
The Code Expander Generator

Fr ans Kaashoek

Koen Langendoen

Dept. of Mathematics and Computer Science
Vrije Universiteit

Amsterdam, The Netherlands

1. Introduction

A code expander (ce for short) is a part of the Amsterdam Compiler Kit1 (ACK)
and provides the user with high-speed generation of medium-quality code. Although con-
ceptually equivalent to the more usual code generator, it differs in some aspects.

Normally, a program to be compiled with ACK is first fed to the preprocessor. The
output of the preprocessor goes into the appropriate front end, which produces EM2 (a
machine independent low lev el intermediate code). The generated EM code is fed into the
peephole optimizer, which scans it with a window of a few instructions, replacing certain
inefficient code sequences by better ones. After the peephole optimizer a back end fol-
lows, which produces high-quality assembly code. The assembly code goes via the target
optimizer into the assembler and the object code then goes into the linker/loader, the final
component in the pipeline.

For various applications this scheme is too slow. When debugging, for example,
compile time is more important than execution time of a program. For this purpose a new
scheme is introduced:

1: The code generator and assembler are replaced by a library, the code expander,
consisting of a set of routines, one for every EM-instruction. Each routine expands
its EM-instruction into relocatable object code. In contrast, the usual ACK code
generator uses expensive pattern matching on sequences of EM-instructions. The
peephole and target optimizer are not used.

2: These routines replace the usual EM-generating routines in the front end; this elim-
inates the overhead of intermediate files.

This results in a fast compiler producing object file, ready to be linked and loaded, at the
cost of unoptimized object code.

Because of the simple nature of the code expander, it is much easier to build, to
debug, and to test. Experience has demonstrated that a code expander can be constructed,
debugged, and tested in less than two weeks.

This document describes the tools for automatically generating a ce (a library of C
files) from two tables and a few machine-dependent functions. A thorough knowledge of
EM is necessary to understand this document.

-2-

2. The code expander generator

The code expander generator (ceg) generates a code expander from two tables and
a few machine-dependent functions. This section explains how ceg works. The first half
describes the transformations that are done on the two tables. The second half tells how
these transformations are done by the ceg.

A code expander consists of a set of routines that convert EM-instructions directly
to relocatable object code. These routines are called by a front end through the
EM_CODE(3ACK)3 interface. To free the table writer of the burden of building an object
file, we supply a set of routines that build an object file in the ACK.OUT(5ACK)4 format
(see appendix B). This set of routines is called the back-primitives (see appendix A). In
short, a code expander consists of a set of routines that map the EM_CODE interface on
the back-primitives interface.

To avoid repetition of the same sequences of back-primitives in different EM-
instructions and to improve readability, the EM-to-object information must be supplied in
two tables. The EM_table maps EM to an assembly language, and the as_table maps
assembly code to back-primitives. The assembly language is chosen by the table writer. It
can either be an actual assembly language or his ad-hoc designed language.

The following picture shows the dependencies between the different components:

EM_CODE(3ACK) EM_table as_table

source language EM assembly back primitives

(user defined) (ACK.OUT)

The picture suggests that, during compilation, the EM instructions are first trans-
formed into assembly instructions and then the assembly instructions are transformed into
object-generating calls. This is not what happens in practice, although the user is free to
think it does. Actually, howev er the EM_table and the as_table are combined during code
expander generation time, yielding an imaginary compound table that results in routines
from the EM_CODE interface that generate object code directly.

As already indicated, the compound table does not exist either. Instead, each
assembly instruction in the as_table is converted to a routine generating C5 code to gener-
ate C code to call the back-primitives. The EM_table is converted into a program that for
each EM instruction generates a routine, using the routines generated from the as_table.
Execution of the latter program will then generate the code expander.

This scheme allows great flexibility in the table writing, while still resulting in a
very efficient code expander. One implication is that the as_table is interpreted twice and

-3-

the EM_table only once. This has consequences for their structure.

To illustrate what happens, we give an example. The example is an entry in the
tables for the VAX-machine. The assembly language chosen is a subset of the VAX
assembly language.

One of the most fundamental operations in EM is ‘‘loc c’’, load the value of c on
the stack. To expand this instruction the tables contain the following information:

EM_table :
C_loc ==> "pushl $$$1".

/* $1 refers to the first argument of C_loc.

* $$ is a quoted $. */

as_table :
pushl src : CONST ==>

@text1(0xd0);

@text1(0xef);

@text4(%$(src->num)).

The as_table is transformed in the following routine:

pushl_instr(src)

t_operand *src;

/* ‘‘t_operand’’ is a struct defined by the

* table writer. */

{

printf("swtxt();");

printf("text1(0xd0);");

printf("text1(0xef);");

printf("text4(%s);", substitute_dollar(src->num));

}

Using ‘‘pushl_instr()’’, the following routine is generated from the EM_table:

C_loc(c)

arith c;

/* text1() and text4() are library routines that fill the

* text segment. */

{

swtxt();

text1(0xd0);

text1(0xef);

text4(c);

}

A compiler call to ‘‘C_loc()’’ will cause the 1-byte numbers ‘‘0xd0’’ and ‘‘0xef ’’ and the
4-byte value of the variable ‘‘c’’ to be stored in the text segment.

-4-

The transformations on the tables are done automatically by the code expander
generator. The code expander generator is made up of two tools: emg and asg. Asg trans-
forms each assembly instruction into a C routine. These C routines generate calls to the
back-primitives. The generated C routines are used by emg to generate the actual code
expander from the EM_table.

