
Minimizing Register Usage Penalty at Procedure Calls

Fred C. Chow
MIPS Computer Systems, Inc.

930 Arques Ave
Sunnyvale, CA 94086

Abstract

Inter-procedural register allocation can minimize the
register usage penalty at procedure calls by reducing the
saving and restoring of registers at procedure boun-
daries. A one-pass inter-procedural register allocation
scheme based on processing the procedures in a
depth-first traversal of the calI graph is presented. This
scheme can be overlayed on top of intra-procedural
register allocation via a simple extension to the
priority-based coloring algorithm. Using two different
usage conventions for the registers, the scheme can dis-
tribute register saves/restores throughout the call graph
even in the presence of recursion, indirect calls or
separate compilation. A natural and efficient way to
pass parameters emerges from this scheme. A separate
technique uses data flow analysis to optimize the place-
ment of the save/restore code for registers within indivi-
dual procedures. The techniques described have been
implemented in a production compiler suite. Measure-
ments of the effects of these techniques on a set of
practical programs are presented and the results
analysed.

1. Introduction

Recent trends in computer architecture favor large
register sets [l]. Making good use of a large number of
registers can speed up program execution by reducing
memory accesses. Coincidental to the use of a large
number of registers ‘is additional overhead from the
need to save and restore registers at procedure calls.
When a procedure is called, it is necessary to save the
value of all the registers it will use and restore their
values on return from the call. This overhead is espe-
cially pronounced in programs that are call-intensive.
Thus, using a large number of registers has the undesir-
able effect of making procedure calls expensive by
increasing the memory traffic during the calls.

One solution is to provide a special run-time windowing
mechanism on the register file in the underlying

Permission to copy without fee all or part of this material is granted provided

that the copies are not made or distributed for direct commercial advantage,

the ACM copyright notice and the title of the publication and its date appear,

and notice is given that copying is by permission of the Association for

Computing Machinery. To copy otherwise, or to republish. requires a fee and/

or specific permission.

@ I988 ACM O-8979 l-269- l/88/0006/0085 $ I. 50

Atlanta, Georgia, June 22-24, 1988 as

architecture. This is very effective in reducing memory
traffic [2]. However, its implementation consumes
hardware resources, imposes an extra burden on the
hardware designer and may impact the cycle time of the
processor [3,4]. Floating-point references are not
helped at all when floating-point computations are per-
formed in a separate co-processor with its own
floating-point registers. Though this hardware feature
benefits programs that are Call-intensive, irregular call
patterns can result in sub-optimal performance [5].

Another solution is to provide dynamic tracking of
register usage during execution, as described by Steele
[6] and Lang [7]. Th ese schemes use dynamic masks
that need to be updated during procedure calls and at
register accesses. Although shown to be effective at
reducing register saves and restores, they introduce
additional complexity at run-time, and also require spe-
cial hardware support for efficient implementation. The
additional hardware may impact the pipeline design and
thus the cycle time of the processor.

This paper presents techniques to reduce register
save/restore traffic purely in software. This same prob-
lem can be regarded as inter-procedural register alloca-
tion, but the latter also implies the ability to allow the
same global variable to be accessed in the same register
across procedure boundaries. Wall [8] presents an
inter-procedural register allocator that allocates registers
over the entire program at link-time. It assigns local
variables that cannot be active concurrently to the same
register, according to the call graph. It has the the
advantage of being able to estimate the global usage
counts of local and global variables and assign only the
most frequently-used to registers. Attempts to save
register contents so that they can be re-used are not
made except in the case of recursive procedures and
indirect calls. Wall reported excellent results even when
each register is allowed to be assigned to only one vari-
able within each procedure, using from 32 to 52 regis-
ters. The programs in his benchmark suite require
from 165 to 693 pseudo-registers (termed “groups”), and
with his machine actually providing 52 registers, his allo-
cator still left many variables unassigned to registers.

Steenkiste [9] presents a simple and efficient interpro-
cedural allocation scheme that assigns registers to local
variables in procedures in a depth-first traversal of the
program call graph. A bottom-up approach brings
about more opportunity to share registers among pro-
cedures than a top-down approach. For example, any
register used in the main program cannot be re-used by
any other procedure without saving its contents and res-
toring it afterwards. In contrast, all leaf procedures can

use the same register since they are never active at the
same time.t At each call, the registers used by the cal-
lee are known since the callees have already been pro-
cessed. By avoiding re-use of these registers in the
current procedure, the need to save and restore the
registers around the call is eliminated. When the alloca-
tor runs out of registers at the upper regions of the call
graph, Steenkist’s allocator switches back to ordinary
per-procedure allocation, with their associated register
saves/restores at procedure boundaries. Local variabIes
of recursive procedures are also saved at recursive calls.

