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Abstract 

Inter-procedural register allocation can minimize the 
register usage penalty at procedure calls by reducing the 
saving and restoring of registers at procedure boun- 
daries. A one-pass inter-procedural register allocation 
scheme based on processing the procedures in a 
depth-first traversal of the calI graph is presented. This 
scheme can be overlayed on top of intra-procedural 
register allocation via a simple extension to the 
priority-based coloring algorithm. Using two different 
usage conventions for the registers, the scheme can dis- 
tribute register saves/restores throughout the call graph 
even in the presence of recursion, indirect calls or 
separate compilation. A natural and efficient way to 
pass parameters emerges from this scheme. A separate 
technique uses data flow analysis to optimize the place- 
ment of the save/restore code for registers within indivi- 
dual procedures. The techniques described have been 
implemented in a production compiler suite. Measure- 
ments of the effects of these techniques on a set of 
practical programs are presented and the results 
analysed. 

1. Introduction 

Recent trends in computer architecture favor large 
register sets [l]. Making good use of a large number of 
registers can speed up program execution by reducing 
memory accesses. Coincidental to the use of a large 
number of registers ‘is additional overhead from the 
need to save and restore registers at procedure calls. 
When a procedure is called, it is necessary to save the 
value of all the registers it will use and restore their 
values on return from the call. This overhead is espe- 
cially pronounced in programs that are call-intensive. 
Thus, using a large number of registers has the undesir- 
able effect of making procedure calls expensive by 
increasing the memory traffic during the calls. 

One solution is to provide a special run-time windowing 
mechanism on the register file in the underlying 
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architecture. This is very effective in reducing memory 
traffic [2]. However, its implementation consumes 
hardware resources, imposes an extra burden on the 
hardware designer and may impact the cycle time of the 
processor [3,4]. Floating-point references are not 
helped at all when floating-point computations are per- 
formed in a separate co-processor with its own 
floating-point registers. Though this hardware feature 
benefits programs that are Call-intensive, irregular call 
patterns can result in sub-optimal performance [5]. 

Another solution is to provide dynamic tracking of 
register usage during execution, as described by Steele 
[6] and Lang [7]. Th ese schemes use dynamic masks 
that need to be updated during procedure calls and at 
register accesses. Although shown to be effective at 
reducing register saves and restores, they introduce 
additional complexity at run-time, and also require spe- 
cial hardware support for efficient implementation. The 
additional hardware may impact the pipeline design and 
thus the cycle time of the processor. 

This paper presents techniques to reduce register 
save/restore traffic purely in software. This same prob- 
lem can be regarded as inter-procedural register alloca- 
tion, but the latter also implies the ability to allow the 
same global variable to be accessed in the same register 
across procedure boundaries. Wall [8] presents an 
inter-procedural register allocator that allocates registers 
over the entire program at link-time. It assigns local 
variables that cannot be active concurrently to the same 
register, according to the call graph. It has the the 
advantage of being able to estimate the global usage 
counts of local and global variables and assign only the 
most frequently-used to registers. Attempts to save 
register contents so that they can be re-used are not 
made except in the case of recursive procedures and 
indirect calls. Wall reported excellent results even when 
each register is allowed to be assigned to only one vari- 
able within each procedure, using from 32 to 52 regis- 
ters. The programs in his benchmark suite require 
from 165 to 693 pseudo-registers (termed “groups”), and 
with his machine actually providing 52 registers, his allo- 
cator still left many variables unassigned to registers. 

Steenkiste [9] presents a simple and efficient interpro- 
cedural allocation scheme that assigns registers to local 
variables in procedures in a depth-first traversal of the 
program call graph. A bottom-up approach brings 
about more opportunity to share registers among pro- 
cedures than a top-down approach. For example, any 
register used in the main program cannot be re-used by 
any other procedure without saving its contents and res- 
toring it afterwards. In contrast, all leaf procedures can 



use the same register since they are never active at the 
same time.t At each call, the registers used by the cal- 
lee are known since the callees have already been pro- 
cessed. By avoiding re-use of these registers in the 
current procedure, the need to save and restore the 
registers around the call is eliminated. When the alloca- 
tor runs out of registers at the upper regions of the call 
graph, Steenkist’s allocator switches back to ordinary 
per-procedure allocation, with their associated register 
saves/restores at procedure boundaries. Local variabIes 
of recursive procedures are also saved at recursive calls. 

