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Current computing platforms encompass a dizzying variety of hardware and
software. A software application may live or die based on how portable it is.
Much has been written and talked about how to enhance portability. But few
tools are available to support writing portable code and, more importantly, to
encode porting knowledge. This paper describes IFFE, a tool and an accompany-
ing programming style that supports software portability. IFFE has enabled the
porting and construction of many large software applications on heterogeneous
platforms with virtually no user intervention.

1. Introduction

Over the past 10 years our department at AT&T Bell Laboratories has been en-
gaging in writing a number of popular software tools and libraries. Some examples are
Ksn [BK89], a shell language, NMAKE [Fow85], a language and system to build running
code from source, EASEL [V090, FSV94|, a language and system to build end-user applica-
tions, and sfio [KV91], a library for buffered I/O. These tools and libraries critically depend
on various resources provided in the underlying platforms. A major problem is that such
platform resources are not always available or usable in the same form. For example, to
tell whether or not a file descriptor is ready for I/O, on a BSD-derived system, one should
use the select () system call while on newer System V systems, poll() is required. The
problem is exacerbated by the fact that there are many hybrid systems, some from the same
vendor, that provide mixed services. In a different direction, most systems come with stan-
dard libraries such as string and mathematical packages but their implementations vary in
quality. An extreme case is the VAX family of machines that come with hardware instruc-
tions for certain string and character look-up operations that are more efficient than any
handcrafted software. It is desirable to take advantage of such platform-specific features to
optimize the software. Of course, in all cases, we have to be certain that a platform feature
used will work as expected. In sum, the porting problem is this: how can we certify that a
particular feature exists on a particular software/hardware platform and that it does what
is required?

This paper describes a tool IFFE (IF Features Exist) and an accompanying programming
style to help with writing portable code and gives a brief comparison of IFFE to other
approaches. IFFE has enabled us to: (1) port software to new platforms with minimal



changes, (2) codify learned knowledge during porting, (3) apply such knowledge without
relying on users to specify software/hardware parameters at each installation, and, last but
not least, (4) take advantages of special platform features to tune for performance.

2. A programming style for portability

Our overall approach to portability is to program applications against high level li-
braries that hide differences among underlying platforms. Then porting effort is mostly
confined to the library code. The traditional approach for selecting different code variants
is to use “#ifdef selector” where selector is a predetermined symbol based on some broad
categorization of machine type (e.g., sun or sgi) or operating system type (e.g., BSD or
SYSV). Such a broad categorization is convenient and does work in limited cases. It is also
necessary because the specific value of selector is typically supplied by some user during a
build and most users neither know nor have the means to find out and evaluate alternatives
in the full set of locally available features. However, in modern environments where mix-
tures of services are typical, more often than not this traditional way of code selection will
miss the mark and lead to the construction of bad code.

We solve the porting problem by applying a programming style supported by IFFE. It is
best to show this with an example. Consider the following code fragment taken from the
source of the sfpopen() function of the sfio library:

1: #include "FEATURE/vfork"
2: #if _1ib_vfork

3. # define fork vfork

4. # if _hdr_vfork

5: # include <vfork.h>
6: # endif

7: #endif

Line 1 includes a file FEATURE/vfork that defines two symbols, _1ib_vfork and _hdr_vfork.
Line 2 tests _lib_vfork for the existence of the system call vfork(). Line 3 redefines fork ()
to vfork() if it exists. sfopen() uses fork() to create a child process which, after some
minor processing, will be overlaid by a new command. So redefining fork() as vfork() is
good as the latter does the same job without the expensive operation of copying all data
of the parent. This use of vfork() works fine except on a SUN SPARC which has a major
problem that registers modified by a child process get propagated back to its parent. SUN
provides a compiler directive in the header file vfork.h to generate code that avoids this
bug. The existence of this file is tested on line 4 and its inclusion is done on line 5. It is
worth emphasizing that even though this problem is currently known to occur only on a
SUN SPARC, its solution is targeted at the nature of the problem and not at the machine.
Further, the solution is encoded in a form independent of machine architectures.