The link between emg and asg is an assembly language. We did not enforce a spe-
cific syntax for the assembly language; instead we have giv en the table writer the freedom
to make an ad-hoc assembly language or to use an actual assembly language suitable for
his purpose. Apart from a greater flexibility this has another advantage; if the table writer
adopts the assembly language that runs on the machine at hand, he can test the EM_table
independently from the as_table. Of course there is a price to pay: the table writer has to
do the decoding of the operands himself. See section 4 for more details.

Before we describe the structure of the tables in detail, we will give an overview of
the four main phases.

phase 1:
The as_table is transformed by asg. This results in a set of C routines. Each assem-
bly-opcode generates one C routine. Note that a call to such a routine does not gen-
erate the corresponding object code; it generates C code, which, when executed,
generates the desired object code.

phase 2:
The C routines generated by asg are used by emg to expand the EM_table. This
results in a set of C routines, the code expander, which conform to the procedural
interface EM_CODE(3ACK). A call to such a routine does indeed generate the
desired object code.

phase 3:
The front end that uses the procedural interface is linked/loaded with the code
expander generated in phase 2 and the back-primitives (a supplied library). This
results in a compiler.

phase 4:
The compiler runs. The routines in the code expander are executed and produce
object code.

3. Description of the EM_table

This section describes the EM_table. It contains four subsections. The first 3 sec-
tions describe the syntax of the EM_table, the semantics of the EM_table, and the func-
tions and constants that must be present in the EM_table, in the file ‘‘mach.c’’ or in the
file ‘‘mach.h’’. The last section explains how a table writer can generate assembly code
instead of object code. The section on semantics contains many examples.

3.1. Grammar

The following grammar describes the syntax of the EM_table.

TABLE ::= (RULE)*
RULE ::= C_instr (COND_SEQUENCE | SIMPLE)

-5-

COND_SEQUENCE ::= (condition SIMPLE)* ‘‘default’’ SIMPLE
SIMPLE ::= ‘‘==>’’ ACTION_LIST
ACTION_LIST ::= [ACTION (‘‘;’’ ACTION)*] ‘‘.’’
ACTION ::= AS_INSTR

| function-call
AS_INSTR ::= ‘‘"’’ [label ‘‘:’’] [INSTR] ‘‘"’’
INSTR ::= mnemonic [operand (‘‘,’’ operand)*]

The ‘‘(’’ ‘‘)’’ brackets are used for grouping, ‘‘[’’ ... ‘‘]’’ means ... 0 or 1 time, a
‘‘*’’ means zero or more times, and a ‘‘|’’ means a choice between left or right. A C_instr

is a name in the EM_CODE(3ACK) interface. condition is a C expression. function-call

is a call of a C function. label, mnemonic, and operand are arbitrary strings. If an
operand contains brackets, the brackets must match. There is an upper bound on the
number of operands; the maximum number is defined by the constant
MAX_OPERANDS in de file ‘‘const.h’’ in the directory assemble.c. Comments in the ta-
ble should be placed between ‘‘/*’’ and ‘‘*/’’. The table is processed by the C preproces-
sor, before being parsed by emg.

3.2. Semantics

The EM_table is processed by emg. Emg generates a C function for every instruc-
tion in the EM_CODE(3ACK). For every EM-instruction not mentioned in the EM_ta-
ble, a C function that prints an error message is generated. It is possible to divide the
EM_CODE(3ACK)-interface into four parts :

1: text instructions (e.g., C_loc, C_adi, ..)

2: pseudo instructions (e.g., C_open, C_df_ilb, ..)

3: storage instructions (e.g., C_rom_icon, ..)

4: message instructions (e.g., C_mes_begin, ..)

This section starts with giving the semantics of the grammar. The examples are text
instructions. The section ends with remarks on the pseudo instructions and the storage
instructions. Since message instructions are not useful for a code expander, they are
ignored.

3.2.1. Actions

The EM_table is made up of rules describing how to expand a C_instr defined by
the EM_CODE(3ACK)-interface (corresponding to an EM instruction) into actions.
There are two kinds of actions: assembly instructions and C function calls. An assembly
instruction is defined as a mnemonic followed by zero or more operands separated by
commas. The semantics of an assembly instruction is defined by the table writer. When
the assembly language is not expressive enough, then, as an escape route, function calls
can be made. However, this reduces the speed of the actual code expander. Finally,
actions can be grouped into a list of actions; actions are separated by a semicolon and ter-
minated by a ‘‘.’’.

-6-

C_nop ==> .

/* Empty action list : no operation. */

C_inc ==> "incl (sp)".

/* Assembler instruction, which is evaluated

* during expansion of the EM_table */

C_slu ==> C_sli($1).

/* Function call, which is evaluated during

* execution of the compiler. */

3.2.2. Labels

Since an assembly language without instruction labels is a rather weak language,
labels inside a contiguous block of assembly instructions are allowed. When using labels
two rules must be observed:

1: The name of a label should be unique inside an action list.

2: The labels used in an assembler instruction should be defined in the same action
list.

The following example illustrates the usage of labels.

/* Compare the two top elements on the stack. */

C_cmp ==> "pop bx";

"pop cx";

"xor ax, ax";

"cmp cx, bx";

/* Forward jump to local label */

"je 2f";

"jb 1f";

"inc ax";

"jmp 2f";

"1: dec ax";

"2: push ax".

We will come back to labels in the section on the as_table.

3.2.3. Arguments of an EM instruction

In most cases the translation of a C_instr depends on its arguments. The argu-
ments of a C_instr are numbered from 1 to n, where n is the total number of arguments
of the current C_instr (there are a few exceptions, see Implicit arguments). The table
writer may refer to an argument as $i. If a plain $-sign is needed in an assembly instruc-
tion, it must be preceded by a extra $-sign.