In this paper, we present a method for inter-procedural 
register allocation based on the bottom-up approach. 
We made no attempt to allocate global variables to the 
same registers throughout the entire program, because 
this would have made it im.possible to allocate in one 
pass. But we do allocate them to registers within pro- 
cedures in which they appear. For the same reason, we 
do not rely on usage counts over the entire program, 
but we maximize the utility of all the registers over the 
program’s call tree. Our method is aimed at reducing 
the register save/restore traffic at procedure calls and at 
streamlining the parameter-passing operation. The tech- 
niques are applied at compile-time and are built on top 
of coloring-based intra-procedural register allocation 
already performed by the compiler. 

2. One-pass Algorithm 

One advantage of the depth-first ordered inter- 
procedural register allocation method is that it allows 
the entire program to be processed in one pass. At 
each instant, only one procedure is being looked at. As 
a result, it is possible to perform intra-procedural regis- 
ter allocation on each procedure, but extend the local 
algorithm to take register usages in called procedures 
into account at call sites. We use the priority-based 
coloring allocation technique [lO-121 in our intra- 
procedural register allocation, and have been able to 
extend the algorithm to suit our purpose. 

Before we apply our inter-procedural algorithm, it is 
necessary to define the usage convention of our regis- 
ters. Traditionally, registers are classified according to 
software convention at procedure calls. The content of 
a caller-saved register is regarded as being un-preserved 
across a call. The caller is responsible for saving the 
contents of caller-saved registers before a call and res- 
toring their contents after the call returns. The content 
of a callee-saved register must be preserved across a 
call. A procedure that uses a callee-saved register must 
save its original content and restore it before exit. 
Under normal situations, our registers are divided into a 
caller-saved set and a callee-saved set, with four addi- 
tional registers designated for parameter-passing. When 

t Wall’s basic algorithm also works in a depth-first ordered 
traversal of the procedures. 

not being used for passing parameters, the parameter 
registers are treated as caller-saved. 

Caller-saved and callee-saved registers have their 
respective merits under different circumstances. Let’s 
first assume the absence of any inter-procedural register 
usage information, which corresponds to the ordinary 
intra-procedural register allocation case. For a variable 
whose range of appearance spans many procedure calls, 
the use of a callee-saved register is advantageous, 
because saving and restoring once at the procedure 
entry and exit respectively are cheaper than saving and 
restoring around each call. If the variable’s live range 
does not span any procedure call, which applies to all 
variables when the current procedure is a leaf in the call 
graph, then a caller-saved register is advantageous 
because its usage incurs no saving and restoring. Our 
register allocator computes different priorities with 
respect to the register classes and assigns each program 
variable to the best register class. Thus, our register 
allocator strives to reduce register saves and restores 
even when not making use of inter-procedural informa- 
tion. 

When inter-procedural register usage information is 
taken into account, the register allocator tries to avoid 
re-use of the registers that it knows are being used 
inside other procedures. At points of call, the register 
usage information of the callee applies only to caller- 
saved registers, because if a callee-saved register is used 
by the callee, the save and restore of it has already been 
generated at the entry and exit respectively of the callee 
and cannot be optimized ,away. Based on the register 
usage information in the callee, the allocator can select 
a caller-saved register across the call without incurring 
the cost of save/restore both at the point of call and at 
the entry and exit of the current procedure. Thus, to 
derive maximum benefits when the procedures are allo- 
cated in depth-first order according to the call graph, it 
is advantageous to use all the registers in the caller- 
saved mode.$ 

Thus, when inter-procedural register allocation is 
invoked, our set of callee-saved registers are made to 
operate in the caller-saved mode. The register usage 
information of each procedure consists simply of a flag 
for each register marking it as used or unused. This 
register usage information includes the whole call tree 
rooted at that procedure, and at the end of processing 
each procedure, it is necessary to merge the register 
usage in the current procedure with those of all its cal- 
lees. Thus, at each call, only one set of information 
needs to be looked at. 

