e e

ight law
Notice: This material may be protected by copyright

(Title 17 U.S. Cod@)
Considerate Code Selection

Robert Giegerich
Universitat Bielefeld
Technische Fakultat
Postfach 10 01 31
W-4800 Bielefeld 1
Germany
robert@techfak.uni-bielefeld.de

Abstract

Considerate code selection is not another code selection technique. It is
concerned with the integration of code selection with other subtasks of
code generation, such as register allocation and scheduling. Considerate
code selection allows to defer decisions between alternative encodings.
This is achieved by means of a shared representation of the overall solu-
tion'space. Subsequent phases are adapted to process all solutions simul-
taneously, again producing results in a shared representation. Decisions
may be interspersed in this process whenever desired.

The paper introduces this technique in a framework where code selec-
tion in done by tree parsing, and later phases are described by attribute
coupled grammars. Being a general technique rather than an algorithm,
considerate code selection can be used with any of the current, pattern
based approaches to code selection.

1 Motivation

The pattern matching approach to code selection, when implemented by bot-
tom-up tree parsing, allows three ways to deal with the fact that there are
many alternative encodings for a given source program:

e The mazimal-munch-heuristic favours encodings with machine instruc-
tions that implement serveral source operators at a time. Precaution
must be taken, as this strategy may lead into blind alleys. Also, the
maximal size of munches does not strictly imply minimal target program
costs.

e A cost driven heuristic such as dynamic programming tries to achieve
good overall solutions composed from locally optimal subsolutions.

Both strategies have proved to be practical. Both, however, simplify code
selection at the price of a negative effect on the modularity of the code gener-
ation problem as a whole: As alternative solutions are discarded at each stage,
all other considerations such as register usage must be interleaved with the code
selection process. In this paper, we propose a third approach:

52

o The set of all solutions is explicitly constructed. Later phases of code gen-
eration may apply register requirements analysis, instruction cost consid-
erations and other criteria to successively reduce the solution set, eventu-
ally to a single target program. This approach will be called considerate
code selection, and the present paper is a first exploration of this idea.
The name comes from the fact that for code selection proper, no heuristic
is applied.

At the first glance, considerate code selection looks like a tantalizing idea.
As the number of overall encodings for a given source program grows combi-
natorially with the number of encodings for its immediate subprograms, the
set of all solutions is exponential in the size of the input. Hence, it should
be excessively expensive to construct this solution set, as well as to process it
further. At a second thought, however, we note the following:

e Since tree parsing can produce any encoding, it may as well produce
all encodings without extra cost. In the pattern matching terminology,
the bottom-up pattern matcher implicitly constructs all covers of the
intermediate program tree in ((n), where n is the number of its nodes.
What we need is a compact representation of this solution set of size
((2") in O(n) space, which can be achieved by an appropriate kind of
sharing contexts.

e Later tasks of code generation can be described as analyses or transfor-
mations of a particular encoding. What we need is a mechanism to apply
such operations to the compact representation of all solutions simultane-
ously, hopefully retaining the amount of sharing.

The data structure used for this purpose, introduced below, is called shared
forcst. It 1s named after a related approach that has evolved independently in
the area of natural language parsing [15]. Although intuitively, the problems to
be solved and the data structures used are quite similar in that work and ours,
the formalizations are different and their relationship has not been explored yet
in any depth.

2 The Model of Code Generation

For the formal development of our approach, we need the following notations:
A signature © = (S, F') is given by a set of sorts S and a set of F of operators
together with their arity. The set of I-Terms is denoted T(X), while the set
of E-terms of sort s is denoted T(X) : 5. T(E, X) denotes terms with variables
from a variable set X. For t € T(X, X),var(t) denotes the set of variables
occuring in t, to denotes application of a substitution (of terms for variables)
to t, yielding a term ¢’ called an instance of t. Given a confluent and terminating
term rewrite system R,t|g denotes the normal form of ¢ with respect to R.
For further terminology about term rewrite systems, see e.g. [3]. Following
common usage, we will also use the words trees and forests for terms and sets
of terms, respectively.

We use an algebraic model of code generation, as in [12, 8, 9]. Source
and target programs are represented as terms of a source signature /L and a

target signature TL. Target
formedness predicates. The
be expressed syntactically.
TL-homomorphism, specifie
proper means inverting this
m(t) = p for the given sour
furthermore to find a t’ th:
well as m(t') = p).

For the presentation, cor
tion problem: Let there be
ld(r, c), denoting addition ¢
load constant. The first arg
ber of the target register use
plike (14+2)+(3+4). Tl
specified by the TL-homomu

Example 2.1 :

signature TL =

sorts R, C, Regno

ops ld: Regno, C —R
addi: Regno, R, C
add: Regno, R, R -

m(ld(r,c)) =
m(addi(r,z,¢)) =
m(add(r,z,y)) =

Code selection means sol
m(z)=p

where 2 is a target progi
Here, the overall transl:
operator of p and choices of 1
2.1, the code selection proble
4), shown in Example 3.2 b
to further constraints regarc

