
Using SPIN

Gerard J. Holzmann
gerard@plan9.att.com

ABSTRACT

SPIN can be used for proving or disproving properties of concurrent systems. To
render the proofs, a concurrent system is first modeled in a formal specification language
called PROMELA2. The language allows one to specify the behaviors of asynchronously
executing concurrent processes that may interact through synchronous or asynchronous
message passing, or through direct access to shared variables.

System models specified in this way can be verified for both safety and liveness proper-
ties, including all properties that can be specified in linear time temporal logic.

The first part of this manual (sections 1.1 to 1.3) discusses the basic features of the speci-
fication language PROMELA2. The second part (sections 2.1 to 2.5) describes the usage
of the verifier SPIN.

1. The Language PROMELA2

PROMELA is short for Protocol Meta Language [Ho91]. PROMELA2 is an extended version of this language,
accepted by the current version of the verifier SPIN. PROMELA2 is a modeling language, not a program-
ming language. A formal model differs in two essential ways from an implementation. First, a model is
meant to be an abstraction of a design that contains only those aspects of the design that are directly rele-
vant to the properties one is interested in proving. Second, a formal model must contain things that are typ-
ically not part of an implementation, such as worst-case assumptions about the behavior of the environment
that may interact with the system being studied, and a formal statement of relevant correctness properties.

A verification is often performed in a series of steps, with the construction of increasingly detailed models.
Each model can be verified under different types of assumptions about the environment, and for different
types of correctness properties. If a property is not valid for the given assumptions about system behavior,
the verifier can produce a counter-example that demonstrates how the property may be violated. If a prop-
erty is valid, it may be possible to simplify the model based on that fact, and prove still other properties.

Section 1.1 covers the basic building blocks of the language. Section 1.2 introduces the control flow struc-
tures. Section 1.3 explains how correctness properties are specified. Section 1.4 concludes the first part
with a discussion of special predefined variables and functions that can be used to express some correctness
properties.

1.1. Basics

A PROMELA2 model can contain three different types of objects:

• Processes (section 1.1.1),
• Variables (section 1.1.2),
• Message channels (section 1.1.3).

All processes are global objects. For obvious reasons, a PROMELA2 model must contain at least one pro-
cess to be meaningful. Since SPIN is specifically meant to prove properties of concurrent systems, a model
typically contains more than one process.

Message channels and variables, the two basic types of data objects, can be declared with either a global
scope or a local scope. A data object with global scope can be referred to by all processes. A data object

- 2 -

with a local scope can be referred to by just a single process: the process that declares and instantiates the
object. As usual, all objects must be declared in the specification before they are referenced.

1.1.1. Processes

Here is a simple process that does nothing except print a line of text:

init {
printf("it works\n")

}

There are a few things to note. Init is a predefined keyword from the language. It can be used to declare
and instantiate a single initial process in the model. (It is comparable to the main procedure of a C pro-
gram.) The init process does not take arguments, but it can start up (instantiate) other processes that do.
Printf is one of a few builtin procedures in the language. It behaves the same as the C version. Note,
finally, that no semicolon follows the single printf statement in the above example. In PROMELA2,
semicolons are used as statement separators, not statement terminators. (The SPIN parser, howev er, is
lenient on this issue.)

Any process can start new processes by using another builtin procedure called run . For example,

proctype you_run(byte x)
{

printf("my x is: %d\n", x)
}

init {
run you_run(1);
run you_run(2)

}

The word proctype is again a keyword that introduces the declaration of a new type of process. In this
case, we have named that type you_run and declared that all instantiations of processes of this type will
take one argument: a data object of type byte , that can be referred to within this process by the name x .
Instances of a proctype can be created with the predefined procedure run , as shown in the example.
When the run statement completes, a copy of the process has been started, and all its arguments have been
initialized with the arguments provided. The process may, but need not, have performed any statement
executions at this point. It is now part of the concurrent system, and its execution can be interleaved arbi-
trarily with those of the other, already executing processes. (More about the semantics of execution follows
shortly.)

In many cases, we are only interested in creating a single instance of each process type that is declared, and
the processes require no arguments. We can define this by prefixing the keyword proctype from the pro-
cess declaration, with another keyword: active . Instances of all active proctypes are created when the
system itself is initialized. We could, for instance, have avoided the use of init by declaring the corre-
sponding process in the last example as follows:

active proctype main() {
run you_run(1);
run you_run(2)

}

Note that there are no parameters to instantiate in this case. Had they been declared, they would default to
a zero value, just like all other data objects that are not explicitly instantiated.

Multiple copies of a process type can also be created in this way. For example:

active [4] proctype try_me() {
printf("hi, i am process %d\n", _pid)

}

creates four processes. A predefined variable _pid is assigned to each running process, and holds its
unique process instantiation number. In some cases, this number is needed when a reference has to be

- 3 -

made to a specific process.

Summarizing: process behavior is declared in proctype definitions, and it is instantiated with either run
statements or with the prefix active . Within a proctype declaration, statements are separated (not termi-
nated) by semicolons. As we shall see in examples that follow, instead of the semicolon, one can also use
the alternative separator -> (arrow), wherever that may help to clarify the structure of a PROMELA2 model.

Semantics of Execution

In PROMELA2 there is no difference between a condition or expression, and a statement. Fundamental to
the semantics of the language is the notion of the executability of statements. Statements are either
executable or blocked. Executability is the basic means of enforcing synchronization between the pro-
cesses in a distributed system. A process can wait for an event to happen by waiting for a statement to
become executable. For instance, instead of writing a busy wait loop:

while (a != b) /* not valid Promela syntax */
skip; /* wait for a==b */

...

we achieve the same effect in PROMELA2 with the statement

(a == b);
...

Often we indicate that the continuation of an execution is conditional on the truth of some expression by
using the alternate statement separator here:

(a == b) −> ...

Assignments and printf statements are always executable in PROMELA2. A condition, however, can
only be executed (passed) when it holds. If the condition does not hold, execution blocks until it does.
There are similar rules for determining the executability of all other primitive and compound statements in
the language. The semantics of each statement are defined in terms of rules for executability and effect.
The rules for executability set a precondition on the state of the system in which a statement can be
executed. The effect defines how a statement will alter a system state when executed.

PROMELA2 assumes that all individual statements are executed atomically: that is, they model the smallest
meaningful entities of execution in the system being studied. This means that PROMELA2 defines the stan-
dard asynchronous interleaving model of execution, where a supposed scheduler is free at each point in the
execution to select any one of the processes to proceed by executing a single primitive statement. Synchro-
nization constraints can be used to influence the interleaving patterns. It is the purpose of a concurrent sys-
tems design to constrain those patterns in such a way that no correctness requirements can be violated, and
all service requirements are met. It is the purpose of the verifier either to find counter-examples to a
designer’s claim that this goal has been met, or to demonstrate that the claim is indeed valid.