When we perform register allocation under the inter- 
procedural mode, we compute priorities not just for 

$ By similar reasoning, if the procedures were processed top- 
down in the call graph, it would have been advantageous to use 
all registers in the callee-saved mode. 
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each variable, but for each variable-register combina- 
tion. This is because the cost incurred by the use of 
each register is now different depending on their usage 
by callees at points of calls that lie within the live range 
of the variable. Apart from computing and selecting 
from more priorities, the basic priority-based coloring 
algorithm is unchanged. This does not add noticeably 
to the running time of the coloring algorithm, since 
most of the time is already spent in creation and mani- 
pulation of the live ranges and interference graph. Our 
implementation of the register allocator can actually 
switch between intra- and inter-procedural allocation 
according to a compilation flag. 

Because we perform coloring within each procedure, a 
register used by a child procedure can actually be re- 
used without save/restore if the range of usage does not 
span the call to the child. For example, in Fig. 1, even 
though functions p and q can be active at the same 
time, the same register can be assigned to variables a, 
b and c without save/restore. With equal priorities, the 
allocator will prefer a register that has already been 
used in the current call tree. The effect is to minimize 
the number of registers used in each call tree. 

PO { 
90 t 

90; 

Fig. 1. Re-use of register in simultaneouly active procedures 

At the upper regions of the call graph, the register aUo- 
cator will be forced to use registers that require 
saving/restoring across calls, since the limited number 
of registers will eventually be exhausted. The resulting 
performance of the inter-procedural register allocator 
for the procedures high up in the caU graph will then be 
little ditferent from that obtained from intra-procedural 
aUocation. However, there are ways to alleviate this 
problem, and we’ll discuss them in the upcoming sec- 
tions. 

3. Incomplete Procedure Information 

Our inter-procedural register allocation relies on 
knowledge about the register usage patterns in the 
called procedures at caU sites. However, incomplete 
register usage information for called procedures can 
arise under three different situations. Under separate 
compilation, the bodies of the called procedures are 

not visible to the allocator. With indirect caUs, the com- 
piler cannot identify the possible call candidates without 
lengthy program flow analysis, and even if that is done, 
the allocator has to take the union of the registers used 
by aU the candidates. Lastly, recursion creates cycles in 
the call graph so that, no matter what ordering is used, 
it is impossible to process a procedure in a recursive 
caU chain after all its callees have been processed. 

The above three situations can be generalized as fol- 
lows: we cannot use the inter-procedural register ailoca- 
tion scheme for a procedure if any of its callers has 
been processed* or is unknown. The former occurs 
when the caU graph contains cycles or the procedures 
are not processed in depth-first ordering. The latter 
occurs if the procedure is external to the current 
module or its text address is ever assigned to a pro- 
cedure pointer so that it can be called indirectlv. We 
caU a procedure to which either of these conditions 
applies an open procedure. Procedures that are not 
open are called closed procedures. An open procedure 
cannot propagate its register usage information to aU its 
callers, since when its callers are processed, such infor- 
mation is either not yet determined or is unobtainable. 
For open procedures, we switch back to the default 
intra-procedural allocation linkage rules where the 
caUee-saved registers reclaim their original identities as 
caUee-saved registers. 

When we process an open procedure, some of its cal- 
lees may be closed procedures. In such a case, the 
register usage information in the children is still useful 
to the parent. The difference is that when a callee- 
saved register is used by the parent or any of its chil- 
dren, the parent must save it on entry and restore it on 
exit. Our inter-procedural allocation scheme can alter- 
natively be looked upon as providing a mechanism to 
propagate the saves/restores of callee-saved registers to 
the upper regions of the caU graph. In the ideal case, 
when aU procedures are closed except the main pro- 
gram at the root of the call graph,+ and there are 
enough registers provided by the machine, the saving 
and restoring of the caUee-saved registers can be pro- 
pagated all the way to the entry and exit respectively of 
the main program. There, they are saved and restored 
only once in the entire duration of the program’s execu- 
tion. This propagation of the saves/restores of callee- 
saved registers is interrupted by the occurrences of 
open procedures in the caU graph. 

When a register is saved by an open procedure, that 
register can be marked un-used in the register usage 
information the procedure provides to its callers, 
because its content is undisturbed by the procedure. 
For open procedures, the register allocator can assume 

l This includes the case of a self-recursive procedure, when 
one of the caller, itself, is being processed. 
$ The main program is always open since it is called externally 
by the operating system when the program is invoked. 
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at once that all callee-saved registers are unused but all 
caller-saved registers are used, which is the default link- 
age protocol. As a result, open procedures do not have 
to specify their register usage information. 

