values of the type variables Ȳ are
determined by the value of X—they are subtrees of it at specific positions.
For instance, X = Y1 → Y2 determines Y1Y2, while ∃Y1.(X = Y1 → Y2) de-
termines Y2. In the second situation, the type variables Ȳ are equated with
a term T, all of whose type variables are free in C. Again, the value of the
type variables Ȳ is then determined by the values of the type variables ftv(T).
For instance, X = Y1 → Y2 determines X, while ∃Y1.(X = Y1 → Y2) does
not. In the second situation, no assumption is in fact made about the model.
Note that X = Y1 → Y2 determines Y1Y2 and determines X, but does not
simultaneously determine XY1Y2.

1.6.7 LEMMA: Let X̄ # Ȳ. Assume either ε is X = ε ′, where X 6∈ X̄Ȳ and Ȳ ⊆ ftv(ε ′),
or ε is Ȳ = T = ε ′, where ftv(T) # X̄Ȳ. Then, ∃X̄.(C ∧ ε) determines Ȳ. 2
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Thanks to Lemma 1.6.7, an efficient implementation of S-LETALL comes
to mind. The problem is, given a constraint ∃X̄.U, where U is a standard con-
junction of multi-equations, to determine the greatest subset Ȳ of X̄ such that
∃(X̄ \ Ȳ).U determines Ȳ. By the first part of the lemma, it is safe for Ȳ to in-
clude all members of X̄ that are directly or indirectly dominated (with respect
to U) by some free variable of ∃X̄.U. Those can be found, in time linear in the
size of U, by a top-down traversal of the graph of ≺U. By the second part of
the lemma, it is safe to close Ȳ under the closure law X ∈ X̄ ∧ (∀Y Y ≺U

X ⇒ Y ∈ Ȳ) ⇒ X ∈ Ȳ. That is, it is safe to also include all members of X̄
whose descendants (with respect to U) have already been found to be mem-
bers of Ȳ. This closure computation may be performed, again in linear time,
by a bottom-up traversal of the graph of ≺U. When U is acyclic, it is possible
to show that this procedure is complete, that is, does compute the greatest
subset Ȳ that meets our requirement.

The above discussion has shown that when Y and Z are equated, if Y is
young and Z is old, then S-LETALL allows making Y old as well. If binding
information is encoded in terms of integer ranks, as suggested earlier, then
this remark may be formulated as follows: when Y and Z are equated, if the
rank of Y exceeds that of Z, then it may be decreased so that both ranks match.
As a result, it is possible to attach ranks with multi-equations, rather than with
variables. When two multi-equations are fused, the smaller rank is kept. This
treatment of ranks is inspired by (Rémy, 1992a): see the resolution rule FUSE,
as well as the simplification rules PROPAGATE and REALIZE, in that paper.

Let us now state the properties of the constraint solver. First, the reduction
system is terminating, so it defines an algorithm.

1.6.8 LEMMA: The reduction system → is strongly normalizing. 2

Second, every rewriting step preserves the meaning of the constraint that
the current state represents. We recall that the state S;U;C is meant to repre-
sent the constraint S[U ∧ C].

1.6.9 LEMMA: S;U;C → S ′;U ′;C ′ implies S[U ∧ C] ≡ S ′[U ′ ∧ C ′]. 2

Last, we classify the normal forms of the reduction system:

1.6.10 LEMMA: A normal form for the reduction system → is one of (i) S;U;x ¹ T,
where x 6∈ dpi(S); (ii) S; false; true; or (iii) X ;U; true, where X is an existential
constraint context and U a satisfiable conjunction of multi-equations. 2

In case (i), the constraint S[U ∧ C] has a free program identifier x, so it
is not satisfiable. In other words, the source program contains an unbound
program identifier. Such an error could of course be detected prior to con-
straint solving, if desired. In case (ii), the unification algorithm failed. By
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Lemma 1.2.16, the constraint S[U∧C] is then false. In case (iii), the constraint
S[U ∧ C] is equivalent to X [U], where U is satisfiable, so it is satisfiable as
well. So, each of the three classes of normal forms may be immediately iden-
tified as denoting success or failure. Thus, Lemmas 1.6.9 and 1.6.10 indeed
prove that the algorithm is a constraint solver.

1.6.11 REMARK: Type inference for ML-the-calculus has been proved NP-hard (Mair-
son, Kanellakis, and Mitchell, 1991). Thus, our constraint solver cannot run
any faster. Mairson et al. explain that the cost is essentially due to let-polymorphism,
which requires a constraint to be duplicated at every occurrence of a let-
bound variable (S-SOLVE-ID). In order to limit the amount of duplication
to a bare minimum, it is important that rule S-LETALL be applied before
S-POP-LET, allowing variables and constraints that need not be duplicated
to be shared. We have observed that algorithms based on this strategy be-
have remarkably well in practice (Rémy, 1992a). In fact, McAllester (2003)
has proved that they have linear time complexity, provided the size of type
schemes and the (left-) nesting depth of let constructs are bounded. Unfor-
tunately, many implementations of type inference for ML-the-programming-
language do not behave as efficiently as the algorithm presented here. Some
spend an excessive amount of time in computing the set of nongeneralizable
type variables; some do not treat types as dags, thus losing precious sharing
information; others perform the expensive occurs check after every unifica-
tion step, rather than only once at every let construct, as suggested here
(S-POP-LET). 2

1.7 From ML-the-calculus to ML-the-programming-language

In this section, we explain how to extend the framework developed so far
to accommodate operations on values of base type (such as integers), pairs,
sums, references, and recursive function definitions. Then, we describe alge-
braic data type definitions. Last, the issues associated with recursive types
are briefly discussed. Exceptions are not discussed; the reader is referred
to (TAPL Chapter 14).

1.7.1 Simple extensions

Introducing new constants and extending
δ

−→ and Γ0 appropriately allows
adding many features of ML-the-programming-language to ML-the-calculus.
In each case, it is necessary to check that the requirements of Definition 1.5.5
are met, that is, to ensure that the new initial environment faithfully reflects
the nature of the new constants as well as the behavior of the new reduc-
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tion rules. Below, we describe several such extensions in isolation. The first
exercise in the series establishes a technical result that is useful in the next
exercises.

1.7.1 EXERCISE [RECOMMENDED, F]: Let Γ0 contain the binding c : ∀X̄.T1 →

. . . → Tn → T. Prove that let Γ0 in �c t1 . . . tn : T ′� is equivalent to
let Γ0 in ∃X̄.(

∧n

i=1 �ti : Ti
� ∧ T ≤ T ′). 2

1.7.2 EXERCISE [INTEGERS, RECOMMENDED, FF]: Integer literals and integer ad-
dition have been introduced and given an operational semantics in Exam-
ples 1.1.1, 1.1.2 and 1.1.4. Let us now introduce an isolated type constructor
int of signature ? and extend the initial environment Γ0 with the bindings
n̂ : int, for every integer n, and +̂ : int → int → int. Check that these defini-
tions meet the requirements of Definition 1.5.5. 2

1.7.3 EXERCISE [PAIRS, FF, 9]: Pairs and pair projections have been introduced
and given an operational semantics in Examples 1.1.3 and 1.1.5. Let us now
introduce an isolated type constructor × of signature ? ⊗ ? ⇒ ?, covariant
in both of its parameters, and extend the initial environment Γ0 with the fol-
lowing bindings:

(·, ·) : ∀XY.X → Y → X× Y
π1 : ∀XY.X× Y → X
π2 : ∀XY.X× Y → Y

Check that these definitions meet the requirements of Definition 1.5.5. 2

1.7.4 EXERCISE [SUMS, FF, 9]: Sums have been introduced and given an oper-
ational semantics in Example 1.1.7. Let us now introduce an isolated type
constructor + of signature ?⊗ ? ⇒ ?, covariant in both of its parameters, and
extend the initial environment Γ0 with the following bindings:

inj1 : ∀XY.X → X+ Y
inj2 : ∀XY.Y → X+ Y
case : ∀XYZ.(X+ Y) → (X → Z) → (Y → Z) → Z

Check that these definitions meet the requirements of Definition 1.5.5. 2

1.7.5 EXERCISE [REFERENCES, FFF]: References have been introduced and given
an operational semantics in Example 1.1.9. The type constructor ref has been
introduced in Definition 1.5.3. Let us now extend the initial environment Γ0

with the following bindings:

ref : ∀X.X → ref X
! : ∀X.ref X → X

:= : ∀X.ref X → X → X
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Check that these definitions meet the requirements of Definition 1.5.5. 2

1.7.6 EXERCISE [RECURSION, RECOMMENDED, FFF, 9]: The fixpoint combina-
tor fix has been introduced and given an operational semantics in Exam-
ple 1.1.10. Let us now extend the initial environment Γ0 with the following
binding:

fix : ∀XY.((X → Y) → (X → Y)) → X → Y

Check that these definitions meet the requirements of Definition 1.5.5. Recall
how the letrec syntactic sugar was defined in Example 1.1.10, and check
that this gives rise to the following constraint generation rule:

let Γ0 in �letrec f = λz.t1 in t2 : T�
≡ let Γ0 in let f : ∀XY[let f : X → Y;z : X in �t1 : Y�].X → Y in �t2 : T�

Note the somewhat peculiar structure of this constraint: the program vari-
able f is bound twice in it, with different type schemes. The constraint re-
quires all occurrences of f within t1 to be assigned the monomorphic type
X → Y. This type is generalized and turned into a type scheme before inspect-
ing t2, however, so every occurrence of f within t2 may receive a different
type, as usual with let-polymorphism. A more powerful way of typecheck-
ing recursive function definitions, proposed by (Mycroft, 1984) and known
as polymorphic recursion, allows the types of occurrences of f within t1 to
be instances of a valid type scheme for t1. However, type inference for this
extension is equivalent to semi-unification (Henglein, 1993), which has been
proved undecidable (Kfoury, Tiuryn, and Urzyczyn, 1993). Hence, type in-
ference must rely on a semi-algorithm and is thus necessarily incomplete.
2

1.7.2 Algebraic data types

Exercises 1.7.3 and 1.7.4 have shown how to extend the language with binary,
anonymous products and sums. These constructs are quite general, but still
have several shortcomings. First, they are only binary, while we would like to
have k-ary products and sums, for arbitrary k ≥ 0. Such a generalization is of
course straightforward. Second, more interestingly, their components must
be referred to by numeric index (as in “extract the second component of the
pair”), rather than by name (“extract the component named y”). In practice,
it is crucial to use names, because they make programs more readable and
more robust in the face of changes. One could introduce a mechanism that al-
lows defining names as syntactic sugar for numeric indices. That would help
a little, but not much, because these names would not appear in types, which
would still be made of anonymous products and sums. Third, in the absence
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of recursive types, products and sums do not have sufficient expressiveness
to allow defining unbounded data structures, such as lists. Indeed, it is easy
to see that every value whose type T is composed of base types (int, bool, etc.),
products, and sums must have bounded size, where the bound |T | is a func-
tion of T. More precisely, up to a constant factor, we have | int | = | bool | = 1,
|T1×T2 | = 1+ |T1 |+ |T2 |, and |T1+T2 | = 1+max(|T1 |, |T2 |). The following
example describes another facet of the same problem.

1.7.7 EXAMPLE: A list is either empty, or a pair of an element and another list. So,
it seems natural to try and encode the type of lists as a sum of some arbitrary
type (say, unit), on the one hand, and of a product of some element type
and of the type of lists itself, on the other hand. With this encoding in mind,
we can go ahead and write code—for instance, a function that computes the
length of a list:

letrec length = λl.case l (λ .0̂) (λz.1̂ +̂ length (π2 z))

We have used integers, pairs, sums, and the letrec construct introduced in
the previous section. The code analyzes the list l using a case construct. If
the left branch is taken, the list is empty, so 0 is returned. If the right branch
is taken, then z becomes bound to a pair of some element and the tail of
the list. The latter is obtained using the projection operator π2. Its length
is computed using a recursive call to length and incremented by 1. This
code makes perfect sense. However, applying the constraint generation and
constraint solving algorithms eventually leads to an equation of the form
X = Y + (Z × X), where X stands for the type of l. This equation accurately
reflects our encoding of the type of lists. However, in a syntactic model, it
has no solution, so our definition of length is ill-typed. It is possible to
adopt a free regular tree model,thus introducing equirecursive types into the
system (TAPL Chapter 20); however, there are good reasons not to do so
(§1.7.3). 2

To work around this problem, ML-the-programming-language offers al-
gebraic data type definitions, whose elegance lies in the fact that, while repre-
senting only a modest theoretical extension, they do solve the three problems
mentioned above. An algebraic data type may be viewed as an abstract type
that is declared to be isomorphic to a (k-ary) product or sum type with named
components. The type of each component is declared as well, and may refer
to the algebraic data type that is being defined: thus, algebraic data types are
isorecursive (TAPL Chapter 20). In order to allow sufficient flexibility when
declaring the type of each component, algebraic data type definitions may
be parameterized by a number of type variables. Last, in order to allow the
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description of complex data structures, it is necessary to allow several alge-
braic data types to be defined at once; the definitions may then be mutually
recursive. In fact, in order to simplify this formal presentation, we assume that
all algebraic data types are defined at once at the beginning of the program.
This decision is of course at odds with modular programming, but will not
otherwise be a problem.

In the following, D ranges over a set of data types. We assume that data
types form a subset of type constructors. We require each of them to be iso-
lated and to have a signature of the form ~κ ⇒ ?. Furthermore, ` ranges over
a set L of labels, which we use indifferently as data constructors and as record
labels. An algebraic data type definition is either a variant type definition or a
record type definition, whose respective forms are

D~X ≈
k∑

i=1

`i : Ti and D~X ≈
k∏

i=1

`i : Ti.

In either case, k must be nonnegative. If D has signature ~κ ⇒ ?, then the type
variables ~X must have kind ~κ. Every Ti must have kind ?. We refer to X̄ as
the parameters and to ~T (the vector formed by T1, . . . ,Tk) as the components
of the definition. The parameters are bound within the components, and the
definition must be closed, that is, ftv(~T) ⊆ X̄ must hold. Last, for an algebraic
data type definition to be valid, the behavior of the type constructor D with
respect to subtyping must match its definition. This requirement is clarified
below.

1.7.8 DEFINITION: Consider an algebraic data type definition whose parameters
and components are respectively ~X and ~T. Let ~X ′ and ~T ′ be their images under
an arbitrary renaming. Then, D~X ≤ D~X ′ ° ~T ≤ ~T ′ must hold. 2

Because it is stated in terms of an entailment assertion, the above require-
ment bears on the interpretation of subtyping. The idea is, since D~X is de-
clared to be isomorphic to (a sum or a product of) ~T, whenever two types
built with D are comparable, their unfoldings should be comparable as well.
The reverse entailment assertion is not required for type soundness, and it is
sometimes useful to declare algebraic data types that do not validate it—so-
called phantom types (Fluet and Pucella, 2002). Note that the requirement may
always be satisfied by making the type constructor D invariant in all of its pa-
rameters. Indeed, in that case, D~X ≤ D~X ′ entails ~X = ~X ′, which must entail
~T = ~T ′ since ~T ′ is precisely [~X 7→ ~X ′]~T. In an equality free tree model, every
type constructor is naturally invariant, so the requirement is trivially satis-
fied. In other settings, however, it is often possible to satisfy the requirement
of Definition 1.7.8 while assigning D a less restrictive variance. The following
example illustrates such a case.
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1.7.9 EXAMPLE: Let list be a data type of signature ? ⇒ ?. Let Nil and Cons be
data constructors. Then, the following is a definition of list as a variant type:

listX ≈ Σ (Nil : unit;Cons : X× listX)

Because data types form a subset of type constructors, it is valid to form the
type listX in the right-hand side of the definition, even though we are still
in the process of defining the meaning of list. In other words, data type defi-
nitions may be recursive. However, because ≈ is not interpreted as equality,
the type listX is not a recursive type: it is nothing but an application of the
unary type constructor list to the type variable X. To check that the definition
of list satisfies the requirement of Definition 1.7.8, we must ensure that

listX ≤ listX ′ ° unit ≤ unit ∧ X× listX ≤ X ′ × listX ′

holds. This assertion is equivalent to listX ≤ listX ′ ° X ≤ X ′. To satisfy the
requirement, it is sufficient to make list a covariant type constructor, that is, to
define subtyping in the model so that listX ≤ listX ′ ≡ X ≤ X ′ holds.