In this paper, we present a method for inter-procedural
register allocation based on the bottom-up approach.
We made no attempt to allocate global variables to the
same registers throughout the entire program, because
this would have made it im.possible to allocate in one
pass. But we do allocate them to registers within pro-
cedures in which they appear. For the same reason, we
do not rely on usage counts over the entire program,
but we maximize the utility of all the registers over the
program’s call tree. Our method is aimed at reducing
the register save/restore traffic at procedure calls and at
streamlining the parameter-passing operation. The tech-
niques are applied at compile-time and are built on top
of coloring-based intra-procedural register allocation
already performed by the compiler.

2. One-pass Algorithm

One advantage of the depth-first ordered inter-
procedural register allocation method is that it allows
the entire program to be processed in one pass. At
each instant, only one procedure is being looked at. As
a result, it is possible to perform intra-procedural regis-
ter allocation on each procedure, but extend the local
algorithm to take register usages in called procedures
into account at call sites. We use the priority-based
coloring allocation technique [lO-121 in our intra-
procedural register allocation, and have been able to
extend the algorithm to suit our purpose.

Before we apply our inter-procedural algorithm, it is
necessary to define the usage convention of our regis-
ters. Traditionally, registers are classified according to
software convention at procedure calls. The content of
a caller-saved register is regarded as being un-preserved
across a call. The caller is responsible for saving the
contents of caller-saved registers before a call and res-
toring their contents after the call returns. The content
of a callee-saved register must be preserved across a
call. A procedure that uses a callee-saved register must
save its original content and restore it before exit.
Under normal situations, our registers are divided into a
caller-saved set and a callee-saved set, with four addi-
tional registers designated for parameter-passing. When

t Wall’s basic algorithm also works in a depth-first ordered
traversal of the procedures.

not being used for passing parameters, the parameter
registers are treated as caller-saved.

Caller-saved and callee-saved registers have their
respective merits under different circumstances. Let’s
first assume the absence of any inter-procedural register
usage information, which corresponds to the ordinary
intra-procedural register allocation case. For a variable
whose range of appearance spans many procedure calls,
the use of a callee-saved register is advantageous,
because saving and restoring once at the procedure
entry and exit respectively are cheaper than saving and
restoring around each call. If the variable’s live range
does not span any procedure call, which applies to all
variables when the current procedure is a leaf in the call
graph, then a caller-saved register is advantageous
because its usage incurs no saving and restoring. Our
register allocator computes different priorities with
respect to the register classes and assigns each program
variable to the best register class. Thus, our register
allocator strives to reduce register saves and restores
even when not making use of inter-procedural informa-
tion.

When inter-procedural register usage information is
taken into account, the register allocator tries to avoid
re-use of the registers that it knows are being used
inside other procedures. At points of call, the register
usage information of the callee applies only to caller-
saved registers, because if a callee-saved register is used
by the callee, the save and restore of it has already been
generated at the entry and exit respectively of the callee
and cannot be optimized ,away. Based on the register
usage information in the callee, the allocator can select
a caller-saved register across the call without incurring
the cost of save/restore both at the point of call and at
the entry and exit of the current procedure. Thus, to
derive maximum benefits when the procedures are allo-
cated in depth-first order according to the call graph, it
is advantageous to use all the registers in the caller-
saved mode.$

Thus, when inter-procedural register allocation is
invoked, our set of callee-saved registers are made to
operate in the caller-saved mode. The register usage
information of each procedure consists simply of a flag
for each register marking it as used or unused. This
register usage information includes the whole call tree
rooted at that procedure, and at the end of processing
each procedure, it is necessary to merge the register
usage in the current procedure with those of all its cal-
lees. Thus, at each call, only one set of information
needs to be looked at.

When we perform register allocation under the inter-
procedural mode, we compute priorities not just for

$ By similar reasoning, if the procedures were processed top-
down in the call graph, it would have been advantageous to use
all registers in the callee-saved mode.

86

each variable, but for each variable-register combina-
tion. This is because the cost incurred by the use of
each register is now different depending on their usage
by callees at points of calls that lie within the live range
of the variable. Apart from computing and selecting
from more priorities, the basic priority-based coloring
algorithm is unchanged. This does not add noticeably
to the running time of the coloring algorithm, since
most of the time is already spent in creation and mani-
pulation of the live ranges and interference graph. Our
implementation of the register allocator can actually
switch between intra- and inter-procedural allocation
according to a compilation flag.