There are two groups of C_instrs whose arguments are handled specially:

1: Instructions dealing with local offsets
The value of the $i argument referring to a parameter ($i >= 0) is increased
by ‘‘EM_BSIZE’’. ‘‘EM_BSIZE’’ is the size of the return status block and

-7-

must be defined in the file ‘‘mach.h’’ (see section 3.3). For example :

C_lol ==> "push $1(bp)".

/* automatic conversion of $1 */

2: Instructions using global names or instruction labels
All the arguments referring to global names or instruction labels will be
transformed into a unique assembly name. To prevent name clashes with
library names the table writer has to provide the conversions in the file
‘‘mach.h’’. For example :

C_bra ==> "jmp $1".

/* automatic conversion of $1 */

/* type arith is converted to string */

3.2.4. Conditionals

The rules in the EM_table can be divided into two groups: simple rules and condi-
tional rules. The simple rules are made up of a C_instr followed by a list of actions, as
described above. The conditional rules (COND_SEQUENCE) allow the table writer to
select an action list depending on the value of a condition.

A CONDITIONAL is a list of a boolean expression with the corresponding simple
rule. If the expression evaluates to true then the corresponding simple rule is carried out.
If more than one condition evaluates to true, the first one is chosen. The last case of a
COND_SEQUENCE of a C_instr must handle the default case. The boolean expressions
in a COND_SEQUENCE must be C expressions. Besides the ordinary C operators and
constants, $i references can be used in an expression.

/* Load address of LB $1 levels back. */

C_lxl

$1 == 0 ==> "pushl fp".

$1 == 1 ==> "pushl 4(ap)".

default ==> "movl $$$1, r0";

"jsb .lxl";

"pushl r0".

3.2.5. Abbreviations

EM instructions with an external as an argument come in three variants in the
EM_CODE(3ACK) interface. In most cases it will be possible to take these variants
together. For this purpose the ‘‘..’’ notation is introduced. For the code expander there is
no difference between the following instructions.

C_loe_dlb ==> "pushl $1 + $2".

C_loe_dnam ==> "pushl $1 + $2".

C_loe ==> "pushl $1 + $2".

So it can be written in the following way.

-8-

C_loe.. ==> "pushl $1 + $2".

3.2.6. Implicit arguments

In the last example ‘‘C_loe’’ has two arguments, but in the EM_CODE interface it
has one argument. This argument depends on the current ‘‘hol’’ block; in the EM_table
this is made explicit. Every C_instr whose argument depends on a ‘‘hol’’ block has one
extra argument; argument 1 refers to the ‘‘hol’’ block.

3.2.7. Pseudo instructions

Most pseudo instructions are machine independent and are provided by ceg. The
table writer has only to supply the following functions, which are used to build a stack-
frame:

C_prolog()

/* Performs the prolog, for example save

* return address */

C_locals(n)

arith n;

/* Allocate n bytes for locals on the stack */

C_jump(label)

char *label;

/* Generates code for a jump to ‘‘label’’ */

These functions can be defined in ‘‘mach.c’’ or in the EM_table (see section 3.3).

3.2.8. Storage instructions

The storage instructions ‘‘C_bss_cstp()’’, ‘‘C_hol_cstp()’’, dealing with constants
of type string (C_..._icon, C_..._ucon, C_..._fcon), are generated automatically. No infor-
mation is needed in the table. To generate the C_..._icon, C_..._ucon, C_..._fcon instruc-
tions ceg only has to know how to convert a number of type string to bytes; this can be
defined with the constants ONE_BYTE, TWO_BYTES, and FOUR_BYTES.
C_rom_icon, C_con_icon, C_bss_icon, C_hol_icon can be abbreviated by ..icon. This
also holds for ..ucon and ..fcon. For example :

\.\.icon

$2 == 1 ==> gen1((ONE_BYTE) atoi($1)).

$2 == 2 ==> gen2((TWO_BYTES) atoi($1)).

$2 == 4 ==> gen4((FOUR_BYTES) atol($1)).

default ==> arg_error("..icon", $2).

Gen1(), gen2() and gen4() are back-primitives (see appendix A), and generate one, two,
or four byte constants. Atoi() is a C library function that converts strings to integers. The
constants ‘‘ONE_BYTE’’, ‘‘TWO_BYTES’’, and ‘‘FOUR_BYTES’’ must be defined in
the file ‘‘mach.h’’.

-9-

3.3. User supplied definitions and functions

If the table writer uses all the default functions he has only to supply the following
constants and functions :

C_prolog() : Do prolog
C_jump(l) : Perform a jump to label l
C_locals(n) : Allocate n bytes on the stack

NAME_FMT : Print format describing name to a unique name conver-
sion. The format must contain %s.

DNAM_FMT : Print format describing data-label to a unique name con-
version. The format must contain %s.

DLB_FMT : Print format describing numerical-data-label to a unique
name conversion. The format must contain a %ld.

ILB_FMT : Print format describing instruction-label to a unique name
conversion. The format must contain %d followed by
%ld.

HOL_FMT : Print format describing hol-block-number to a unique
name conversion. The format must contain %d.

EM_WSIZE : Size of a word in bytes on the target machine
EM_PSIZE : Size of a pointer in bytes on the target machine
EM_BSIZE : Size of base block in bytes on the target machine

ONE_BYTE : \C suitable type that can hold one byte on the machine
where the ce runs

TWO_BYTES : \C suitable type that can hold two bytes on the machine
where the ce runs

FOUR_BYTES : \C suitable type that can hold four bytes on the machine
where the ce runs

BSS_INIT : The default value that the loader puts in the bss segment

BYTES_REVERSED : Must be defined if the byte order must be reversed. By
default the least significant byte is outputted first.†

WORDS_REVERSED : Must be defined if the word order must be reversed. By
default the least significant word is outputted first.