Let tree be a data type of signature ? ⇒ ?. Let root and sons be record
labels. Then, the following is a definition of tree as a record type:

treeX ≈ Π (root : X;sons : list (treeX))

This definition is again recursive, and relies on the previous definition. Be-
cause list is covariant, it is straightforward to check that the definition of tree
is valid if tree is made a covariant type constructor as well. 2

A prologue is a set of algebraic data type definitions, where each data type
is defined at most once and where each data constructor or record label ap-
pears at most once. A program is a pair of a prologue and an expression. The
effect of a prologue is to enrich the programming language with new con-
stants. That is, a variant type definition extends the operational semantics
with several injections and a case construct, as in Example 1.1.7. A record
type definition extends it with a record formation construct and several pro-
jections, as in Examples 1.1.3 and 1.1.5. In either case, the initial typing en-
vironment Γ0 is extended with information about these new constants. Thus,
algebraic data type definitions might be viewed as a simple configuration
language that allows specifying in which instance of ML-the-calculus the ex-
pression that follows the prologue should be typechecked and interpreted.
Let us now give a precise account of this phenomenon.

To begin, suppose the prologue contains the definition D~X ≈
∑k

i=1 `i : Ti.
Then, for each i ∈ {1, . . . , k}, a constructor of arity 1, named `i, is introduced.
Furthermore, a destructor of arity k + 1, named caseD, is introduced. When
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k > 0, it is common to write case t [`i : ti]
k
i=1 for the application caseD t

t1 . . . tn. The operational semantics is extended with the following reduc-
tion rules, for i ∈ {1, . . . , k}:

case (`i v) [`j : vj]
k
j=1

δ
−→ vi v (R-ALG-CASE)

For each i ∈ {1, . . . , k}, the initial environment is extended with the binding
`i : ∀X̄.Ti → D~X. It is further extended with the binding caseD : ∀X̄Z.D~X →

(T1 → Z) → . . . (Tk → Z) → Z.
Now, suppose the prologue contains the definition D~X ≈

∏k

i=1 `i : Ti.
Then, for each i ∈ {1, . . . , k}, a destructor of arity 1, named `i, is introduced.
Furthermore, a constructor of arity k, named makeD, is introduced. It is com-
mon to write t.` for the application ` t and, when k > 0, to write {`i = ti}

k
i=1

for the application makeD t1 . . . tk. The operational semantics is extended
with the following reduction rules, for i ∈ {1, . . . , k}:

({`j = vj}
k
j=1).`i

δ
−→ vi (R-ALG-PROJ)

For each i ∈ {1, . . . , k}, the initial environment is extended with the binding
`i : ∀X̄.D~X → Ti. It is further extended with the binding makeD : ∀X̄.T1 →

. . . → Tk → D~X.

1.7.10 EXAMPLE: The effect of defining list (Example 1.7.9) is to make Nil and
Cons data constructors of arity 1 and to introduce a binary destructor caselist.
The definition also extends the initial environment as follows:

Nil : ∀X.unit → listX
Cons : ∀X.X× listX → listX

caselist : ∀XZ.listX → (unit → Z) → (X× listX → Z) → Z

Thus, the value Cons(0̂,Nil()), an integer list of length 1, has type list int. A
function that computes the length of a list may now be written as follows:

letrec length = λl.case l [Nil : λ .0̂ | Cons : λz.1̂ +̂ length (π2 z) ]

Recall that this notation is syntactic sugar for

letrec length = λl.caselist l (λ .0̂) (λz.1̂ +̂ length (π2 z))

The difference with the code in Example 1.7.7 appears minimal: the case
construct is now annotated with the data type list. As a result, the type in-
ference algorithm employs the type scheme assigned to caselist, which is
derived from the definition of list, instead of the type scheme assigned to
the anonymous case construct, given in Exercise 1.7.4. This is good for a
couple of reasons. First, the former is more informative than the latter, be-
cause it contains the type Ti associated with the data constructor `i. Here,
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for instance, the generated constraint requires the type of z to be X × listX
for some X, so a good error message would be given if a mistake was made
in the second branch, such as omitting the use of π2. Second, and more fun-
damentally, the code is now well-typed, even in the absence of recursive types.
In Example 1.7.7, a cyclic equation was produced because case required the
type of l to be a sum type and because a sum type carries the types of its
left and right branches as subterms. Here, instead, caselist requires l to have
type listX for some X. This is an abstract type: it does not explicitly contain
the types of the branches. As a result, the generated constraint no longer in-
volves a cyclic equation. It is, in fact, satisfiable; the reader may check that
length has type ∀X.listX → int, as expected. 2

Example 1.7.10 stresses the importance of using declared, abstract types, as
opposed to anonymous, concrete sum or product types, in order to obviate
the need for recursive types. The essence of the trick lies in the fact that the
type schemes associated with operations on algebraic data types implicitly
fold and unfold the data type’s definition. More precisely, let us recall the type
scheme assigned to the ith injection in the setting of (k-ary) anonymous sums:

it is ∀X1 . . .Xk.Xi → X1+. . .+Xk, or, more concisely, ∀X1 . . .Xk.Xi →
∑k

i=1 Xi.
By instantiating each Xi with Ti and generalizing again, we find that a more

specific type scheme is ∀X̄.Ti →
∑k

i=1 Ti. Perhaps this could have been the
type scheme assigned to `i? Instead, however, it is ∀X̄.Ti → D~X. We now re-
alize that the latter type scheme not only reflects the operational behavior of
the ith injection, but also folds the definition of the algebraic data type D by

turning the anonymous sum
∑k

i=1 Ti—which forms the definition’s right-
hand side—into the parameterized abstract type D~X—which is the defini-
tion’s left-hand side. Conversely, the type scheme assigned to caseD unfolds
the definition. The situation is identical in the case of record types: in either
case, constructors fold, destructors unfold. In other words, occurrences of data
constructors and record labels in the code may be viewed as explicit instruc-
tions for the typechecker to fold or unfold an algebraic data type definition.
This mechanism is characteristic of isorecursive types.

1.7.11 EXERCISE [F, 9]: For a fixed k, check that all of the machinery associated
with k-ary anonymous products—that is, constructors, destructors, reduc-
tion rules, and extensions to the initial typing environment—may be viewed
as the result of a single algebraic data type definition. Conduct a similar
check in the case of k-ary anonymous sums. 2

1.7.12 EXERCISE [FFF, 9]: Check that the above definitions meet the require-
ments of Definition 1.5.5. 2

1.7.13 EXERCISE [FFF, 9]: For the sake of simplicity, we have assumed that all
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data constructors have arity one. If desired, it is possible to accept variant

data type definitions of the form D~X ≈
∑k

i=1 `i : ~Ti, where the arity of the
data constructor `i is the length of the vector ~Ti, and may be an arbitrary
nonnegative integer. This allows, for instance, altering the definition of list
so that the data constructors Nil and Cons are respectively nullary and bi-
nary. Make the necessary changes in the above definitions and check that the
requirements of Definition 1.5.5 are still met. 2

One significant drawback of algebraic data type definitions resides in the
fact that a label ` cannot be shared by two distinct variant or record type def-
initions. Indeed, every algebraic data type definition extends the calculus
with new constants. Strictly speaking, our presentation does not allow a sin-
gle constant c to be associated with two distinct definitions. Even if we did
allow such a collision, the initial environment would contain two bindings
for c, one of which would then hide the other. This phenomenon arises in
actual implementations of ML-the-programming-language, where a new al-
gebraic data type definition may hide some of the data constructors or record
labels introduced by a previous definition. An elegant solution to this lack of
expressiveness is discussed in §1.8.

1.7.3 Recursive types

We have shown that specializing HM(X) with an equality-only syntactic model
yields HM(=), a constraint-based formulation of Damas and Milner’s type
system. Similarly, it is possible to specialize HM(X) with an equality-only
free regular tree model, yielding a constraint-based type system that may be
viewed as an extension of Damas and Milner’s type discipline with recursive
types. This flavor of recursive types is sometimes known as equirecursive,
since cyclic equations, such as X = X → X, are then satisfiable. Our theo-
rems about type inference and type soundness, which are independent of
the model, remain valid. The constraint solver described in §1.6 may be used
in the setting of an equality-only free regular tree model: the only difference
with the syntactic case is that the occurs check is no longer performed.

Note that, although ground types are regular, types remain finite objects:
their syntax is unchanged. The µ notation commonly employed to describe
recursive types may be emulated using type equations: for instance, the no-
tation µX.X → X corresponds, in our constraint-based approach, to the type
scheme ∀X[X = X → X].X.

Although recursive types come for free, as explained above, they have
not been adopted in mainstream programming languages based on ML-the-
type-system. The reason is pragmatic: experience shows that many nonsen-
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sical expressions are well-typed in the presence of recursive types, whereas
they are not in their absence. Thus, the gain in expressiveness is offset by
the fact that many programming mistakes are detected later than otherwise
possible. Consider, for instance, the following OCaml session:

ocaml -rectypes
# let rec map f = function

| [] → []
| x :: l → (map f x) :: (map f l);;

val map : ’a → (’b list as ’b) → (’c list as ’c) = <fun>

This nonsensical version of map is essentially useless, yet well-typed. Its prin-
cipal type scheme, in our notation, is ∀XYZ[Y = listY∧Z = listZ].X → Y → Z.
In the absence of recursive types, it is ill-typed, since the constraint Y =

listY∧ Z = listZ is then false.
The need for equirecursive types is usually suppressed by the presence of

algebraic data types, which offer isorecursive types, in the language. Yet, they
are still necessary in some situations, such as in Objective Caml’s extensions
with objects (Rémy and Vouillon, 1998) or polymorphic variants (Garrigue,
1998, 2000, 2002), where recursive object or variant types are commonly in-
ferred. In order to allow recursive object or variant types while still reject-
ing the above version of map, Objective Caml’s constraint solver implements
a selective occurs check, which forbids cycles unless they involve the type
constructors 〈·〉 or [·] respectively associated with objects and variants. The
corresponding model is a tree model where every infinite path down a tree
must encounter the type constructor 〈·〉 or [·] infinitely often.

1.8 Rows

In §1.7, we have shown how to extend ML-the-programming-language with
algebraic data types, that is, variant and record type definitions, which we
now refer to as simple. This mechanism has a severe limitation: two distinct
definitions must define incompatible types. As a result, one cannot hope
to write code that uniformly operates over variants or records of different
shapes, because the type of such code is not even expressible.

For instance, it is impossible to express the type of the polymorphic record
access operation, which retrieves the value stored at a particular field ` in-
side a record, regardless of which other fields are present. Indeed, if the label
` appears with type T in the definition of the simple record type D~X, then
the associated record access operation has type ∀X̄.D~X → T. If ` appears with
type T ′ in the definition of another simple record type, say D ′ ~X ′, then the as-
sociated record access operation has type ∀X̄ ′.D ′ ~X ′ → T ′; and so on. The most
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precise type scheme that subsumes all of these incomparable type schemes
is ∀XY.X → Y. It is, however, not a sound type scheme for the record access
operation. Another powerful operation whose type is currently not express-
ible is polymorphic record extension, which copies a record and stores a value
at field ` in the copy, possibly creating the field if it did not previously exist,
again regardless of which other fields are present. (If ` was known to previ-
ously exist, the operation is known as polymorphic record update.)

In order to assign types to polymorphic record operations, we must do
away with record type definitions: we must replace named record types, such
as D~X, with structural record types that provide a direct description of the
record’s domain and contents. (Following the analogy between a record and
a partial function from labels to values, we use the word domain to refer to
the set of fields that are defined in a record.) For instance, a product type is
structural: the type T1 ×T2 is the (undeclared) type of pairs whose first com-
ponent has type T1 and whose second component has type T2. Thus, we wish
to design record types that behave very much like product types. In doing so,
we face two orthogonal difficulties. First, as opposed to pairs, records may
have different domains. Because the type system must statically ensure that
no undefined field is accessed, information about a record’s domain must be
made part of its type. Second, because we suppress record type definitions,
labels must now be predefined. However, for efficiency and modularity rea-
sons, it is impossible to explicitly list every label in existence in every record
type.

In what follows, we explain how to address the first difficulty in the simple
setting of a finite set of labels. Then, we introduce rows, which allow dealing
with an infinite set of labels, and address the second difficulty. We define the
syntax and logical interpretation of rows, study the new constraint equiva-
lence laws that arise in their presence, and extend the first-order unification
algorithm with support for rows. Then, we review several applications of
rows, including polymorphic operations on records, variants, and objects,
and discuss alternatives to rows.

1.8.1 Records with finite carrier

Let us temporarily assume that L is finite. In fact, for the sake of definiteness,
let us assume that L is the three-element set {`a, `b, `c}.

To begin, let us consider only full records, whose domain is exactly L—in
other words, tuples indexed by L. To describe them, it is natural to introduce
a type constructor ˝ of signature ?⊗?⊗? ⇒ ?. The type ˝ Ta Tb Tc represents
all records where the field `a (resp. `b, `c) contains a value of type Ta (resp.
Tb, Tc). Note that ˝ is nothing but a product type constructor of arity 3. The
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basic operations on records, namely creation of a record out of a default value,
which is stored into every field, update of a particular field (say, `b), and access
to a particular field (say, `b), may be assigned the following type schemes:

{·} : ∀X.X → ˝ X X X
{· with `b = ·} : ∀XaXbX ′

bXc.˝ Xa Xb Xc → X ′
b → ˝ Xa X ′

b Xc

·.{`b} : ∀XaXbXc.˝ Xa Xb Xc → Xb

Here, polymorphism allows updating or accessing a field without know-
ledge of the types of the other fields. This flexibility stems from the key
property that all record types are formed using a single ˝ type constructor.

This is fine, but in general, the domain of a record is not necessarily L:
it may be a subset of L. How may we deal with this fact, while maintain-
ing the above key property? A naïve approach consists in encoding arbitrary
records in terms of full records, using the standard algebraic data type option,
whose definition is optionX ≈ pre X + abs. We use pre for present and abs
for absent: indeed, a field that is defined with value v is encoded as a field
with value pre v, while an undefined field is encoded as a field with value
abs. Thus, an arbitrary record whose fields, if present, have types Ta, Tb,
and Tc, respectively, may be encoded as a full record of type ˝ (option Ta)

(option Tb) (option Tc). This naïve approach suffers from a serious draw-
back: record types still contain no domain information. As a result, field ac-
cess must involve a dynamic check, so as to determine whether the desired
field is present: in our encoding, this corresponds to the use of caseoption.

To avoid this overhead and increase programming safety, we must move
this check from runtime to compile time. In other words, we must make the
type system aware of the difference between pre and abs. To do so, we re-
place the definition of option by two separate algebraic data type definitions,
namely preX ≈ pre X and abs ≈ abs. In other words, we introduce a unary
type constructor pre, whose only associated data constructor is pre, and a
nullary type constructor abs, whose only associated data constructor is abs.
Record types now contain domain information: for instance, a record of type
˝ abs (pre Tb) (pre Tc) must have domain {`b, `c}. Thus, the type of a field
tells whether it is defined. Since the type pre has no data constructors other
than pre, the accessor pre−1, whose type is ∀X.pre X → X, and which allows
retrieving the value stored in a field, cannot fail. Thus, the dynamic check
has been eliminated.