1.1.2. Variables

The table summarizes the fiv e basic data types used in PROMELA2. Bit and bool are synonyms for a sin-
gle bit of information. The first three types can store only unsigned quantities. The last two can hold either
positive or neg ative values. The precise value ranges of variables of types short and int is implementa-
tion dependent, and corresponds to those of the same types in C programs that are compiled for the same
hardware. The values given in the table are most common.

Type Range
bit 0..1
bool 0..1
byte 0..255
short −215. . 215 − 1
int −231. . 231 − 1

The following example program declares scalar and array variables of each of the basic types.

- 4 -

bool a = 1;

proctype example(bit b; short c[3]) {
int d[2] = 3;

d[1] = c[b] + d[0];
printf("%d %d\n", d[0], d[1])

}

active proctype main() {
short e[3] = 12;

run example(1, e)
}

The general syntax for declaring and instantiating a variable of any of the fiv e basic types is, respectively
for scalar and array variables:

type name = expression;
type name[constant] = expression

In the latter case, all elements of the array are initialized to the value of the expression. A missing initial-
izer fields defaults to the value zero. As usual, multiple variables of the same type can be grouped behind a
single type name, as in:

byte a, b[3], c = 4

In this example, the variable c is initialized to the value 4; variable a and the elements of array b are all ini-
tialized to zero.

Variables can also be declared as structures. For example:

typedef Field {
short f = 3;
byte g

};

typedef Msg {
byte a[3];
int fld1;
Field fld2;
chan p[3];
bit b

};

Msg foo;

introduces two user-defined data types, the first named Field and the second named Msg. A single vari-
able named foo of type Msg is declared. All fields of foo that are not explicitly initialized (e.g., all fields
except foo.fld2.f) are initialized to zero. References to the elements of a structure are written as:

foo.a[2] = foo.fld2.f + 12

A variable of a user-defined type can be passed as a single argument to a new process in run statements.
For instance,

- 5 -

proctype me(Msg z) {
z.a[2] = 12

}
init {

Msg foo;
run me(foo)

}

Note that even though PROMELA2 supports only one-dimensional arrays, a two-dimensional array can be
created indirectly with user-defined structures, for instance as follows:

typedef Array {
byte el[4]

};

Array a[4];

This creates a data structure of 16 elements that can be referenced, for instance, as a[i].el[j] .

As in C, the indices of an array of Nelements range from 0 to N-1 .

Expressions

Expressions must be side-effect free in PROMELA2. Specifically, this means that an expression cannot con-
tain assignments, or send and receive operations.

c = c + 1; c = c - 1

and

c++; c--

are assignments in PROMELA2, with the same effects. But, unlike in C,

b = c++

is not a valid assignment, because the right-hand side operand is not a valid expression (it is not side-effect
free).

It is also possible to write a side-effect free conditional expression, with the following syntax:

(expr1 -> expr2 : expr3)

Braces around a conditional expression are required to avoid misinterpretation of the arrow. The example
expression has the value of expr2 when expr1 evaluates to a non-zero value, and the value of expr3
otherwise.

In assignments, such as

variable = expression

the values of all operands used inside the expression are first cast to signed integers before the operands are
applied. After the evaluation of the expression completes, the value produced is cast to the type of the tar-
get variable before the assignment takes place.

1.1.3. Message Channels

Message channels are used to model the transfer of data between processes. They are declared either
locally or globally, for instance as follows:

chan qname = [16] of { short, byte }

The keyword chan introduces a channel declaration. In this case, the channel is named qname, and it is
declared to be capable of storing up to 16 messages. Each message stored in the channel is declared here to
consist of two fields: one of type short and one of type byte . The fields of a message can be any one of
the basic types bit , bool , byte , short , int , and chan , or any user-defined type. Message fields can-
not be declared as arrays.

- 6 -

A message field of type chan , can be used to pass a channel identifier through a channel from one process
to another.

The statement

qname!expr1,expr2

sends the values of expressions expr1 and expr2 to the channel that we just created, that is: it appends
the message field created from the values of the two expressions (and cast to the appropriate types of the
message fields declared for qname) to the tail of the message buffer of 16 slots that belongs to channel
qname. By default the send statement is only executable if the target channel is non-full. (This default
semantics can be changed in the verifier into one where the send statement is always executable, but the
message will be lost when an attempt is made to append it to a full channel.)

The statement

qname?var1,var2

retrieves a message from the head of the same buffer, and stores the two expressions in variables var1 and
var2 .

The receive statement is executable only if the source channel is non-empty. (This semantics cannot be
changed in the verifier.)

If more parameters are sent per message than were declared for the message channel, the redundant param-
eters are lost. If fewer parameters are sent than declared, the value of the remaining parameters is unde-
fined. Similarly, if the receive operation tries to retrieve more parameters than available, the value of the
extra parameters is undefined; if it receives fewer than the number of parameters sent, the extra information
is lost.

An alternative, and equivalent, notation for the send and receive operations is to structure the message fields
with round braces, as follows:

qname!expr1(expr2,expr3)
qname?var1(var2,var3)

Optionally also, some or all of the arguments of the receive operation can be given as constants instead of
as variables:

qname?cons1,var2,cons2

In this case, an extra condition on the executability of the receive operation is that the value of all message
fields specified as constants match the value of the corresponding fields in the message that is to be
received.

Here is an example that uses some of the mechanisms introduced so far.

proctype A(chan q1)
{ chan q2;

q1?q2;
q2!123

}

proctype B(chan qforb)
{ int x;

qforb?x;
printf("x = %d\n", x)

}

- 7 -

init {
chan qname = [1] of { chan };
chan qforb = [1] of { int };
run A(qname);
run B(qforb);
qname!qforb

}

The value printed by the process of type B will be 123 .

A predefined function len(qname) returns the number of messages currently stored in channel qname.
Tw o shorthands for the most common uses of this function are: empty(qname) and full(qname) ,
with the obvious connotations.