3 Shared Forest:

A Y-forest of sort s is a sul
representation of a I-forest
(up to) logarithmic space re

ter phases of code gen-
nstruction cost consid-
1e solution set, eventu-
1 be called considerate
ploration of this idea.
on proper, no heuristic

like a tantalizing idea.
>rogram grows combi-
iate subprograms, the
»ut. Hence, it should
s well as to process it
wing:

may as well produce
natching terminology,
acts all covers of the
number of its nodes.
is solution set of size
n appropriate kind of

analyses or transfor-
2 mechanism to apply
| solutions simultane-

relow, is called shared
-ved independently in
ively, the problems to
1 that work and ours,
not been explored yet

: following notations:
set of F of operators
T(X), while the set
terms with variables
the set of variables
“terms for variables)
uent and terminating
t with respect to R.
e.g. [3]. Following
ts for terms and sets

1 (12, 8, 9]. Source
: signature /L and a

53

target signature TL. Target programs are further restricted by certain well-
formedness predicates. These model target machine properties that cannot
be expressed syntactically. The target is related to the source language by a
TL-homomorphism, specified as a derivor (denoted m below). Code selection
proper means inverting this derivor, i.e. constructing (one or all) ¢ satisfying
m(t) = p for the given source program p. Code generation as a whole means
furthermore to find a t' that satisfies all further well-formedness criteria (as
well as m(t') = p).

For the presentation, consider the following trivial instance of a code selec-
tion problem: Let there be machine instructions add(r, z,y), addi(r,z,¢) and
ld(r,¢), denoting addition of two registers, add-immediate to a register, and
load constant. The first argument within each instruction is the register num-
ber of the target register used. We want to generate code for source expressions
p like (1 +2) + (3 + 4). The relation between target and source language is
specified by the T'L-homomorphism m in Example 2.1:

Example 2.1 :

signature TL =
sorts R, C, Regno
ops ld: Regno, C —R

addi: Regno, R, C — R
add: Regno, R, R — R

m(ld(r,c)) = ¢
m(addi(r,z,c)) = m(z)+c¢
m(add(r,z,y)) = m(z)+m(y)

Code selection means solving the equation
m(z) =p (1)

where z is a target program variable, and p a source program.

Here, the overall translation of a source program p depends on the root
operator of p and choices of translations for certain subexpressions. In Example
2.1, the code selection problem m(z) = p has four solutions for p = (1+2)+(3+
4), shown in Example 3.2 below. From them, we need to select one according
to further constraints regarding register allocation and instruction costs.

3 Shared Forests

A X-forest of sort s is a subset of T(X) : s. A shared E-forest is a particular
representation of a L-forest which exploits sharing of contexts and allows an
(up to) logarithmic space reduction.

54

Definition 3.1 : Shared forests

1. For a given ¥ = (S, F), and an S-sorted set of variables X let
dX = (S U {choices}, FU{l, : 5, choices, s — s|s € S} U {I :— choices,
r:— choices}). The operators(l, are called choice operators.

2. Let V : choices be a set of variables of sort choices.

3. The set of shared T-forests is T(dZ, X U V).

Of course, we assume that the symbols added by the extension are not
already present in £ and X. Mostly, we shall omit the subscript s with 0.

Example 3.2 : Shared forest solution f prog to m(z) = (a+b)+ (c+4d)
fprog = add

rl

/"\
/add\ v, addi /mdd\ v addi
2 1 Id r5/ld\ 771 W il i
r8 a rf{ b r6

a
o
3
Y
)
.
o
a
R
by
-
o
A

Two kinds of variables occur in the shared target forest of Example 3.2:
rl,72,. .- are variables for register numbers, yet to be instantiated. v, and v,
are choice variables, whose purpose will become clear shortly.

A shared forest represents a forest in an obvious way:

Definition 3.3 : Semantics of shared forests

1. Let A be the rewrite system given by
Us(z,l,y) = z,0,(z,7,y) > y | s € S}

2. For all s € S, the interpretation I : T(dE, V) : s — 2T(E)* s given by
I(w) = {wola | o is a ground substitution for the choice variables in
w}.

A shared Z-forest w denotes a set of E-terms I(w). Instantiating the choice
variables in w by ! or » and normalizing with A yields a particular element of
I(w). Note that we can represent neither empty nor infinite forests.

The sharing provided by shared forests is complementary to that provided
by the dag-representation of trees. While dags share identical subterms within
a term, shared forests share identical conterts of different subterms. Both kinds
of sharing can be combined to a certain extent. For simplicity, we avoid dags
in this paper.

The potential compactification in representing I(w) by w is measured as
follows:

Lemma 3.4 :

Let w be a shared for
Then we have 1 < |I(

Proof:
To obtain |I(W)],

a — 1 for each co
z — 1 for each va
f('rl!"'!z")—'*

for each n-ary
O(zy,v,z3) — 2, 4

Evaluating the resulti
achieved when w is lineai
all n -operators are ind
See Example 3.5.