To complete the definition of our encoding, we now define operations
on arbitrary records in terms of operations on full records. To distinguish
between the two, we write the former with angle braces, instead of curly
braces. The empty record 〈〉, where all fields are undefined, may be defined
as {abs}. Extension at a particular field (say, `b) 〈· with `b = ·〉 is defined as
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λr.λz.{r with `b = pre z}. Access at a particular field (say, `b) ·.〈`b〉 is defined
as λz.pre−1z.{`b}. It is straightforward to check that these operations have
the following principal type schemes:

〈〉 : ˝ abs abs abs
〈· with `b = ·〉 : ∀XaXbX ′

bXc.˝ Xa Xb Xc → X ′
b → ˝ Xa (pre X ′

b) Xc

·.〈`b〉 : ∀XaXbXc.˝ Xa (pre Xb) Xc → Xb

It is important to notice that the type schemes associated with extension and
access at `b are polymorphic in Xa and Xc, which now means that these oper-
ations are insensitive not only to the type, but also to the presence or absence of the
fields `a and `c. Furthermore, extension is polymorphic in Xb, which means
that it is insensitive to the presence or absence of the field `b in its argument.
The subterm pre X ′

b in its result type reflects the fact that `b is defined in the
extended record. Conversely, the subterm pre Xb in the type of the access
operation reflects the requirement that `b be defined in its argument.

Our encoding of arbitrary records in terms of full records was carried out
for pedagogical purposes. In practice, no such encoding is necessary: the data
constructors pre and abs have no machine representation, and the compiler
is free to lay out records in memory in an efficient manner. The encoding is
interesting, however, because it provides a natural way of introducing the
type constructors pre and abs, which play an important role in our treatment
of polymorphic record operations.

We remark that, once we forget about the encoding, the arguments of the
type constructor ˝ are expected to be either type variables or formed with pre
or abs, while, conversely, the type constructors pre and abs are not intended
to appear anywhere else. It is possible to enforce this invariant using kinds.
In addition to ?, let us introduce the kind ◦ of field types. Then, let us adopt
the following signatures: pre: ? ⇒ ◦, abs : ◦, and ˝ : ◦ ⊗ ◦ ⊗ ◦ ⇒ ?.

1.8.1 EXERCISE [RECOMMENDED, F, 9]: Check that the three type schemes given
above are well-kinded. What is the kind of each type variable? 2

1.8.2 EXERCISE [RECOMMENDED, FF, 9]: Our ˝ types contain information about
every field, regardless of whether it is defined: we encode definedness infor-
mation within the type of each field, using the type constructors pre and abs.
A perhaps more natural approach would be to introduce a family of record
type constructors, indexed by the subsets of L, so that the types of records
with different domains are formed with different constructors. For instance,
the empty record would have type {}; a record that defines the field `a only
would have a type of the form {`a : Ta}; a record that defines the fields `b

and `c only would have a type of the form {`b : Tb; `c : Tc}; and so on.
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Assuming that the type discipline is Damas and Milner’s (that is, assuming
an equality-only syntactic model), would it be possible to assign satisfactory
type schemes to polymorphic record access and extension? Would it help to
equip record types with a nontrivial subtyping relation? 2

1.8.2 Records with infinite carrier

The treatment of records described in §1.8.1 is not quite satisfactory, from
practical and theoretical points of view. First, in practice, the set L of all
record labels that appear within a program could be very large. Because every
record type is just as large as L itself, even if the record that it describes only
has a few fields, this is unpleasant. Furthermore, in a modular setting, the set
of all record labels that appear within a program cannot be determined until
link time, so it is still unknown at compile time, when each compilation unit is
separately typechecked. As a result, it may only be assumed to be a subset of
the infinite set of all syntactically valid record labels. Resolving these issues
requires coming up with a treatment of records that does not become more
costly as L grows and that, in fact, allows L to be infinite. Thus, from here
on, let us assume that L is infinite.

As in the previous section, we first concentrate on full records, whose do-
main is exactly L. The case of arbitrary records, whose domain is a subset of
L, will then follow, in the same manner, by using the type constructors pre
and abs to encode domain information.

Of course, even though we have assumed that L is infinite, we must ensure
that every record has a finite representation. We choose to restrict our atten-
tion to records that are almost constant, that is, records where all fields but
a finite number contain the same value. Every such record may be defined
in terms of two primitive operations, namely (i) creation of a constant record
out of a value; for instance, {false} is the record where every field contains
the value false; and (ii) update of a record at a particular field; for instance,
{{false} with ` = 1} carries the value 1 at field ` and the value false at
every other field. As usual, an access operation allows retrieving the contents
of a field. Thus, the three primitive operations are the same as in §1.8.1, only
in the setting of an infinite number of fields.

If we were to continue as in §1.8.1, we would now introduce a type con-
structor ˝, equipped with an infinite family of type parameters. Because types must
remain finite objects, we cannot do so. Instead, we must find a finite (and eco-
nomical) representation of such an infinite family of types. This is precisely
the role played by rows.

A row is a type that denotes a function from labels to types, or, equiva-
lently, as a family of types, indexed by labels. Its domain is L—the row is
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then complete—or a cofinite subset of L—the row is then incomplete. (A sub-
set of L is cofinite if and only if its complement is finite. Incomplete rows
are used only as building blocks for complete rows.) Because rows must ad-
mit a finite representation, we build them out of two syntactic constructions,
namely (i) construction of a constant row out of a type; for instance, the nota-
tion ∂bool denotes a row that maps every label in its domain to bool; and (ii)
strict extension of an incomplete row; for instance, (` : int ; ∂bool) denotes a
row that maps ` to int and every other field in its domain to bool. Formally,
∂ is a unary type constructor, while, for every label `, (` : · ; ·) is a binary
type constructor. These two constructions are reminiscent of the two opera-
tions used above to build records. There are, however, a couple of subtle but
important differences. First, ∂T may be a complete or incomplete row. Second,
(` : T ; T ′) is defined only if ` is not in the domain of the row T ′, so this con-
struction is strict extension, not update. These aspects are made clear by a
kinding discipline, to be introduced later on (§1.8.3).

It is possible for two syntactically distinct rows to denote the same func-
tion from labels to types. For instance, according to the intuitive interpreta-
tion of rows given above, the three complete rows (` : int ; ∂bool), (` : int ;

(` ′ : bool ; ∂bool)), and (` ′ : bool ; (` : int ; ∂bool)) denote the same total func-
tion from labels to types. In the following, we define the logical interpreta-
tion of types in such a way that the interpretations of these three rows in the
model are indeed equal.

We may now make the record type constructor ˝ a unary type constructor,
whose parameter is a row. Then, (say) ˝ (` : int ; ∂bool) is a record type, and
we intend it to be a valid type for the record {{false} with ` = 1}. The basic
operations on records may be assigned the following type schemes:

{·} : ∀X.X → ˝ (∂X)

{· with ` = ·} : ∀XX ′Y.˝ (` : X ; Y) → X ′ → ˝ (` : X ′ ; Y)

·.{`} : ∀XY.˝ (` : X ; Y) → X

These type schemes are reminiscent of those given in §1.8.1. However, in the
previous section, the size of the type schemes was linear in the cardinal of L,
whereas, here, it is constant, even though L is infinite. This is made possible
by the fact that record types no longer list all labels in existence; instead, they
use rows. In the type scheme assigned to record creation, the constant row
∂X is used to indicate that all fields have the same type in the newly created
record. In the next two type schemes, the row (` : X` ; X) is used to separate
the type X`, which describes the contents of the field `, and the row X, which
collectively describes the contents of all other fields. Here, the type variable X
stands for an arbitrary row; it is often referred to as a row variable. The ability
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of quantifying over row and type variables alike confers great expressiveness
to the type system.

We have explained, in an informal manner, how rows allow typechecking
operations on full records, in the setting of an infinite set of labels. We return
to this issue in Example 1.8.25. To deal with the case of arbitrary records,
whose domain is finite, we rely on the field type constructors pre and abs,
as explained previously. We return to this point in Example 1.8.30. In the fol-
lowing, we give a formal exposition of rows. We begin with their syntax and
logical interpretation. Then, we give some new constraint equivalence laws,
which characterize rows, and allow extending our first-order unification al-
gorithm with support for rows. We conclude with several illustrations of the
use of rows and some pointers to related work.

1.8.3 Syntax

In the following, the set of labels L is considered denumerable. We let L range
over finite subsets of L. When ` /∈ L holds, we write `.L for {`} ] L. Before
explaining how the syntax of types is enriched with rows, we introduce row
kinds, whose grammar is as follows:

s ::= Type | Row(L)

Row kinds help distinguish between three kinds of types, namely ordinary
types, complete rows, and incomplete rows. While ordinary types are used to
describe expressions, complete or incomplete rows are used only as building
blocks for ordinary types. For instance, the record type ˝ (` :int ; ∂bool), which
was informally introduced above, is intended to be an ordinary type, that is,
a type of row kind Type. Its subterm (` :int ; ∂bool), is a complete row, that is, a
type of row kind Row(∅). Its subterm ∂bool is an incomplete row, whose row
kind is Row({`}). Intuitively, a row of kind Row(L) denotes a family of types
whose domain is L \L. In other words, L is the set of labels that the row does
not define. The purpose of row kinds is to outlaw meaningless types, such
as ˝ (int), which makes no sense because the argument to the record type
constructor ˝ should be a (complete) row, or (` : T1 ; ` : T2 ; ∂bool), which
makes no sense because no label may occur twice within a row.

Let us now define the syntax of types in the presence of rows. As usual, it
is given by a signature S (Definition 1.1.14), which lists all type constructors
together with their signatures. Here, for the sake of generality, we do not
wish to give a fixed signature S. Instead, we give a procedure that builds S out
of two simpler signatures, referred to as S0 and S1. The input signature S0

lists the type constructors that have nothing to do with rows, such as →, ×,
int, etc. The input signature S1 lists the type constructors that allow a row to
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be a subterm of an ordinary type, such as the record type constructor ˝. In
a type system equipped with extensible variant types or with object types,
there might be several such type constructors; see §1.8.8 and §1.8.9. Without
loss of generality, we assume that all type constructors in S1 are unary. The
point of parameterizing the definition of S over S0 and S1 is to make the
construction more general: instead of defining a fixed type grammar featuring
rows, we wish to explain how to enrich an arbitrary type grammar with rows.

In the following, we let G (resp. H) range over the type constructors in S0

(resp. S1). We let κ range over the kinds involved in the definition of S0 and
S1, and refer to them as basic kinds. We let F range over the type construc-
tors in S. The kinds involved in the definition of S are composite kinds, that
is, pairs of a basic kind κ and a row kind s, written κ.s. This allows the kind
discipline enforced by S to reflect that enforced by S0 and S1 and to also im-
pose restrictions on the structure and use of rows, as suggested above. For
the sake of conciseness, we write K.s for the mapping (d 7→ K(d).s)d∈dom(K)

and (K ⇒ κ).s for the (composite) kind signature K.s ⇒ κ.s. We use symmet-
ric notations to build a composite kind signature out of a basic kind and a
row kind signature.

1.8.3 DEFINITION: The signature S is defined as follows:

F ∈ dom(S) Signature Conditions

Gs (K ⇒ κ).s (G : K ⇒ κ) ∈ S0

H K.Row(∅) ⇒ κ.Type (H : K ⇒ κ) ∈ S1

∂κ,L κ.(Type ⇒ Row(L))

`κ,L κ.(Type ⊗ Row(`.L) ⇒ Row(L)) ` /∈ L

We sometimes refer to S as the row extension of S0 with S1. 2

Examples 1.8.7 and 1.8.8 suggest common choices of S0 and S1, and give a
perhaps more concrete-looking definition of the grammar of types that they
determine. First, however, let us explain the definition. The type constructors
that populate S come in four varieties: they may be (i) taken from S0, (ii)
taken from S1, (iii) a unary row constructor ∂, or (iv) a binary row constructor
(` : · ; ·). Let us review and explain each case.

Let us first consider case (i) and assume, for the time being, that s is Type.
Then, for every type constructor G in S0, there is a corresponding type con-
structor GType in S. For instance, S0 must contain an arrow type constructor
→, whose signature is {domain 7→ ?, codomain 7→ ?} ⇒ ?. Then, S contains
a type constructor →Type, whose signature is {domain 7→ ?.Type, codomain 7→
?.Type} ⇒ ?.Type. Thus, →Type is a binary type constructor whose parameters
and result must have basic kind ? and must have row kind Type; in other
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words, they must be ordinary types, as opposed to complete or incomplete
rows. The family of all type constructors of the form GType, where G ranges
over S0, forms a copy of S0 at row kind Type: one might say, roughly speak-
ing, that S contains S0. This is not surprising, since our purpose is to enrich
the existing signature S0 with syntax for rows.

Perhaps more surprising is the existence of the type constructor Gs, for ev-
ery G in S0, and for every row kind s. For instance, for every L, S contains a type
constructor →Row(L), whose signature is {domain 7→ ?.Row(L), codomain 7→
?.Row(L)} ⇒ ?.Row(L). Thus, →Row(L) is a binary type constructor whose pa-
rameters and result must have basic kind ? and must have row kind Row(L).
In other words, this type constructor maps a pair of rows that have a com-
mon domain to a row with the same domain. Recall that a row is to be inter-
preted as a family of types. Our intention is that →Row(L) maps two families
of types to a family of arrow types. This is made precise in §1.8.4. One should
point out that the type constructors Gs, with s 6= Type, are required only in
some advanced applications of rows; Examples 1.8.28 and 1.8.39 provide il-
lustrations. They are not used when assigning types to the usual primitive
operations on records, namely creation, update, and access (Examples 1.8.25
and 1.8.30).

Case (ii) is simple: it simply means that S contains S1. It is only worth
noting that every type constructor H maps a parameter of row kind Row(∅)

to a result of row kind Type, that is, a complete row to an ordinary type.
Thanks to this design choice, the type ˝ (intType

) is invalid: indeed, intType has
row kind Type, while ˝ expects a parameter of row kind Row(∅).

Cases (iii) and (iv) introduce new type constructors, which were not present
in S0 or S1, and allow forming rows. They were informally described in
§1.8.2. First, for every κ and L, there is a constant row constructor ∂κ,L. Its
parameter must have row kind Type, while its result has row kind Row(L):
in other words, this type constructor maps an ordinary type to a row. It is
worth noting that the row thus built may be complete or incomplete: for in-
stance, ∂?,∅ bool is a complete row, and may be used e.g. to build the type
˝ (∂?,∅ bool), while ∂?,{`} bool is an incomplete row, and may be used e.g. to
build the type ˝ (` : int ; ∂?,{`} bool). Second, for every κ, L, and ` /∈ L, there is a
row extension constructor `κ,L. We usually write `κ,L :T1 ; T2 for `κ,L T1 T2 and
let this symbol be right associative, so as to recover the familiar list notation
for rows. According to the definition of S, if T2 has row kind Row(`.L), then
`κ,L : T1 ; T2 has row kind Row(L). Thanks to this design choice, the type
(`?,L : T1 ; `?,L : T2 ; ∂?,`.L bool) is invalid: indeed, the outer ` expects a pa-
rameter of row kind Row(`.L), while the inner ` produces a type of row kind
Row(L).

The superscripts carried by the type constructors G, `, and ∂ in the signa-
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ture S make all kind information explicit, obviating the need for assigning
several kinds to a single type constructor. In practice, however, we often
drop the superscripts and use unannotated types. No ambiguity arises be-
cause, given a type expression T of known kind, it is possible to reconstruct
all superscripts in a unique manner. This is the topic of the next example and
exercises.

1.8.4 EXAMPLE [ILL-KINDED TYPES]: Assume that S0 contains type constructors
int and →, whose signatures are respectively ? and ? ⊗ ? ⇒ ?, and that S1

contains a type constructor ˝, whose signature is ? ⇒ ?.
The unannotated type X → ˝(X) is invalid. Indeed, because ˝’s image row

kind is Type, the arrow must be →Type. Thus, the leftmost occurrence of Xmust
have row kind Type. On the other hand, because ˝ expects a parameter of row
kind Row(∅), its rightmost occurrence must have row kind Row(∅)—a con-
tradiction. The unannotated type X → ˝(∂X) is, however, valid, provided X
has kind ?.Type. In fact, it is the type of the primitive record creation opera-
tion (§1.8.2).

The unannotated type (` : T ; ` : T ; T ′′) is also invalid: there is no way of
reconstructing the missing superscripts so as to make it valid. Indeed, the
row (` :T ′ ; T ′′) must have row kind Row(L) for some L that does not contain
`. However, the context where it occurs requires it to also have row kind
Row(L) for some L that does contain `. This makes it impossible to reconstruct
consistent superscripts.