Since all expressions must be side-effect free, it is not valid to say:

(qname?var == 0)

or

(a > b && qname!123)

We could rewrite the second case as (using an atomic sequence, as explained further in section 1.2.1):

atomic { (a > b && !full(qname)) -> qname!123 }

The meaning of first case is ambiguous. It could mean that we want the condition to be true if the receive
operation is unexecutable. In that case, we can rewrite it without side-effects as:

empty(qname))

It could also mean that we want it to mean that the condition is true when the channel does contain a mes-
sage, which has the value zero. We can specify that as follows:

atomic { qname?[0] -> qname?var }

The guard of this atomic sequence is an expression without side-effects, that evaluates to a non-zero value
only if the receive operation

qname?0

would have been executable if executed at that point (i.e., channel qname contains at least one message,
and the oldest message stored consists of one message field equal to zero). Any receive statement can be
turned into a side-effect free expression by placing square brackets around the list of all message parame-
ters. The channel contents remain undisturbed by the evaluation of such expressions.

Note carefully, howev er, that in non-atomic sequences of two statements such as

!full(qname) −> qname!msgtype

and

qname?[msgtype] −> qname?msgtype

the second statement is not necessarily executable after the first one has been executed. There may be race
conditions when access to the channels is shared between several processes. In the first case another pro-
cess can send a message to the channel just after this process determined that it was not full. In the second
case, the other process can steal away the message just after our process determined its presence.

Tw o other types of send and receive statements are used less frequently: sorted send, and random receive.
A sorted send operation is written with two, instead of one, exclamation marks, as follows:

qname!!msg

A sorted send operation will insert a message into the channel’s buffer in numerical order, instead of in
FIFO order. The channel contents is scanned from the first message towards the last, and the message is
inserted immediately before the first message that is found to succeed it in numerical order. To determine
the numerical order, all message fields are taken into account.

- 8 -

The logical counterpart of the sorted send operation is the random receive. It is written with two, instead of
one, question marks:

qname??msg

A random receive operation is executable if it is executable for any message that is currently buffered in a
message channel (instead of only for the first message in the channel). Normal send and receive operations
can freely be combined with sorted send and random receive operations.

Rendez-Vous Communication

So far we have talked about asynchronous communication between processes via message channels,
declared in statements such as

chan qname = [N] of { byte }

where N is a positive constant that defines the buffer size. A logical extension is to allow for the declaration

chan port = [0] of { byte }

to define a rendez-vous port that can pass single byte messages. The channel size is zero, that is, the chan-
nel port can pass, but cannot store messages. Message interactions via such rendez-vous ports are by def-
inition synchronous. Consider the following example.

#define msgtype 33

chan name = [0] of { byte, byte };

active proctype A()
{ name!msgtype(124);

name!msgtype(121)
}

active proctype B()
{ byte state;

name?msgtype(state)
}

Channel name is a global rendez-vous port. The two processes will synchronously execute their first state-
ment: a handshake on message msgtype and a transfer of the value 124 to local variable state . The
second statement in process A will be unexecutable, because there is no matching receive operation in pro-
cess B.

If the channel name is defined with a non-zero buffer capacity, the behavior is different. If the buffer size
is at least 2, the process of type A can complete its execution, before its peer even starts. If the buffer size is
1, the sequence of events is as follows. The process of type A can complete its first send action, but it
blocks on the second, because the channel is now filled to capacity. The process of type B can then retrieve
the first message and complete. At this point A becomes executable again and completes, leaving its last
message as a residual in the channel.

Rendez-vous communication is binary: only two processes, a sender and a receiver, can be synchronized in
a rendez-vous handshake.

As the example shows, symbolic constants can be defined with preprocessor macros #define . The
source text of a PROMELA2 model is translated by the standard C preprocessor. The disadvantage of defin-
ing symbolic names in this way is, however, that the PROMELA2 parser will only see the expanded text, and
cannot refer to the symbolic names themselves. To prevent that, PROMELA2 also supports another way to
define symbolic names, that are preserved in error reports. For instance, by including the declaration

mtype = { ack, msg, error, data };

at the top of a PROMELA2 model, the names provided between the curly braces are equivalent to integers of
type byte , but known by their symbolic names to the SPIN parser and the verifiers it generates. The con-
stant values assigned start at 1, and count up. There can be only one mtype declaration per model.

- 9 -

1.2. Control Flow

So far, we hav e seen only some of the basic statements of PROMELA2, and the way in which they can be
combined to model process behaviors. The five types of statements we have mentioned are: printf ,
assignment , condition , send , and receive .

The pseudo-statement skip statement is syntactically and semantically equivalent to the condition (1)
(i.e., to true), and is in fact quietly replaced with this expression by the lexical analyzer of SPIN.

There are also fiv e types of compound statements.

• Atomic sequences (section 1.2.1),
• Deterministic steps (section 1.2.2),
• Selections (section 1.2.3),
• Repetitions (section 1.2.4),
• Escape sequences (section 1.2.5).

1.2.1. Atomic Sequences

The simplest compound statement is the atomic sequence:

atomic { /* swap the values of a and b */
tmp = b;
b = a;
a = tmp

}

In the example, the values of two variables a and b are swapped in a sequence of statement executions that
is defined to be uninterruptable. That is: in the interleaving of process executions, no other process can
execute statements from the moment that the first statement of this sequence is executed, until the last one
has completed.

It is often useful to use atomic sequences to start op a series of processes in such a way that none of them
can start executing statements until all of them have been initialized:

init {
atomic {

run A(1,2);
run B(2,3);
run C(3,1)

}
}

Atomic sequences may be non-deterministic. If any statement inside an atomic sequence is found to be
unexecutable, however, the atomic chain is broken, and another process can take over control. When the
blocking statement becomes executable later, control can non-deterministically return to the process, and
the atomic execution of the sequence resumes as if it had not been interrupted.

1.2.2. Deterministic Steps

Another way to define an indivisible sequence of actions is to use the d_step statement. In the above
case, for instance, we could also have written:

d_step { /* swap the values of a and b */
tmp = b;
b = a;
a = tmp

}

The difference between a d_step sequence and an atomic sequence are:

• A d_step sequence must be completely deterministic. (If non-determinism is nonetheless encoun-
tered, it is always resolved in a fixed and deterministic way: i.e., the first true guard in selection or
repetition structures is always selected).

- 10 -

• No goto jumps into or out of a d_step sequence are permitted.

• The execution of a d_step sequence cannot be interrupted when a blocking statement is encoun-
tered. It is an error if any statement other than the first one in a d_step sequence is found to be
unexecutable.

• A d_step sequence is executed as one single statement. In a way, it is a mechanism for adding new
types of statements to the language.

None of the items listed above apply to atomic sequences. This means that the keyword d_step can
always be replaced with the keyword atomic , but the reverse is not true. (The main, perhaps the only,
reason for using d_step sequences is to improve the efficiency of verifications.)