Because we perform coloring within each procedure, a
register used by a child procedure can actually be re-
used without save/restore if the range of usage does not
span the call to the child. For example, in Fig. 1, even
though functions p and q can be active at the same
time, the same register can be assigned to variables a,
b and c without save/restore. With equal priorities, the
allocator will prefer a register that has already been
used in the current call tree. The effect is to minimize
the number of registers used in each call tree.

PO {
90 t

90;

Fig. 1. Re-use of register in simultaneouly active procedures

At the upper regions of the call graph, the register aUo-
cator will be forced to use registers that require
saving/restoring across calls, since the limited number
of registers will eventually be exhausted. The resulting
performance of the inter-procedural register allocator
for the procedures high up in the caU graph will then be
little ditferent from that obtained from intra-procedural
aUocation. However, there are ways to alleviate this
problem, and we’ll discuss them in the upcoming sec-
tions.

3. Incomplete Procedure Information

Our inter-procedural register allocation relies on
knowledge about the register usage patterns in the
called procedures at caU sites. However, incomplete
register usage information for called procedures can
arise under three different situations. Under separate
compilation, the bodies of the called procedures are

not visible to the allocator. With indirect caUs, the com-
piler cannot identify the possible call candidates without
lengthy program flow analysis, and even if that is done,
the allocator has to take the union of the registers used
by aU the candidates. Lastly, recursion creates cycles in
the call graph so that, no matter what ordering is used,
it is impossible to process a procedure in a recursive
caU chain after all its callees have been processed.

The above three situations can be generalized as fol-
lows: we cannot use the inter-procedural register ailoca-
tion scheme for a procedure if any of its callers has
been processed* or is unknown. The former occurs
when the caU graph contains cycles or the procedures
are not processed in depth-first ordering. The latter
occurs if the procedure is external to the current
module or its text address is ever assigned to a pro-
cedure pointer so that it can be called indirectlv. We
caU a procedure to which either of these conditions
applies an open procedure. Procedures that are not
open are called closed procedures. An open procedure
cannot propagate its register usage information to aU its
callers, since when its callers are processed, such infor-
mation is either not yet determined or is unobtainable.
For open procedures, we switch back to the default
intra-procedural allocation linkage rules where the
caUee-saved registers reclaim their original identities as
caUee-saved registers.

When we process an open procedure, some of its cal-
lees may be closed procedures. In such a case, the
register usage information in the children is still useful
to the parent. The difference is that when a callee-
saved register is used by the parent or any of its chil-
dren, the parent must save it on entry and restore it on
exit. Our inter-procedural allocation scheme can alter-
natively be looked upon as providing a mechanism to
propagate the saves/restores of callee-saved registers to
the upper regions of the caU graph. In the ideal case,
when aU procedures are closed except the main pro-
gram at the root of the call graph,+ and there are
enough registers provided by the machine, the saving
and restoring of the caUee-saved registers can be pro-
pagated all the way to the entry and exit respectively of
the main program. There, they are saved and restored
only once in the entire duration of the program’s execu-
tion. This propagation of the saves/restores of callee-
saved registers is interrupted by the occurrences of
open procedures in the caU graph.

When a register is saved by an open procedure, that
register can be marked un-used in the register usage
information the procedure provides to its callers,
because its content is undisturbed by the procedure.
For open procedures, the register allocator can assume

l This includes the case of a self-recursive procedure, when
one of the caller, itself, is being processed.
$ The main program is always open since it is called externally
by the operating system when the program is invoked.

87

at once that all callee-saved registers are unused but all
caller-saved registers are used, which is the default link-
age protocol. As a result, open procedures do not have
to specify their register usage information.

Thus, the performance of our inter-procedural alloca-
tor is not compromised by incomplete procedure infor-
mation. In any given call graph, inter-procedural and
intra-procedural register allocation can co-exist.
Though saving and restoring a register at entry and exit
poses additional run-time costs, this allows the parents’
free usage of the register. At the upper regions of the
call graph, our inter-procedural register allocation can
still perform well compared to intra-procedural register
allocation, when some registers have been saved in the
lower part of the graph to allow for their free usage
inter-procedurally in the upper part of the graph. This
effect can be further enhanced by optimizing the posi-
tioning of the save/restore code, which we’ll discuss in
Section 5.