Any type of the form ˝(˝(T)) is invalid, because the outer ˝ expects a param-
eter of row kind Row(∅), while the inner ˝ constructs a type of row kind Type.
This is an intentional limitation: unlike those of S0, the type constructors of
S1 are not lifted to every row kind s. 2

1.8.5 EXERCISE [RECOMMENDED, F]: Consider the unannotated type

X → ˝(` : int ; (Y → ∂X)).

Can you guess the kind of the type variables X and Y, as well as the missing
superscripts, so as to ensure that this type has kind ?.Type? 2

1.8.6 EXERCISE [FFF, 9]: Propose a kind checking algorithm that, given an unan-
notated type T, given the kind of T, and given the kind of all type variables
that appear within T, ensures that T is well-kinded, and reconstructs the
missing superscripts within T. Next, propose a kind inference algorithm that,
given an unannotated type T, discovers the kind of T and the kind of all type
variables that appear within T so as to ensure that T is well-kinded. 2

We have given a very general definition of the syntax of types. In this view,
types, ranged over by the meta-variable T, encompass both “ordinary” types
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and rows: the distinction between the two is established only via the kind
system. In the literature, however, it is common to establish this distinction
by letting distinct meta-variables, say T and R, range over ordinary types and
rows, respectively, so as to give the syntax a more concrete aspect. The next
two examples illustrate this style and suggest common choices for S0 and S1.

1.8.7 EXAMPLE: Assume that there is a single basic kind ?, that S0 consists of the
arrow type constructor →, whose signature is ?⊗ ? ⇒ ?, and that S1 consists
of the record type constructor ˝, whose signature is ? ⇒ ?. Then, the compos-
ite kinds are ?.Type and ?.Row(L), where L ranges over the finite subsets of L.
Let us employ T (resp. R) to range over types of the former (resp. latter) kind,
and refer to them as ordinary types (resp. rows). Then, the syntax of types,
as defined by the signature S, may be presented under the following form:

T ::= X | T → T | ˝ R
R ::= X | R → R | (` : T ; R) | ∂T

Ordinary types T include ordinary type variables (that is, type variables of
kind ?.Type), arrow types (where the type constructor → is really →Type), and
record types, which are formed by applying the record type constructor ˝ to
a row. Rows R include row variables (that is, type variables of kind ?.Row(L)

for some L), arrow rows (where the row constructor → is really →Row(L) for
some L), row extension (whereby a row R is extended with an ordinary type
T at a certain label `), and constant rows (formed out of an ordinary type T). It
would be possible to also introduce a syntactic distinction between ordinary
type variables and row variables, if desired.

Such a presentation is rather pleasant, because the syntactic segregation
between ordinary types and rows makes the syntax less ambiguous. It does
not allow getting rid of the kind system, however: (row) kinds are still nec-
essary to keep track of the domain of every row. 2

1.8.8 EXAMPLE: Assume that there are two basic kinds ? and ◦, that S0 consists
of the type constructors →, abs, and pre, whose respective signatures are
? ⊗ ? ⇒ ?, ◦, and ? ⇒ ◦, and that S1 consists of the record type constructor
˝, whose signature is ◦ ⇒ ?. Then, the composite kinds are ?.Type, ?.Row(L),
◦.Type, and ◦.Row(L), where L ranges over the finite subsets of L. Let us em-
ploy T, R, FT, and FR, respectively, to range over types of these four kinds.
Then, the syntax of types, as defined by the signature S, may be presented
under the following form:

T ::= X | T → T | ˝ FR
R ::= X | R → R | (` : T ; R) | ∂T
FT ::= X | abs | pre T
FR ::= X | abs | pre R | (` : FT ; FR) | ∂FT
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Ordinary types T are as in the previous example, except the record type con-
structor ˝ must now be applied to a row of field types FR. Rows R are un-
changed. Field types FT include field type variables (that is, type variables
of kind ◦.Type) and applications of the type constructors abs and pre (which
are really absType and preType). Field rows FR include field row variables (that
is, type variables of kind ◦.Row(L) for some L), applications of the row con-

structors abs and pre (which are really absRow(L) and preRow(L) for some L),
row extension, and constant rows, where the row components are field types
FT.

In many basic applications of rows, absRow(L) and preRow(L) are never re-
quired: that is, they do not appear in the the type schemes that populate the
initial environment. (Applications where they are required appear in (Pot-
tier, 2000).) In that case, they may be removed from the syntax. Then, the
nonterminal R becomes unreachable from the nonterminal T, which is the
grammar’s natural entry point, so it may be removed as well. In that simpli-
fied setting, the syntax of types and rows becomes:

T ::= X | T → T | ˝ FR
FT ::= X | abs | pre T
FR ::= X | (` : FT ; FR) | ∂FT

This is the syntax found in some introductory accounts of rows (Rémy, 1993b;
Pottier, 2000). 2

1.8.4 Meaning

We now give meaning to the type grammar defined in the previous section
by interpreting it within a model. We choose to define a regular tree model,
but alternatives exist; see Remark 1.8.12 below. In this model, every type con-
structor whose image row kind is Type (that is, every type constructor of the
form GType or H) is interpreted as itself, as in a free tree model. However,
every application of a type constructor whose image row kind is Row(L) for
some L receives special treatment: it is interpreted as a family of types in-
dexed by L \ L, which we encode as an infinitely branching tree. To serve as
the root label of this tree, we introduce, for every κ and for every L, a symbol
Lκ, whose arity is L \ L. More precisely,

1.8.9 DEFINITION: The model, which consists of a set Mκ.s for every κ and s, is
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the regular tree algebra that arises out the following signature:

Symbol Signature Conditions

G (K ⇒ κ).Type (G : K ⇒ κ) ∈ S0

H K.Row(∅) ⇒ κ.Type (H : K ⇒ κ) ∈ S1

Lκ κ.(TypeL\L ⇒ Row(L))

2

The first two lines in this signature coincide with the definitions of GType and
H in the signature S. Indeed, as announced above, we intend to interpret
these type constructors in a syntactic manner, so each of them must have a
counterpart in the model. The third line introduces the symbols Lκ hinted at
above.

According to this signature, if t is a ground type of kind κ.Type (that is, an
element of Mκ.Type), then its head symbol t(ε) must be of the form G or H.
If t is a ground type of kind κ.Row(L), then its head symbol must be Lκ, and
its immediate subtrees, which are indexed by L \ L, are ground types of kind
κ.Type; in other words, the ground row t is effectively a family of ordinary
ground types indexed by L \ L. Thus, our intuition that rows denote infinite
families of types is made literally true.

We have defined the model; there remains to explain how types are mapped
to elements of the model.

1.8.10 DEFINITION: The interpretation of the type constructors that populate S is
defined as follows.

1. Let (G : K ⇒ κ) ∈ S0. Then, GType is interpreted as the function that maps
T ∈ MK.Type to the ground type t ∈ Mκ.Type defined by t(ε) = G and
t/d = T(d) for every d ∈ dom(K). This is a syntactic interpretation.

2. Let (H : K ⇒ κ) ∈ S1. Then, H is interpreted as the function that maps
T ∈ MK.Row(∅) to the ground type t ∈ Mκ.Type defined by t(ε) = H and
t/d = T(d) for every d ∈ dom(K). (Because H is unary, there is exactly one
such d.) This is also a syntactic interpretation.

3. Let (G : K ⇒ κ) ∈ S0. Then, GRow(L) is interpreted as the function that
maps T ∈ MK.Row(L) to the ground type t ∈ Mκ.Row(L) defined by t(ε) =

Lκ and t(`) = G and t/(` · d) = T(d)/` for every ` ∈ L \ L and d ∈ dom(K).
Thus, when applied to a family of rows, the type constructor GRow(L) pro-
duces a row where every component has head symbol G. This definition
may sound quite technical; its effect is summed up in a simpler fashion
by the equations C-ROW-GD and C-ROW-GL in the next section.
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4. ∂κ,L is interpreted as the function that maps t1 ∈ Mκ.Type to the ground
type t ∈ Mκ.Row(L) defined by t(ε) = Lκ and t/` = t1 for every ` ∈ L \ L.
Note that t/` does not depend on `: t is a constant ground row.

5. Let ` /∈ L. Then, `κ,L is interpreted as the function that maps (t1, t2) ∈

Mκ.Type ×Mκ.Row(`.L) to the ground type t ∈ Mκ.Row(L) defined by t(ε) =

Lκ and t/` = t1 and t/` ′ = t2(` ′) for every ` ′ ∈ L \ `.L. This definition
is precisely row extension: indeed, the ground row t maps ` to t1 and
coincides with the ground row t2 at every other label ` ′.

2

Defining a model and an interpretation allows our presentation of rows to fit
within the formalism proposed earlier in this chapter (§1.2). It also provides
a basis for the intuition that rows denote infinite families of types. From a
formal point of view, the model and its interpretation allow proving several
constraint equivalence laws concerning rows, which are given and discussed
in §1.8.5. Of course, it is also possible to accept these equivalence laws as
axioms and give a purely syntactic account of rows, without relying on a
model; this is how rows were historically dealt with (Rémy, 1993a).

1.8.11 REMARK: We have not defined the interpretation of the subtyping predicate,
because much of the material that follows is independent of it. One common
approach is to adopt a nonstructural definition of subtyping (Example 1.2.9),
where every Lκ is considered covariant in every direction, and where the
variances and relative ordering of all other symbols (G and H) are chosen at
will, subject to the restrictions associated with nonstructural subtyping and
to the conditions necessary to ensure type soundness.

Recall that the arrow type constructor → must be contravariant in its do-
main and covariant in its codomain. The record type constructor ˝ is usu-
ally covariant. These properties are exploited in proofs of the subject reduc-
tion theorem. The type constructors → and ˝ are usually incompatible. This
property is exploited in proofs of the progress theorem. In the case of Ex-
ample 1.8.7, because no type constructors other than → and ˝ are present,
these conditions imply that there is no sensible way of interpreting subtyp-
ing other than equality. In the case of Example 1.8.8, two sensible interpreta-
tions of subtyping exist: one is equality, while the other is the nonstructural
subtyping order obtained by letting pre 6 abs. 2

1.8.12 REMARK: The model proposed above is a regular tree model. Of course, it is
possible to adopt a finite tree model instead. Furthermore, other interpreta-
tions of rows are possible: for instance, Fähndrich (1999) extends the set con-
straints formalism with rows. In his model, an ordinary type is interpreted as
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(`1 : T1 ; `2 : T2 ; T3) = (`2 : T2 ; `1 : T1 ; T3) (C-ROW-LL)

∂T = (` : T ; ∂T) (C-ROW-DL)

G ∂T1 . . . ∂Tn = ∂(G T1 . . . Tn) (C-ROW-GD)

G (` : T1 ; T ′
1) . . . (` : Tn ; T ′

n) = (` : G T1 . . . Tn ; G T ′
1 . . . T ′

n) (C-ROW-GL)

Figure 1-12: Equational reasoning with rows

a set of values, while a row is interpreted as a set of functions from labels to
values. While the definition of the model may vary, the key point is that the
characteristic laws of rows, which we discuss in §1.8.5, hold in the model. 2

1.8.5 Reasoning with rows

The interpretation presented in the previous section was designed so as to
support the intuition that a row denotes an infinite family of types, indexed
by labels, that the row constructor ` : · ; · denotes row extension, and that the
row constructor ∂ denotes the creation of a constant row. From a formal point
of view, the definition of the model and interpretation may be exploited to es-
tablish some reasoning principles concerning rows. These principles take the
form of equations between types (Figure 1-12) and of constraint equivalence
laws (Figure 1-13), which we now explain and prove.

1.8.13 REMARK: As announced earlier, we omit the superscripts of row construc-
tors. We also omit the side conditions that concern the kind of the type vari-
ables (X) and type meta-variables (T) involved. Thus, each equation in Fig-
ure 1-12 really stands for the (infinite) family of equations obtained by recon-
structing the missing kind information in a consistent way. For instance, the
second equation may be read ∂`.LT = (`κ,L : T ; ∂LT), where ` /∈ L and T has
kind κ.Type. 2

1.8.14 EXERCISE [RECOMMENDED, F, 9]: Reconstruct all of the missing kind in-
formation in the equations of Figure 1-12. 2

1.8.15 REMARK: There is a slight catch with the unannotated version of the second
equation: its left-hand side admits strictly more kinds than its right-hand side,
because the former has row kind Row(L) for every L, while the latter has row
kind Row(L) for every L such that ` /∈ L holds. As a result, while replacing
the unannotated term (` : T ; ∂T) with ∂T is always valid, the converse is not:
replacing the unannotated term ∂T with (` : T ; ∂T) is valid only if it does not
result in an ill-kinded term. 2
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The first equation states that rows are equal up to commutation of labels.
For the equation to be well-kinded, the labels `1 and `2 must be distinct. The
equation holds under our interpretation because extension of a ground row
at `1 and extension of a ground row at `2 commute. The second equation
states that ∂T maps every label within its domain to T, that is, ∂LT maps
every label ` 6∈ L to T. This equation holds because ∂T is interpreted as a
constant row. The last two equations deal with the relationship between the
row constructors G and the ordinary type constructor G. Indeed, notice that
their left-hand sides involve GRow(L) for some L, while their right-hand sides
involve GType. Both equations state that it is equivalent to apply GRow(L) at
the level of rows or to apply GType at the level of types. Our interpretation
of GRow(L) was designed so as to give rise to these equations: indeed, the
application of GRow(L) to n ground rows (where n is the arity of G) is inter-
preted as a pointwise application of GType to the rows’ components (item 3 of
Definition 1.8.10). Their use is illustrated in Examples 1.8.28 and 1.8.39.

1.8.16 LEMMA: Each of the equations in Figure 1-12 is equivalent to true. 2

The four equations in Figure 1-12 show that two types with distinct head
symbols may denote the same element of the model. In other words, in the
presence of rows, the interpretation of types is no longer free: an equation of
the form T1 = T2, where T1 and T2 have distinct head symbols, is not neces-
sarily equivalent to false. In Figure 1-13, we give several constraint equiv-
alence laws, known as mutation laws, that concern such “heterogeneous”
equations, and, when viewed as rewriting rules, allow solving them. To each
equation in Figure 1-12 corresponds a mutation law. The soundness of the
mutation law, that is, the fact that its right-hand side entails its left-hand side,
follows from the corresponding equation. The completeness of the mutation
law, that is, the fact that its left-hand side entails its right-hand side, holds by
design of the model.

1.8.17 EXERCISE [RECOMMENDED, F, 9]: Reconstruct all of the missing kind in-
formation in the laws of Figure 1-13. 2

Let us now review the four mutation laws. For the sake of brevity, in the fol-
lowing informal explanation, we assume that a ground assignment φ that
satisfies the left-hand equation is fixed, and write “the ground type T” for
“the ground type φ(T)”. C-MUTE-LL concerns an equation between two
rows, which are both given by extension, but exhibit distinct head labels `1

and `2. When this equation is satisfied, both of its members must denote the
same ground row. Thus, the ground row T ′

1 must map `2 to the ground type
T2, while, symmetrically, the ground row T ′

2 must map `1 to the ground type
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(`1 : T1 ; T ′
1) = (`2 : T2 ; T ′

2) ≡ ∃X.(T ′
1 = (`2 : T2 ; X) ∧ T ′

2 = (`1 : T1 ; X)) (C-MUTE-LL)

if X # ftv(T1,T ′

1
,T2,T ′

2
)∧ 1̀ 6= 2̀

∂T = (` : T ′ ; T ′′) ≡ T = T ′ ∧ ∂T = T ′′ (C-MUTE-DL)

G T1 . . . Tn = ∂T ≡ ∃X1 . . .Xn.(G X1 . . . Xn = T∧
∧n

i=1(Ti = ∂Xi)) (C-MUTE-GD)

if X1 ...Xn # ftv(T1,...,Tn,T)

G T1 . . . Tn = (` : T ; T ′) ≡ ∃X1 . . .Xn,X ′
1 . . .X ′

n.(G X1 . . . Xn = T ∧

G X ′
1 . . . X ′

n = T ′ ∧∧n

i=1(Ti = (` : Xi ; X ′
i)))

if X1 ...Xn,X ′

1
...X ′

n # ftv(T1,...,Tn,T,T ′) (C-MUTE-GL)

Figure 1-13: Constraint equivalence laws involving rows

T1. This may be expressed by two equations of the form T ′
1 = (`2 : T2 ; . . .)

and T ′
2 = (`1 : T1 ; . . .). Furthermore, because the ground rows T ′

1 and T ′
2

must agree on their common labels, the ellipses in these two equations must
denote the same ground row. This is expressed by letting the two equations
share a fresh, existentially quantified row variable X. C-MUTE-DL concerns
an equation between two rows, one of which is given as a constant row, the
other of which is given by extension. Then, because the ground row ∂T maps
every label to the ground type T, the ground type T ′ must coincide with the
ground type T, while the ground row T ′′ must map every label in its domain
to the ground type T. This is expressed by the equations T = T ′ and ∂T = T ′′.
C-MUTE-GD and C-MUTE-GL concern an equation between two rows, one
of which is given as an application of a row constructor G, the other of which
is given either as a constant row or by extension. Again, the laws exploit the
fact that the ground row G T1 . . . Tn is obtained by applying the type con-
structor G, pointwise, to the ground rows T1, . . . ,Tn. If, as in C-MUTE-GD,
it coincides with the constant ground row ∂T, then every Ti must itself be a
constant ground row, of the form ∂Xi, and T must coincide with G X1 . . . Xn.
C-MUTE-GL is obtained in a similar manner.