1.2.3. Selection Structures

A more interesting construct is the selection structure. Using the relative values of two variables a and b to
choose between two options, for instance, we can write:

if
:: (a != b) −> option1
:: (a == b) −> option2
fi

The selection structure above contains two execution sequences, each preceded by a double colon. Only
one sequence from the list will be executed. A sequence can be selected only if its first statement is
executable. The first statement is therefore called a guard.

In the above example the guards are mutually exclusive, but they need not be. If more than one guard is
executable, one of the corresponding sequences is selected nondeterministically. If all guards are unex-
ecutable the process will block until at least one of them can be selected. There is no restriction on the type
of statements that can be used as a guard: it may include sends or receives, assignments, printf , skip ,
etc. The rules of executability determine in each case what the semantics of the complete selection struc-
ture will be. The following example, for instance, uses receive statements as guards in a selection.

mtype = { a, b };

chan ch = [1] of { byte };

active proctype A()
{ ch!a
}

active proctype B()
{ ch!b
}

active proctype C()
{ if

:: ch?a
:: ch?b
fi

}

The example defines three processes and one channel. The first option in the selection structure of the pro-
cess of type C is executable if the channel contains a message named a, where a is a symbolic constant
defined in the mtype declaration at the start of the program. The second option is executable if it contains
a message b, where, similarly, b is a symbolic constant. Which message will be available depends on the
unknown relative speeds of the processes.

A process of the following type will either increment or decrement the value of variable count once.

- 11 -

byte count;

active proctype counter()
{

if
:: count++
:: count--
fi

}

Assignments are always executable, so the choice made here is truly a non-deterministic one that is inde-
pendent of the initial value of the variable (zero in this case).

1.2.4. Repetition Structures

We can modify the above program as follows, to obtain a cyclic program that randomly changes the value
of the variable up or down, by replacing the selection structure with a repetition.

byte count;

active proctype counter()
{

do
:: count++
:: count--
:: (count == 0) −> break
od

}

Only one option can be selected for execution at a time. After the option completes, the execution of the
structure is now repeated. The normal way to terminate the repetition structure is with a break statement.
In the example, the loop can be broken only when the count reaches zero. Note, however, that it need not
terminate since the other two options remain executable. To force termination we could modify the pro-
gram as follows.

active proctype counter()
{

do
:: (count != 0) −>

if
:: count++
:: count--
fi

:: (count == 0) −> break
od

}

A special type of statement that is useful in selection and repetition structures is the else statement. An
else statement becomes executable only if no other statement within the same process, at the same con-
trol-flow point, is executable. We could try to use it in two places in the above example:

- 12 -

active proctype counter()
{

do
:: (count != 0) −>

if
:: count++
:: count--
:: else
fi

:: else −> break
od

}

The first else , inside the nested selection structure, can never become executable though, and is therefore
redundant (both alternative guards of the selection are assignments, which are always executable). The sec-
ond usage of the else , howev er, becomes executable exactly when !(count != 0) or (count ==
0) , and is therefore equivalent to the latter to break from the loop.

There is also an alternative way to exit the do-loop, without using a break statement: the infamous goto .
This is illustrated in the following implementation of Euclid’s algorithm for finding the greatest common
divisor of two non-zero, positive numbers:

proctype Euclid(int x, y)
{

do
:: (x > y) −> x = x − y
:: (x < y) −> y = y − x
:: (x == y) −> goto done
od;

done:
skip

}

init { run Euclid(36, 12) }

The goto in this example jumps to a label named done . Since a label can only appear before a statement,
we have added the dummy statement skip . Like a skip , a goto statement is always executable and has
no other effect than to change the control-flow point of of the process that executes it. As a final example,
consider the following implementation of a Dijkstra semaphore, that is implemented with the help of a syn-
chronous channel.

#define p 0
#define v 1

chan sema = [0] of { bit };

active proctype Dijkstra()
{ byte count = 1;

do
:: (count == 1) −>

sema!p; count = 0
:: (count == 0) −>

sema?v; count = 1
od

}

- 13 -

active [3] proctype user()
{ do

:: sema?p;
/* critical section */
sema!v;
/* non-critical section */

od
}

The semaphore guarantees that only one of the three user processes can enter its critical section at a time. It
does not necessarily prevent the monopolization of the access to the critical section by one of the processes.

PROMELA2 does not have a mechanism for defining functions or procedures. Where necessary, though,
these may be modeled with the help of additional processes. The return value of a function, for instance,
can be passed back to the calling process via global variables, or messages. The following program illus-
trates this by recursively calculating the factorial of a number n.

proctype fact(int n; chan p)
{ chan child = [1] of { int };

int result;

if
:: (n <= 1) −> p!1
:: (n >= 2) −>

run fact(n-1, child);
child?result;
p!n*result

fi
}

init
{ chan child = [1] of { int };

int result;

run fact(7, child);
child?result;
printf("result: %d\n", result)

}

Each process creates a private channel, and uses it to communicate with its direct descendant. Alas, there is
no such thing as a scanf statement in PROMELA2. The reason is that models must always be complete to
allow for logical verifications. A scanf would presuppose a source of information that is not part of the
model.

We hav e already discussed a few special types of statement: skip , break , and else . Another statement
in this class is the timeout . The timeout is comparable to a system level else statement: it becomes
executable if and only if no other statement in any of the processes is executable. Timeout is a modeling
feature that provides for an escape from a potential deadlock state. The timeout takes no parameters,
because the types of properties we would like to prove for PROMELA2 models must be proven independent
of all absolute and relative timing considerations. In particular, the relative speeds of processes can never
be known with certainty in an asynchronous system.

1.2.5. Escape Sequences

The last type of compound structure to be discussed is the unless statement. It is used as follows:

{ B1; B2; B3 } unless { C1; C2 }

where the parts inside the curly braces can be arbitrary PROMELA2 fragments. Execution of the unless
statement begins with the execution of B1. Before each statement execution of B1;B2;B3 , the executabil-
ity of the (first statement of) fragment C1 is checked, using the normal PROMELA2 semantics of executabil-
ity. Execution of statements from B1;B2;B3 proceeds only while the guard statement of C1 remains

- 14 -

unexecutable. The first instant that this ‘guard of the escape sequence’ is found to be executable, control
changes to it, and execution continues as defined for C1;C2 . Individual statement executions remain indi-
visible, so control can only change from inside B1;B2;B3 to the start of C1 in between individual state-
ment executions. If the guard of the escape sequence does not become executable during the execution of
B1;B2;B3 , it is skipped when B3 terminates.