Thus, the performance of our inter-procedural alloca- 
tor is not compromised by incomplete procedure infor- 
mation. In any given call graph, inter-procedural and 
intra-procedural register allocation can co-exist. 
Though saving and restoring a register at entry and exit 
poses additional run-time costs, this allows the parents’ 
free usage of the register. At the upper regions of the 
call graph, our inter-procedural register allocation can 
still perform well compared to intra-procedural register 
allocation, when some registers have been saved in the 
lower part of the graph to allow for their free usage 
inter-procedurally in the upper part of the graph. This 
effect can be further enhanced by optimizing the posi- 
tioning of the save/restore code, which we’ll discuss in 
Section 5. 

4. Parameter Passing 

A natural way to optimize parameter passing arises out 
of our inter-procedural register allocation. Incoming 
parameters to a procedure are local variables whose 
values are pre-set at the procedure’s entry point. For a 
closed procedure, the parameter variable is allowed to 
be assigned to an arbitrary register, and the register 
usage information of the procedure additionally 
describes which parameter is being passed in which 
register. At the points of call, the callers will pass the 
outgoing parameters in the designated register. Under 
inter-procedural register allocation, any register can 
serve as a parameter register. For open procedures, the 
default linkage convention is re-instituted where the 
first four parameters are passed in the four parameter 
registers. 

At points of call, the coloring algorithm assigns higher 
priority to a variable/register pair if the variable is an 
outgoing parameter that has to be passed in that regis- 
ter. This pre-assignment of the parameter register to 
the outgoing parameter variable applies not only to the 
point of call, but also to the entire live range of the 
variable. Thus, from caller to callee, the parameter can 
be left undisturbed in the parameter register. 

5. Shrink-wrapping Callee-saved Registers 

A typical procedure consists of many different execu- 
tion paths, not all of which may be exercised for each 
invocation. The ordinary convention for callee-saved 
registers requires that the saving and restoring are done 
at the entry and exit of the procedure respectively. This 
introduces some redundancy, because the saved regis- 
ters may not be used for the execution path of that 
invocation. This problem does not occur for caller- 
saved registers, because the caller saves them only when 

they are used in both the called procedures and the 
region spanning the call. As we saw in Section 3, one 
way of removing this redundancy is by propagating the 
saves and restores of callee-saved registers to the upper 
regions of the call graph. This propagation is hindered 
by open procedures, in which case the saves and 
restores have to be placed in the bodies of the open 
procedures. 

It is possible to optimize the placement of the 
saves/restores for callee-saved registers so that they 
occur only over regions where the registers are used, 
rather than at the entry and exit of the procedure. The 
effect is to shrink wrap the saves/restores around their 
regions of activity. This serves to suppress the redun- 
dant execution of the code when the flow of control 
does not cover the regions where the registers are used. 
This optimization is based on flow analysis of the save 
and restore code of each callee-saved register with 
respect to the control flow graph of the procedure [13]. 
Since the number of callee-saved registers is fixed and 
usually not large, the data flow information for the 
registers can be compactly encoded in bit vector form 
using a word of storage, so that the data flow analysis 
can be efficiently performed. 

The first step is to initialize a local attribute that tells 
whether each register is used in each basic block of the 
procedure. We call this attribute APP. The next step 
involves determining the anticipability and availability of 
the uses, which we call ANT and AV respectively. The 
use of a register is ancicipnred at a given point if a use 
of the register will be encountered in all possible execu- 
tion paths leading from that point. The use of a regis- 
ter is available at a given point if a use of the register 
has been encountered in all possible execution paths 
that lead to that point. We use the names ANTM and 
AVIN when referring to these attributes at the entries of 
basic blocks, and the names ANTOUT and AVOUT 
when referring to these attributes at the exits of basic 
blocks. These data flow attributes can be determined by 
solving the following boolean equations by iterative data 
flow analysis. The subscript i identifies the attribute as 
being for the ith basic block. 

false 

I 

if i is an exi? 
ANTOUTi = 

n ANTINj otherwise (3.1) 
‘c succ(i) 