1.8.18 LEMMA: Each of the equivalence laws in Figure 1-13 holds. 2

1.8.6 Solving equality constraints in the presence of rows

We now extend the unification algorithm given in §1.6.1 with support for
rows. The extended algorithm is intended to solve unification problems where
the syntax and interpretation of types are as defined in §1.8.3 and §1.8.4, re-



1.8 Rows 87

(`1 : X1 ; X ′
1) = (`2 : T2 ; T ′

2) = ε → ∃X.(X ′
1 = (`2 : T2 ; X) ∧ T ′

2 = (`1 : X1 ; X))

∧ (`1 : X1 ; X ′
1) = ε (S-MUTE-LL)

if 1̀ 6= 2̀

∂X = (` : T ; T ′) = ε → X = T∧ ∂X = T ′ ∧ ∂X = ε (S-MUTE-DL)

G T1 . . . Tn = ∂X = ε → ∃X1 . . .Xn.(G X1 . . . Xn = X∧
∧n

i=1(Ti = ∂Xi))

∧ ∂X = ε (S-MUTE-GD)

G T1 . . . Tn = (` : X ; X ′) = ε → ∃X1 . . .Xn,X ′
1 . . .X ′

n.(G X1 . . . Xn = X ∧

G X ′
1 . . . X ′

n = X ′ ∧∧n

i=1(Ti = (` : Xi ; X ′
i)))

∧ (` : X ; X ′) = ε (S-MUTE-GL)

F~T = F ′ ~T ′ = ε → false (S-CLASH’)
if F 6= F′ and none of the four rules above applies

Figure 1-14: Row unification (corrigendum to Figure 1-10)

spectively. Its specification consists of the original rewriting rules of Figure 1-
10, minus S-CLASH, which is removed and replaced with the rules given in
Figure 1-14. Indeed, S-CLASH is no longer valid in the presence of rows: not
all distinct type constructors are incompatible.

The extended algorithm features four mutation rules, which are in direct
correspondence with the mutation laws of Figure 1-13, as well as a weak-
ened version of S-CLASH, dubbed S-CLASH’, which applies when neither
S-DECOMPOSE nor the mutation rules are applicable. (Let us point out that,
in S-DECOMPOSE, the meta-variable F ranges over all type constructors in
the signature S, so that S-DECOMPOSE is applicable to multi-equations of
the form ∂X = ∂T = ε or (` : X ; X ′) = (` : T ; T ′) = ε.) Three of the muta-
tion rules may allocate fresh type variables, which must be chosen fresh for
the rule’s left-hand side. The four mutation rules paraphrase the four muta-
tion laws very closely. Two minor differences are (i) the mutation rules deal
with multi-equations, as opposed to equations; and (ii) any subterm that ap-
pears more than once on the right-hand side of a rule is required to be a type
variable, as opposed to an arbitrary type. Neither of these features is spe-
cific to rows: both may be found in the definition of the standard unification
algorithm (Figure 1-10), where they help reason about sharing.

1.8.19 EXERCISE [F, 9]: Check that the rewriting rules in Figure 1-14 preserve
well-kindedness. Conclude that, provided its input constraint is well-kinded,
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the unification algorithm needs not keep track of kinds. 2

The properties of the unification algorithm are preserved by this extension,
as witnessed by the next three lemmas. Note that the termination of reduc-
tion is ensured only when the initial unification problem is well-kinded. The
ill-kinded unification problem X = (`1 : T ; Y) ∧ X = (`2 : T ; Y), where `1 and
`2 are distinct, illustrates this point.

1.8.20 LEMMA: The rewriting system → is strongly normalizing. 2

1.8.21 LEMMA: U1 → U2 implies U1 ≡ U2. 2

1.8.22 LEMMA: Every normal form is either false or of the form X [U], where X is an
existential constraint context, U is a standard conjunction of multi-equations
and, if the model is syntactic, U is acyclic. These conditions imply that U is
satisfiable. 2

The time complexity of standard first-order unification is quasi-linear. What
is, then, the time complexity of row unification? Only a partial answer is
known. In practice, the algorithm given in this chapter is extremely efficient,
and appears to behave just as well as standard unification. In theory, the
complexity of row unification remains unexplored, and forms an interesting
open issue.

1.8.23 EXERCISE [FFF, 9]: The unification algorithm presented above, although
very efficient in practice, does not have linear or quasi-linear time complexity.
Find a family of unification problems Un such that the size of Un is linear
with respect to n and the number of steps required to reach its normal form
is quadratic with respect to n. 2

1.8.24 REMARK: Mutation is a common technique for solving equations in a large
class of non-free algebras that are described by syntactic theories (Kirchner
and Klay, 1990). The equations of Figure 1-12 happen to form a syntactic pre-
sentation of an equational theory. Thus, it is possible to derive a unification
algorithm out of these equations in a systematic way (Rémy, 1993a). Here,
we have presented the same algorithm in a direct manner, without relying
on the apparatus of syntactic theories. 2

1.8.7 Operations on records

We now illustrate the use of rows for typechecking operations on records.
We begin with full records; our treatment follows (Rémy, 1992b).
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1.8.25 EXAMPLE [FULL RECORDS]: As in §1.8.2, let us begin with full records, whose
domain is exactly L. The primitive operations are record creation {·}, update
{· with ` = ·}, and access ·.{`}.

Let us first introduce some useful syntactic sugar. Let < denote a fixed
strict total order on row labels. For every set of labels L of cardinal n, let us
introduce a (n + 1)-ary constructor {}L. We write {`1 = t1; . . . ; `n = tn;t}

for the application {}L ti1
. . . tin

t, where L = {`1, . . . , `n} = {`i1
, . . . , `in

}

and `i1
< . . . < `in

holds. The use of the total order < makes the meaning
of record expressions independent of the order in which fields are defined;
in particular, it allows fixing the order in which t1, . . . ,tn are evaluated. We
abbreviate the record value {`1 = v1; . . . ; `n = vn;v} as {V;v}, where V is the
finite function that maps `i to vi for every i ∈ {1, . . . , n}.

The operational semantics of the above three operations may now be de-
fined in the following straightforward manner. First, record creation {·} is
precisely the unary constructor {}∅. Second, for every ` ∈ L, let update
{· with ` = ·} and access ·.{`} be destructors of arity 1 and 2, respectively,
equipped with the following reduction rules:

{{V;v} with ` = v ′}
δ

−→ {V[` 7→ v ′];v} (R-UPDATE)

{V;v}.{`}
δ

−→ V(`) (` ∈ dom(V)) (R-ACCESS-1)

{V;v}.{`}
δ

−→ v (` /∈ dom(V)) (R-ACCESS-2)

In these rules, V[` 7→ v] stands for the function that maps ` to v and coin-
cides with V at every other label, while V(`) stands for the image of ` through
V. Because these rules make use of the syntactic sugar defined above, they
are, strictly speaking, rule schemes: each of them really stands for the infinite
family of rules that would be obtained if the syntactic sugar was eliminated.

Let us now define the syntax of types as in Example 1.8.7. Let the initial
environment Γ0 contain the following bindings:

{}{`1,...,`n} : ∀X1 . . .XnX.X1 → . . . → Xn → X → ˝ (`1 : X1; . . . ; `n : Xn;∂X)

where `1 < . . . < `n

{· with ` = ·} : ∀XX ′Y.˝ (` : X ; Y) → X ′ → ˝ (` : X ′ ; Y)

·.{`} : ∀XY.˝ (` : X ; Y) → X

Note that, in particular, the type scheme assigned to record creation {·} is
∀X.X → ˝ (∂X). As a result, these bindings are exactly as announced in §1.8.2.

To illustrate how these definitions work together, let us consider the pro-
gram {{0} with `1 = true}.{`2}, which builds a record, extends it at `1, then
accesses it at `2. Can we build an HM(X) type derivation for it, under the
constraint true and the initial environment Γ0? To begin, by looking up Γ0

and using HMX-INST, we find that {·} has type int → ˝ (∂int). Thus, assuming
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that 0 has type int, the expression {0} has type ˝ (∂int). Indeed, this expres-
sion denotes a record all of whose fields hold an integer value. Then, by
looking up Γ0 and using HMX-INST, we find that {· with `1 = ·} has type
˝ (`1 : int ; ∂int) → bool → ˝ (`1 : bool ; ∂int). May we immediately use
HMX-APP to typecheck the application of {· with `1 = ·} to {0}? Unfortu-
nately, no, because there is an apparent mismatch between the expected type
˝ (`1 :int ; ∂int) and the effective type ˝ (∂int). To work around this problem, let
us recall that, by C-ROW-DL, the equation ˝ (∂int) = ˝ (`1 : int ; ∂int) is equiv-
alent to true. Thus, HMX-SUB allows proving that {0} has type ˝ (`1 : int ; ∂int).
Assuming that true has type bool, we may now apply HMX-APP and de-
duce

true, Γ0 ` {{0} with `1 = true} : ˝ (`1 : bool ; ∂int).

We let the reader check that, in a similar manner, which involves C-ROW-DL,
C-ROW-LL, and HMX-SUB, one may prove that {{0} with `1 = true}.{`2} has
type int, provided `1 and `2 are distinct. 2

1.8.26 EXERCISE [FF, 9]: Unfold the definition of the constraint let Γ0 in �{{0} with
`1 = true}.{`2} : X�, which states that X is a valid type for the above program.
Assuming that subtyping is interpreted as equality, simulate a run of the con-
straint solver (§1.6), extended with support for rows (§1.8.6), so as to solve
this constraint. Check that the solved form is equivalent to X = int. 2

1.8.27 EXERCISE [FFF]: Check that the definitions of Example 1.8.25 meet the re-
quirements of Definition 1.5.5. 2

1.8.28 EXAMPLE [RECORD APPLICATION]: Let us now introduce a more unusual
primitive operation on full records. This operation accepts two records, the
first of which is expected to hold a function in every field, and produces a
new record, whose contents are obtained by applying, pointwise, the func-
tions in the first record to the values in the second record. In other words, this
new primitive operation lifts the standard application combinator (which
may be defined as λf.λz.f z), pointwise, to the level of records. For this
reason, we refer to it as apply. Its operational semantics is defined by making
it a binary destructor and equipping it with the following reduction rules:

apply {V;v} {V ′;v ′}
δ

−→ {V V ′;v v ′} (R-APPLY-1)

apply {V;v} {V ′;v ′}
δ

−→ apply {V;v} {V ′[` 7→ v ′];v ′} (R-APPLY-2)

if ` ∈ dom(V) \ dom(V ′)

apply {V;v} {V ′;v ′}
δ

−→ apply {V[` ′ 7→ v];v} {V ′;v ′} (R-APPLY-3)

if ` ′ ∈ dom(V ′) \ dom(V)
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In the first rule, V V ′ is defined only if V and V ′ have a common domain; it
is then defined as the function that maps ` to the expression V(`) V ′(`). The
second and third rules, which are symmetric, deal with the case where some
field is explicitly defined in one input record, but not in the other; in that case,
the field is made explicit by creating a copy of the record’s default value.

The syntax of types remains as in Example 1.8.25. We extend the initial
environment Γ0 with the following binding:

apply : ∀XY.˝ (X → Y) → ˝ X → ˝ Y

To understand this type scheme, recall that the principal type scheme of the
standard application combinator (which may be defined as λf.λz.f z) is
∀XY.(X → Y) → X → Y. The type scheme assigned to apply is very similar:
the most visible difference is that both arguments, as well as the result, are
now wrapped within the record type constructor ˝. A more subtle, yet essen-
tial change is that X and Y are now row variables: their kind is ?.Row(∅). As
a result, the leftmost occurrence of the arrow constructor is really →Row(∅).
Thus, we are exploiting the presence of type constructors of the form Gs,
with s 6= Type, in the signature S.

To illustrate how these definitions work together, let us consider the pro-
gram apply {` = not;succ} {` = true; 0}, where the terms not and succ
are assumed to have types bool → bool and int → int, respectively. Can
we build an HM(X) type derivation for it, under the constraint true and
the initial environment Γ0? To begin, it is straightforward to derive that the
record {` = not;succ} has type ˝ (` : bool → bool ; ∂(int → int)) (1). In
order to use apply, however, we must prove that this record has a type of
the form ˝ (R1 → R2), where R1 and R2 are rows. This is where C-ROW-
GD and C-ROW-GL (Figure 1-12) come into play. Indeed, by C-ROW-GD,
the type ∂(int → int) may be written ∂int → ∂int. So, (1) may be written ˝
(` : bool → bool ; ∂int → ∂int) (2), which by C-ROW-GL may be written ˝
((` : bool ; ∂int) → (` : bool ; ∂int)) (3). Thus, HMX-SUB allows deriving that
the record {` = not;succ} has type (3). We let the reader continue and con-
clude that the program has type ˝ (` : bool ; ∂int) under the constraint true
and the initial environment Γ0.

This example illustrates a very important use of rows, namely to lift an
operation on ordinary values so as to turn it into a pointwise operation on
records. Here, we have chosen to lift the standard application combinator,
giving rise to apply on records. The point is that, thanks to the expressive
power of rows, we were also able to lift the standard combinator’s type scheme
in the most straightforward manner, giving rise to a suitable type scheme for
apply. 2
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1.8.29 EXERCISE [FFF, 9]: Check that the definitions of Example 1.8.28 meet the
requirements of Definition 1.5.5. 2

The previous examples have illustrated the use of rows to typecheck op-
erations on full records. Let us now move to records with finite domain. As
explained in §1.8.1, they may be either encoded in terms of full records, or
given a direct definition. The latter approach is illustrated below.

1.8.30 EXAMPLE [FINITE RECORDS]: For every set of labels L of cardinal n, let us
introduce a n-ary constructor 〈〉L. We define the notations 〈`1 = t1; . . . ; `n =

tn〉 and 〈V〉, where V is a finite mapping of labels to values, in a manner
similar to that of Example 1.8.25.