4. Parameter Passing

A natural way to optimize parameter passing arises out
of our inter-procedural register allocation. Incoming
parameters to a procedure are local variables whose
values are pre-set at the procedure’s entry point. For a
closed procedure, the parameter variable is allowed to
be assigned to an arbitrary register, and the register
usage information of the procedure additionally
describes which parameter is being passed in which
register. At the points of call, the callers will pass the
outgoing parameters in the designated register. Under
inter-procedural register allocation, any register can
serve as a parameter register. For open procedures, the
default linkage convention is re-instituted where the
first four parameters are passed in the four parameter
registers.

At points of call, the coloring algorithm assigns higher
priority to a variable/register pair if the variable is an
outgoing parameter that has to be passed in that regis-
ter. This pre-assignment of the parameter register to
the outgoing parameter variable applies not only to the
point of call, but also to the entire live range of the
variable. Thus, from caller to callee, the parameter can
be left undisturbed in the parameter register.

5. Shrink-wrapping Callee-saved Registers

A typical procedure consists of many different execu-
tion paths, not all of which may be exercised for each
invocation. The ordinary convention for callee-saved
registers requires that the saving and restoring are done
at the entry and exit of the procedure respectively. This
introduces some redundancy, because the saved regis-
ters may not be used for the execution path of that
invocation. This problem does not occur for caller-
saved registers, because the caller saves them only when

they are used in both the called procedures and the
region spanning the call. As we saw in Section 3, one
way of removing this redundancy is by propagating the
saves and restores of callee-saved registers to the upper
regions of the call graph. This propagation is hindered
by open procedures, in which case the saves and
restores have to be placed in the bodies of the open
procedures.

It is possible to optimize the placement of the
saves/restores for callee-saved registers so that they
occur only over regions where the registers are used,
rather than at the entry and exit of the procedure. The
effect is to shrink wrap the saves/restores around their
regions of activity. This serves to suppress the redun-
dant execution of the code when the flow of control
does not cover the regions where the registers are used.
This optimization is based on flow analysis of the save
and restore code of each callee-saved register with
respect to the control flow graph of the procedure [13].
Since the number of callee-saved registers is fixed and
usually not large, the data flow information for the
registers can be compactly encoded in bit vector form
using a word of storage, so that the data flow analysis
can be efficiently performed.

The first step is to initialize a local attribute that tells
whether each register is used in each basic block of the
procedure. We call this attribute APP. The next step
involves determining the anticipability and availability of
the uses, which we call ANT and AV respectively. The
use of a register is ancicipnred at a given point if a use
of the register will be encountered in all possible execu-
tion paths leading from that point. The use of a regis-
ter is available at a given point if a use of the register
has been encountered in all possible execution paths
that lead to that point. We use the names ANTM and
AVIN when referring to these attributes at the entries of
basic blocks, and the names ANTOUT and AVOUT
when referring to these attributes at the exits of basic
blocks. These data flow attributes can be determined by
solving the following boolean equations by iterative data
flow analysis. The subscript i identifies the attribute as
being for the ith basic block.

false

I

if i is an exi?
ANTOUTi =

n ANTINj otherwise (3.1)
‘c succ(i)

ANTINi = APPi + ANTOUTi (3.2)

AVOUTi - APPi + AWNi

We want to insert a register save
where the use is anticipated. If

(3.4)

only at a basic block
inserted at any other

place, partial redundancy is introduced [14]. Similarly,

AWNi =
ifi isanexit
otherwise (3.3)

88

we want to insert the restore only at a basic block
where the use is available to avoid partial redundancy in

range extension applies to each register, but by operat-

the restore. The next task is to determine the best
ing on the bit vectors we can process all the registers at
once. The iteration terminates when the APP vector is

places to insert the save and the best places to insert not changed at any node in the flow graph. In practice,
the restore. These two problems are symmetrical with this extension of the usage ranges of the registers
respect to the flow graph, so that one can be solved
using the same technique as the other.

requires from one to two iterations depending on the
program, and is thus inexpensive.

We first consider the solution for the best place to
insert the save. We adhere to the rule of always insert-
ing register save code at basic block entries, which will
not limit the effects of our optimization in any way.
The insertions should be at the earliest points in the
program leading to one or more contiguous regions
where the register is used. This implies that, at the
points of insertion, the ANTIN attniutes at the preced-
ing basic blocks (the immediate predecessor nodes in
the control flow graph) must be false for the register
concerned. In addition, there must not be any earlier
save inserted, because if saved twice, the second save
will destroy the original content. This means the AV
attribute must also be false.? using the attribute SAVE
to describe the insertion of register save code at each
basic block, we can compute SAVE as follows:

SAVE, = ANTIN, x (YAVIN,) x n (*Nmi)
icpd(i) (3.5)

The above computation of SAVE can produce incorrect
results in some situations. In Fig. 2(a), variable x
appears in both basic blocks 3 and 5, so that a register
is used to contain it. The above solution will cause
register saves to be inserted at the entries of both basic
blocks 3 and 5, but this leads to the register being saved
twice when the execution path goes through nodes 3
and 5. The only possrble way to correct the insertion is
to create a new node in the control flow graph (node 6
in Fig. 2(b)) and insert the save there instead of node 5.
However, the creation of such new basic blocks
requires the introduction of extra branches into the pro-
gram code, which lengthens the execution time. This
offsets the advantage gained by removing the partial
redundancy in the save code. Thus, under such situa-
tions, we choose not to introduce new nodes in the
control flow graph. Instead, we extend the range of
usage of the register by propagating the APP attribute
(and thus the ANTM attribute also) to the basic blocks
that cause the above incorrect insertion. The same
applies to the corresponding situation when computing
positions to insert restores. Each time we get a new set
of values for APP, the global attributes ANTIN,
ANTOUT, AVIN, and AVOUT are re-computed and we
again check for range extension. This process is
repeated until the range can no longer be extended. The

t If AV is true, the register has been saved but not yet re-
stored; if false, the register has either not been saved. or has
been both saved and restored. This is according to the
definition of RESTORE. Thus, the definitions of SAVE and
RESTORE are mutually dependent.

By virtue of the symmetry between register save and
restore with respect to the flow graph, the attribute to
describe the insertion of register restore code,
RESTORE, is computed as given by Eq. (3.6). We
always insert register restores at the exits of basic
blocks.

RESTOREi = AVOUTi X (dNTOuTi) X n
jtsucc(i)

(74V07)34

There is one more consideration in performing the
above shrink-wrap optimization. If the shrink-wrapped
region lies completely inside a loop, there will be seri-
ous performance impact: instead of saving and restoring
once per invocation of the procedure, this is now
repeated for each iteration of the loop. To prevent this
from occurring, whenever a register is used inside a
loop, we propagate its APP attribute throughout the
entire region of the loop. Thus, any shrink-wrap is not
allowed to penetrate loop boundaries.

(a) (b) f

range of variable x

Fig. 2. Dependence on form of control flow

‘Ihere are other situations where the shrink-wrap
optimization produces results whose effects are uncer-
tain without dynamic execution profiles. Fig. 3 depicts
a typical situation. Assuming equal probability for each
branch target, the four possible execution paths will
each occur 25% of the time. The optimization produces
positive impact on run-time in one case, negative
impact in another case and no net effect in the remain-
ing two cases.

a9

6. Combinlng the Techniques

As we saw in Section 3, our inter-procedural register
allocation algorithm propagates the saves/restores of
callee-saved registers up the call graph. On the other
hand, saving and restoring a register in the current pro-
cedure have the effect of shifting the cost of the register
usage from the ancestors to the current procedure. If
the allocator does not run out of registers in the upper
portion of the call graph, then propagating the
saves/restores up the call graph is beneficial. If it does
run out of registers, however, either strategy can yield
better result depending on the actual situations. In the
example of Fig. 4, both procedures p and r use register
1. Register 1 may be saved and restored around the call
to q in procedure p, or it may be saved at the entry of
t and restored at the exit of r. If the call to q is exe-
cuted less frequently than the calI to r, then the former
is advantageous. But if the call to r is less frequent than
the call to q , the latter is preferred.

save

restore

..::::;:j::::

.l

.

.//. ./.. . .

.:.:.:.:.,: ,.,. range of register usage_.... . . .,:_:.:.i:i

Fig. 3. Effects of shrink-wrap optimization

Since we process the program in one pass, we cannot
anticipate whether we’ll run out of registers later when
we process the upper part of the call graph. However,
a good strategy follows naturally from the preceding
shrink-wrap optimization for callee-saved registers.
When we process a closed procedure in inter-
procedural allocation mode, we choose to propagate
the save and restore of a callee-saved register up to the
parent procedures only when the save has to be inserted
at the procedure entry, which is when the usage range

of the register spans the entire procedure.* If the range
of usage does not include the entire procedure, then the
saving and restoring of that register in the ancestors wilI
be redundant when the actual execution does not take
the path that passes through that range.

Adopting the above strategy in our inter-procedural
register allocation can enhance its performance, espe-
cially in the upper part of the call graph. Because more
callee-saved registers are saved in the lower regions of
the call graph, more free registers are made available at
the upper regions. Our whole inter-procedural register
allocation strategy is built upon the interaction between
the different techniques we have described.