To complete the example, we need to see how the file FEATURE/vfork containing the symbols
_lib_vfork and _-hdr_vfork can be correctly and automatically generated. This is done via
the IFFE language and system. The keen reader may have noticed that a subdirectory
FEATURE is used to store the header file vfork which contains the definitions of the required
tokens. This file is generated from a specification file vfork in a parallel directory features.
The content of features/vfork is:



1ib vfork
hdr vfork

The line “lib vfork” determines if vfork() is a function in some standard library (e.g.,
/1ib/libc.a) by generating, compiling and linking a small test program that contains a
viork() call. Similarly, the line “hdr vfork” determines if the header file vfork.h exists
by compiling a small program containing the line “#include <vfork.h>”. Below is the
output file FEATURE/vfork for a SUN SPARC. Note that to prevent errors with multiply
inclusions the generated symbols are automatically wrapped with the wrapper #ifndef
and #endif which is generated from the base name of the feature test file features/vfork
and sfio, the parent directory of features and package name. By the way, in case the
reader may wonder why FEATURE does not have an S to parallel features, this is done to
distinguish the two directories on operating systems such as Windows NT where cases are
indistinguishable in directory and file names.

#ifndef _def_vfork_sfio

#define _def_vfork 1

#define _lib_vfork 1 /* vfork() in default 1lib(s) */
#define _hdr_vfork 1 /* #include <vfork.h> ok */
#endif

Though the above example works, we are actually a little too trusting as compilability is not
equivalent to execution correctness. For complete safety, IFFE scripts can specify programs
that must compile, link and execute successfully. Below is another IFFE specification from
sfio that tests for the correct register layout of a given VAX compiler:

vax asm note{ standard vax register layout }end execute{
main()
{
#ifndef vax
return absurd = 1;

#telse
register int ril, ri0, r9;
if(sizeof(int) != sizeof(char*))
return 1;
ril = r10 = r9 = -1;
asm("clrw rii");
if(r11 '= 0 || r10 !'= -1 || r9 !'= -1)
return 1;
asm("clrw rio");
if(r11 !'= 0 || r10 '= 0 || r9 !'= -1)
return 1;
asm("clrw r9");
if(r11 '= 0 Il r10 !'=0 || 9 !'= 0)
return 1;
return O;
#endif
}
}end

The above code will compile and run correctly only on a VAX with a proper compiler. If
that is the case, the output would be as below and we would know that the register layout
is as expected so that certain hardware instructions can be used safely for optimization.



#define _vax_asm 1 /* standard vax register layout */

IFFE specifications can be integrated with makefiles in the obvious fashion. Users of the
NMAKE system for code construction enjoy this integration automatically since NMAKE
scans the source code for any implicit header file prerequisites (a.k.a. #include dependen-
cies) including the FEATURE files. The additional NMAKE metarule shown below provides
the action to generate the FEATURE files. Note that where old MAKE is still used, NMAKE
can also be used to generate makefiles that contain all such header dependencies.

FEATURE/Y, : features/% .SCAN.c (IFFE) (IFFEFLAGS)
$(IFFE) $(IFFEFLAGS) run $(>)

To summarize, the programming style that we adhere to is:

1. Determine needed features that may have platform specific implementations.
2. Write IFFE probes to determine the availability and correctness of such features.

3. Instrument makefiles to run such IFFE scripts and create header files with properly
defined configuration parameters.

4. Instrument C source code to include FEATURE header files and use #define symbols in
these files to select code variants.