An example of the use of escape sequence is:

A;
do
:: b1 -> B1
:: b2 -> B2
...
od
unless { c -> C };
D

As shown in the example, the curly braces around the main sequence (or the escape sequence) can be
deleted if there can be no confusion about which statements belong to those sequences. In the example,
condition c acts as a watchdog on the repetition construct from the main sequence. Note that this is not
necessarily equivalent to the construct:

A;
do
:: b1 -> B1
:: b2 -> B2
...
:: c -> break
od;
C; D

if B1 or B2 are non-empty. In the first version of the example, execution of the iteration can be interrupted
at any point inside each option sequence. In the second version, execution can only be interrupted at the
start of the option sequences.

1.3. Correctness Properties

There are three ways to express correctness properties in PROMELA2, using:

• Assertions (section 1.3.1),
• Special labels (section 1.3.2),
• Never claims (section 1.3.3).

1.3.1. Assertions

Statements of the form

assert(expression)

are always executable. If the expression evaluates to a non-zero value (i.e., the corresponding condition
holds), the statement has no effect when executed. The correctness property expressed, though, is that it is
impossible for the expression to evaluate to zero (i.e., for the condition to be false). A failing assertion will
cause execution to be aborted.

1.3.2. Special Labels

Labels in a PROMELA2 specification ordinarily serve as targets for unconditional goto jumps, as usual.
There are, however, also three types of labels that have a special meaning to the verifier. We discuss them
in the next three subsections.

- 15 -

1.3.2.1. End-State Labels

When a PROMELA2 model is checked for reachable deadlock states by the verifier, it must be able to distin-
guish valid end states from a invalid ones. By default, the only valid end states are those in which every
PROMELA2 process that was instantiated has reached the end of its code. Not all PROMELA2 processes,
however are meant to reach the end of their code. Some may very well linger in a known wait state, or they
may sit patiently in a loop ready to spring into action when new input arrives.

To make it clear to the verifier that these alternate end states are also valid, we can define special end-state
labels. We can do so, for instance, in the process type Dijkstra , from an earlier example:

proctype Dijkstra()
{ byte count = 1;

end: do
:: (count == 1) −>

sema!p; count = 0
:: (count == 0) −>

sema?v; count = 1
od

}

The label end defines that it is not an error if, at the end of an execution sequence, a process of this type
has not reached its closing curly brace, but waits at the label. Of course, such a state could still be part of a
deadlock state, but if so, it is not caused by this particular process.

There may be more than one end-state label per PROMELA2 model. If so, all labels that occur within the
same process body must be unique. The rule is that every label name with the prefix end is taken to be an
end-state label.

1.3.2.2. Progress-State Labels

In the same spirit, PROMELA2 also allows for the definition of progress labels. Passing a progress label
during an execution is interpreted as a good thing: the process is not just idling while waiting for things to
happen elsewhere, but is making effective progress in its execution. The implicit correctness property
expressed here is that any infinite execution cycle allowed by the model that does not pass through at least
one of these progress labels, is a potential starvation loop. In the Dijkstra example, for instance, we can
label the successful passing of a semaphore test as progress and ask a verifier to make sure that there is no
cycle elsewhere in the system.

proctype Dijkstra()
{ byte count = 1;

end: do
:: (count == 1) ->

progress: sema!p; count = 0
:: (count == 0) ->

sema?v; count = 1
od

}

If more than one state carries a progress label, variations with a common prefix are again valid.

1.3.2.3. Accept-State Labels

The last type of label, the accept-state label, is used primarily in combination with never claims. Briefly,
by labeling a state with any label starting with the prefix accept we can ask the verifier to find all cycles
that do pass through at least one of those labels. In this case, it is considered a bad thing for this to happen.
The never claims provide a formalism for expressing such bad behaviors succinctly, and therefore the nat-
ural place for the accept-state labels to be used is there. We discuss never claims next.

- 16 -

1.3.3. Never Claims

Up to this point we have talked about the specification of correctness criteria with assertions and with three
special types of labels. Powerful types of correctness criteria can already be expressed with these tools, yet
so far our only option is to add them to individual proctype declarations. We can, for instance, express
the claim ‘‘every system state in which property P is true eventually leads to a system state in which prop-
erty Qis true,’’ with an extra monitor process, such as:

active proctype monitor()
{
progress:

do
:: P -> Q
od

}

If we require that property P must remain true while we are waiting Q to become true, we can try to change
this to:

active proctype monitor()
{
progress:

do
:: P -> assert(P || Q)
od

}

but this does not quite do the job. Note that we cannot make any assumptions about the relative execution
speeds of processes in a PROMELA2 model. This means that if in the remainder the system the property P
becomes true, we can move to the state just before the assert , and wait there for an unknown amount of
time (anything between a zero delay and an infinite delay is possible here, since no other synchronizations
apply). If Qbecomes true, we may pass the assertion, but we need not do so. Even if P becomes false only
after Qhas become true, we may still fail the assertion, as long as there exists some later state where neither
P nor Q is true. This is clearly unsatisfactory, and we need another mechanism to express these important
types of liveness properties.

The Connection with Temporal Logic

A general way to express system properties of the type we have just discussed is to use linear time temporal
logic (LTL) formulae. Every PROMELA2 expression is automatically also a valid LTL formula. An LTL
formula can also contain the unary temporal operators (pronounced: always), ◊ (pronounced: eventually),
and O (pronounced: next), and two binary temporal operators U (pronounced: weak until), and U (pro-
nounced: strong until).

Where the value of a PROMELA2 expression without temporal operators can be defined uniquely for indi-
vidual system states, without further context, the truth value of an LTL formula is defined for sequences of
states: specifically it is defined for the first state of a given infinite sequence of system states (a trace).
Given, for instance, the sequence of system states:

s0;s1;s2;...

The LTL formula pUq, with p and q standard PROMELA2 expressions, is true for s0 either if q is true in
s0 , or if p is true in s0 , and pUq holds for the remainder of the sequence after s0 . That is

pUq = q || (p && O (pUq))

where O refers to the ‘next state,’ i.e., the state that immediately follows the one for which the original for-
mula is being evaluated.

Informally, pUq says that p is required to hold at least until q becomes true. If, instead, we would write
pUq, then we also require that there exists at least one state in the sequence where q does indeed become
true.

- 17 -

The temporal operators and ◊ can be defined in terms of the strong until operator U, as follows.

p = ! ◊ !p = !(true U !p)

Informally, p says that property p must hold in all states of a trace, and ◊ p says that p holds in at least
one state of the trace.

To express our original example requirement: ‘‘every system state in which property P is true eventually
leads to a system state in which property Qis true,’’ we can write the LTL formula:

(P => ◊ Q)

where the logical implication symbol => is defined in the usual way as

P => Q means !P || (P && Q)

Mapping LTL Formulae onto Never Claims

PROMELA2 does not include syntax for specifying LTL formula directly, but it relies on the fact that evert
such formula can be translated in a special type of automaton, known as a Bchi automaton. In the syntax of
PROMELA2 this automaton is called a never claim. The syntax of a never claim is:

never {
...

