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Newman’s typability algorithm Newman [1943] for Quine’s Type Theory
(Quine [1937]) and an implicit version of Church’s Theory of Simple Types
(Church [1940])—a Curry-style formulation without explicit types (Curry [1934])—
was recently rediscovered by Hindley [2008].

The algorithm is a fascinating precursor to constraint-based type inference
and program analysis techniques, which have been developed in the late 80s and
onwards for both theoretical and practical purposes. Using terminology from
constraint-based type inference Newman’s algorithm can be described as follows
when applied to simple typing:'

1. Ensure that all bound and free variables in the subject term M are named
apart. Let each subterm X of M be associated with a unique type variable
ax. In Newman’s description ax is identified by the subterm X itself.

2. Generate constraints for each subterm Z of M:

(a) For Z = XY Newman generates the constraints X ~v; Z and X v, Y,
which corresponds to the (type-)equational constraint ax = ay —
ayg.

(b) For Z = Az.U generate Z v, U and Z 7, x, corresponding to az =
Qp — Op.

It can be observed that whenever there exists X v; Y in Newman’s con-
straints then they also contain X 7, Z for some Z, and this is preserved
throughout the subsequent constraint simplification process. A —decidedly
revisionist—interpretation of this observation is that the type constraint
notation subsequently adopted in constraint-based type inference syntac-
tically incorporates this duality by combining them into a single construct:
Define ax = ay - az if X 71 Z and X 72 Y in Newman’s formulation.

3. Simplify the set of constraints as follows:

1This description reflects my own understanding based on Hindley’s presentation (Hindley
[2008)).



(a) (Unification closure) If the constraints contain distinct X +; V' and
X v, Z, substitute Z for V in the constraints. If they contain distinct
X 72 U and X 75 Y, substitute Y for U. Because of the above invari-
ant, these two rules can be combined into a single type-equational
rule: If there are distinct constraints ay = ay — az and axy =
ay — ay substitute ay for ay and ayz for ay .

(b) (Congruence closure) If the constraints contain
XY, X' 1Y, Xy ZX vZ

for distinct X, X’ then substitute X for X’ in the constraints. The
corresponding type-equational rule is: If ax = ay — az and ax/ =
ay — ayz occur in the constraints, substitute ax by ax.

(¢) (Cycle test) If Newman’s constraints, interpreted as a directed graph,
contain a cycle, terminate with failure. (With only one type construc-
tor, —, which Newman’s algorithm is implicitly formulated for, this is
the only possible cause of failure. With additional type constructors
a constructor clash failure rule needs to be added.) If no closure rule
applies and the constraints contain no cycle, terminate with success.

The discovery of Newman’s algorithm in the literaure is due to Hindley
(Hindley [2008]). Hindley’s presentation is short, transparent and insightful: It
quickly lets the reader understand that Newman’s is a constraint-based tech-
nique where type-equational constraints of the form o = g — v are coded
by a 71 v and « 72 B, but otherwise processed as in unification closure, with
additional congruence closure steps.

There is a substantial amount of work on constraint-based type inference
and program analysis, which has been published starting in the late 80s and
early 90s. After Wand’s exposition of simple type inference (Wand [1987]),
Henglein showed how to reduce let-polymorphism and polymorphic recursion to
semi-unification, which are systems of equational and instantiation constraints
(Leifl [1987], Henglein [1988], Kapur et al. [1988], Henglein [1989], Kfoury et al.
[1990a;b], Kapur et al. [1991], Henglein [1993]). Existence of principal types
and their computation by most general semi-unifiers with detailed proofs can
be found in Henglein [1989]. A simple special case of this is simple type infer-
ence: Constraint simplification degenerates to unification closure (as above) and
most general semi-unifiers to most general unifiers, which yield principal types
for the original type inference problem (for simple typing the even stronger prop-
erty of principal type derivations). An interesting consequence of that work is
that the congruence closure steps in Newman’s algorithm are unnecessary: The
rules can be staged by first applying unification closure only, and checking for
cycles at the very end. At any given point congruence closure steps may be
interspersed. They do not affect the final result, but may be useful for com-
pressing the constraint graph. Constraint-rewriting formulations of unification
and their algebraic have been known since the 80s (Eder [1985], Martelli and
Montanari [1982]).



Rank-1 bounded System F is known to be a cosmetic extension of let-
polymorphism since typability in either case can be characterized by Tofte’s
“algorithmic” type inference rules where generalization only takes place at let-
occurrences, and instantation only at variable occurrences (Tofte [1990]). (More
interesting is rank-2-bounded System F (Kfoury and Tiuryn [1992], Henglein
and Mairson [1994], Kfoury and Wells [1994]), even though it also can be re-
duced to let-polymorphism.) Adding explicitly typed constants is trivial if only
type schemes (let-polymorphic types) or System F types of maximum rank 1
are used. A much harder problem is the case of typability with free variables of
unknown type (Schubert [1998]).
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