ANTINi = APPi + ANTOUTi (3.2) 

AVOUTi - APPi + AWNi 

We want to insert a register save 
where the use is anticipated. If 

(3.4) 

only at a basic block 
inserted at any other 

place, partial redundancy is introduced [14]. Similarly, 

AWNi = 
ifi isanexit 
otherwise (3.3) 
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we want to insert the restore only at a basic block 
where the use is available to avoid partial redundancy in 

range extension applies to each register, but by operat- 

the restore. The next task is to determine the best 
ing on the bit vectors we can process all the registers at 
once. The iteration terminates when the APP vector is 

places to insert the save and the best places to insert not changed at any node in the flow graph. In practice, 
the restore. These two problems are symmetrical with this extension of the usage ranges of the registers 
respect to the flow graph, so that one can be solved 
using the same technique as the other. 

requires from one to two iterations depending on the 
program, and is thus inexpensive. 

We first consider the solution for the best place to 
insert the save. We adhere to the rule of always insert- 
ing register save code at basic block entries, which will 
not limit the effects of our optimization in any way. 
The insertions should be at the earliest points in the 
program leading to one or more contiguous regions 
where the register is used. This implies that, at the 
points of insertion, the ANTIN attniutes at the preced- 
ing basic blocks (the immediate predecessor nodes in 
the control flow graph) must be false for the register 
concerned. In addition, there must not be any earlier 
save inserted, because if saved twice, the second save 
will destroy the original content. This means the AV 
attribute must also be false.? using the attribute SAVE 
to describe the insertion of register save code at each 
basic block, we can compute SAVE as follows: 

SAVE, = ANTIN, x (YAVIN,) x n (*Nmi) 
icpd(i) (3.5) 

The above computation of SAVE can produce incorrect 
results in some situations. In Fig. 2(a), variable x 
appears in both basic blocks 3 and 5, so that a register 
is used to contain it. The above solution will cause 
register saves to be inserted at the entries of both basic 
blocks 3 and 5, but this leads to the register being saved 
twice when the execution path goes through nodes 3 
and 5. The only possrble way to correct the insertion is 
to create a new node in the control flow graph (node 6 
in Fig. 2(b)) and insert the save there instead of node 5. 
However, the creation of such new basic blocks 
requires the introduction of extra branches into the pro- 
gram code, which lengthens the execution time. This 
offsets the advantage gained by removing the partial 
redundancy in the save code. Thus, under such situa- 
tions, we choose not to introduce new nodes in the 
control flow graph. Instead, we extend the range of 
usage of the register by propagating the APP attribute 
(and thus the ANTM attribute also) to the basic blocks 
that cause the above incorrect insertion. The same 
applies to the corresponding situation when computing 
positions to insert restores. Each time we get a new set 
of values for APP, the global attributes ANTIN, 
ANTOUT, AVIN, and AVOUT are re-computed and we 
again check for range extension. This process is 
repeated until the range can no longer be extended. The 

t If AV is true, the register has been saved but not yet re- 
stored; if false, the register has either not been saved. or has 
been both saved and restored. This is according to the 
definition of RESTORE. Thus, the definitions of SAVE and 
RESTORE are mutually dependent. 

By virtue of the symmetry between register save and 
restore with respect to the flow graph, the attribute to 
describe the insertion of register restore code, 
RESTORE, is computed as given by Eq. (3.6). We 
always insert register restores at the exits of basic 
blocks. 

RESTOREi = AVOUTi X (dNTOuTi) X n 
jtsucc(i) 

(74V07)34 

There is one more consideration in performing the 
above shrink-wrap optimization. If the shrink-wrapped 
region lies completely inside a loop, there will be seri- 
ous performance impact: instead of saving and restoring 
once per invocation of the procedure, this is now 
repeated for each iteration of the loop. To prevent this 
from occurring, whenever a register is used inside a 
loop, we propagate its APP attribute throughout the 
entire region of the loop. Thus, any shrink-wrap is not 
allowed to penetrate loop boundaries. 