Example 3.5 :

LA
av b cv, d

0 a 0
AN AN
av b av, b

b.1) Mazimum forn =

Note the way in whick
of w. If we substitute all
Considering space red
of operators) to the sum «
of context sharing presen'
The following axioms

of variables X let

-s|s € S} U {l :— choices,
hoice operators.

hotces.

by the extension are not
the subscript s with 0.

o m(z) =(a+b)+(c+d)

—_—
0

/I\
addi

Y,
—~
ld ril ld
AN /"N
9 d 0

r rl0 ¢ d

get forest of Example 3.2:
be instantiated. v, and v,
ar shortly.

s way:

)5 — 2T(E)s 45 given by
for the choice variables in

v). Instantiating the choice
:lds a particular element of
r infinite forests.

lementary to that provided
e identical subterms within
‘erent subterms. Both kinds
r simplicity, we avoid dags

I(w) by w is measured as

55

Lemma 3.4 :

Let w be a shared forest containing n [-operators.
Then we have 1 < |I(w)| < 2", and this bound is sharp.

Proof:
To obtain |I(W)], we can translate w into a term over (N,+,*) by
a — 1 for each constant a € F

r — 1 for each variable z € X

f(l‘x,"',l'n)—"*(1?1,"'.1?n)
for each n-ary operator f € F,n > 1

O(zy,v,x3) — T1 + T2
0

Evaluating the resulting expression yields an upper bound for | I(w)|. 1t is
achieved when w is linear (i.e. no choice variable occurs more than once in w),
all n O-operators are independent, and when o # ¢ implies wo |47 wo’ la.

See Example 3.5.

Example 3.5 :

0
/]\)*

+

-
/\/\
{1 £ %
A AN AN /\/\/\1

av, b cv, d cv, d 1 1 1 1 1

—* 6

0 10| = |{f(a,2), £6,a), gle.0). a(d:c), g(e.d), o(d,d)}| =6

A ™ N
/TN

0 Qv c
AN AN AN
av b av, b av, b av b

=8 b.2) Minimum for n = 3:|I(w)\ =1

b.1) Mazimum for n = 3:‘](10)

8]

Note the way in which |I(w)] in example 3.5b.1) depends on (non-)linearity
of w. If we substitute all choice variables by the same variable v, | [(w)| = 2.

Considering space reduction, we must relate the |w| (the size of w in terms
of operators) to the sum over |we| for all o. This ratio depends on the amount

of context sharing present in w.
The following axioms are consistent with the interpretation I:

56

Definition 3.6 : Condensation/Expansion Axioms

Foralls€ S
1. 0(z,v,z)=1¢
2. D(f(l'l,“';-‘5:'—!,1711"'4—1,"',zn),vyf(zll"',xi—hy,zi+ly'",In))

= f(rh"';31'—1,”(-731"11/);31'4—1;"‘71711)
VfeEF AN1<i<n

The condensation rewrite rule system C is obtained by orienting these equa-
tions left-to-right. The expansion rewrite rule system E is obtained by orienting
2. right-to-left.

Each w has a condensed normal form w|.. Clearly I(w) = I{(w].), but
w|, is neither the smallest, nor a unique representation of I(w), as we do not
consider the commutative, associative and idempotent properties, which [has
under the interpretation 1. '

Any w € T(dZ,V) can be fully expanded by E, such that all t € I(w),
including duplicates, show up separately under a root portion consisting of
O-operators only. Conversely, such a “shared” forest can be condensed by C.
Pragmatically, neither of these should ever happen in a computation where w
is a logarithmic reduction of I{w)! Our interest in shared forests arises from
the fact that we know algorithms (e.g. for the code selection problem) that
directly construct shared representations of the desired solution space.

4 Construction of Shared Forests by Tree
Parsing

Let us recall the approach of [12] and [8]: The equation m(t) = p is solved by
first converting the derivor m into a regular tree grammar. The productions are
labeled by the corresponding target operators. The grammar for our example
is untypically simple, as our target signature is one-sorted (there is only one
address mode, R). This leads to a grammar with a single nonterminal symbol
R and three productions corresponding to the target operators Id, addi and
add. The terminal symbol ¢ matches arbitrary numeric constants

(1d) R—c
(addi) (2) R— R+c
(edd) (3) R—R+R

For m(t) = a + b (where a, b are constants), the tree parser detects parses
R — R+b— a+b, corresponding to addi(ry,, ld(ry2,a),b) , and
R— R+ R-— R+b-— a+b, corresponding to add(ry3, ld(r14,a), ld(r;s,b)).

As both start from the same nonterminal, the corresponding target terms
are of the same sort and can share contexts. Hence, the result is

t =0(addi(ry, ld(r12,a),b), vy, add(ry3, ld(r14, @), ld(r15,])))

When reducing by productio
addi(r, z,c)is applied to argu
corresponding to r. Thus, a f
number yet to be chosen. r
forest constructed this way. ¢
the shared forest of Example

This informal description
Technical details of the const
parse of the input can be fou
in the tree grammar and inf
to infinitely many target ter:
be represented finitely. A con
parsing is in preparation [11]

Shared forests that arise f
Later phases, as we shall see

5 Translations of

In our approach to code gen
lations between appropriate 1
translations is given by the u
modularity, it is wise to requ
of specifications is possible w
show how a category of tran:
translations between the cor
morphisms between term alg
h € H some morphism dh :
diagram commutes:

oT(X

Whether and how this ca
shall consider the class of m
6).
X Attribute coupled gramn
the underlying context free g
Attributes are associated wit
of an output signature X'
T(¥', X). Attribute rules sp:
attributes in the local conte
given t € T(Z), the value of
called the translation h(t) of
T(X) to T(X') specified in t}
approach. A main appeal of