The three primitive operations on finite records, namely the empty record
〈〉, extension 〈· with ` = ·〉, and access ·.〈`〉, may be defined as follows. First,
the empty record 〈〉 is precisely the nullary constructor 〈〉∅. Second, for every
` ∈ L, let extension 〈· with ` = ·〉 and access ·.〈`〉 be destructors of arity 1 and
2, respectively, equipped with the following reduction rules:

〈〈V〉 with ` = v〉
δ

−→ 〈V[` 7→ v]〉 (R-EXTEND)

〈V〉.〈`〉
δ

−→ V(`) (` ∈ dom(V)) (R-ACCESS)

Let us now define the syntax of types as in Example 1.8.8. Let the initial
environment Γ0 contain the following bindings:

〈〉{`1,...,`n} : ∀X1 . . .Xn.X1 → . . . → Xn → ˝ (`1 : pre X1; . . . ; `n : pre Xn;∂abs)

where `1 < . . . < `n

〈· with ` = ·〉 : ∀XX ′Y.˝ (` : X ; Y) → X ′ → ˝ (` : pre X ′ ; Y)

·.〈`〉 : ∀XY.˝(` : pre X ; Y) → X

Note that, in particular, the type scheme assigned to the empty record 〈〉 is
˝ (∂abs). 2

1.8.31 EXERCISE [RECOMMENDED, F, 9]: Reconstruct all of the missing kind in-
formation in the type schemes given in Example 1.8.30. 2

1.8.32 EXERCISE [RECOMMENDED, FF, 9]: Define an encoding of finite records
in terms of full records, along the lines of §1.8.1. Check that the principal
type schemes associated, via the encoding, with the three operations on finite
records are precisely those given in Example 1.8.30. 2

1.8.33 EXERCISE [RECOMMENDED, F]: The extension operation, as defined above,
may either change the value of an existing field or create a new field, depend-
ing on whether the field ` is or isn’t present in the input record. This flavor
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is known as free extension. Can you define a strict flavor of extension that is
not applicable when the field ` already exists? Can you define (free and strict
flavors of) a restriction operation that removes a field from a record? 2

1.8.34 EXERCISE [RECOMMENDED, F]: Explain why, when pre 6 abs holds, sub-
sumption allows a record with more fields to be supplied in a context where
a record with fewer fields is expected. This phenomenon is often known as
width subtyping. Explain why such is not the case when subtyping is inter-
preted as equality. 2

1.8.35 EXERCISE [FFF, 9]: Check that the definitions of Example 1.8.30 meet the
requirements of Definition 1.5.5. 2

1.8.8 Polymorphic variants

So far, we have emphasized the use of rows for flexible typechecking of op-
erations on records. The record type constructor ˝ expects one parameter,
which is a row: informally speaking, one might say that it is a product con-
structor of infinite arity. It appears natural to also define sums of infinite arity.
This may be done by introducing a new unary type constructor ˚, whose pa-
rameter is a row.

As in the case of records, we use a nullary type constructor abs and a
unary type constructor pre in order to associate information with every row
label. Thus, for instance, the type ˚ (`1 : pre T1 ; `2 : pre T2 ; ∂abs) is in-
tended to contain values of the form `1 v1, where v1 has type T1, or of
the form `2 v2, where v2 has type T2. The type constructors abs and pre
are not the same type constructors as in the case of records. In particular,
their subtyping relationship, if there is one, is reversed. Indeed, the type ˚
(`1 : pre T1 ; `2 : abs ; ∂abs) is intended to contain only values of the form
`1 v1, where v1 has type T1, so it is safe to make it a subtype of the above
type: in other words, it is safe to allow abs ≤ pre T2. In spite of this, we keep
the names abs and pre by tradition.

The advantages of this approach over algebraic data types are the same as
in the case of records. The namespace of data constructors becomes global,
so it becomes possible for two distinct sum types to share data constructors.
Also, the expressiveness afforded by rows allows assigning types to new op-
erations, such as filtering (see below), which allows functions that perform
case analysis to be incrementally extended with new cases. One disadvan-
tage is that it becomes more difficult to understand what it means for a func-
tion defined by pattern matching to be exhaustive; this issue is, however, out
of the scope of this chapter.
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1.8.36 EXAMPLE [POLYMORPHIC VARIANTS]: For every label ` ∈ L, let us intro-
duce a unary constructor ` and a ternary destructor [ ` : · | · ] ·. We refer to the
former as a data constructor, and to the latter as a filter. Let us also introduce a
unary destructor []. We equip these destructors with the following reduction
rules:

[ ` : v | v ′ ] (` w)
δ

−→ v w (R-FILTER-1)

[ ` : v | v ′ ] (` ′ w)
δ

−→ v ′ (` ′ w) if ` 6= ` ′ (R-FILTER-2)

Let us define the syntax of types as follows. Let there be two basic kinds ?

and •. Let S0 consist of the type constructors →, abs, and pre, whose respec-
tive signatures are ? ⊗ ? ⇒ ?, •, and ? ⇒ •. Let S1 consist of the record type
constructor ˚, whose signature is • ⇒ ?. Note the similarity with the case of
records (Example 1.8.8).

Subtyping is typically interpreted in one of two ways. One is equality. The
other is the nonstructural subtyping order obtained by letting → be con-
travariant in its domain and covariant in its codomain, ˚ be covariant, →
and ˚ be incompatible, and letting abs 6 pre. Compare this definition with
the case of records (Remark 1.8.11).

To complete the setup, let the initial environment Γ0 contain the following
bindings:

` · : ∀XY.X → ˚ (` : pre X ; Y)

[ ` : · | · ] · : ∀XX ′YY ′.(X → Y) → (˚ (` : X ′ ; Y ′) → Y) → ˚ (` : pre X ; Y ′) → Y
[] : ∀X.˚ (∂abs) → X

The first binding means, in particular, that if v has type T, then a value of the
form ` v has type ˚ (` : pre T ; ∂abs). This is a sum type with only one branch
labelled `, hence a very precise type for this value. However, it is possible to
instantiate the row variable Y with rows other than ∂abs. For instance, the
value ` v also has type ˚ (` : pre T ; ` ′ : pre T ′ ; ∂abs). This is a sum type with
two branches, hence a somewhat less precise type, but still a valid one for
this value. It is clear that, through this mechanism, the value ` v admits an
infinite number of types. The point is that, if v has type T and v ′ has type T ′,
then both ` v and ` ′ v ′ have type ˚ (` : pre T ; ` ′ : pre T ′ ; ∂abs), so they may
be stored together in a homogeneous data structure, such as a list.

Filters are used to perform case analysis on variants, that is, on values of a
sum type. According to R-FILTER-1 and R-FILTER-2, a filter [ ` : v | v ′ ] is a
function that expects an argument of the form ` ′ w and reduces to v w if ` ′ is `

and to v ′ (` ′ w) otherwise. Thus, a filter defines a two-way branch, where the
label of the data constructor at hand determines which branch is taken. The
expressive power of filters stems from the fact that they may be organized in
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a sequence, so as to define a multi-way branch. The inert filter [], which does
not have a reduction rule, serves as a terminator for such sequences. For
instance, the composite filter [ ` : v | [ ` ′ : v ′ | [] ] ], which may be abbreviated
as [ ` : v | ` ′ : v ′ ], may be applied either to a value of the form ` w, yielding
v w, or to a value of the form ` ′ w ′, yielding v ′ w ′. Applying it to a value w
whose head symbol is not ` or ` ′ would lead to the term [] w, which is stuck,
since [] does not have a reduction rule.

For the type system to be sound, we must ensure that every application
of the form [] w is ill-typed. This is achieved by the third binding above: the
domain type of [] is ˚ (∂abs), a sum type with zero branches, which contains
no values. The return type of [] may be chosen at will, which is fine: since it
can never be invoked, it can never return. The second binding above means
that, if v accepts values of type T and v ′ accepts values of type ˚ (` : T ′′ ; T ′),
then the filter [ ` : v | v ′ ] accepts values of type ˚ (` : pre T ; T ′). Note that
any choice of T ′′ will do, including, in particular, abs. In other words, it is
okay if v ′ does not accept values of the form ` w. Indeed, by definition of the
semantics of filters, it will never be passed such a value. 2

1.8.37 EXERCISE [FFF, 9]: Check that the definitions of Example 1.8.36 meet the
requirements of Definition 1.5.5. 2

1.8.38 REMARK: It is interesting to study the similarity between the type schemes
assigned to the primitive operations on polymorphic variants and those as-
signed to the primitive operations on records (Example 1.8.30). The type of
[] involves the complete row ∂abs, just like the empty record 〈〉. The type of
[ ` : · | · ] · is pretty much identical to the type of record extension 〈· with ` = ·〉,
provided the three continuation arrows → Y are dropped. Last, the type of
the data constructor ` is strongly reminiscent of the type of record access
·.〈`〉. With some thought, this is hardly a surprise. Indeed, records and vari-
ants are dual: it is possible to encode the latter in terms of the former and
vice-versa. For instance, in the encoding of variants in terms of records, a
function defined by cases is encoded as a record of ordinary functions, in
continuation-passing style. Thus, the encoding of [] is λf.f 〈〉, the encoding
of [ ` : v | v ′ ] is λf.f 〈v ′ with ` = v〉, and the encoding of ` v is λr.r.〈`〉 v.
The reader is encouraged to study the type schemes that arise out of this
encoding and how they relate to the type schemes given in Example 1.8.36.
2

1.8.39 EXAMPLE [FIRST-CLASS MESSAGES]: In a programming language equipped
with both records and variants, it is possible to make the duality between
these two forms of data explicit by extending the language with a primitive
operation # that turns a record of ordinary functions into a single function,
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defined by cases. More precisely, # may be introduced as a binary destructor,
whose reduction rule is

# v (` w)
δ

−→ v.〈`〉 w (R-SEND)

What type may we assign to such an operation? In order to simplify the an-
swer, let us assume that we are dealing with full records (Example 1.8.25)
and full variants; that is, we have a single basic kind ?, and do not employ
abs and pre. Then, a suitable type scheme would be

∀XY.˝ (X → ∂Y) → ˚ X → Y

In other words, this operation accepts a record of functions, all of which have
the same return type Y, but may have arbitrary domain types, which are
given by the row X. It produces a function that accepts a parameter of sum
type ˚ X and returns a result of type Y. The fact that the row X appears both
in the ˚ type and in the ˝ type reflects the operational semantics. Indeed, ac-
cording to R-SEND, the label ` carried by the value ` w is used to extract, out
of the record v, a function, which is then applied to w. Thus, the domain type
of the function stored at ` within the record v should match the type of w. In
other words, at every label, the domain of the contents of the record and the
contents of the sum should be type compatible. This is encoded by letting
a single row variable X stand for both of these rows. Note that the arrow in
X → ∂Y is really →Row(∅): once again, we are exploiting the presence of type
constructors of the form Gs, with s 6= Type, in the signature S.

If the record of functions v is viewed as an object, and if the variant ` w
is viewed as a message ` carrying a parameter w, then R-SEND may be un-
derstood as (first-class) message dispatch, a common feature of object-oriented
languages. (The first-class qualifier refers to the fact that the message name ` is
not statically fixed, but is discovered at runtime.) The issue of type inference
in the presence of such a feature has been studied in (Nishimura, 1998; Müller
and Nishimura, 1998; Pottier, 2000). These papers address two issues that are
not dealt with in the above example, namely (i) accommodating finite (as op-
posed to full) record and variants and (ii) allowing distinct methods to have
distinct result types. This is achieved via the use of subtyping and of some
form of conditional constraints. 2

1.8.40 EXERCISE [FFF, 9]: Check that the definitions of Example 1.8.39 meet the
requirements of Definition 1.5.5. 2

The name polymorphic variants stems from the highly polymorphic type
schemes assigned to the operations on variants (Example 1.8.36). A row-
based type system for polymorphic variants was first proposed by Rémy (1989).
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A somewhat similar, constraint-based type system for polymorphic variants
was then studied by Garrigue (1998; 2000; 2002) and implemented by him as
part of the programming language Objective Caml.

1.8.9 Other applications of rows

Typechecking records and variants is the best-known application of rows.
Many variations of it are conceivable, some of which we have illustrated,
such as the choice between full and finite records and variants. However,
rows may also be put to other uses, of which we now list a few.

First, since objects may be viewed as records of functions, at least from a
typechecking point of view, rows may be used to typecheck object-oriented
languages in a structural style (Wand, 1994; Rémy, 1994). This is, in particu-
lar, the route followed in Objective Caml (Rémy and Vouillon, 1998). There,
an object type consists of a row of method types, and gives the object’s inter-
face. Such a style is considered structural, as opposed to the style adopted by
many popular object-oriented languages, such as C++, Java, and C#, where
an object type consists of the name of its class. Thanks to rows, method invo-
cation may be assigned a polymorphic type scheme, similar to that of record
access (Example 1.8.30), making it possible to invoke a specific method (say,
`) without knowing which class the receiver object belongs to.

Rows may also be used to encode set of properties within types or to en-
code type refinements, with applications in type-based program analysis.
Some instances worth mentioning are soft typing (Cartwright and Fagan,
1991; Wright and Cartwright, 1994), exception analysis (Leroy and Pessaux,
2000; Pottier and Simonet, 2003), and static enforcement of an access control
policy (Pottier, Skalka, and Smith, 2001). BANE (Fähndrich, 1999), a versatile
program analysis toolkit, also implements a form of rows.

1.8.10 Variations on rows

A type system may be said to have rows, in a broad sense, if mappings from
labels to types may be (i) defined incrementally, via some syntax for extend-
ing an existing mapping with information about a new label and (ii) ab-
stracted by a type variable. In this chapter, which follows Rémy’s ideas (1993a;
1992a; 1992b), the former feature is provided by the row constructors (` : · ; ·),
while the latter is provided by the existence of row variables, that is, type
variables of row kind Row(L) for some L. There are, however, type systems
that provide (i) and (ii) while departing significantly from the one presented
here. These systems differ mainly in how they settle some important design
choices:
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1. does a row denote a finite or infinite mapping from labels to types?

2. is a row with duplicate labels considered well-formed? if not, by which
mechanism is it ruled out?

In Rémy’s approach, every row denotes an infinite (in fact, cofinite) mapping
from labels to types. The type constructors abs and pre are used to encode
domain information within field types. A row with duplicate labels, such as
(` : T1 ; ` : T2 ; T3), is ruled out by the kind system. Below, we mention a
number of type systems that make different design choices.

The first use of rows for typechecking operations on records, including
record extension, is due to Wand (1987; 1988). In Wand’s approach, rows de-
note finite mappings. Furthermore, rows with duplicate labels are considered
legal: row extension is interpreted as function extension, so that, if a label oc-
curs twice, the later occurrence takes precedence. This leads to a difficulty
in the constraint solving process: the constraint (` : T1 ; R1) = (` : T2 ; R2)

entails T1 = T2, but does not entail R1 = R2, because R1 and R2 may have
different domains—indeed, their domains may differ at `. Wand’s proposed
solution (1988) introduces a four-way disjunction, because each of R1 and R2

may or may not define `. This gives type inference exponential time com-
plexity.

Later work (Berthomieu, 1993; Berthomieu and le Moniès de Sagazan, 1995)
interprets rows as infinite mappings, but sticks with Wand’s interpretation of
row extension as function extension, so that duplicate labels are allowed.
The constraint solving algorithm rewrites the problematic constraint (` : T1 ;

R1) = (` : T2 ; R2) to (T1 = T2) ∧ (R1 ={`} R2), where the new predicate =L is
interpreted as row equality outside L. Of course, the entire constraint solver
must then be extended to deal with constraints of the form T1 =L T2. The ad-
vantage of this approach over Wand’s lies in the fact that no disjunctions are
ever introduced, so that the time complexity of constraint solving apparently
remains polynomial.

Several other works make opposite choices, by sticking with Wand’s in-
terpretation of rows as finite mappings, but forbidding duplicate labels. No
kind discipline is imposed: some other mechanism is used to ensure that du-
plicate labels do not arise. In (Jategaonkar and Mitchell, 1988; Jategaonkar,
1989), somewhat ad hoc steps are taken to ensure that, if the row (` :T ; X) ap-
pears anywhere within a type derivation, then X is never instantiated with a
row that defines `. In (Gaster and Jones, 1996; Gaster, 1998; Jones and Peyton
Jones, 1999), explicit constraints prevent duplicate labels from arising. This
line of work uses qualified types (Jones, 1994), a constraint-based type system
that bears strong similarity with HM(X). For every label `, a unary predicate
· lacks ` is introduced: roughly speaking, the constraint R lacks ` is consid-
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ered to hold if the (finite) row R does not define the label `. The constrained
type scheme assigned to record access is

·.〈`〉 : ∀XY[Y lacks `].˝ (` : X ; Y) → X.