(a) (b) f 

range of variable x 

Fig. 2. Dependence on form of control flow 

‘Ihere are other situations where the shrink-wrap 
optimization produces results whose effects are uncer- 
tain without dynamic execution profiles. Fig. 3 depicts 
a typical situation. Assuming equal probability for each 
branch target, the four possible execution paths will 
each occur 25% of the time. The optimization produces 
positive impact on run-time in one case, negative 
impact in another case and no net effect in the remain- 
ing two cases. 
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6. Combinlng the Techniques 

As we saw in Section 3, our inter-procedural register 
allocation algorithm propagates the saves/restores of 
callee-saved registers up the call graph. On the other 
hand, saving and restoring a register in the current pro- 
cedure have the effect of shifting the cost of the register 
usage from the ancestors to the current procedure. If 
the allocator does not run out of registers in the upper 
portion of the call graph, then propagating the 
saves/restores up the call graph is beneficial. If it does 
run out of registers, however, either strategy can yield 
better result depending on the actual situations. In the 
example of Fig. 4, both procedures p and r use register 
1. Register 1 may be saved and restored around the call 
to q in procedure p, or it may be saved at the entry of 
t and restored at the exit of r. If the call to q is exe- 
cuted less frequently than the calI to r, then the former 
is advantageous. But if the call to r is less frequent than 
the call to q , the latter is preferred. 

save 

restore 

..::::;:j:::: 

. . . . . . . . . . ..l 

. . . . . . . . . . . . . . 

.//. ./.. . . 

.:.:.:.:.,: ,.,. range of register usage . . .._.... . . .,:_:.:.i:i 

Fig. 3. Effects of shrink-wrap optimization 

Since we process the program in one pass, we cannot 
anticipate whether we’ll run out of registers later when 
we process the upper part of the call graph. However, 
a good strategy follows naturally from the preceding 
shrink-wrap optimization for callee-saved registers. 
When we process a closed procedure in inter- 
procedural allocation mode, we choose to propagate 
the save and restore of a callee-saved register up to the 
parent procedures only when the save has to be inserted 
at the procedure entry, which is when the usage range 

of the register spans the entire procedure.* If the range 
of usage does not include the entire procedure, then the 
saving and restoring of that register in the ancestors wilI 
be redundant when the actual execution does not take 
the path that passes through that range. 

Adopting the above strategy in our inter-procedural 
register allocation can enhance its performance, espe- 
cially in the upper part of the call graph. Because more 
callee-saved registers are saved in the lower regions of 
the call graph, more free registers are made available at 
the upper regions. Our whole inter-procedural register 
allocation strategy is built upon the interaction between 
the different techniques we have described. 

PO{: 

: f 
so; r1 

i + 1 

H sot: 
r-l 

ro ; I 

Fig. 4. Inserting saves and restores in call graph 

7. CompUntion Setting 

A previous paper [15] has described a practical compila- 
tion environment that provides for the efficient and 
effective invocation of our inter-procedural register allo- 
cation for ordinary programs. The MIPS Compiler Sys- 
tem uses the common back-end strategy to support 
compilation and optimizaton for a suite of programming 
languages [16]. The intermediate language is Ucode, 
and the register allocator is the last phase of the global 
optimizer on Ucode called Uopt. 

3 For our save/restore placement optimization algorithm to be 
correct, inserting the save at the entry must imply that a 
carresponding restore is inserted at all exits of the procedure. 
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All comparisons are with respect to -02 compilation with shrink-wrap disabled. 

Key: A - compiled -02 with shrink-wrap enabled 
B - compiled -03 with shrink-wrap disabled 

C - compiled -03 with shrink-wrap enabled 

Table 1. Effects of applying techniques on 13 different programst 

As discussed earlier, the inter-procedural allocation 
does not require complete program information to 
operate. But for more optimal results, our compiler sys- 
tem allows the Ucode from separate program units and 
from libraries to be linked together. A different phase 
re-arranges the linked procedures into the depth-first 
ordering before presenting them to Uopt. The approach 
provides maximum utilization of the allocator’s capabil- 
ity with little impact to the user interface. 

8. Measurements 

We now study the effect of applying our techniques to 
programs compiled and run on the MIPS R2000 proces- 
sor*. The R2000 is a RISC processor with a load/store 
architecture in which most instructions execute in a sin- 
gle clock cycle [17]. There are 20 general purpose regis- 
ters available for use by the register allocator, of which 
11 are caller-saved and 9 are callee-saved. The 
floating-point coprocessor has 4 caller-saved and 6 
callee-saved floating-point registers. In addition, the 
function return registers and linkage registers are also 
used but they cannot be allocated inter-procedurally. 
All these registers are allocated within each procedure 
using priority-based coloring. 