LU g1,y Zn)

/ orier_lting these equa-
i obtained by orienting

I(w) = I(w],), but
of I(w), as we do not
roperties, which [l has

ch that all t € I(w),
portion consisting of
1 be condensed by C.
computation where w
ed forests arises from
lection problem) that
olution space.

oy Tree

m(l) = p is solved by
. The productions are
mmar for our example
ed (there is only one
: nonterminal symbol
serators Id, addi and
onstants

er detects parses
)7 b) s and
' ld(rl‘h a), Id(T‘15, b))

>onding target terms
esult is

), 1d(r15,b)))

57

When reducing by production 2, its corresponding target operator

addi(r, z,c) is applied to arguments ld(ry2,a) and b, while there is no argument
corresponding to r. Thus, a free variable ry; is substituted, denoting a register
number yet to be chosen. rj; must be unique in the overall target program
forest constructed this way. Continuing this process for p = (a +b) + (¢ + @),
the shared forest of Example 3.2 is obtained.

This informal description of shared forests construction must suffice here.
Technical details of the construction of a single target term from a single tree
parse of the input can be found in [8], where also the possibilities of chain rules
in the tree grammar and infinite derivations are considered. The latter lead
to infinitely many target terms. According to recent results of [2], these can
be represented finitely. A comprehensive treatment of derivor inversion by tree
parsing is in preparation [1 1].

Shared forests that arise from tree parsing are linear in the choice variables.
Later phases, as we shall see shortly, may well introduce non-linearities.

5 Translations of Shared Forests

In our approach to code generation, various subtasks are described as trans-
lations between appropriate representations. This class of representations and
translations is given by the underlying specification technique. For the sake of
modularity, it is wise to require that they form a category. Then, composition
of specifications is possible where ever composition of translations is. We now
show how a category of translations between terms gives rise to a category of
translations between the corresponding shared forests. When H is a class of
morphisms between term algebras T(Z) and T(X’), we want to derive for each
h € H some morphism dh : T(dT,V) — T(dZ", V) such that the following

diagram commutes:

2T(E) h 27‘(2')

TS, V) — 34— T(d=', V)

Whether and how this can be done depends on the way H is defined. We
shall consider the class of morphisms defined by attribute coupled grammars
[6].

Attribute coupled grammars are classical attribute grammars [14] where
the underlying context free grammar is seen as an input signature & = (S, F).
Attributes are associated with the sorts s from S. Attribute values are terms

of an output signature ¥/ "Semantic functions” are composite terms from

T(T', X). Attribute rules specify the values of attributes, depending on other
attributes in the local context. Circular dependencies are forbidden. Thus,
given t € T(T), the value of its designated root attribute is some t' € T(¥'),
called the translation h(t) of t. An attribute coupling is the translation from
T(Z) to T(E") specified in this way. Note that attributes are transient in this
approach. A main appeal of this is that attribute couplings can be composed,

58

thus supporting modularity. An example of an attribute coupling is given after
Theorem 5.2.

Attribute coupled grammars are used here because they are a very general
(and well-understood) scheme of inductive definition. They encompass stan-
dard structural induction as the special case of a single, synthesized attribute.
It is straightforward to transfer the construction to more restricted forms of
structural induction.

Definition 5.1 : Lifting of attribute couplings to shared forests

Given an atiribute coupling h : T(T) — T(X'),its "lifting” to shared forests
is another atiribute coupling dh : T(dX,V) — T(d¥’, V), obtained as fol-
lows:

Take over all atiribute declarations and rules of h. Add the following rules
for each choice operator:

t=0,(z,v,y): zi=ti for each inherited attribute i
yi=t.1 associated with s
t.d=0,(z.d,v,y.d) for each synthesized attribute

d of sort s' associated with s

The clue in this (otherwise straightforward) construction is that the choice-
variable v, associated with the input choice-operator [, is also associated with
the output choice-operator 0,,. We must now show that this construction is
consistent with our interpretation of shared forests.

Theorem 5.2 :

Letw € T(dZ, V), h : T(Z,X) — T(Z', X), dh : T(dZ, XuV) — T(d¥', XU
V') constructed according to Definition 5.1.

Then, {h(t)|t € I(w)} = I(dh(w)).

Proof:

We show that for an arbitrary ground substitution o that substitutes all
the choice variables in w, h(wo | 1) = (dh(w))o | 4. Consider the follow-
ing synchronized A-reduction step of wo and (dh(w))o: Let we — 4 wio
be a reduction of some choice operator Uy(zo, vo, Yo).

Let s, the sort of o, have n synthesized attributes. According to the
definition of dh, their values have the form

Ul(zl‘ vo, yl)x v 1[171(1"1)1 vo, yn)
(Note that o, - - -0, use the same choice variable).
Let (dh(w)o) —7% ¢1 by n-fold reduction of these choice operators in
(dh(w))e. Since the choice is consistently z; or y; in all cases (0<i<n),
and the inherited attributes of zo and yy are copied from{y, we have ¢; =
dh(wi)o. Iterating this step until all choice operators are eliminated, we
obtain some wg, gx with g; = (dh(wi))e |a= dh wy = h wy, since dh
and h coincide on terms without choice operators. Remembering that
wy = wo |4 and ¢ = (dh(w))o |4, we have established h(wo |4) =
(dh(w))e =4, q.e.d.