5. Restrain FEATURE file proliferation by limiting their use to libraries when possible.

By following the above steps during any port of a software system, porting knowledge is
never forgotten. Indeed, such knowledge is coded in a form that is readily reusable in dif-
ferent software systems. In extreme cases FEATURE files generated on one platform may be
used to bootstrap software on another. We have used this technique to port much of our
software to Windows NT. The port started with FEATURE files from a mostly ANSI/POSIX
system which were edited as necessary until ksh was up and running. Then, other soft-
ware systems could be rebuilt with IFFE whose interpreter is written in the Bourne shell
language [BouT8].

3. The IFFE language

An IFFE input file consists of a sequence of statements that define comments, options
or probes. A comment statement starts with # and is ignored. An option statement is used
to customize the execution behavior of the IFFE interpreter such as changing the compiler
or resetting debugging level. The heart of the IFFE language is the probe statement. Below
is its general form:

type name [ header ... ] [ library ... ] [ block ... ]

Here, type names the type of probe to apply, name names the object on which the probe is
applied, header and library are optional comma-separated lists of headers and libraries to



be passed to the compiler (non-existent ones are ignored), and block are optional multi-line
blocks that define the probe’s code.

type and name may be comma-separated lists in which case all types are applied to all
names. Though type can be any value defined by users, probes for certain common types
are provided by default. Below is a partial list of the common types.

1ib: Checks if name is a function in the standard libraries.

hdr: Checks if #include <name.h> is valid.

sys: Checks if #include <sys/name.h> is valid.

key: Checks if name is a C language keyword.

mac: Checks if name is a C preprocessor macro.

typ: Checks if name is a type defined in sys/types.h, stdlib.h or stddef.h.

cmd: Checks if name is an executable in a standard directories such as /bin or /etc.
If the command is found, the symbol _cmd_name is defined. In addition, each
directory containing the command generates the symbol _cmd_dir_name.

The default output for a successful probe is shown below. Note that since the constructed
output symbols must contain type, the names of the above default types are made short so
that there is less chance of name conflicts in older compilers that restrict symbols to less
than 8 characters.

#define _type_name 1 /* comment */

For example, the probe statement “lib bcopy,memcpy” checks to see if bcopy() and/or
memcpy () are available in a standard library (most likely /1ib/libc.a). On an old BSD
Unix system, the output of this probe is likely to be:

#define _1lib_bcopy 1  /* bcopy() in default lib(s) */

If the application code desires to use memcpy() exclusively then the probe output can be
used to mimic or replace memcpy () as follows:

#if _lib_bcopy && !_lib_memcpy
#define memcpy(to,from,size) (bcopy(from,to,size),to)
#endif

The optional blocks in a probe statement are labeled and indicate actions to be done. Each
block is of the form:

labelq{
line

}end



Certain block labels indicate that the respective blocks contain actions to be done after a
probe is executed. These labels are:

fail: If the probe fails then the block is evaluated as a shell script and its output is
copied to the output file.

pass: If the probe succeeds then the default output is suppressed, the block is evaluated
as a shell script and its output is copied to the output file.

note: If the probe succeeds then the block is output as a single comment.

cat: If the probe succeeds then the block is copied to the output file.

Other block labels mean that the respective blocks define probe code to override the re-

spective default code templates if any. A probe is consider successful if it exits with status
0. These block labels are:

run:
preprocess:
compile:
link:

execute:

output:

The block is run a shell script and the output is copied to the output file.
The block is preprocessed as a C program.

The block is compiled as a C program.

The block is compiled and linked as a C program.

The block is compiled and linked as a C program and is then executed; the
output is ignored.

The block is compiled and linked as a C program, is then executed and the
output is copied to the output file.

Below is an example of checking to see if the mmap() system call is available and if it does
the job. In this case, the default probe code template to check for the existence of mmap() in
some standard library (e.g., /1ib/1ibc.a) is not good enough. The execute block indicates
that the given program must be compiled and run to ensure that mmap() exists and works
as expected. The probe success is defined by returning 0 at the end of execution.