}

where the dots can contain any PROMELA2 fragment, including arbitrary repetition, selection, and unless
constructs, jumps etc.

There is an important difference in semantics between a proctype declaration and a never claim.
Every statement inside a never claim is interpreted as a proposition, i.e., a condition. A never claim
should therefore only contain expressions and never statements that can have side-effects (assignments,
sends or receives, run-statements, etc.)

Never claims are used to express behaviors that are considered undesirable or illegal. We say that a
never claim is ‘matched’ if the undesirable behavior can be realized, contrary to the claim, and thus the
correctness requirement violated. The claims are evaluated over system executions, that is, the propositions
that are listed in the claim are evaluated over the traces from the remainder of the system. The claim, there-
fore, should not alter that behavior: it merely monitors it. Every time that the system reaches a new state,
by asynchronously executing statements from the model, the claim will evaluate the appropriate proposi-
tions to determine if a counter-example can be constructed to the implicit LTL formula that is specified.

Since LTL formula are only defined for infinite executions, the behavior of a never claim can only be
matched by an infinite system execution. This by itself would restrict us to the use of progress labels and
accept label, as the only means we have discusses so far for expressing properties of infinite behaviors. To
conform to standard omega automata theory, the behaviors of never claims are expressed exclusively with
accept labels (i.e., never with progress labels). To match a claim, therefore, an infinite sequence of
true propositions must exist, at lest one of which is labeled with an accept label (inside the never claim).

Since PROMELA2 models can also express terminating system behaviors, we have to define the semantics
of the never claims also for those behaviors. To facilitate this, it is defined that a never claim can also
be matched when it reaches its closing curly brace (i.e., when it appears to terminate). This semantics is
based on, what is usually referred to as, a ‘stuttering semantics.’ With stuttering semantics, any terminating
execution can be extended into an equivalent infinite execution (for the purposes of evaluating LTL proper-
ties) by repeating (stuttering) the final state infinitely often. As a syntactical convenience, the final state of
a never claim is defined to be accepting, i.e., it could be replaced with the explicit repetition construct:

accept: do :: skip od

Every process behavior, similarly, is (for the purposes of evaluating the never claims) thought to be
extended with a dummy self-loop on all final states:

do :: skip od

- 18 -

(Note, the accept labels only occur in the never claim, not in the system.)

The Semantics of a Never Claim

Never claims are probably the hardest part of the language to understand, so it is worth spending a few
extra words on them. On an initial reading, feel free to skip the remainder of this section.

The difference between a never claim and the remainder of a PROMELA2 system can also be explained as
follows. A PROMELA2 model defines an asynchronous interleaving product of the behaviors of individual
processes. Given an arbitrary system state, its successor states are conceptually obtained in two steps. In a
first step, all the executable statements in the individual processes are identified. In a second step, each one
of these statements is executed, each one producing one potential successor for the current state. The com-
plete system behavior is thus defined recursively and represents all possible interleavings of the individual
process behaviors. It is this asynchronous product machine that we call the ‘global system behavior’.

The addition of a never claim defines a synchronous product of the global system behavior with the
behavior expressed in the claim. This synchronous product can be thought of as the construction of a new
global state machine, in which evert state is defined as a pair (s,n) with s a state from the global system
(the asynchronous product of processes), and n a state from the claim. Every transition in the new global
machine is similarly defined by a pair of transitions, with the first element a statement from the system, and
the second a proposition from the claim. In other words, every transition in this final synchronous product
is defined as a joint transition of the system and the claim. Of course, that transition can only occur if the
proposition from the second half of the transition pair evaluates to true in the current state of the system
(the first half of the state pair).

Examples

To translate an LTL formula to a never claim, we have to carefully consider whether the formula
expresses a positive or a neg ative property. A positive property expresses a good behavior that we would
like our system to have. A negative property expresses a bad behavior that we claim the system does not
have. A never claim can express only negative claims, not positive ones. Fortunately, the two are
exchangeable: if we want to express that a good behavior is unavoidable, we can formalize all ways in
which the good behavior could be violated, and express that in the never claim.

Suppose that the LTL formula p, with p a PROMELA2 expression, expresses a negative claim (i.e., it is
considered a correctness violation if there exists any execution sequence in which p can remain true
infinitely long). This can be written in a never claim as:

never { /* []p */
do
:: skip /* after an arbitrarily long prefix */
:: p -> break /* p becomes true */
od;

accept: do
:: p /* and remains true forever after */
od

}

Note that in this case the claim does not terminate, and also does not necessarily match all system behav-
iors. It is sufficient if it precisely captures all violations of our correctness requirement, and no more.

If the LTL formula expressed a positive property, we first have to inv ert it to the corresponding negative
property ! p and translate that into a never claim. The requirement now says that it is a violation if p
does not hold infinitely long.

- 19 -

never { /* ![]p = <>!p*/
do
:: skip
:: !p -> break
od

}

We hav e used the implicit match of a claim upon reaching the closing terminating brace. Since the first
violation of the property suffices to disprove it, we could also have written:

never { /* ![]p = <>!p*/
do
:: p
:: !p -> break
od

}

or, if we abandon the correspondence with LTL and Bchi automata for a moment, even more tersely as:

never { do :: assert(p) od }

Suppose we wish to express that it is a violation of our correctness requirements if there exists any execu-
tion in the system where (p => ◊ q) . The following never claim expresses precisely that property:

never {
do
:: skip
:: p && !q -> break
od;

accept:
do
:: !q
od

}

Note that using (!p || q) instead of skip , in the first repetition construct, would imply a check for just
the first occurrence of proposition p becoming true in the execution sequence, while q is false. The above
formalization checks for all occurrences, anywhere in a trace.

Finally, consider a formalization of the LTL property (p => (q U r)) . The corresponding claim is:

never {
do
:: skip /* to match any occurrence */
:: p && q && !r -> break
:: p && !q && !r -> goto error
od;
do
:: q && !r
:: !q && !r -> break
od;

error: skip
}

Note again the use of skip instead of (!p || r) to avoid matching just the first occurrence of (p &&
!r) in a trace.

1.4. Predefined Variables and Functions

The following predefined variables and functions can be especially useful in never claims.

The predefined variables are: _pid and _last .

_pid is a predefined local variable in each process that holds the unique instantiation number for that pro-
cess. It is always a non-negative number.