Global optimization and register allocation are 

ordinarily invoked with the -02 compilation flag. If 
invoked under the -03 Rag, register allocation is per- 
formed using inter-procedural information according to 
the techniques we have described. However, the 
shrink-wrap optimization is independent of inter- 
procedural information, and thus is performed under 
both -02 and -03. We’ll use -02 with shrink-wrap 
disabled as the base-line for all our performance com- 
parisons. 

Executable programs typically comprise libraries pro- 
vided by the programming languages that are linked 
with the user code. Thus, the lower regions of program 
call graphs can be library code. The increased size of 
the linked Wcode increases compilation and optimiza- 
tion time in the back-ends. Since our scheme is not 
seriously affected by incomplete call graphs, the current 
setup of -03 compilation excludes linking with any 
external or library objects. 

Our run-time data are generated using the MIPS 
instruction tracing facility pixie. This tool gives a full 
picture of the machine cycles and intruction mix needed 
to execute the programs, allowing us to measure pro- 
gram performance independent of other hardware 
parameters like cache and processor clock frequency. 
Any cycle savings realized are exclusive of cache misses 
and memory management unit overhead, and thus 

t All measurements were generated using Release 1.30 of the MIPS Compiler Suite. 

+ R2000 is a registered trademark of MIPS Computer Systems, 
Inc. 
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usually understate the improvements in real time. 

In addition to executed cycles, we provide data on the 
total scalar loads and stores executed. These are loads 
and stores attributed to scalar variables, common 
subexpressions and register saves and restores, which 
are removable by the register allocator given an unlim- 
ited number of registers. By relating the change in 
dynamic scalar loads/stores to the change in executed 
cycles, we can get a rough estimate of the performance 
improvement that can be brought about by perfect 
register allocation in individual programs. Due to the 
different natures of programs, the same percentage of 
reduction in scalar loads/stores can lead to widely 
different speed-ups in different programs. 

When looking at data on inter-procedural optimization 
effects, it is important to take the call frequencies of 
the programs into account, since opportunities for 
improvement arise only at procedure calls. For the 
same reason, the benchmark programs we use are 
mostly call-intensive. Given that the number of registers 
provided by target machines are always fixed and lim- 
ited, program size can seriously affect the performance 
of inter-procedural register allocation. As a result, the 
sizes of our benchmark programs range from small to 
very large. Details about our benchmarks are given in 
the Appendix. In Table 1, the benchmarks are 
arranged in the order of increasing source line counts, 
which do not include those from linked-in libraries. 
The code belonging to libraries were compiled without 
inter-procedural allocation. 

Since changes in the number of memory references can 
unpredictably affect the subsequent pipeline reorganiza- 
tion phase, a small reduction in the number of loads 
and stores may not positively affect the speed of the 
program. Such noise in the compilation process results 
in inconsistencies in the data for cycles and loads and 
stores in Table 1, as exemplified by the B columns for 
uopt. 

The performance numbers shown in Table 1 are all nor- 
malized with respect to the performances under intra- 
procedural global register allocation. Columns IA and 
IL4 give the isolated effect of shrink-wrap optimization 
before applying inter-procedural allocation. Column 
IIA shows that this optimization always reduces 
memory accesses. However, the effect on the execution 
time is barely noticeable, with the exception of trim. 

Columns IB and IIB give the improvements brought 
about by our inter-procedural register allocation scheme 
but without shrink-wrap optimization. Since our base- 
line comparison is that of intra-procedural global regis- 
ter allocation, the high base does not make our data 
look good, because intra-procedural allocation has 
already removed a majority of the loads and stores attri- 
buted to scalar variables and common subexpressions. 
In general, the improvement is more pronounced for 
the smaller benchmarks. In the case of ccom, one of 
the larger programs, it actually runs slower due to 

inter-procedural allocation. 