An example of the file ‘‘mach.h’’ for the vax4.

#define ONE_BYTE int
#define TWO_BYTES int
#define FOUR_BYTES long

† When both byte orders are used, for example NS 16032, the table writer has to supply

his own set of routines.

-10-

#define EM_WSIZE 4
#define EM_PSIZE 4
#define EM_BSIZE 0

#define BSS_INIT 0

#define NAME_FMT "_%s"
#define DNAM_FMT "_%s"
#define DLB_FMT "_%ld"
#define ILB_FMT "I%03d%ld"
#define HOL_FMT "hol%d"

Notice that EM_BSIZE is zero. The vax ‘‘call’’ instruction takes automatically care of the
base block.

There are three primitives that have to be defined by the table writer, either as func-
tions in the file ‘‘mach.c’’ or as rules in the EM_table. For example, for the 8086 they
look like this:

C_jump ==> "jmp $1".

C_prolog ==> "push bp";

"mov bp, sp".

C_locals

$1 == 0 ==> .

$1 == 2 ==> "push ax".

$1 == 4 ==> "push ax";

"push ax".

default ==> "sub sp, $1".

3.4. Generating assembly code

When the code expander generator is used for generating assembly instead of
object code (see section 5), additional print formats have to be defined in ‘‘mach.h’’. The
following table lists these formats.

BYTE_FMT : Print format to allocate and initialize one byte. The format
must contain %ld.

WORD_FMT : Print format to allocate and initialize one word. The for-
mat must contain %ld.

LONG_FMT : Print format to allocate and initialize one long. The format
must contain %ld.

BSS_FMT : Print format to allocate space in the bss segment. The for-
mat must contain %ld (number of bytes).

COMM_FMT : Print format to declare a "common". The format must con-
tain a %s (name to be declared common), followed by a
%ld (number of bytes).

-11-

SEGTXT_FMT : Print format to switch to the text segment.
SEGDAT_FMT : Print format to switch to the data segment.
SEGBSS_FMT : Print format to switch to the bss segment.

SYMBOL_DEF_FMT : Print format to define a label. The format must contain %s.
GLOBAL_FMT : Print format to declare a global name. The format must

contain %s.
LOCAL_FMT : Print format to declare a local name. The format must con-

tain %s.

RELOC1_FMT : Print format to initialize a byte with an address expression.
The format must contain %s (name) and %ld (offset).

RELOC2_FMT : Print format to initialize a word with an address expres-
sion. The format must contain %s (name) and %ld (offset).

RELOC4_FMT : Print format to initialize a long with an address expression.
The format must contain %s (name) and %ld (offset).

ALIGN_FMT : Print format to align a segment.

4. Description of the as_table

This section describes the as_table. Like the previous section, it is divided into four
parts: the first two parts describe the grammar and the semantics of the as_table; the third
part gives an overview of the functions and the constants that must be present in the
as_table (in the file ‘‘as.h’’ or in the file ‘‘as.c’’); the last part describes the case when
assembly is generated instead of object code. The part on semantics contains examples
that appear in the as_table for the VAX or for the 8086.

4.1. Grammar

The form of the as_table is given by the following grammar :

TABLE ::= (RULE)*
RULE ::= (mnemonic | ‘‘...’’) DECL_LIST ‘‘==>’’ ACTION_LIST
DECL_LIST ::= DECLARATION (‘‘,’’ DECLARATION)*
DECLARATION ::= operand [‘‘:’’ type]
ACTION_LIST ::= ACTION (‘‘;’’ ACTION) ‘‘.’’
ACTION ::= IF_STATEMENT

| function-call
| ‘‘@’’function-call

IF_STATEMENT ::= ’’@if ’’ ‘‘(’’ condition ‘‘)’’ ACTION_LIST
(‘‘@elsif ’’ ‘‘(’’ condition ‘‘)’’ ACTION_LIST)*
[‘‘@else’’ ACTION_LIST]
’’@fi’’

function-call ::= function-identifier ‘‘(’’ [arg (,arg)*] ‘‘)’’
arg ::= argument

-12-

| reference

mnemonic, operand, and type are all C identifiers; condition is a normal C expression;
function-call must be a C function call. A function can be called with standard C argu-
ments or with a reference (see section 4.2.4). Since the as_table is interpreted during
code expander generation as well as during code expander execution, two lev els of calls
are present in it. A ‘‘function-call’’ is done during code expander generation, a ‘‘@func-
tion-call’’ during code expander execution.

4.2. Semantics

The as_table is made up of rules that map assembly instructions onto back-primi-
tives, a set of functions that construct an object file. The table is processed by asg, which
generates a C functions for each assembler mnemonic. The names of these functions are
the assembler mnemonics postfixed with ‘‘_instr’’ (e.g., ‘‘add’’ becomes ‘‘add_instr()’’).
These functions will be used by the function assemble() during the expansion of the
EM_table. After explaining the semantics of the as_table the function assemble() will be
described.

4.2.1. Rules

A rule in the as_table is made up of a left and a right hand side; the left hand side
describes an assembler instruction (mnemonic and operands); the right hand side gives
the corresponding actions as back-primitives or as functions defined by the table writer,
which call back-primitives. Two simple examples from the VAX as_table and the 8086
as_table, resp.:

movl src, dst ==> @text1(0xd0);

gen_operand(src);

gen_operand(dst).