- 20 -

_last is a predefined global variable that always holds the instantiation number of the process that per-
formed the last step in the current execution sequence. Its value is not part of the system state unless it is
explicitly used in a specification.

never {
/* it is not possible for the process with pid=1

* to execute precisely every other step forever
*/

accept:
do
:: _last != 1 -> _last == 1
od

}

The initial value of _last is zero.

Three predefined functions are specifically intended to be used in never claims, and may not be used else-
where in a model: pc_value(pid) , enabled(pid) , procname[pid]@label .

The first gives the current local state (a non-negative number) of the process with instantiation number
pid , or zero if no such process exists.

Example:

never {
/* Enforce a symmetry reduction on the first 5 processes.

* Caution: a symmetry reduction does not necessarily
* preserve all liveness properties of a system.
*/

do
:: pc_value(1) <= pc_value(2)
&& pc_value(2) <= pc_value(3)
&& pc_value(3) <= pc_value(4)
&& pc_value(4) <= pc_value(5)
od

}

The function enabled(pid) tells whether the process with instantiation number pid has an executable
statement that it can execute next.

Example:

never {
/* it is not possible for the process with pid=1

* to remain enabled without ever executing
*/

accept:
do
:: _last != 1 && enabled(1)
od

}

The last function procname[pid]@label tells whether the process with instantiation number pid is
currently in the state labeled with label in proctype procname . It is an error if the process referred
to is not an instantiation of that proctype.

2. Verifications with SPIN

The easiest way to use SPIN is probably on an X-terminal with the Tcl/Tk implementation of XSPIN. All
functionality of SPIN, howev er, is accessible from any plain ASCII terminal, and there is something to be
said for directly interacting with the tool itself.

The description in this paper gives a short walk-through of a common mode of operation in using the veri-
fier. A more tutorial style description of the verification process can be found in [Ho93]. More detail on

- 21 -

the verification of large systems with the help of SPIN’s supertrace (bitstate) verification algorithm can be
found in [Ho95].

• Random and interactive simulations (section 2.1),
• Generating a verifier (section 2.2),
• Compilation for different types of searches (section 2.3),
• Performing the verification (section 2.4),
• Inspecting error traces produced by the verifier (section 2.5),
• Exploiting partial order reductions (section 2.6).

2.1. Random and Interactive Simulations

Given a model in PROMELA2, say stored in a file called spec , the easiest mode of operation is to perform
a random simulation. For instance,

spin -p spec

tells SPIN to perform a random simulation, while printing the process moves selected for execution at each
step (by default nothing is printed, other than explicit printf statements that appear in the model itself).
A range of options exists to make the traces more verbose, e.g, by adding printouts of local variables (add
option -l), global variables (add option -g), send statements (add option -s), or receive statements (add
option -r). Use option -nN (with N any number) to fix the seed on SPIN’s internal random number gener-
ator, and thus make the simulation runs reproducible. By default the current time is used to seed the ran-
dom number generator. For instance:

spin -p -l -g -r -s -n1 spec

If you don’t like the system randomly resolving non-deterministic choices for you, you can select an inter-
active simulation:

spin -i -p spec

In this case you will be offered a menu with choices each time the execution could proceed in more than
one way.

Simulations, of course, are intended primarily for the debugging of a model. It cannot prove anything
about it. Assertions will be evaluated during simulation runs, and any violations that result will be
reported, but none of the other correctness requirements can be checked in this way.

2.2. Generating the Verifier

When done debugging, first remove all printf statements from the model (or comment them out) and use
SPIN option -a to produce a verifier. An easy way to comment out the printf statements is, for instance,
to add the definition:

#define Printf skip

at the top of the specification, and to change the P in Printf into a lower-case p to turn off printing (e.g.,
before performing a verification) without changing anything else. Nothing bad will happen if the printf
statements are not removed, other than that the verifier will indeed oblige and execute all these statements
during the verification runs, in its search to find correctness violations. To sav e your screen, you will want
to avoid this sooner or later.

A model-specific verifier is generated as follows:

spin -a spec

This generates a C program in a number of files (with names starting with pan).

- 22 -

2.3. Compiling the Verifier

At this point it is good to know the physical limitations of the computer system that you will run the verifi-
cation on. If you know how much physical (not virtual) memory your system has, you can take advantage
of that. Initially, you can simply compile the verifier for a straight exhaustive verification run (constituting
the strongest type of proof if it can be completed). Compile as follows.

pcc -o pan pan.c # standard exhaustive search
pcc -DREDUCE -o pan pan.c # use partial order reduction

If you know a memory bound that you want to restrict the run to (e.g., to avoid paging), find the nearest
power of 2 (e.g., 23 for the bound 223) and compile as follows.

pcc -DMEMCNT=23 -DREDUCE -o pan pan.c

If the verifier runs out of memory before completing its task, you can decide to increase the bound or to
switch to a frugal supertrace verification. In the latter case, compile as follows.

pcc -DBITSTATE -DREDUCE -o pan pan.c

2.4. Performing the Verification

There are three specific decisions to make to optimally perform verifications: estimating the size of the
reachable state space (section 2.4.1), estimating the maximum length of a unique execution sequence
(2.4.2), and selecting the type of correctness property (2.4.3). No great harm is done of the estimates from
the first two steps are off. The feedback from the verifier usually provides enough clues to quickly deter-
mine what the optimal settings for peak performance should be.

2.4.1. Reachable States

For a standard exhaustive run, you can override the default choice for the size for the hash-table (218 slots)
with option -w . For instance,

pan -w23

selects 223 slots. The hash-table size should optimally be roughly equal to the number of reachable states
you expect (within say a factor of two or three). Too large a number merely wastes memory, too low a
number wastes CPU time, but neither can affect the correctness of the result.

For a supertrace run: the hash-table is the memory arena, and you can override the default of 222 bytes with
any other number. Set it to the maximum size of physical memory you can grab without making the system
page, again within a factor of say two or three. Use, for instance -w26 if you expect 8 million reachable
states and have access to at least 8 million (226) bits of memory (i.e., 223 or 1 Megabyte of RAM).

2.4.2. Search Depth

By default the analyzers have a search depth restriction of 10,000 steps. If this isn’t enough, the search will
truncate at 9,999 steps (watch for it in the printout). Define a different search depth with the -m flag.

pan -m100000

If you find a particularly nasty error that takes a large number of steps to hit, you may also set lower search
depths to find the shortest variant of an error sequence.

pan -m40

Go up or down by powers of two until you find the place where the error first appears or disappears and
then home in on the first depth where the error becomes apparent, and use the error trail of that verification
run for guided simulation.