The constraint Y lacks ` ensures that the row (` : X ; Y) is well-formed. Al-
though interesting, this approach is not as expressive as that described in
this chapter. For instance, although it accommodates record update (where
the field being modified is known to exist in the initial record) and strict
record extension (where the field is known not to initially exist), it cannot ex-
press a suitable type scheme for free record extension, where it is not known
whether the field initially exists. This approach has been implemented as the
“Trex” extension to Hugs.

It is worth mentioning a line of type systems (Ohori and Buneman, 1988,
1989; Ohori, 1995) that do not have rows, because they lack feature (i) above,
but are still able to assign a polymorphic type scheme to record access. One
might explain their approach as follows. First, these systems are equipped
with ordinary, structural record types, of the form {`1 : T1; . . . ; `n : Tn}. Sec-
ond, for every label `, a binary predicate · has ` : · is available. The idea is
that the constraint T has ` : T ′ holds if and only if T is a record type that
contains the field ` : T ′. Then, record access may be assigned the constrained
type scheme

·.〈`〉 : ∀XY[X has ` : Y].X → Y.

This technique also accommodates a restricted form of record update, where
the field being written must initially exist and must keep its initial type; it
does not, however, accommodate any form of record extension, because of
the absence of row extension in the syntax of types. Although the papers
cited above employ different terminology, we believe it is fair to view them as
constraint-based type systems. In fact, Odersky, Sulzmann, and Wehr (1999)
prove that Ohori’s system (1995) may be viewed as an instance of HM(X).
Sulzmann (2000) proposes several extensions of it, also presented as instances
of HM(X), which accommodate record extension and concatenation using
new, ad hoc constraint forms in addition to · has `.

In the label-selective λ-calculus (Garrigue and Aït-Kaci, 1994; Furuse and
Garrigue, 1995), the arrow type constructor carries a label, and arrows that
carry distinct labels may commute, so as to allow labeled function arguments
to be supplied in any order. Some of the ideas that underlie this type system
are closely related to rows.

Pottier (2003) describes an instance of HM(X) where rows are not part of
the syntax of types: equivalent expressive power is obtained via an extension
of the constraint language. The idea is to work with constraints of the form
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R1 ≤L R2, where L may be finite or cofinite, and to interpret such a constraint
as row subtyping inside L. The point of this approach is to allow formulating
constraint solving as a closure process. In this alternate formulation, no new
type variables need be allocated during constraint solving; contrast this with
S-MUTE-LL, S-MUTE-GD, and S-MUTE-GL in Figure 1-14.

Even though rows were originally invented with type inference in mind,
they are useful in explicitly typed languages as well: indeed, other approaches
to typechecking operations on records appear quite complex (Cardelli and
Mitchell, 1991).
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1.1.21 SOLUTION: Within Damas and Milner’s type system, we have:

DM-LET

DM-VAR
z1 : X ` z1 : X z1 : X;z2 : X ` z2 : X

DM-VAR

DM-ABS
z1 : X ` let z2 = z1 in z2 : X

∅ ` λz1.let z2 = z1 in z2 : X → X

Note that, because X occurs free within the environment z1 : X, it is impos-
sible to apply DM-GEN to the judgement z1 : X ` z1 : X in a nontrivial
way. For this reason, z2 cannot receive the type scheme ∀X.X, and the whole
expression cannot receive type X → Y, where X and Y are distinct.

1.1.22 SOLUTION: It is straightforward to prove that the identity function has type
int → int:

Γ0;z : int ` z : int
DM-VAR

Γ0 ` λz.z : int → int
DM-ABS

In fact, nothing in this type derivation depends on the choice of int as the type
of z. Thus, we may just as well use a type variable X instead. Furthermore,
after forming the arrow type X → X, we may employ DM-GEN to quantify
universally over X, since X no longer appears in the environment.

DM-GEN

DM-ABS

DM-VAR
Γ0;z : X ` z : X

Γ0 ` λz.z : X → X X 6∈ ftv(Γ0)

Γ0 ` λz.z : ∀X.X → X

It is worth noting that, although the type derivation employs an arbitrary
type variable X, the final typing judgement has no free type variables. It is
thus independent of the choice of X. In the following, we refer to the above
type derivation as ∆0.

Next, we prove that the successor function has type int → int under the
initial environment Γ0. We write Γ1 for Γ0;z : int, and make uses of DM-VAR

implicit.

DM-APP

DM-APP
Γ1 ` +̂ : int → int → int Γ1 ` z : int

Γ1 ` +̂ z : int → int Γ1 ` 1̂ : int

DM-ABS
Γ1 ` z +̂ 1̂ : int

Γ0 ` λz.z +̂ 1̂ : int → int

In the following, we refer to the above type derivation as ∆1. We may now
build a derivation for the third typing judgement. We write Γ2 for Γ0;f : int →
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int.

∆1

Γ2 ` f : int → int Γ2 ` 2̂ : int

Γ2 ` f 2̂ : int
DM-APP

Γ0 ` let f = λz.z +̂ 1̂ in f 2̂ : int
DM-LET

To derive the fourth typing judgement, we re-use ∆0, which proves that the
identity function has polymorphic type ∀X.X → X. We write Γ3 for Γ0;f :

∀X.X → X. By DM-VAR and DM-INST, we have both Γ3 ` f : (int → int) →

(int → int) and Γ3 ` f : int → int. Thus, we may build the following deriva-
tion:

∆0

DM-APP

DM-APP

Γ3 ` f : (int → int) → (int → int)
Γ3 ` f : int → int

Γ3 ` f f : int → int Γ3 ` 2̂ : int

Γ3 ` f f 2̂ : int

Γ0 ` let f = λz.z in f f 2̂ : int
DM-LET

The first and third judgements are valid in the simply-typed λ-calculus, be-
cause they use neither DM-GEN nor DM-INST, and use DM-LET only to intro-
duce the monomorphic binding f : int → int into the environment. The second
judgement, of course, is not: because it involves a nontrivial type scheme, it is
not even a well-formed judgement in the simply-typed λ-calculus. The fourth
judgement is well-formed, but not derivable, in the simply-typed λ-calculus.
This is because f is used at two incompatible types, namely (int → int) →

(int → int) and int → int, inside the expression f f 2̂. Both of these types are
instances of ∀X.X → X, the type scheme assigned to f in the environment Γ3.

By inspection of the rules, a derivation of Γ0 ` 1̂ : T must begin with
an instance of DM-VAR, of the form Γ0 ` 1̂ : int. It may be followed by an
arbitrary number of instances of the sequence (DM-GEN; DM-INST), turning
int into a type scheme of the form ∀X̄.int, then back to int. Thus, T must be int.
Because int is not an arrow type, there follows that the application 1̂ 2̂ cannot
be well-typed under Γ0. In fact, because this expression is stuck, it cannot be
well-typed in a sound type system.

The expression λf.(f f) is ill-typed in the simply-typed λ-calculus, be-
cause no type T may coincide with a type of the form T → T ′: indeed,
T would be a subterm of itself. In DM, this expression is ill-typed as well,
but the proof of this fact is slightly more complex. One must point out that,
because f is λ-bound, it must be assigned a type T (as opposed to a type
scheme) in the environment. Furthermore, one must note that DM-GEN is
not applicable (except in a trivial way) to the judgement Γ0;f : T ` f : T,
because all of the type variables in the type T appear free in the environ-
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ment Γ0;f : T. Once these points are made, the proof is the same as in the
simply-typed λ-calculus.

It is important to note that the above argument crucially relies on the fact
that f is λ-bound and must be assigned a type, as opposed to a type scheme.
Indeed, we have proved earlier in this exercise that the self-application f f is
well-typed when f is let-bound and is assigned the type scheme ∀X.X → X.
For the same reason, λf.(f f) is well-typed in an implicitly-typed variant
of System F. It also relies on the fact that types are finite: indeed, λf.(f f)

is well-typed in an extension of the simply-typed λ-calculus with recursive
types, where the equation T = T → T ′ has a solution.

Later, we will develop a type inference algorithm for ML-the-type-system
and prove that it is correct and complete. Then, to prove that a term is ill-
typed, it will be sufficient to simulate a run of the algorithm and to check
that it reports a failure.

1.4.1 SOLUTION: Let X 6∈ ftv(Γ) (1). Assume that there exist a satisfiable constraint
C and a type T such that C, Γ ` t : T (2) holds. Thanks to (1), we find that,
up to a renaming of C and T, we may further assume X 6∈ ftv(C,T) (3). Then,
applying Lemma 1.3.1 to (2), we obtain C ∧ T = X, Γ ` t : T, which by HMX-
SUB yields C ∧ T = X, Γ ` t : X (4). Furthermore, by (3) and C-NAMEEQ, we
have ∃X.(C∧T = X) ≡ C. Because C is satisfiable, this implies that C∧T = X
is satisfiable as well. As a result, we have found a satisfiable constraint C ′

such that C ′, Γ ` t : X holds.
Now, assume Γ is closed and X is arbitrary. Then, (1) holds, so the previous

paragraph proves that, if t is well-typed within Γ , then there exists a satisfi-
able constraint C ′ such that C ′, Γ ` t : X holds. By the completeness property,
we must then have C ′ ° �Γ ` t : X . Since C ′ is satisfiable, this implies that
�Γ ` t : X is satisfiable as well. Conversely, if �Γ ` t : X is satisfiable, then,
by the soundness property, t is well-typed within Γ .

1.7.2 SOLUTION: We must first ensure that R-ADD respects v (Definition 1.5.4).
Since the rule is pure, it is sufficient to establish that let Γ0 in �k̂1 +̂ k̂2 : T 
entails let Γ0 in � ̂k1 + k2 : T . In fact, we have

let Γ0 in �k̂1 +̂ k̂2 : T 
≡ let Γ0 in (�k̂1 : int ∧ �k̂2 : int ∧ int ≤ T) (1)

≡ let Γ0 in (int ≤ int ∧ int ≤ int ∧ int ≤ T) (2)

≡ int ≤ T (3)

≡ let Γ0 in � ̂k1 + k2 : T (4)

where (1) and (2) are by Exercise 1.7.1; (3) is by C-IN* and by reflexivity of
subtyping; (4) is by Exercise 1.7.1 again.
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Second, we must check that if the configuration c v1 . . . vk/µ (where
k ≥ 0) is well-typed, then either it is reducible, or c v1 . . . vk is a value.

We begin by checking that every value that is well-typed with type int is
of the form k̂. Indeed, suppose that let Γ0; ref M in !v : int" is satisfiable.
Then, v cannot be a program variable, for a well-typed value must be closed.
v cannot be a memory location m, for otherwise ref M(m) ≤ int would be
satisfiable—but the type constructors ref and int are incompatible. v cannot
be +̂ or +̂ v ′, for otherwise int → int → int ≤ int or int → int ≤ int would be
satisfiable—but the type constructors → and int are incompatible. Similarly,
v cannot be a λ-abstraction. Thus, v must be of the form k̂, for it is the only
case left.

Next, we note that, according to the constraint generation rules, if the
configuration c v1 . . . vk/µ is well-typed, then a constraint of the form
let Γ0; ref M in (c ¹ X1 → . . . → Xk → T ∧ !v1 : X1" ∧ . . . ∧ !vk : Xk") is
satisfiable. We now reason by cases on c.

◦ Case c is k̂. Then, Γ0(c) is int. Because the type constructors int and → are
incompatible with each other, this implies k = 0. Since k̂ is a constructor, the
expression is a value.

◦ Case c is +̂. We may assume k ≥ 2, because otherwise the expression is a
value. Then, Γ0(c) is int → int → int, so, by C-ARROW, the above constraint
entails let Γ0; ref M in (X1 ≤ int ∧ X2 ≤ int ∧ !v1 : X1" ∧ !v2 : X2"), which,
by Lemma 1.4.5, entails let Γ0; ref M in (!v1 : int" ∧ !v2 : int"). Thus, v1 and
v2 are well-typed with type int. By the remark above, they must be integer
literals k̂1 and k̂2. As a result, the configuration is reducible by R-ADD.

1.7.5 SOLUTION: We must first ensure that R-REF, R-DEREF and R-ASSIGN respect
v (Definition 1.5.4).

◦ Case R-REF. The reduction is ref v/∅ −→ m/(m 7→ v), where m 6∈

fpi(v) (1). Let T be an arbitrary type. According to Definition 1.5.4, the goal
is to show that there exist a set of type variables Ȳ and a store type M ′ such
that Ȳ # ftv(T) and ftv(M ′) ⊆ Ȳ and dom(M ′) = {m} and let Γ0 in !ref v : T"
entails ∃Ȳ.let Γ0; ref M ′ in !m/(m 7→ v) : T/M ′". Now, we have

let Γ0 in !ref v : T"
≡ ∃Y.let Γ0 in (ref Y ≤ T∧ !v : Y") (2)

≡ ∃Y.let Γ0; ref M ′ in (m ¹ T∧ !v : M ′(m)") (3)

≡ ∃Y.let Γ0; ref M ′ in !m/(m 7→ v) : T/M ′" (4)

where (2) is by Exercise 1.7.1 and by C-INEX; (3) assumes M ′ is defined as
m 7→ Y, and follows from (1), C-INID and C-IN*; and (4) is by definition of
constraint generation.
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Subcase R-DEREF. The reduction is !m/(m 7→ v) −→ v/(m 7→ v). Let T be
an arbitrary type and let M be a store type of domain {m}. We have

let Γ0; ref M in #!m/(m 7→ v) : T/M$
≡ let Γ0; ref M in ∃Y.(ref M(m) ≤ ref Y∧ Y ≤ T∧ #v : M(m)$) (1)

≡ let Γ0; ref M in ∃Y.(M(m) = Y∧ Y ≤ T∧ #v : M(m)$) (2)

≡ let Γ0; ref M in (M(m) ≤ T∧ #v : M(m)$) (3)

° let Γ0; ref M in (#v : T$ ∧ #v : M(m)$) (4)

≡ let Γ0; ref M in #v/(m 7→ v) : T/M$ (5)

where (1) is by Exercise 1.7.1 and by C-INID; (2) follows from C-EXTRANS

and from the fact that ref is an invariant type constructor; (3) is by C-NAMEEQ;
(4) is by Lemma 1.4.5 and C-DUP; and (5) is again by definition of constraint
generation.

◦ Case R-ASSIGN. The reduction is m := v/(m 7→ v0) −→ v/(m 7→ v). Let
T be an arbitrary type and let M be a store type of domain {m}. We have

let Γ0; ref M in #m := v/(m 7→ v0) : T/M$
° let Γ0; ref M in #m := v : T$ (1)

≡ let Γ0; ref M in ∃Z.(ref M(m) ≤ ref Z∧ #v : Z$ ∧ Z ≤ T) (2)

≡ let Γ0; ref M in ∃Z.(M(m) = Z∧ Z ≤ T∧ #v : Z$) (3)

≡ let Γ0; ref M in (M(m) ≤ T∧ #v : M(m)$) (4)

° let Γ0; ref M in #v/(m 7→ v) : T/M$ (5)

where (1) is by definition of constraint generation; (2) is by Exercise 1.7.1 and
C-INID; (3) follows from the fact that ref is an invariant type constructor; (4)
is by C-NAMEEQ; and (5) is obtained as in the previous case.

Second, we must check that if the configuration c v1 . . . vk/µ (where
k ≥ 0) is well-typed, then either it is reducible, or c v1 . . . vk is a value. We
only give a sketch of this proof; see the solution to Exercise 1.7.2 for details
of a similar proof.

We begin by checking that every value that is well-typed with a type of the
form ref T is a memory location. This assertion relies on the fact that the type
constructor ref is isolated.

Next, we note that, according to the constraint generation rules, if the
configuration c v1 . . . vk/µ is well-typed, then a constraint of the form
let Γ0; ref M in (c ¹ X1 → . . . → Xk → T ∧ #v1 : X1$ ∧ . . . ∧ #vk : Xk$) is
satisfiable. We now reason by cases on c.

◦ Case c is ref. If k = 0, then the expression is a value; otherwise, it is
reducible by R-REF.