PO{:

: f
so; r1

i + 1

H sot:
r-l

ro ; I

Fig. 4. Inserting saves and restores in call graph

7. CompUntion Setting

A previous paper [15] has described a practical compila-
tion environment that provides for the efficient and
effective invocation of our inter-procedural register allo-
cation for ordinary programs. The MIPS Compiler Sys-
tem uses the common back-end strategy to support
compilation and optimizaton for a suite of programming
languages [16]. The intermediate language is Ucode,
and the register allocator is the last phase of the global
optimizer on Ucode called Uopt.

3 For our save/restore placement optimization algorithm to be
correct, inserting the save at the entry must imply that a
carresponding restore is inserted at all exits of the procedure.

90

All comparisons are with respect to -02 compilation with shrink-wrap disabled.

Key: A - compiled -02 with shrink-wrap enabled
B - compiled -03 with shrink-wrap disabled

C - compiled -03 with shrink-wrap enabled

Table 1. Effects of applying techniques on 13 different programst

As discussed earlier, the inter-procedural allocation
does not require complete program information to
operate. But for more optimal results, our compiler sys-
tem allows the Ucode from separate program units and
from libraries to be linked together. A different phase
re-arranges the linked procedures into the depth-first
ordering before presenting them to Uopt. The approach
provides maximum utilization of the allocator’s capabil-
ity with little impact to the user interface.

8. Measurements

We now study the effect of applying our techniques to
programs compiled and run on the MIPS R2000 proces-
sor*. The R2000 is a RISC processor with a load/store
architecture in which most instructions execute in a sin-
gle clock cycle [17]. There are 20 general purpose regis-
ters available for use by the register allocator, of which
11 are caller-saved and 9 are callee-saved. The
floating-point coprocessor has 4 caller-saved and 6
callee-saved floating-point registers. In addition, the
function return registers and linkage registers are also
used but they cannot be allocated inter-procedurally.
All these registers are allocated within each procedure
using priority-based coloring.

Global optimization and register allocation are

ordinarily invoked with the -02 compilation flag. If
invoked under the -03 Rag, register allocation is per-
formed using inter-procedural information according to
the techniques we have described. However, the
shrink-wrap optimization is independent of inter-
procedural information, and thus is performed under
both -02 and -03. We’ll use -02 with shrink-wrap
disabled as the base-line for all our performance com-
parisons.

Executable programs typically comprise libraries pro-
vided by the programming languages that are linked
with the user code. Thus, the lower regions of program
call graphs can be library code. The increased size of
the linked Wcode increases compilation and optimiza-
tion time in the back-ends. Since our scheme is not
seriously affected by incomplete call graphs, the current
setup of -03 compilation excludes linking with any
external or library objects.

Our run-time data are generated using the MIPS
instruction tracing facility pixie. This tool gives a full
picture of the machine cycles and intruction mix needed
to execute the programs, allowing us to measure pro-
gram performance independent of other hardware
parameters like cache and processor clock frequency.
Any cycle savings realized are exclusive of cache misses
and memory management unit overhead, and thus

t All measurements were generated using Release 1.30 of the MIPS Compiler Suite.

+ R2000 is a registered trademark of MIPS Computer Systems,
Inc.

91

usually understate the improvements in real time.

In addition to executed cycles, we provide data on the
total scalar loads and stores executed. These are loads
and stores attributed to scalar variables, common
subexpressions and register saves and restores, which
are removable by the register allocator given an unlim-
ited number of registers. By relating the change in
dynamic scalar loads/stores to the change in executed
cycles, we can get a rough estimate of the performance
improvement that can be brought about by perfect
register allocation in individual programs. Due to the
different natures of programs, the same percentage of
reduction in scalar loads/stores can lead to widely
different speed-ups in different programs.

When looking at data on inter-procedural optimization
effects, it is important to take the call frequencies of
the programs into account, since opportunities for
improvement arise only at procedure calls. For the
same reason, the benchmark programs we use are
mostly call-intensive. Given that the number of registers
provided by target machines are always fixed and lim-
ited, program size can seriously affect the performance
of inter-procedural register allocation. As a result, the
sizes of our benchmark programs range from small to
very large. Details about our benchmarks are given in
the Appendix. In Table 1, the benchmarks are
arranged in the order of increasing source line counts,
which do not include those from linked-in libraries.
The code belonging to libraries were compiled without
inter-procedural allocation.