Note that if a run with a given search depth fails to find an error, this does not necessarily mean that no vio-
lation of a correctness requirement is possible within that number of steps. The verifier performs its search
for errors by using a standard depth-first graph search. If the search is truncated at N steps, and a state at

- 23 -

level N-1 happens to be reachable also within fewer steps from the initial state, the second time it is reached
it will not be explored again, and thus neither will its successors. Those successors may contain errors
states that are reachable within N steps from the initial state. Normally, the verification should be run in
such a way that no execution paths can be truncated, but to force the complete exploration of also truncated
searches one can override the defaults with a compile-time flag -DREACH. When the verifier is compiled
with that additional directive, the depth at which each state is visited is remembered, and a state is now con-
sidered unvisited if it is revisited via a shorter path later in the search. (This option cannot be used with a
supertrace search.)

2.4.3. Liveness or Safety Verification

For the last, and perhaps the most critical, runtime decision: it must be decided if the system is to be
checked for safety violations or for liveness violations.

pan -l # search for non-progress cycles
pan -a # search for acceptance cycles

If you don’t use either of these two options, the default types of correctness properties are checked (asser-
tion violations, completeness, race conditions etc.). Note that the use of a never claim that contains
accept labels requires the use of the -a flag for complete verification.

Adding option -f restricts the search for liveness properties further under a standard weak fairness con-
straint:

pan -f -l # search for fair non-progress cycles
pan -f -a # search for fair acceptance cycles

With this constraint, each process is required to appear infinitely often in the infinite trace that constitutes
the violation of a liveness property (e.g., a non-progress cycle or an acceptance cycle), unless it is perma-
nently blocked (i.e., has no executable statements after a certain point in the trace is reached). Adding the
fairness constraint increases the time complexity of the verification by a factor that is linear in the number
of active processes.

By default, the verifier will report on unreachable code in the model only when a verification run is suc-
cessfully completed. This default behavior can be turned off with the runtime option -n , e.g. as in:

pan -n -f -a

(The order in which the options such as these are listed is always irrelevant.) A brief explanation of these
and other runtime options can be determined by typing:

pan -?

2.5. Inspecting Error Traces

If the verification run reports an error, any error, SPIN dumps an error-trail into a file named spec.trail ,
where spec is the name of your original PROMELA2 file. To inspect the trail, and determine the cause of
the error, you must use the guided simulation option. For instance:

spin -t -p spec

with as many extra or different options as you need to pin down the error:

spin -t -r -s -l -g spec

Make sure the file spec didn’t change since you generated the analyzer from it.

If you find non-progress cycles: add or delete progress labels and repeat the verification until you’re con-
tent that you found what you were looking for.

If you’re not interested in the first error reported, use option -c to report on specific others:

pan -c3

- 24 -

ignores the first two errors and reports on the third one that is discovered. If you just want to count all
errors and not see them, use

pan -c0

State Assignments

Internally, the verifiers produced by SPIN deal with a formalization of a PROMELA2 model in terms of
extended finite state machines. SPIN therefore assigns state numbers to all statements in the model. The
state numbers are listed in all the relevant output to make it completely unambiguous (source line reference
unfortunately do not have that property). To confirm the precise state assignments, there is a runtime
option to the analyzer generated:

pan -d # print state machines

which will print out a table with all state assignments for each proctype in the model.

Use pan -? to see other options of the runtime verifiers (e.g., the enforcement of weak fairness con-
straints, the suppression of a never claim, the use of alternative or multiple hash functions, etc.)

2.6. Exploiting Partial Order Reductions

If the verifier is compiled with the directive -DREDUCEan optimization of the search algorithm is done
according to the rules of a partial order theory explained in [HoPe94]. The effect of the reduction can be
increased if the verifier has extra information about the access of processes to global message channels.
For this purpose, there are two keywords in the language that allow one to assert that specific channels are
used exclusively by specific processes. For example, the assertions

xr q1;
xs q2;

claim that the process that executes them is the only process that will receive messages from channel q1 ,
and the only process that will send messages to channel q2 .

If an exclusive usage assertion turns out to be invalid, the verifier will be able to detect this, and report it as
a violation of an implicit correctness requirement.

Every read or write access to a message channel can introduce new dependencies that may diminish the
maximum effect of the partial order reduction strategies. If, for instance, a process uses the len function
to check the number of messages stored in a channel, this counts as a read access, which can in some cases
invalidate an exclusive access pattern that might otherwise exist. There are two special functions that can
be used to poll the size of a channel in a safe way, that is compatible with the reduction strategy.

The two operations are: nfull(qname) returns true of channel qname is not full, and
nempty(qname) , which returns true if channel qname contains at least one message. Note that the
parser will not recognize the free form expressions !full(qname) and !empty(qname) as equally
safe, and it will forbid constructions such as: !nfull(qname) or !nempty(qname) . More detail on
this aspect of the reduction algorithms can be found in [HoPe94].

Keywords

For reference, the following table contains all the keywords, predefined functions, predefined variables, and
special label-prefixes of the language PROMELA2, and refers to the section of this paper in which they were
discussed.

- 25 -

_last (1.4) _pid (1.1.1) accept (1.3.2) active (1.1.1)
asser t (1.3.1) atomic (1.2.1) bit (1.1.2) bool (1.1.2)
break (1.2.4) byte (1.1.2) chan (1.1.3) d_step (1.2.2)
do (1.2.4) else (1.2.4) empty (1.1.3) enabled (1.4)
end (1.3.2) fi (1.2.3) full (1.1.3) goto (1.2.2)
hidden (not discussed) if (1.2.3) init (1.1.1) int (1.1.2)
len (1.1.3) mtype (1.1.3) nempty (2.6) never (1.3.3)
nfull (2.6) od (1.2.4) of (1.1.3) pc_value (1.4)
pr intf (1.1.1) proctype (1.1.1) progress (1.3.2) run (1.1.1)
shor t (1.1.2) skip (1.2) timeout (1.2.4) typedef (1.1.2)
unless (1.2.5) xr (2.6) xs (2.6)

References

[Ho91] G. J. Holzmann, ‘‘Design and Validation of Computer Protocols,’’ Prentice Hall, 1991.

[Ho93] G.J. Holzmann, ‘‘Tutorial: Design and Validation of Protocols,’’ Computer Networks and ISDN
Systems, 1993, Vol. 25, No. 9, pp. 981-1017.

[HoPe94] G. J. Holzmann and Doron A. Peled, ‘‘An improvement in formal verification,’’ Proc. 7th Int.
Conf. on Formal Description Techniques, FORTE94, Berne, Switzerland. October 1994.

[Ho95] G.J. Holzmann, ‘‘An Analysis of Bitstate Hashing,’’ technical report 2/95, available from author.