Even when w is in C-n
a condensation step by refc

td= ifz.d = y.d the

However, z.d and y.d m
be compared to achieve th
this step should be include

As an example, we des¢
ules. The variables creat:
shared forest now act as s
is obtained from TL by ac
quence []. We assume t}
all load-instructions before
attribute coupling that shc
attributes! involved is:

#l, si: inherited/syntl
containing a se
ic, sc. attributes cont.
n: number of regis
(this may be a

t= Id t.n =

t.sl =

r a t.sc =

t = addi t.n =

t.sl =

r X a t.sc =

t = add t.n =

tsl =

r x y t.sc =
t = prog

X t.code

According to Definition
forests. Applied to the she
shared forest of schedules:

1 An equivalent attribute cou
pler. This example was chosen
inherited attributes.

coupling is given after

hey are a very general
Chey encompass stan-
synthesized attribute.
re restricted forms of

thared forests

Eing” to shared forests
, V), obtained as fol-

dd the following rules

~tted atiribute i
h s

resized attribute
isociated with s

on 1s that the choice-
3 alsp associated with
. this construction is

XUV) = T(d¥', XU

7 that substitutes all
Consider the follow-
))o: Let wo —4 wio

).

s. According to the

choice operators in
all cases (0 < i < n),
rom[y, we have q; =
's are eliminated, we
e = h wyg, since dh

Remembering that
dlished h(weo |4) =

59

Even when w is in C-normal form, dh(w) need not be so. One may include
a condensation step by reformulating the equation for synthesized attributes to

t.d= if z.d = y.d then z.d elsel,/(z.d, v, y.d).

However, z.d and y.d may be rather large terms from T(dx', V), which must
be compared to achieve the condensation. It is a pragmatic question whether
this step should be included.

As an example, we describe the linearization of target programs into sched-
ules. The variables created for register numbers during construction of the
shared forest now act as symbolic register names. The signature of schedules
is obtained from TL by adding a sequencing operator (++) and an empty se-
quence []. We assume that the processor architecture suggests to schedule
all load-instructions before any arithmetic instructions. We specify this by an
attribute coupling that should be largely self-explanatory. The purpose of the
attributes! involved is:

il, sl: inherited/synthesized attribute pair
containing a sequence of load instructions,

ic, sc: attributes containing final schedule,

n: number of register that holds result of a subtree,
(this may be a variable from X : Regno).

t= 1Id tn =t
t.sl = t.il + 1d(r,a)
r a t.sc = t.ic
t = addi tn =t x.1l = t.il
t.sl = x.sl X.ic = t.ic
r x a t.sc = x.sc ++ addi(r, x.n, a)
t = add t.n =r xil = til y.il = xsl
t.sl = y.sl x.ic = t.ic y.ic = x.sc
r x y t.sc = y.sc + add(r, x.n, y.n)
t = prog
xil =[]
X t.code = x.sc x.ic = x.sl

According to Definition 5.1, this attribute coupling can be lifted to shared
forests. Applied to the shared forest of Example 3.2, we obtain the following

shared forest of schedules:

1 An equivalent attribute coupling using synthesized attributes only may appear even sim-
pler. This example was chosen to illustrate the role of choice variables in the presence of

inherited attributes.

60

fsched = ++4

0
T

++ v 1d

P AN

Id id 6 a ++
VNN
r3 a r4 b 0
/‘\
e A
D N
8 ¢ r9 d 0

add v, addi rl 0 J
/I\
r7 8 19 rl10 r1! d r2 v, 5 17 v. ril

1 2

Note how the multiple occurences of the choice variables now control the
eflects of possible choices in quite different parts of the schedule, while retaining
the sharing.

Another phase might measure schedules by (say) machine cycles. Again
this measure could be described as an attribute coupling translating a single
schedule into its cost. Let us say an /d-instruction takes 3, addi takes 2, and
add takes 1 unit cost. The corresponding translation can be lifted to shared
forests of schedules, and produces the following answer, a shared forest of costs:

§
&y T
& T
T
lv,2

Using associative-commutative properties of + and distributive laws like
U(a,v,b) +0(c,v,d) =0(a +c,v, b+ d), we obtain the shared cost forest:

f-cost = +
N
0 +
N\
Tv D 1
N
Tv, 4

2

4

1

6 Selections fr¢

Solution sets of potentiall;
of a particular computatic
even unitary. So we must
by a shared forest. Even
some point.

One possibility is to ac
enumerates solutions fror
the transparency of our ir.
tion. A second possibility
handling of choice operat
first approach views each
more ad-hoc, allows for e
choice based on a preferer

From the shared cost 1
determine that the substi
of 9 units. Now we finally
schedule, (f.prog)o] 4 is tl

There is one thing ad
a chance to avoid it alto,
different alternatives. Hen
operators.