/* ‘‘gen_operand’’ is a function that encodes

* operands by calling back-primitives. */

rep ens:MOVS ==> @text1(0xf3);

@text1(0xa5).

4.2.2. Declaration of types.

In general, a machine instruction is encoded as an opcode followed by zero or more
the operands. There are two methods for mapping assembler mnemonics onto opcodes:
the mnemonic determines the opcode, or mnemonic and operands together determine the
opcode. Both cases can be easily expressed in the as_table. The first case is obvious.
The second case is handled by introducing type fields for the operands.

When mnemonic and operands together determine the opcode, the table writer has
to give sev eral rules for each combination of mnemonic and operands. The rules differ in
the type fields of the operands. The table writer has to supply functions that check the
type of the operand. The name of such a function is the name of the type; it has one argu-
ment: a pointer to a struct of type t_operand; it returns non-zero when the operand is of

-13-

this type, otherwise it returns 0.

This will usually lead to a list of rules per mnemonic. To reduce the amount of
work an abbreviation is supplied. Once the mnemonic is specified it can be referred to in
the following rules by ‘‘...’’. One has to make sure that each mnemonic is mentioned only
once in the as_table, otherwise asg will generate more than one function with the same
name.

The following example shows the usage of type fields.

mov dst:REG, src:EADDR ==>

@text1(0x8b); /* opcode */

mod_RM(%d(dst->reg), src). /* operands */

... dst:EADDR, src:REG ==>

@text1(0x89); /* opcode */

mod_RM(%d(src->reg), dst). /* operands */

The table-writer must supply the restriction functions, REG and EADDR in the previous
example, in ‘‘as.c’’ or ’’as.h’’.

4.2.3. The function of the @-sign and the if-statement.

The right hand side of a rule is made up of function calls. Since the as_table is
interpreted on two lev els, during code expander generation and during code expander
execution, two lev els of calls are present in it. A function-call without an ‘‘@’’-sign is
called during code expander generation (e.g., the gen_operand() in the first exam-
ple). A function call with an ‘‘@’’-sign is called during code expander execution (e.g.,
the back-primitives). So the last group will be part of the compiler.

The need for the ‘‘@’’-sign construction arises, for example, when implementing
push/pop optimization (e.g., ‘‘push x’’ followed by ‘‘pop y’’ can be replaced by ‘‘move x,
y’’). In this case flags need to be set, unset, and tested during the execution of the com-
piler:

PUSH src ==> /* save in ax */

mov_instr(AX_oper, src);

/* set flag */

@assign(push_waiting, TRUE).

POP dst ==> @if (push_waiting)

/* ‘‘mov_instr’’ is asg-generated */

mov_instr(dst, AX_oper);

@assign(push_waiting, FALSE).

@else

/* ‘‘pop_instr’’ is asg-generated */

pop_instr(dst).

@fi.

Although the @-sign is followed syntactically by a function name, this function can very
well be the name of a macro defined in C. This is in fact the case with ‘‘@assign()’’ in

-14-

the above example.

The case may arise when information is needed that is not known until execution of
the compiler. For example one needs to know if a ‘‘$i’’ argument fits in one byte. In this
case one can use a special if-statement provided by asg: @if, @elsif, @else, @fi. This
means that the conditions will be evaluated at run time of the ce. In such a condition one
may of course refer to the ’’$i’’ arguments. For example, constants can be packed into
one or two byte arguments as follows:

mov dst:ACCU, src:DATA ==>

@if (fits_byte(%$(dst->expr)))

@text1(0xc0);

@text1(%$(dst->expr)).

@else

@text1(0xc8);

@text2(%$(dst->expr)).

@fi.

4.2.4. References to operands

As noted before, the operands of an assembler instruction may be used as pointers
to the struct t_operand in the right hand side of the table. Because of the free format
assembler, the types of the fields in the struct t_operand are unknown to asg. As these
fields can appear in calls to functions, asg must know these types. This section explains
how these types must be specified.

References to operands come in three forms: ordinary operands, operands that con-
tain ‘‘$i’’ references, and operands that refer to names of local labels. The ‘‘$i’’ in
operands represent names or numbers of a C_instr and must be given as arguments to the
back-primitives. Labels in operands must be converted to a number that tells the distance,
the number of bytes, between the label and the current position in the text-segment.

All these three cases are treated in an uniform way. When the table writer makes a refer-
ence to an operand of an assembly instruction, he must describe the type of the operand
in the following way.

reference ::= ‘‘%’’ conversion
‘‘(’’ operand-name ‘‘−>’’ field-name ‘‘)’’

conversion ::= printformat
| ‘‘$’’
| ‘‘dist’’

printformat ::= see PRINT(3ACK)6

The three cases differ only in the conversion field. The printformat conversion applies to
ordinary operands. The ‘‘%$’’ applies to operands that contain a ‘‘$i’’. The expression
between parentheses must result in a pointer to a char. The result of ‘‘%$’’ is of the type
of ‘‘$i’’. The ‘‘%dist’’ applies to operands that refer to a local label. The expression
between the brackets must result in a pointer to a char. The result of ‘‘%dist’’ is of type
arith.

-15-

The following example illustrates the usage of ‘‘%$’’. (For an example that illus-
trates the usage of ordinary fields see the section on ‘‘User supplied definitions and func-
tions’’).

jmp dst ==>

@text1(0xe9);

@reloc2(%$(dst->lab), %$(dst->off), PC_REL).

A useful function concerning $is is arg_type(), which takes as input a string start-
ing with $i and returns the type of the i’’ th argument of the current EM-instruction, which
can be STRING, ARITH or INT. One may need this function while decoding operands if
the context of the $i does not give enough information. If the function arg_type() is used,
the file arg_type.h must contain the definition of STRING, ARITH and INT.