Since changes in the number of memory references can
unpredictably affect the subsequent pipeline reorganiza-
tion phase, a small reduction in the number of loads
and stores may not positively affect the speed of the
program. Such noise in the compilation process results
in inconsistencies in the data for cycles and loads and
stores in Table 1, as exemplified by the B columns for
uopt.

The performance numbers shown in Table 1 are all nor-
malized with respect to the performances under intra-
procedural global register allocation. Columns IA and
IL4 give the isolated effect of shrink-wrap optimization
before applying inter-procedural allocation. Column
IIA shows that this optimization always reduces
memory accesses. However, the effect on the execution
time is barely noticeable, with the exception of trim.

Columns IB and IIB give the improvements brought
about by our inter-procedural register allocation scheme
but without shrink-wrap optimization. Since our base-
line comparison is that of intra-procedural global regis-
ter allocation, the high base does not make our data
look good, because intra-procedural allocation has
already removed a majority of the loads and stores attri-
buted to scalar variables and common subexpressions.
In general, the improvement is more pronounced for
the smaller benchmarks. In the case of ccom, one of
the larger programs, it actually runs slower due to

inter-procedural allocation.

Columns IC and IIC show the effects of adding shrink-
wrap optimization to our inter-procedural allocation
scheme. There are good improvements over B in nim,
Stanford, tex and ccom, but slight decreases in perfor-
mance in the case of awk, as1 and upas. On the whole,
the extents of the improvements obtainable seem to jus-
tify the inclusion of shrink-wrap optimization under
inter-procedural allocation.

We account for the less than promising results we
obtained as follows. First, under intra-procedural allo-
cation, our register allocator already has the choice to
use either caller-saved or callee-saved registers. This
provides one extra degree of freedom to the allocator,
allowing it to minimize save/restore overhead even in
the absence of inter-procedural information, as
descnied in Section 2. Thus, we started out with a
competent base from which to improve upon.
Secondly, for large benchmarks, 20 registers (excluding
floating-point) are clearly inadequate to cover the large
call graphs, so that the improvement in execution time
is smaller. The relevant parameter is the height of the
call graph rather than the width. Thus, the nature of.
the program dictates how its size affects the perfor-
mance of our allocator. Inter-procedural register alloca-
tion requires a large number of registers in order to
have noticeable impact on practical programs. Finally,
we lack information on the execution frequencies at
different levels of the call graph. Knowledge of such
profile data can enable the register allocator to distri-
bute saves/restores more optimally across the different
levels of the call graph. The negative improvement in
ccom was caused by the propagation of saves/restores
to the upper region of the call graph, which turns out to
execute more frequently than the lower region. The
feedback of profile data to the register allocator is a
capability that we plan to add in the future.

Our next set of measurements, given in Table 2, com-
pare the differences between caller-saved and callee-
saved registers in our inter-procedural allocation
scheme. Since different parts of the MIPS execution
environment have been hard-coded according to the
native convention for the two classes of registers, it is
impossible to change the usage convention of the regis-
ters without drastic overhaul of the system code. How-
ever, it is possible to limit the number of registers used
by the register allocator so that all the used registers
belong to one of the two classes. In Table 2, columns
D, the register allocator is allowed to use only 7 caller-
saved registers in performing inter-procedural alloca-
tion, and in columns E, it is allowed to use only 7
callee-saved registers. There is no restriction in the
floating-point register set, which should not affect our
study, since our benchmarks use predominantly integer
data. We use the same base-line as Table 1 for our
comparisons. Because of the smaller number of regis-
ters, most of the programs run slower. But we are
interested only in the relative performance between
columns D and E.

92

According to the data in Table 2’s column II, using
caller-saved registers is better for four of the programs
(nh, map, Stanford and ccom), while using callee-
saved registers is better for the rest of the programs,
except dhrystone, which shows no clear preference for
either class of registers. The fundamental difference
between the two register classes under our scheme of
inter-procedural allocation is that, under conditions of
running out of registers, callee-saved registers permit
the migration of saves/restores up the call graph, allow-
ing more freedom in the allocation process. Thus,
callee-saved registers are more advantageous in large
programs, where register shortage is severe. In the small
benchmarks nim, map and Stanford, there are fewer
cases of running out of registers, and since caller-saved
registers can be used free of save and restore as long as
there are free registers, they become more advanta-
geous. Ccom is an exception among the larger bench-
marks. The fact that it gets better performance with
caller-saved registers than callee-saved registers bolsters
our earlier inference that the upper region of its call
graph executes more frequently than the iower region.