We now study a diffe;
the setting of Example 1.
by the morphism m. W
operators, it does not car
Example 6.1 defines a pr
target program are assign
architectures. Thus, the fi
is a list of registers (i.e. :
first argument. We borrov

Example 6.1 :

alloc(add(i, z,y), [i|u]
alloc(add(i, z,y),[]) =
alloc(addi(i, z, c), [ifu]
alloc(addi(i, z,c),[]) =
alloc(load(t, ¢), [i|u]) =
alloc(load(i,c), [} = f

0

Note that the equation
canonical rewrite system.
Given a source progral
at hand is to generate wel

?In general, this is by nom
an exponential solution space.
not avoid it. Their advantage
suitable data structure.

\
A
0 0

2 v, 15 17 v, rll

2
riables now control the
:hedule, while retaining

machine cycles. Again
ng translating a single
es 3, addi takes 2, and
can be lifted to shared
a shared forest of costs:

distributive laws like
ared cost forest:

61

6 Selections from Shared Forests

Solution sets of potentially exponential size are likely to be intermediate results
of a particular computation, while the final solution set often is of linear size, or
even unitary. So we must provide ways to restrict the solution set represented
by a shared forest. Even considerate code selection must make selections at
some point.

One possibility is to adopt a general, nondeterministic method that (lazily)
enumerates solutions from the shared representation. This approach retains
the transparency of our implementation technique for the writer of a specifica-
tion. A second possibility is to give up this transparency and allow an explicit
handling of choice operators, to be provided by the specification writer. The
first approach views each solution independently, the second approach, while
more ad-hoc, allows for explicitly relating different sub-solutions and making
choice based on a preference relation. We will sketch both approaches here.

From the shared cost forest f_cost obtained above, it is straightforward? to
determine that the substitution o = [vy «— r,v2 — 7] yields the minimal cost
of 9 units. Now we finally do code selection: (f-sched)o] 4 is the minimal-cost
schedule, (f.prog)e] 4 is the minimal-cost target program t with m(t) = p.

There is one thing ad-hoc with this way of selection (but we do not see
a chance to avoid it altogether): Determining min [(f-cost) needs to relate
different alternatives. Hence the specifier must make explicit reference to choice
operators.

We now study a different way to restrict the solution space. Reconsider
the setting of Example 1. Machine programs are related to source expressions
by the morphism m. While m associates machine instructions with source
operators, it does not care for register requirements. The equation system in
Example 6.1 defines a predicate alloc, which checks if register numbers in a
target program are assigned in the stack-like fashion typical for non-pipelined
architectures. Thus, the first argument to alloc is a target program, the second
is a list of registers (i.e. register numbers) available for allocation within the
first argument. We borrow Prolog list notation in Example 6.1.

Example 6.1 :

alloc(add(i, z,y), E u)) = alloc(z, [ilu]) A alloc(y, u)

il
alloc(add(i,z,y),[]) = false
alloc(addi(i, z,), [1|u]) = alloc(z, [ilu])
alloc(addi(i, z,¢),[]) = false
alloc(load(i,c), [ilu]) = true

lu
alloc(load(i,c),|])) = false
a

Note that the equations in Example 6.1, when oriented left-to-right, form a

canonical rewrite system.
Given a source program p and a list regs of register numbers, the problem
at hand is to generate well-allocated target programs. We have to solve

2In general, this is by no means straightforward. It may still involve minimalisation over
an exponential solution space. Shared forests only defer combinatorial explosion, they do
not avoid it. Their advantage is that heuristics may be applied after translation to a more
suitable data structure.

1. m(z)=p
2. alloc(z, regs) = true

Given a canonical rewrite system for m, alloc, etc, we can solve both equa-
tions simultaneously using a narrowing procedure [13]. However, this only
works in principle, due to the large solution space.

More efficiently than applying narrowing to (1) and (2), we may first solve
(1) by pattern matching according to Section 4, obtaining a shared forest w rep-
resenting the solution space I(w) (w contains variables ry, ry, - - - for the register
numbers yet to be assigned). A narrowing derivation from alloc(t, regs) = true,
separately for each t € I(w), will either construct a register assignment (i.e. a
ground substitution for 7y, 13, --), if t can be evaluated with the given list regs
of registers, or else it will fail. '

But by combining the selection axioms A with the rules for alloc, we obtain
a canonical rewrite system again. Hence, the narrowing procedure applies to
shared forests w as well as to individual members ¢ € I(w). The narrowing tree
issuing from alloc(w, regs) = true now shares prefixes of paths for different
t € I(w). The calculated substitution of a successful narrowing derivation not
only instantiates register variables, but also the choice variables, and hence
indicates the selected element from I(w).

Solving alloc(f_prog,[1,2]) = true rejects the solutions that load d into
a register, and returns calculated substitutions o, = [v1i — L,vs « r] and
02 = [v] — r,v3 — r] with

1. wola= add(1, add(1, 1d(1, a), ld(2, b)), addi(2,1d(2, ¢),d)), and
2. woy| o= add(1, addi(1,1d(1,a),b), addi(2,1d(2,c), d)).

Note that under both substitutions, v, = . Hence we may form f-prog2 :=
f-prog[vy «—]| 4, thus restricting the solution space to all encodings that do
not need more than 2 registers. Now the scheduling and cost phases can just as
well be applied to f_prog2, yielding a reduced f_sched? and f-cost2. Of course,
these are identical to f_sched[vy «— r]| 4 and f-cost[vy — 7] 4.