1lib mmap sys/types.h fcntl.h sys/mman.h execute{

main(argc,argv)
int argc;
char* argv([];
{ int fd;
caddr_t p;
if ((fd = open(argv[0],0)) < 0)
return 1;
if (' (p = (caddr_t)mmap(0,1024,PROT_READ,MAP_SHARED,fd,0L)) ||
p == ((caddr_t)-1) )
return 1;
return O;

}end



4. Writing and executing probes

A typical probe is a fragment of C code to be processed in some form. As discussed
in Section 3, certain probe types come with default code templates but others must be
supplied. This section discusses the style for writing C code in probe tests and briefly talks
about the IFFE interpreter.

4.1. C code in IFFE probes

To eliminate duplication and ease the writing of probe code, IFFE automatically pro-
vides a number of preprocessor macros for code in the blocks (preprocess, compile, link,
and execute). With proper use of these macros, code for probes can be written to be
transparently compilable with different C language variants including K&R-C, ANSI-C,
and C++ . The macros are:

_STD_: This symbol is #defined to 1 if the compiler is some flavor of ANSI-C or C++.
Otherwise, it is defined to be 0.

_VOID_: This is defined to be void for ANSI-C and C++ and char for older C.

_ARG_((2x)): This macro function expands function prototypes depending on the underlying
C language. Note that the extra pair of parentheses is required to avoid
variable argument macro conflicts.

NIL_(¢ype): This is a convenient macro that expands to ((type)0).

_BEGIN_EXTERNS_, _END_EXTERNS._:
These macros should be used around extern declarations to prevent their C
names from being mangled by certain C++ implementations.

Below is another example probe taken from the sfio library. This probe checks to see if
the routine _cleanup() of the stdio package is called when a program exits. sfio uses this
information along with other information on exiting conventions of the local environment
to configure its own clean-up procedure upon program exiting. Note that the type exit is
application-defined.

exit cleanup note{ exit() calls _cleanup() }end executef{
_BEGIN_EXTERNS_
extern void exit _ARG_((int));
extern void _exit _ARG_((int));
_END_EXTERNS_
void _cleanup() { _exit(0); }
main() { exit(1); }
}end

The probe works by explicitly calling from main() the exit() routine with an exit status
1 to signify probe failure. However, if _cleanup() is called implicitly, it will call _exit ()
which causes the program to exit with status 0 to signify probe success. Note that by
necessity this probe must be both compiled and run. _exit_cleanup is defined on our local



SunOS 4.1 system. We shall not go into detail about why this probe is necessary. Suffice it
to say that it was done when the sfio library was ported to an environment where there is
no atexit ()-like function and the code is expected to compile in a normal C environment
but it may be linked with C++ code.

4.2. The IFFE interpreter

As TFFE is a part of the build procedure, it must be maximally portable. For this
reason, the IFFE interpreter is written in the Bourne shell language which is supported on
all known UNIX systems. It currently stands at about 1200 lines of code. The interpreter
has a single option: if the first argument is “~” then the probe output is written to the
standard output rather than the default FEATURE/name. Other arguments are interpreted
as IFFE statements, where a “:” argument is the statement separator.

Below are a few typical interpreter invocations. The first one runs the probe tests in
features/1lib. The second one sets the compiler to CC, i.e., the C++ compiler, then runs the
probe tests in features/stdio.c. The last one tests to see if socket () and sys/socket.h
are available and writes the output to the terminal. This is a useful way to find out quickly
certain information about the programming environment.

iffe run features/lib
iffe set cc CC : run features/stdio.c
iffe - 1lib,sys socket

5. Comparisons with other approaches

The idea of automatically configuring a software system by probing the native platform
underlies the build procedure of many popular systems such as PERL [WS90] and older
versions of KSH and NMAKE. Some have gone as far as writing code to make exhaustive
lists of virtually all machine properties [Pem92]. The problem with this approach is that the
lists often include much more than necessary and may cause unwanted side effects due to the
large number of symbols. The programs that generate such lists are also susceptible to the
usual problems in porting and maintenance. Another approach based on a combination of
parameter and configuration files is reported in [TC92]. A cursory look at the examples given
in the paper show that this approach relies on some scheme of broad platform classification
(e.g., references to bsd43 or mips). As observed in Section 2, this scheme does not always
work and requires much more knowledge from the installer than necessary.