All comparisons are with respect to -02 compilation usirrg full
register set with shrink-wrap disabled.
Key: D - same as in Table l’s C but using only 7

caller-saved registers
E- same as in Table l’s C but using only 7

callee-saved registers

Table 2. Effects of the 2 different register classes

9. Conclusion

A simple and elegant extension to the priority-based
coloring algorithm has made it possible to obtain the
benefits of inter-procedural register allocation. The
approach depends on processing the procedures in

depth-first ordering according to the program call
graph, and uses two different save/restore conventions
for the registers. The techniques do not rely on any spe-
cial hardware feature, and can be applied to any proces-
sor with a fixed register set. Our results show that pure
software can effectively reduce register usage penalty at
procedure calls. With the techniques, programs stand
more ready to make good use of a larger number of
registers.

Acknowledgement

The author has benefited greatly from ideas from John
Hennessy, Earl Killian and Larry Weber. The imple-
mentation of these ideas in MIPS’ compilers have been
made possible by the related work of Kevin Enderby
and Mark Himelstein. Other members of the MIPS
compiler team, especially Steve Correll, Steve Hanson,
Bettina Le Veille, have provided support throughout
the development and testing phases.

Appendix

References

1. William Stallings, Reduced Znstruction Set Com-
puters, IEEE Computer Society Press (1987).

2. David A. Patterson, “Reduced Instruction Set
Computers,” Communications of the ACM

t These programs originate from an undergraduate program-
ming course given at Stanford.
$ UNIX is a registered trademark of AT&T.

93

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

28(l) pp. 8-21 (January 1985). System,” Proceedings COMPCON, pp. 132-137

R. Sherburne, “Processor Design Tradeoffs in IEEE, (March 4-6, 1986).

VLSI,” Technical Report UCB/CSD84/173, 17. Gerry Kane, MIPS R2000 RISC Processor Archi-
Ph.D. Thesis, University of California at Berkeley tecture, Prentice-Hall, Inc. (1987).
(April 1984).

John L. Hennessy, “VLSI Processor Architec-
ture,” IEEE Trans. on Computers C-33(12) pp.
1221-1246 (Dee 1984).

Yuval Tamir and Carlo H. Sequin, “Strategies for
Managing the Register File in RISC,” IEEE
Trans. on Computers C-32(11) pp. 977-989
(November 1983).

G. L. Steele Jr. and G. J. Sussman, “The Dream
of a Lifetime: A Lazy Variable Extent Mechan-
ism,” Conference Record of the 1980 LISP Confer-
ence, pp. 163-172 (August 1980).

Tomas Lang and Miquel Huguet, “Reduced
Register Saving/Restoring in Single-Window
Register Files,” Computer Architecture News, pp.
17-26 (June 1986).

David Wall, “Global Register Allocation at
Link-time,” Proceedings of the ACM SIGPLAN
Symposium on Compiler Construction, pp. 264-
275 (June 23-27, 1986).

Peter Steenkiste, “LISP on a Reduced-
Instruction-Set Processor: Characterization and
Optimization,” Technical Report 87-324, Ph.D.
Thesis, Computer Systems Laboratory, Stanford
University, Stanford, CA (March 1987).

Fred Chow, “A Portable Machine-Independent
Global Optimizer - Design and Measurements,”
Technical Report 83-254, Ph.D. Thesis, Com-
puter Systems Laboratory, Stanford University,
Stanford, CA (Dee 1983).

Fred Chow and John Hennessy, “Register Allo-
cation by Priority-based Coloring,” Proceedings
of the ACM SIGPLAN Symposium on Compiler
Construction, pp. 222-232 (June 17-22, 1984).

James Larus and Paul Hilfinger, “Register Alloca-
tion in the SPUR Lisp Compiler,” Proceedings of
the ACM SIGPLAN Symposium on Compiler Con-
struction, pp. 255-263 (June 23-27, 1986).

Alfred Aho, Ravi Sethi, and Jeffrey Ullman,
Compilers - Principles, Techniques, and Tools,
Addison-Wesley (1986).

E. Morel and C. Renvoise, “Global Optimization
by Suppression of Partial Redundancies,” Com-
munications of the ACM 22(2) pp. 96-103 (Febru-
ary 1979).

Mark Himelstein, Fred Chow, and Kevin
Enderby, “Cross-module Optimizations: Its
Implementation and Benefits,” Proceedings of the
Summer 1987 USENIX Conference, pp, 347-356
USENIX Association, (June 8-12, 1987).

Fred Chow, Mark Himelstein, Earl Killian, and
Larry Weber, “Engineering a RISC Compiler

94