7 Conclusion

7.1 Relation to other work

State-of-the-art techniques for retargetable code generation, based on tree pars-
ing (1], [5], "BURS-theory” [16], or regularly controlled rewriting {4] combine
pattern matching and cost analysis. A maximum of efficiency is achieved by
encoding cost information into the states of the generated pattern matcher.
These approaches provide no formalism to deal with further machine specific
aspects of code generation, such as pipeline optimization, register allocation,
machine data type coercions, peephole optimization, and maybe others. But
these approaches can easily be extended to produce code as terms over some
target program signature.

Given this extension, the pure tree parsing approach of (1], [5) is an imple-
mentation of our approach when we restrict it to perform cost analysis immedi-
ately subsequent to code selection. Since the two phases both work bottom-up,

the y can be interleaved, s
constructed in this case. T
and can detect even more
the intermediate or target
matcher. If certain decisio
to represent the result.
The specific virtue of t}
of code generation, in par
specification adheres to th
ferent ways of implementii
indicated with scheduling,
shared forest of target prog
applied independently, anc

7.2 Implementatio

The lifting operation on sig
into the compiler-writing ¢
essential construction is st
plication. Translations by
MARVIN involve a "semar
uated in a particular Xj-al
must be incorporated. Ev
This extension is nontrivia
writer. Although this impl
here have not yet been apg

The MARVIN system 1
on shared forests, mainly b
scribe a rather general clas
the Definition 5.1, howeve:
formation systems. The ke
forests are a general progr
functional or logic progranm

7.3 Future Work

While it is conceptually p!
order to select from it cor
problems that so far have «
Some machine architect
As temporaries are not rep
derivor equations such as

m(tmove r)= m(r),
and hence to chain product
R— R.

This means that the gra
on the target side, to circul
isters (maybe of different r

> can solve both equa-
However, this only

(2), we may first solve
; a shared forest w rep-
, T2, - - - for the register
1 alloc(t, regs) = true,
ster assignment (i.e. a
7ith the given list regs

es for alloc, we obtain
: procedure applies to
). The narrowing tree
of paths for different
rowing derivation not
variables, and hence

ions that load d into
vy — lvg « r] and

', ¢),d)), and
D).

> may form f_prog2 :=
all encodings that do
:ost phases can just as
nd f_cost2. Of course,
T]lA .

n, based on tree pars-
rewriting [4] combine
ciency is achieved by
ted pattern matcher.
ther machine specific
n, register allocation,
1 maybe others. But
e as terms over some

of [1], [5] is an imple-
cost analysis immedi-
»oth work bottom-up,

63

the y can be interleaved, and no shared forests of target programs need to be
constructed in this case. The approach of [16] and that of [4] are more flexible
and can detect even more encodings, as they are able to perform rewriting on
the intermediate or target term. Cost considerations are built into the pattern
matcher. If certain decisions were to be delayed, shared forests could be used
to represent the result.

The specific virtue of the approach presented here is the gain in modularity
of code generation, in particular on the specification level. While the overall
specification adheres to the structure recommended in (9] for verifiabiliy, dif-
ferent ways of implementing overall code generation may be studied. As was
indicated with scheduling, cost analysis and register allocation above, once a
shared forest of target programs has been constructed, several subtasks may be
applied independently, and even in parallel.

7.2 Implementation Status

The lifting operation on signatures and attribute couplings has been integrated
into the compiler-writing system MARVIN [7) by M. Reinold [17]. While the
essential construction is straight-forward to implement, there is a severe com-
plication. Translations by attribute couplings according to [6] as well as in
MARVIN involve a ”semantic” subsignature Zg of T’ where in terms are eval-
uated in a particular Tg-algebra. Evaluation in the corresponding dZj-algebra
must be incorporated. Evaluation of 1 +0(2,v,3) to 0(3,v,4) is an example.
This extension is nontrivial, as this Tj-algebra is implemented by the compiler
writer. Although this implementation is operational, the techniques described
here have not yet been applied to a realistic code generator specification.

The MARVIN system was used for the implementation of transformations
on shared forests, mainly because it implements attribute couplings, which de-
scribe a rather general class of tree transformations. The construction used in
the Definition 5.1, however, may as well be implemented in other tree trans-
formation systems. The key is the proper handling of choice variables. Shared
forests are a general programming language technique that is well-suited for
functional or logic programming.

7.3 Future Work

While it is conceptually pleasing to represent the complete solution space In
order to select from it considerately, the pragmatics of this aproach present
problems that so far have only been dealt with in an ad-hoc way:

Some machine architectures require MOVEs between temporary registers.
As temporaries are not represented in the intermediate language, they lead to
derivor equations such as

m(tmove r) = m(r), ‘ (2)
and hence to chain productions in the tree grammar like
R— R. , (3)

This means that the grammar allows circular derivations, which correspond,
on the target side, to circulating an intermediate result through temporary reg-
isters (maybe of different register classes). The tree parser can be modified to

P I T

64

cut off such circular derivations, allowing only a finite number of such moves
(usually at most 1 or 2). They are actually needed in and sufficient for rare
situations like achieving a register pair or inserting sign extensions. But theo-
retically, they are always possible, and hence blow up the solution space, even
in a shared representation. A solution to this is given in [11].