%dist is only guaranteed to work when called as a parameter of text1(), text2() or
text4(). The goal of the %dist conversion is to reduce the number of reloc1(), reloc2()
and reloc4() calls, saving space and time (no relocation at compiler run time). The fol-
lowing example illustrates the usage of ‘‘%dist’’.

jmp dst:ILB ==> /* label in an instruction list */

@text1(0xeb);

@text1(%dist(dst->lab)).

... dst:LABEL ==> /* global label */

@text1(0xe9);

@reloc2(%$(dst->lab), %$(dst->off), PC_REL).

4.2.5. The functions assemble() and block_assemble()

The functions assemble() and block_assemble() are provided by ceg. If, however,
the table writer is not satisfied with the way they work he can supply his own assemble()
or block_assemble(). The default function assemble() splits an assembly string into a
label, mnemonic, and operands and performs the following actions on them:

1: It processes the local label; it records the name and current position. Thereafter it
calls the function process_label() with one argument of type string, the label. The
table writer has to define this function.

2: Thereafter it calls the function process_mnemonic() with one argument of type
string, the mnemonic. The table writer has to define this function.

3: It calls process_operand() for each operand. Process_operand() must be written by
the table-writer since no fixed representation for operands is enforced. It has two
arguments: a string (the operand to decode) and a pointer to the struct t_operand.
The declaration of the struct t_operand must be given in the file ‘‘as.h’’, and the ta-
ble-writer can put all the information needed for encoding the operand in machine
format in it.

4: It examines the mnemonic and calls the associated function, generated by asg, with
pointers to the decoded operands as arguments. This makes it possible to use the
decoded operands in the right hand side of a rule (see below).

-16-

If the default assemble() does not work the way the table writer wants, he can supply his
own version of it. Assemble() has the following arguments:

assemble(instruction)

char *instruction;

instruction points to a null-terminated string.

The default function block_assemble() is called with a sequence of assembly
instructions that belong to one action list. It calls assemble() for every assembly instruc-
tion in this block. But if a special action is required on a block of assembly instructions,
the table writer only has to rewrite this function to get a new ceg that obliges to his
wishes. The function block_assemble has the following arguments:

block_assemble(instructions, nr, first, last)

char **instruction;

int nr, first, last;

Instruction point to an array of pointers to strings representing assembly instructions. Nr

is the number of instructions that must be assembled. First and last have no function in
the default block_assemble(), but are useful when optimizations are done in
block_assemble().

Four things have to be specified in ‘‘as.h’’ and ‘‘as.c’’. First the user must give the
declaration of struct t_operand in ‘‘as.h’’, and the functions process_operand(), pro-
cess_mnemonic(), and process_label() must be given in ‘‘as.c’’. If the right hand side of
the as_table contains function calls other than the back-primitives, these functions must
also be present in ‘‘as.c’’. Note that both the ‘‘@’’-sign (see 4.2.3) and ‘‘references’’ (see
4.2.4) also work in the functions defined in ‘‘as.c’’.

The following example shows the representative and essential parts of the 8086
‘‘as.h’’ and ‘‘as.c’’ files.

-17-

/* Constants and type definitions in as.h */

#define UNKNOWN 0

#define IS_REG 0x1

#define IS_ACCU 0x2

#define IS_DATA 0x4

#define IS_LABEL 0x8

#define IS_MEM 0x10

#define IS_ADDR 0x20

#define IS_ILB 0x40

#define AX 0

#define BX 3

#define CL 1

#define SP 4

#define BP 5

#define SI 6

#define DI 7

#define REG(op) (op->type & IS_REG)

#define ACCU(op) (op->type & IS_REG && op->reg == AX)

#define REG_CL(op) (op->type & IS_REG && op->reg == CL)

#define DATA(op) (op->type & IS_DATA)

#define LABEL(op) (op->type & IS_LABEL)

#define ILB(op) (op->type & IS_ILB)

#define MEM(op) (op->type & IS_MEM)

#define ADDR(op) (op->type & IS_ADDR)

#define EADDR(op) (op->type & (IS_ADDR | IS_MEM | IS_REG))

#define CONST1(op) (op->type & IS_DATA && strcmp("1", op->expr) == 0)

#define MOVS(op) (op->type & IS_LABEL&&strcmp("

#define IMMEDIATE(op) (op->type & (IS_DATA | IS_LABEL))

struct t_operand {

unsigned type;

int reg;

char *expr, *lab, *off;

};

extern struct t_operand saved_op, *AX_oper;

-18-

/* Some functions in as.c. */

#include "arg_type.h"

#include "as.h"

#define last(s) (s + strlen(s) - 1)

#define LEFT ’(’

#define RIGHT ’)’

#define DOLLAR ’$’

process_operand(str, op)

char *str;

struct t_operand *op;

/* expr -> IS_DATA en IS_LABEL

* reg -> IS_REG en IS_ACCU

* (expr) -> IS_ADDR

* expr(reg) -> IS_MEM

*/

{

char *ptr, *index();

op->type = UNKNOWN;

if (*last(str) == RIGHT) {

ptr = index(str, LEFT);

*last(str) = ’ ’;

*ptr = ’ ’;

if (is_reg(ptr+1, op)) {

op->type = IS_MEM;

op->expr = (*str == ’ ’ ? "0" : str);

}

else {

set_label(ptr+1, op);

op->type = IS_ADDR;

}

}

else

if (is_reg(str, op))

op->type = IS_REG;

else {

if (contains_label(str))

set_label(str, op);

else {

op->type = IS_DATA;

op->expr = str;

}

}

}

/***/

mod_RM(reg, op)

int reg;

struct t_operand *op;

-19-

/* This function helps to decode operands in machine format.