◦ Case c is !. We may assume k ≥ 1, because otherwise the expression is a
value. Then, by definition of Γ0(!), the above constraint entails let Γ0; ref M in ∃Y.(ref Y →
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Y ≤ X1 → . . . → Xk → T∧ %v1 : X1&), which, by C-ARROW, Lemma 1.4.5, and
C-INEX, entails ∃Y.let Γ0; ref M in %v1 : ref Y&. Thus, v1 is well-typed with a
type of the form ref Y. By the remark above, v1 must be a memory location
m. Furthermore, because every well-typed configuration is closed, m must
be a member of dom(µ). As a result, the configuration ref v1 . . . vk/µ is
reducible by R-DEREF.

◦ Case c is :=. We may assume k ≥ 2, because otherwise the expression is a
value. As above, we check that v1 must be a memory location and a member
of dom(µ). Thus, the configuration is reducible by R-ASSIGN.

1.8.5 SOLUTION: We let the reader check that X must have kind ?.Type and Y must
have kind ?.Row({`}). The type with all superscripts made explicit is

X →Type ˝ (`?,Row(∅) : intType
; (Y →Row({`}) ∂?,Row({`})X)).

In this case, because the type constructor ˝ occurs on the right-hand side of
the toplevel arrow, it is possible to guess that the type must have kind ?.Type.
There are cases where it is not possible to guess the kind of a type, because it
may have several kinds; consider, for instance, ∂int.

1.8.27 SOLUTION: For the sake of generality, we perform the proof in the presence of
subtyping, that is, we do not assume that subtyping is interpreted as equality.
We formulate some hypotheses about the interpretation of subtyping: the
type constructors (` : · ; ·), ∂, and ˝ must be covariant; the type constructors
→ and ˝ must be isolated.

We begin with a preliminary fact: if the domain of V is {`1, . . . , `n}, where `1 <

. . . < `n, then the constraint let Γ0 in %{V;v} : T& is equivalent to let Γ0 in ∃Z1 . . .ZnZ.(
∧n

i=1 %V(`i) :

Zi& ∧ %v : Z& ∧ ˝ (`1 : Z1; . . . ; `n : Zn;∂Z) ≤ T). We let the reader check this
fact using the constraint generation rules, the definition of Γ0 and rule C-
INID, and the above covariance hypotheses. We note that, by C-ROW-LL,
the above constraint is invariant under a permutation of the labels `1, . . . , `n,
so the above fact still holds when the hypothesis `1 < . . . < `n is removed.

We now prove that rules R-UPDATE, R-ACCESS-1, and R-ACCESS-2 enjoy
subject reduction (Definition 1.5.4). Because the store is not involved, the goal
is to establish that let Γ0 in %t : T& entails let Γ0 in %t ′ : T&, where t is the redex
and t ′ is the reduct.

◦ Case R-UPDATE. We have:

let Γ0 in %{{V;v} with ` = v ′} : T&
≡ let Γ0 in ∃XX ′Y.(%{V;v} : ˝ (` : X ; Y)& ∧ %v ′ : X ′& ∧ ˝ (` : X ′ ; Y) ≤ T) (1)

≡ let Γ0 in ∃XX ′YZ1 . . .ZnZ.(
∧n

i=1 %V(`i) : Zi& ∧ %v : Z&
∧ ˝ (`1 : Z1; . . . ; `n : Zn;∂Z) ≤ ˝ (` : X ; Y)

∧ %v ′ : X ′& ∧ ˝ (` : X ′ ; Y) ≤ T)

(2)
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where (1) is by Exercise 1.7.1, and (2) follows from the preliminary fact and
from C-EXAND, provided {`1, . . . , `n} is the domain of V. We now distinguish
two subcases:

Subcase ` ∈ dom(V). We may assume, w.l.o.g., that ` is `1. Then, by our
covariance hypotheses, the subconstraint in the second line of (2) entails (`2 :

Z2; . . . ; `n : Zn;∂Z) ≤ Y, which in turn entails ˝ (`1 : X ′; `2 : Z2; . . . ; `n :

Zn;∂Z) ≤ ˝ (` : X ′ ; Y). By transitivity of subtyping, the subconstraint in the
second and third lines of (2) entails ˝ (`1 : X ′; `2 : Z2; . . . ; `n : Zn;∂Z) ≤ T. By
this remark and by C-EX*, (2) entails

let Γ0 in ∃X ′Z2 . . .ZnZ.('v ′ : X ′( ∧
∧n

i=2 'V(`i) : Zi
( ∧ 'v : Z(

∧ ˝ (`1 : X ′; `2 : Z2; . . . ; `n : Zn;∂Z) ≤ T)

(3)

which by our preliminary fact is precisely let Γ0 in '{V[` 7→ v ′];v} : T(.
Subcase ` /∈ dom(V). By C-ROW-DL and C-ROW-LL, the term (`1 : Z1; . . . ; `n :

Zn;∂Z) may be replaced with (` : Z; `1 : Z1; . . . ; `n : Zn;∂Z). Thus, reasoning
as in the previous subcase, we find that (2) entails

let Γ0 in ∃X ′Z1 . . .ZnZ.('v ′ : X ′( ∧
∧n

i=1 'V(`i) : Zi
( ∧ 'v : Z(

∧ ˝ (`1 : X ′; `1 : Z1; . . . ; `n : Zn;∂Z) ≤ T)

(4)

which by our preliminary fact is precisely let Γ0 in '{V[` 7→ v ′];v} : T(.
◦ Cases R-ACCESS-1, R-ACCESS-2. We have:

let Γ0 in '{V;v}.{`} : T(
≡ let Γ0 in ∃XY.('{V;v} : ˝ (` : X ; Y)( ∧ X ≤ T) (1)

≡ let Γ0 in ∃XYZ1 . . .ZnZ.(
∧n

i=1 'V(`i) : Zi
( ∧ 'v : Z(

∧ ˝ (`1 : Z1; . . . ; `n : Zn;∂Z) ≤ ˝ (` : X ; Y)

∧ X ≤ T)

(2)

where (1) is by Exercise 1.7.1, and (2) follows from the preliminary fact and
from C-EXAND, provided {`1, . . . , `n} is the domain of V. We now distinguish
two subcases:

Subcase ` ∈ dom(V), i.e., (R-ACCESS-1). We may assume, w.l.o.g., that ` is
`1. Then, by our covariance hypotheses, the subconstraint in the second line
of (2) entails Z1 ≤ X. By transitivity of subtyping, by Lemma 1.4.5, and by
C-EX*, we find that (2) entails let Γ0 in 'V(`) : T(.

Subcase ` /∈ dom(V), i.e., (R-ACCESS-2). By C-ROW-DL and C-ROW-LL, the
term (`1 : Z1; . . . ; `n : Zn;∂Z) may be replaced with (` : Z; `1 : Z1; . . . ; `n :

Zn;∂Z). Thus, reasoning as in the previous subcase, we find that (2) entails
let Γ0 in 'v : T(.

Before attacking the proof of the progress property, let us briefly check that
every value v that is well-typed with type ˝ T must be a record value, that
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is, must be of the form {V;w}. Indeed, assume that let Γ0; ref M in )v : ˝ T*
is satisfiable. Then, v cannot be a program variable, for a well-typed value
must be closed. Furthermore, v cannot be a memory location m, because
ref M(m) ≤ ˝ T is unsatisfiable: indeed, the type constructors ref and ˝ are
incompatible (recall that ˝ is isolated). Similarly, v cannot be a partially ap-
plied constant or a λ-abstraction, because T ′ → T ′′ ≤ ˝ T is unsatisfiable.
Thus, v must be a fully applied constructor. Since the only constructors in
the language are the record constructors {}L, v must be a record value. (If
there were other constructors in the language, they could be ruled out as
well, provided their return types are incompatible with ˝.)

We must now prove that if the configuration c v1 . . . vk/µ is is well-
typed, then either it is reducible, or c v1 . . . vk is a value. By the well-
typedness hypothesis, a constraint of the form let Γ0; ref M in )c v1 . . .

vk : T* is satisfiable.

◦ Case c is {}L. If k is less than or equal to n + 1, where n is the cardinal
of L, then c v1 . . . vk is a value. Otherwise, unfolding the above constraint,
we find that it cannot be satisfiable, because ˝ and → are incompatible; this
yields a contradiction.

◦ Case c is {· with ` = ·}. Analogous to the next case.

◦ Case c is ·.{`}. If k = 0, then c v1 . . . vk is a value. Assume k ≥ 1.
Then, the constraint let Γ0; ref M in )c v1 : T* is satisfiable. By Exercise 1.7.1,
this implies that let Γ0; ref M in )v1 : ˝ (` : X ; Y)* is satisfiable. Thus, v1

must be a record value, and the configuration is reducible by R-ACCESS-1 or
R-ACCESS-2.

1.8.33 SOLUTION: To make extension strict, it suffices to restrict its binding in the
initial environment Γ0, as follows:

〈· with ` = ·〉 : ∀XY.˝ (` : abs ; Y) → X → ˝ (` : pre X ; Y).

The new binding, which is less general than the former, requires the field `

to be absent in the input record. The operational semantics need not be mod-
ified, since strict extension coincides with free extension when it is defined.

Defining the operational semantics of (free) restriction is left to the reader.
Its binding in the initial environment should be:

· \ 〈`〉 : ∀XY.˝ (` : X ; Y) → ˝ (` : abs ; Y)

In principle, there is no need to guess this binding: it may be discovered
through the encoding of finite records in terms of full records (Exercise 1.8.32).
Strict restriction, which requires the field to be present in the input record,
may be assigned the following type scheme:

· \ 〈`〉 : ∀XY.˝ (` : pre X ; Y) → ˝ (` : abs ; Y)
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1.8.34 SOLUTION: The informal sentence “supplying a record with more fields in a
context where a record with fewer fields is expected” may be understood as
“providing an argument of type ˝ (` : pre T ; T ′) to a function whose domain
type is ˝ (` : abs ; T ′),” or, more generally, as “writing a program whose well-
typedness requires some constraint of the form ˝ (` :pre T ; T ′) ≤ ˝ (` :abs ; T ′)

to be satisfiable.” Now, in a nonstructural subtyping order where pre 6 abs
holds, such a constraint is equivalent to true. On the opposite, if subtyping is
interpreted as equality, then such a constraint is equivalent to false. In other
words, it is the law pre T ≤ abs ≡ true that gives rise to width subtyping.

It is worth drawing a comparison with the way width subtyping is defined
in type systems that do not have rows. In such type systems, a record type
is of the form {`1 : T1; . . . ; `n : Tn}. Let us forget about the types T1, . . . ,Tn,
because they describe the contents of fields, not their presence, and are thus
orthogonal to the issue at hand. Then, a record type is a set {`1, . . . , `n}, and
width subtyping is obtained by letting subtyping coincide with (the reverse
of) set containment. In a type system that exploits rows, on the other hand, a
record type is a total mapping from row labels to either pre or abs. (Because
we are ignoring T1, . . . ,Tn, let us temporarily imagine that pre is a nullary
type constructor.) The above record type is then written {`1 : pre; . . . ; `n :

pre;∂abs}. In other words, a set is now encoded as its characteristic function.
Width subtyping is obtained by letting pre 6 abs and by lifting this order-
ing, pointwise, to rows (which corresponds to our convention that rows are
covariant).

1.3.2 SOLUTION: Our hypotheses are C, Γ ` t : ∀X̄[D].T (1) and C ° [~X 7→ ~T]D (2).
We may also assume, w.l.o.g., X̄ # ftv(C, Γ,~T) (3). By HMX-INST and (1), we
have C∧D, Γ ` t : T, which by Lemma 1.3.1 yields C∧D∧~X = ~T, Γ ` t : T (4).
Now, we claim that ~X = ~T ° T ≤ [~X 7→ ~T]T (5) holds; the proof appears in the
next paragraph. Applying HMX-SUB to (4) and to (5), we obtain C ∧ D ∧ ~X =
~T, Γ ` t : [~X 7→ ~T]T (6). By C-EQ and by (2), we have C ∧ ~X = ~T ° D,
so (6) may be written C ∧ ~X = ~T, Γ ` t : [~X 7→ ~T]T (7). Last, (3) implies
X̄ # ftv(Γ, [~X 7→ ~T]T) (8). Applying rule HMX-EXISTS to (7) and (8), we get
∃X̄.(C∧~X = ~T), Γ ` t : [~X 7→ ~T]T (9). By C-NAMEEQ and by (3), ∃X̄.(C∧~X = ~T)

is equivalent to C, hence (9) is the goal C, Γ ` t : [~X 7→ ~T]T.
There now remains to establish (5). One possible proof method is to unfold

the definition of ° and reason by structural induction on T. Here is another,
axiomatic approach. Let Z be fresh for T, ~X, and ~T. By reflexivity of subtyping
and by C-EXTRANS, we have true ≡ T ≤ T ≡ ∃Z.(T ≤ Z ∧ Z ≤ T), which
by congruence of ≡ and by C-EXAND implies ~X = ~T ≡ ∃Z.(T ≤ Z ∧ ~X =
~T ∧ Z ≤ T) (10). Furthermore, by C-EQ, we have (~X = ~T ∧ Z ≤ T) ≡ (~X =
~T ∧ Z ≤ [~X 7→ ~T]T) ° (Z ≤ [~X 7→ ~T]T) (11). Combining (10) and (11) yields
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~X = ~T ° ∃Z.(T ≤ Z ∧ Z ≤ [~X 7→ ~T]T), which by C-EXTRANS may be read
~X = ~T ° T ≤ [~X 7→ ~T]T.

1.3.3 SOLUTION: The simplest possible derivation of true, ∅ ` λz.z : int → int is
syntax-directed. It closely resembles the Damas-Milner derivation given in
Exercise 1.1.22.

true,z : int ` z : int
HMX-VAR

true, ∅ ` λz.z : int → int
HMX-ABS

As in Exercise 1.1.22, we may use a type variable X instead of the type int,
then employ HMX-GEN to quantify universally over X.

true,z : X ` z : X
HMX-VAR

true, ∅ ` λz.z : X → X
HMX-ABS

X # ftv(true, ∅)

true, ∅ ` λz.z : ∀X[true].X → X
HMX-GEN

The validity of this instance of HMX-GEN relies on the equivalence true ∧

true ≡ true and on the fact that judgements are identified up to equivalence
of their constraint assumptions.

If we now wish to instantiate Xwith int, we may use HMX-INST’ as follows:

true, ∅ ` λz.z : ∀X[true].X → X true ° [X 7→ int]true

true, ∅ ` λz.z : int → int
HMX-INST’

This is not, strictly speaking, an HM(X) derivation, since HMX-INST’ is not
part of the rules of Figure 1-7. However, since the proof of Lemma 1.3.1 and
the solution of Exercise 1.3.2 are constructive, it is possible to exhibit the
HM(X) derivation that underlies it. We find:

X = int,z : X ` z : X
HMX-VAR

X = int, ∅ ` λz.z : X → X
HMX-ABS

X = int, ∅ ` λz.z : ∀X.X → X
HMX-GEN

X = int, ∅ ` λz.z : X → X
HMX-INST

X = int ° X → X ≤ int → int

X = int, ∅ ` λz.z : int → int
HMX-SUB

∃X.(X = int), ∅ ` λz.z : int → int
HMX-EXISTS

Since ∃X.(X = int) is equivalent to true, the conclusion is indeed the desired
judgement.
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1.7.1 SOLUTION: We have

let Γ0 in +c t1 . . . tn : T ′,
≡ let Γ0 in ∃Z1 . . .Zn.(

∧n

i=1 +ti : Zi
, ∧ c ¹ Z1 → . . . → Zn → T ′) (1)

≡ let Γ0 in ∃Z1 . . .ZnX̄.(
∧n

i=1 +ti : Zi
,

∧ T1 → . . . → Tn → T ≤ Z1 → . . . → Zn → T ′)

(2)

≡ let Γ0 in ∃X̄.(
∧n

i=1 +ti : Ti
, ∧ T ≤ T ′) (3)

where (1) is by definition of constraint generation; (2) is by C-INID; (3) is by
C-ARROW, C-EXAND, and by Lemma 1.4.6.
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