On the conceptual side, there are several open questions. One is the follow-
ing: Applying narrowing as explained in section 6 yields an explicit enumeration
of the remaining solution set. It should be possible to modify the narrowing
procedure such that these solutions are again represented as a shared forest.

Furthermore, shared forests may have applications outside code generation
as well.

Acknowledgements

Thanks go to H. Hogenkamp for discussing these ideas, to M. Reinold who
extended the MARVIN system to shared forests, and to A. Bodzin for preparing
the manuscript.

References

(1] Balachandran A, Dhamdhere DM, Biswas . Efficient Retargetable Code
Generation Using Bottom-Up Tree Pattern Matching. Computer Lan-
guages, 15(3):127-140, 1990.

(2] Chen H, Hsiang J. Logic Programming with Recurrence Domains. In
Proceedings 18th International Colloquium on Automata, Languages and
Programming, vol 510 of Lecture Notes in Computer Science (LNCS), pp
20-34. Springer, 1991,

[3] Dershowitz N, Jouannaud JP. Rewrite Systems, vol B of Handbook of
Theoretical Computer Science, chapter 15. North Holland, 1990.

[4] Emmelmann H. Code Selection by Regularly Controlled Rewriting. In
(10], 1992.

[5] Ferdinand C, Seidl H, Wilhelm R. Tree Automata for Code Selection. In
[10], 1992.

[6] Ganzinger H, Giegerich R. Attribute Coupled Grammars. In Proceed-
ings of the International Symposium on Compiler Construction, pp 70-80.
Association for Computing Machinery (ACM), 1984. Issue 19(6),1984 of
SIGPLAN NOTICES.

(7] Ganzinger H, Giegerich R, Vach M. MARVIN - A Tool for Applicative
and Modular Compiler Specifications. Technical Report 220, University
Dortmund, 1986.

[8] Giegerich R. Code Selection by Inversion of Order-Sorted Derivors. TCS,
73:177-211, 1990.

[9]

[10]

(11]

[12]

[13]

(14]
[15]
(16]

(17]

Giegerich R. On th
In Proceedings SIG
sign and Implemer
NOTICES.

Giegerich R, Graha
niques. This vol o
1992,

Giegerich R, Hoger
Development. Subr

Giegerich R, Schm.
Tree Parsing and I
Symposium on Proj
Science (LNCS), pr

Hullot JM. Canoni
Conference on Auto

Science (LNCS), pp

Knuth DE. Semant
Theory 2, pp 127-1

Lang B. Towards a
Current issues in pa

Pelegri-Llopart E. I
tion. PhD thesis, U

Reinold M. Transfor
Dortmund, 1991. in

number of such moves
1 and sufficient for rare
n extensions. But theo-
;he solution space, even
n [11].
1ons. One is the follow-
an explicit enumeration
» modify the narrowing
ed as a shared forest.
>utside code generation

15, to M. Reinold who
A. Bodzin for preparing

ent Retargetable Code
hing. Computer Lan-

:urrence Domains. In
omata, Languages and
er Science (LNCS), pp

vol B of Handbook of
[olland, 1990.

itrolled Rewriting. In

for Code Selection. In

ammars. In Proceed-
snstruction, pp 70-80.
4. Issue 19(6),1984 of

. Tool for Applicative
eport 220, University

orted Derivors. TCS,

65

[9] Giegerich R. On the Structure of Verifiable Code Generator Specifications.
In Proceedings SIGPLAN ‘90 Conference on Programming Language De-
sign and Implementation, pp 1-8, 1990. Issue 25(6),1990 of SIGPLAN
NOTICES.

[10] Giegerich R, Graham SL (eds). Code Generation — Concepts, Tools, Tech-
niques. This vol of Workshops in Computing (WICS). Springer Verlag,
1992.

[11] Giegerich R, Hogenkamp H. Semi-Formal Validation in Code Generator
Development. Submitted, 1992.

[12] Giegerich R, Schmal K. Code Selection Techniques: Pattern Matching,
Tree Parsing and Inversion of Derivors. In Proceedings of the European

Symposium on Programming 1988, vol 300 of Lecture Notes in Computer
Science (LNCS), pp 247-268. Springer, 1988.

[13] Hullot JM. Canonical Forms and Unification. In Proceedings of the 5th
Conference on Automated Deduction, vol 87 of Lecture Notes in Computer
Science (LNCS), pp 318-334. Springer, 1980.

[14] Knuth DE. Semantics of Context-free Languages. Mathematical Systems
Theory 2, pp 127-145, 1968.

[15]) Lang B. Towards a Uniform Framework for Parsing. In Tomita M (ed),
Current issues in parsing technologies. Kluver Academic Press, 1990.

[16] Pelegri-Llopart E. Rewrite Systems, Pattern Matching and Code Genera-
tion. PhD thesis, UC Berkeley, 1987. EECS-Report.

[17] Reinold M. Transformationsin Shared Forests. Master’s thesis, Universitat
Dortmund, 1991. in German.