* Note the $-operators

*/

{

if (REG(op))

R233(0x3, reg, op->reg);

else if (ADDR(op)) {

R233(0x0, reg, 0x6);

@reloc2(%$(op->lab), %$(op->off), ABSOLUTE);

}

else if (strcmp(op->expr, "0") == 0)

switch(op->reg) {

case SI : R233(0x0, reg, 0x4);

break;

case DI : R233(0x0, reg, 0x5);

break;

case BP : R233(0x1, reg, 0x6); /* exception! */

@text1(0);

break;

case BX : R233(0x0, reg, 0x7);

break;

default : fprint(STDERR, "Wrong index register %d\n",

op->reg);

}

else {

@if (fit_byte(%$(op->expr)))

switch(op->reg) {

case SI : R233(0x1, reg, 0x4);

break;

case DI : R233(0x1, reg, 0x5);

break;

case BP : R233(0x1, reg, 0x6);

break;

case BX : R233(0x1, reg, 0x7);

break;

default : fprint(STDERR, "Wrong index register %d\n",

op->reg);

}

@text1(%$(op->expr));

@else

switch(op->reg) {

case SI : R233(0x2, reg, 0x4);

break;

case DI : R233(0x2, reg, 0x5);

break;

-20-

case BP : R233(0x2, reg, 0x6);

break;

case BX : R233(0x2, reg, 0x7);

break;

default : fprint(STDERR, "Wrong index register %d\n",

op->reg);

}

@text2(%$(op->expr));

@fi

}

}

4.3. Generating assembly code

It is possible to generate assembly instead of object files (see section 5), in which
case there is no need to supply ‘‘as_table’’, ‘‘as.h’’, and ‘‘as.c’’. This option is useful for
debugging the EM_table.

5. Building a code expander

This section describes how to generate a code expander in two phases. In phase
one, the EM_table is written and assembly code is generated. If the assembly code is an
actual language, the EM_table can be tested by assembling and running the generated
code. If an ad-hoc assembly language is used by the table writer, it is not possible to test
the EM_table, but the code generated is at least in readable form. In the second phase,
the as_table is written and object code is generated. After the generated object code is
fed into the loader, it can be tested.

5.1. Phase one

The following is a list of instructions to make a code expander that generates
assembly instructions.

1: Create a new directory.

2: Create the ‘‘EM_table’’, ‘‘mach.h’’, and ‘‘mach.c’’ files; there is no need for
‘‘as_table’’, ‘‘as.h’’, and ‘‘as.c’’ at this moment.

3: type
install_ceg -as

install_ceg will create a Makefile and three directories : ceg, ce, and back. Ceg will
contain the program ceg; this program will be used to turn ‘‘EM_table’’ into a set
of C source files (in the ce directory), one for each EM-instruction. All these files
will be compiled and put in a library called ce.a.
The option -as means that a back-library will be generated (in the directory
‘‘back’’) that supports the generation of assembly language. The library is named
‘‘back.a’’.

4: Link a front end, ‘‘ce.a’’, and ‘‘back.a’’ together resulting in a compiler that gener-
ates assembly code.

-21-

If the table writer has chosen an actual assembly language, the EM_table can be tested
(e.g., by running the compiler on the EM test set). If an error occurs, change the EM_ta-
ble and type

update_ceg C_instr

where C_instr stands for the name of the erroneous EM-instruction. If the table writer
has chosen an ad-hoc assembly language, he can at least read the generated code and look
for possible errors. If an error is found, the same procedure as described above can be fol-
lowed.

5.2. Phase two

The next phase is to generate a ce that produces relocatable object code.

1: Remove the ‘‘ce’’, ‘‘ceg’’, and ‘‘back’’ directories.

2: Write the ‘‘as_table’’, ‘‘as.h’’, and ‘‘as.c’’ files.

3: type

install_ceg -obj

The option -obj means that ‘‘back.a’’ will contain a library for generating
ACK.OUT(5ACK) object files, see appendix B. If the writer does not want to use
the default ‘‘back.a’’, the -obj flag must omitted and a ‘‘back.a’’ should be sup-
plied that generates the generates object code in the desired format.

4: Link a front end, ‘‘ce.a’’, and ‘‘back.a’’ together resulting in a compiler that gener-
ates object code.

The as_table is ready to be tested. If an error occurs, adapt the table. Then there are two
ways to proceed:

1: recompile the whole EM_table,

update_ceg ALL

2: recompile just the few EM-instructions that contained the error,

update_ceg C_instr

where C_instr is an erroneous EM-instruction. This has to be done for every EM-
instruction that contained the erroneous assembly instruction.

6. Acknowledgements

We want to thank Henri Bal, Dick Grune, and Ceriel Jacobs for their valuable sug-
gestions and the critical reading of this paper.

7. References

-22-

References

1. A.S. Tanenbaum, H. v. Staveren, E.G. Keizer, and J.W. Stevenson, “A Practical
Toolkit For Making Compilers,” Communications of the ACM, 26, 9 (September
1983).

2. A.S. Tanenbuum, H. v. Staveren, E.G. Keizer, and J.W. Stevenson, “Description of
a Machine Architecture for Use with Block Structured Languages,” IR-81, Dept.
Mathematics and Computer Science, Vrije Universiteit, Amsterdam (August 1983).