Closer in spirit to IFFE is the METACONFIG system by Larry Wall. This works by main-
taining a glossary of symbols and a depository of probe units corresponding to the symbols
in the glossary. Then, each application generates a shell script that includes all probes
corresponding to source symbols that appear in the glossary. This script is packaged with
the build procedure and run to generate the correct definitions of needed symbols each time
the system is rebuilt. Though this is similar to the IFFE approach, there are fundamental
differences between the systems at different usage levels as discussed below.

At the specification level, the symbols in the METACONFIG glossary are similar to those
generated by IFFE from the type and name attributes of probe statements. However, be-
cause the glossary is centrally maintained, it can become arbitrarily large, cumbersome and



difficult to master. By separating type and name as independent components of a symbol
(Section 3) and defining a small number of default type probe code templates, IFFE reduces
the effort to specify probes for such symbols. In fact, most IFFE probes for common objects
(e.g., checking the existence of bcopy()) reduce to single lines of specification. Sharing of
porting knowledge is done by reusing probe scripts. Thus, each application can define or
acquire exactly the symbols and probes that it needs.

At the code shipment level, METACONFIG introduces an asymmetry between the provider
and receiver of a software system because the receiver may lack the means to make the
METACONFIG-generated script. If new probes are required during a port by the receiver,
the only recourse is to modify this script which is not a simple procedure since the script
can be quite large and complex. Further, since the script is automatically generated, it is
also the wrong place to place such porting knowledge. IFFE scripts are treated as parts of
the source code. The IFFE interpreter is usually shipped along with the source code. In this
way, both the provider and receiver of a system see exactly the same thing. As the IFFE
language is relatively simple, new probes required by porting can be easily recorded.

Finally, at the development level, the reliance on a single script for parametrization means
that slight changes in probes may trigger long rebuilds since this script must be rebuilt and
run. Though this is not a problem with software already advanced to a stable stage, it can be
a serious nuisance during porting efforts. In addition, in an environment where parallel build
is available (e.g., running nmake on a network of homogeneous machines), the METACONFIG-
generated script can be the bottleneck and cause ineffective use of computing resource.
The IFFE approach of making a correspondence between source probe files (in features)
and generated headers (in FEATURE) holds an advantage because separate headers can be
generated on a as-needed basis and then they can be simultanously generated on different
processors if the environment allows. This approach also fits well with the general philosophy
of build tools such as MAKE [Fel79] and NMAKE that certain objects are generated from
other source objects.

6. Conclusion

As stated at the start of this paper, the portability problem boils down to finding
out from a platform exactly which of its features are required and whether such features
perform as expected. Any scheme of answering this question based on a broad classification
of platforms (e.g., BSD vs. SYSV or SPARC vs. MIPS) is doomed to fail because modern
environments tend to contain ad hoc mixtures of features. Even when a required feature is
available, a bane to programmers is that its implementation quality can vary greatly from
platform to platform. For example, the mmap () system call is a good alternative to read()
for reading disk data on many modern UNIX systems because it avoids a buffer copy. But
on certain platforms, mmap() simply does not work and on others, its performance can be
worse than read(). This makes it hard to effect high quality implementation of critical
software components such as the buffered I/O library sfio. IFFE and its accompanying
programming style provide an effective solution by enabling programmers to target specific
platform features and perform a variety of tests to determine their acceptability. The high
level IFFE language also provides a convenient mechanism to record porting knowledge in
a form that is easily shared among software developers.
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