Columns IC and IIC show the effects of adding shrink- 
wrap optimization to our inter-procedural allocation 
scheme. There are good improvements over B in nim, 
Stanford, tex and ccom, but slight decreases in perfor- 
mance in the case of awk, as1 and upas. On the whole, 
the extents of the improvements obtainable seem to jus- 
tify the inclusion of shrink-wrap optimization under 
inter-procedural allocation. 

We account for the less than promising results we 
obtained as follows. First, under intra-procedural allo- 
cation, our register allocator already has the choice to 
use either caller-saved or callee-saved registers. This 
provides one extra degree of freedom to the allocator, 
allowing it to minimize save/restore overhead even in 
the absence of inter-procedural information, as 
descnied in Section 2. Thus, we started out with a 
competent base from which to improve upon. 
Secondly, for large benchmarks, 20 registers (excluding 
floating-point) are clearly inadequate to cover the large 
call graphs, so that the improvement in execution time 
is smaller. The relevant parameter is the height of the 
call graph rather than the width. Thus, the nature of. 
the program dictates how its size affects the perfor- 
mance of our allocator. Inter-procedural register alloca- 
tion requires a large number of registers in order to 
have noticeable impact on practical programs. Finally, 
we lack information on the execution frequencies at 
different levels of the call graph. Knowledge of such 
profile data can enable the register allocator to distri- 
bute saves/restores more optimally across the different 
levels of the call graph. The negative improvement in 
ccom was caused by the propagation of saves/restores 
to the upper region of the call graph, which turns out to 
execute more frequently than the lower region. The 
feedback of profile data to the register allocator is a 
capability that we plan to add in the future. 

Our next set of measurements, given in Table 2, com- 
pare the differences between caller-saved and callee- 
saved registers in our inter-procedural allocation 
scheme. Since different parts of the MIPS execution 
environment have been hard-coded according to the 
native convention for the two classes of registers, it is 
impossible to change the usage convention of the regis- 
ters without drastic overhaul of the system code. How- 
ever, it is possible to limit the number of registers used 
by the register allocator so that all the used registers 
belong to one of the two classes. In Table 2, columns 
D, the register allocator is allowed to use only 7 caller- 
saved registers in performing inter-procedural alloca- 
tion, and in columns E, it is allowed to use only 7 
callee-saved registers. There is no restriction in the 
floating-point register set, which should not affect our 
study, since our benchmarks use predominantly integer 
data. We use the same base-line as Table 1 for our 
comparisons. Because of the smaller number of regis- 
ters, most of the programs run slower. But we are 
interested only in the relative performance between 
columns D and E. 
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According to the data in Table 2’s column II, using 
caller-saved registers is better for four of the programs 
(nh, map, Stanford and ccom), while using callee- 
saved registers is better for the rest of the programs, 
except dhrystone, which shows no clear preference for 
either class of registers. The fundamental difference 
between the two register classes under our scheme of 
inter-procedural allocation is that, under conditions of 
running out of registers, callee-saved registers permit 
the migration of saves/restores up the call graph, allow- 
ing more freedom in the allocation process. Thus, 
callee-saved registers are more advantageous in large 
programs, where register shortage is severe. In the small 
benchmarks nim, map and Stanford, there are fewer 
cases of running out of registers, and since caller-saved 
registers can be used free of save and restore as long as 
there are free registers, they become more advanta- 
geous. Ccom is an exception among the larger bench- 
marks. The fact that it gets better performance with 
caller-saved registers than callee-saved registers bolsters 
our earlier inference that the upper region of its call 
graph executes more frequently than the iower region. 

All comparisons are with respect to -02 compilation usirrg full 
register set with shrink-wrap disabled. 
Key: D - same as in Table l’s C but using only 7 

caller-saved registers 
E- same as in Table l’s C but using only 7 

callee-saved registers 

Table 2. Effects of the 2 different register classes 

9. Conclusion 

A simple and elegant extension to the priority-based 
coloring algorithm has made it possible to obtain the 
benefits of inter-procedural register allocation. The 
approach depends on processing the procedures in 

depth-first ordering according to the program call 
graph, and uses two different save/restore conventions 
for the registers. The techniques do not rely on any spe- 
cial hardware feature, and can be applied to any proces- 
sor with a fixed register set. Our results show that pure 
software can effectively reduce register usage penalty at 
procedure calls. With the techniques, programs stand 
more ready to make good use of a larger number of 
registers. 
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