3. ACK Documentation, EM_CODE(3ACK), Dept. Mathematics and Computer Sci-
ence, Vrije Universiteit, Amsterdam.

4. ACK Documentation, ACK.OUT(5ACK), Dept. Mathematics and Computer Sci-
ence, Vrije Universiteit, Amsterdam.

5. B.W. Kernighan and D.M. Ritchie, The C Programming Language, Prentice-Hall
Inc., Englewood Cliffs, New Jersey (1978).

6. ACK Documentation, PRINT(3ACK), Dept. Mathematics and Computer Science,
Vrije Universiteit, Amsterdam.

-23-

Appendix A, the back-primitives

This appendix describes the routines available to generate relocatable object code.
If the default back.a is used, the object code is in ACK.OUT(5ACK) format. In de
default back.a, the names defined here are remapped to more hidden names, to avoid
name conflicts with for instance names used in the front-end. This remapping is done in
an include-file, "back.h". A user-implemented back.a should do the same thing.

A1. Text and data generation; with ONE_BYTE b; TWO_BYTES w; FOUR_BYTES l; arith n;

text1(b) : Put one byte in text-segment.

text2(w) : Put word (two bytes) in text-segment, byte-order is defined by

BYTES_REVERSED in mach.h.

text4(l) : Put long (two words) in text-segment, word-order is defined by

WORDS_REVERSED in mach.h.

con1(b) : Same for CON-segment.

con2(w) :

con4(l) :

rom1(b) : Same for ROM-segment.

rom2(w) :

rom4(l) :

gen1(b) : Same for the current segment, only to be used in the ‘‘..icon’’,

‘‘..ucon’’, etc. pseudo EM-instructions.

gen2(w) :

gen4(l) :

bss(n) : Put n bytes in bss-segment, value is BSS_INIT.

common(n) : If there is a saved label, generate a "common" for it, of size n. Other-

wise, it is equivalent to bss(n). (see also the save_label routine).

A2. Relocation; with char *s; arith o; int r;

reloc1(s, o, r) : Generates relocation-information for 1 byte in the current segment.

s : the string which must be relocated

o : the offset in bytes from the string.

r : relocation type. It can have the values ABSOLUTE or PC_REL.

These two constants are defined in the file ‘‘back.h’’

reloc2(s, o, r) : Generates relocation-information for 1 word in the current segment.

Byte-order according to BYTES_REVERSED in mach.h.

reloc4(s, o, r) : Generates relocation-information for 1 long in the current segment.

Word-order according to WORDS_REVERSED in mach.h.

A3. Symbol table interaction; with int seg; char *s;

switch_segment(seg) : sets current segment to ‘‘seg’’, and does alignment if necessary. ‘‘seg’’

can be one of the four constants defined in ‘‘back.h’’: SEGTXT,

SEGROM, SEGCON, SEGBSS.

symbol_definition(s) : Define s in symbol-table.

set_local_visible(s) : Record scope-information in symbol table.

set_global_visible(s) : Record scope-information in symbol table.

-24-

A4. Start/end actions; with char *f;

open_back(f) : Directs output to file ‘‘f ’’, if f is the null pointer output must be given

on standard output.

close_back() : close output stream.

init_back() : Only used with user-written back-library, giv es the opportunity to ini-

tialize.

end_back() : Only used with user-written back-library.

A5. Label generation routines; with int n; arith g; char *l; These routines all return a "char *" to a static

area, which is overwritten at each call.

extnd_pro(n) : Label set at the end of procedure n, to generate space for locals.

extnd_start(n) : Label set at the beginning of procedure n, to jump back to after gener-

ating space for locals.

extnd_name(l) : Create a name for a procedure named l.

extnd_dnam(l) : Create a name for an external variable named l.

extnd_dlb(g) : Create a name for numeric data label g.

extnd_ilb(l, n) : Create a name for instruction label l in procedure n.

extnd_hol(n) : Create a name for HOL block number n.

extnd_part(n) : Create a unique label for the C_insertpart mechanism.

extnd_cont(n) : Create another unique label for the C_insertpart mechanism.

extnd_main(n) : Create yet another unique label for the C_insertpart mechanism.

A6. Some miscellaneous routines, with char *l;

save_label(l) : Save label l. Unfortunately, in EM, when a label is encountered, it is

not yet known in which segment it will end up. The

save_label/dump_label mechanism is there to solve this problem.

dump_label() : If there is a label saved, force definition for it now.

align_word() : Align to a word boundary, if the current segment is not a text segment.

-25-

Appendix B, description of ACK-a.out library

The object file produced by ce is by default in ACK.OUT(5ACK) format. The
object file is made up of one header, followed by four segment headers, followed by text,
data, relocation information, symbol table, and the string area. The object file is tuned for
the ACK-LED, so there are some special things done just before the object file is
dumped. First, four relocation records are added which contain the names of the four
segments. Second, all the local relocation is resolved. This is done by the function
do_relo(). If there is a record belonging to a local name this address is relocated in the
segment to which the record belongs. Besides doing the local relocation, do_relo()
changes the ‘‘nami’’-field of the local relocation records. This field receives the index of
one of the four relocation records belonging to a segment. After the local relocation has
been resolved the routine output_back() dumps the ACK object file.

If a different a.out format is wanted, one can choose between three strategies:

1: The most simple one is to use a conversion program, which converts the ACK a.out
format to the wanted a.out format. This program exists for all most all machines on
which ACK runs. However, not all conversion programs can generate relocation
information. The disadvantage is that the compiler will become slower.

2: A better solution is to change the functions output_back(), do_relo(), open_back(),
and close_back() in such a way that they produce the wanted a.out format. This
strategy saves a lot of I/O.

3: If this still is not satisfactory, the back-primitives can be adapted to produce the
wanted a.out format.

