
Feature-Based PortabilityGlenn S. Fowler (gsf@research.att.com)David G. Korn (dgk@research.att.com)John J. Snyder (jjs@research.att.com)Kiem-Phong Vo (kpv@research.att.com)AT&T Bell Laboratories600 Mountain AvenueMurray Hill, NJ 07974, USACurrent computing platforms encompass a dizzying variety of hardware andsoftware. A software application may live or die based on how portable it is.Much has been written and talked about how to enhance portability. But fewtools are available to support writing portable code and, more importantly, toencode porting knowledge. This paper describes Iffe, a tool and an accompany-ing programming style that supports software portability. Iffe has enabled theporting and construction of many large software applications on heterogeneousplatforms with virtually no user intervention.1. IntroductionOver the past 10 years our department at AT&T Bell Laboratories has been en-gaging in writing a number of popular software tools and libraries. Some examples areKsh [BK89], a shell language, Nmake [Fow85], a language and system to build runningcode from source, Easel [Vo90, FSV94], a language and system to build end-user applica-tions, and s�o [KV91], a library for bu�ered I/O. These tools and libraries critically dependon various resources provided in the underlying platforms. A major problem is that suchplatform resources are not always available or usable in the same form. For example, totell whether or not a �le descriptor is ready for I/O, on a BSD-derived system, one shoulduse the select() system call while on newer System V systems, poll() is required. Theproblem is exacerbated by the fact that there are many hybrid systems, some from the samevendor, that provide mixed services. In a di�erent direction, most systems come with stan-dard libraries such as string and mathematical packages but their implementations vary inquality. An extreme case is the VAX family of machines that come with hardware instruc-tions for certain string and character look-up operations that are more e�cient than anyhandcrafted software. It is desirable to take advantage of such platform-speci�c features tooptimize the software. Of course, in all cases, we have to be certain that a platform featureused will work as expected. In sum, the porting problem is this: how can we certify that aparticular feature exists on a particular software/hardware platform and that it does whatis required?This paper describes a tool Iffe (IF Features Exist) and an accompanying programmingstyle to help with writing portable code and gives a brief comparison of Iffe to otherapproaches. Iffe has enabled us to: (1) port software to new platforms with minimal

changes, (2) codify learned knowledge during porting, (3) apply such knowledge withoutrelying on users to specify software/hardware parameters at each installation, and, last butnot least, (4) take advantages of special platform features to tune for performance.2. A programming style for portabilityOur overall approach to portability is to program applications against high level li-braries that hide di�erences among underlying platforms. Then porting e�ort is mostlycon�ned to the library code. The traditional approach for selecting di�erent code variantsis to use \#ifdef selector" where selector is a predetermined symbol based on some broadcategorization of machine type (e.g., sun or sgi) or operating system type (e.g., BSD orSYSV). Such a broad categorization is convenient and does work in limited cases. It is alsonecessary because the speci�c value of selector is typically supplied by some user during abuild and most users neither know nor have the means to �nd out and evaluate alternativesin the full set of locally available features. However, in modern environments where mix-tures of services are typical, more often than not this traditional way of code selection willmiss the mark and lead to the construction of bad code.We solve the porting problem by applying a programming style supported by Iffe. It isbest to show this with an example. Consider the following code fragment taken from thesource of the sfpopen() function of the s�o library:1: #include "FEATURE/vfork"2: #if _lib_vfork3: # define fork vfork4: # if _hdr_vfork5: # include <vfork.h>6: # endif7: #endifLine 1 includes a �le FEATURE/vfork that de�nes two symbols, lib vfork and hdr vfork.Line 2 tests lib vfork for the existence of the system call vfork(). Line 3 rede�nes fork()to vfork() if it exists. sfopen() uses fork() to create a child process which, after someminor processing, will be overlaid by a new command. So rede�ning fork() as vfork() isgood as the latter does the same job without the expensive operation of copying all dataof the parent. This use of vfork() works �ne except on a SUN SPARC which has a majorproblem that registers modi�ed by a child process get propagated back to its parent. SUNprovides a compiler directive in the header �le vfork.h to generate code that avoids thisbug. The existence of this �le is tested on line 4 and its inclusion is done on line 5. It isworth emphasizing that even though this problem is currently known to occur only on aSUN SPARC, its solution is targeted at the nature of the problem and not at the machine.Further, the solution is encoded in a form independent of machine architectures.To complete the example, we need to see how the �le FEATURE/vfork containing the symbolslib vfork and hdr vfork can be correctly and automatically generated. This is done viathe Iffe language and system. The keen reader may have noticed that a subdirectoryFEATURE is used to store the header �le vfork which contains the de�nitions of the requiredtokens. This �le is generated from a speci�cation �le vfork in a parallel directory features.The content of features/vfork is:

lib vforkhdr vforkThe line \lib vfork" determines if vfork() is a function in some standard library (e.g.,/lib/libc.a) by generating, compiling and linking a small test program that contains avfork() call. Similarly, the line \hdr vfork" determines if the header �le vfork.h existsby compiling a small program containing the line \#include <vfork.h>". Below is theoutput �le FEATURE/vfork for a SUN SPARC. Note that to prevent errors with multiplyinclusions the generated symbols are automatically wrapped with the wrapper #ifndefand #endif which is generated from the base name of the feature test �le features/vforkand sfio, the parent directory of features and package name. By the way, in case thereader may wonder why FEATURE does not have an S to parallel features, this is done todistinguish the two directories on operating systems such as Windows NT where cases areindistinguishable in directory and �le names.#ifndef _def_vfork_sfio#define _def_vfork 1#define _lib_vfork 1 /* vfork() in default lib(s) */#define _hdr_vfork 1 /* #include <vfork.h> ok */#endifThough the above example works, we are actually a little too trusting as compilability is notequivalent to execution correctness. For complete safety, Iffe scripts can specify programsthat must compile, link and execute successfully. Below is another Iffe speci�cation froms�o that tests for the correct register layout of a given VAX compiler:vax asm note{ standard vax register layout }end execute{main(){#ifndef vaxreturn absurd = 1;#elseregister int r11, r10, r9;if(sizeof(int) != sizeof(char*))return 1;r11 = r10 = r9 = -1;asm("clrw r11");if(r11 != 0 || r10 != -1 || r9 != -1)return 1;asm("clrw r10");if(r11 != 0 || r10 != 0 || r9 != -1)return 1;asm("clrw r9");if(r11 != 0 || r10 != 0 || r9 != 0)return 1;return 0;#endif}}endThe above code will compile and run correctly only on a VAX with a proper compiler. Ifthat is the case, the output would be as below and we would know that the register layoutis as expected so that certain hardware instructions can be used safely for optimization.

#define _vax_asm 1 /* standard vax register layout */Iffe speci�cations can be integrated with makefiles in the obvious fashion. Users of theNmake system for code construction enjoy this integration automatically since Nmakescans the source code for any implicit header �le prerequisites (a.k.a. #include dependen-cies) including the FEATURE �les. The additional Nmake metarule shown below providesthe action to generate the FEATURE �les. Note that where old Make is still used, Nmakecan also be used to generate makefiles that contain all such header dependencies.FEATURE/% : features/% .SCAN.c (IFFE) (IFFEFLAGS)$(IFFE) $(IFFEFLAGS) run $(>)To summarize, the programming style that we adhere to is:1. Determine needed features that may have platform speci�c implementations.2. Write Iffe probes to determine the availability and correctness of such features.3. Instrument makefiles to run such Iffe scripts and create header �les with properlyde�ned con�guration parameters.4. Instrument C source code to include FEATURE header �les and use #define symbols inthese �les to select code variants.5. Restrain FEATURE �le proliferation by limiting their use to libraries when possible.By following the above steps during any port of a software system, porting knowledge isnever forgotten. Indeed, such knowledge is coded in a form that is readily reusable in dif-ferent software systems. In extreme cases FEATURE �les generated on one platform may beused to bootstrap software on another. We have used this technique to port much of oursoftware to Windows NT. The port started with FEATURE �les from a mostly ANSI/POSIXsystem which were edited as necessary until ksh was up and running. Then, other soft-ware systems could be rebuilt with Iffe whose interpreter is written in the Bourne shelllanguage [Bou78].3. The Iffe languageAn Iffe input �le consists of a sequence of statements that de�ne comments, optionsor probes. A comment statement starts with # and is ignored. An option statement is usedto customize the execution behavior of the Iffe interpreter such as changing the compileror resetting debugging level. The heart of the Iffe language is the probe statement. Belowis its general form:type name [header ...] [library ...] [block ...]Here, type names the type of probe to apply, name names the object on which the probe isapplied, header and library are optional comma-separated lists of headers and libraries to

be passed to the compiler (non-existent ones are ignored), and block are optional multi-lineblocks that de�ne the probe's code.type and name may be comma-separated lists in which case all types are applied to allnames. Though type can be any value de�ned by users, probes for certain common typesare provided by default. Below is a partial list of the common types.lib: Checks if name is a function in the standard libraries.hdr: Checks if #include <name.h> is valid.sys: Checks if #include <sys/name.h> is valid.key: Checks if name is a C language keyword.mac: Checks if name is a C preprocessor macro.typ: Checks if name is a type de�ned in sys/types.h, stdlib.h or stddef.h.cmd: Checks if name is an executable in a standard directories such as /bin or /etc.If the command is found, the symbol cmd name is de�ned. In addition, eachdirectory containing the command generates the symbol cmd dir name.The default output for a successful probe is shown below. Note that since the constructedoutput symbols must contain type, the names of the above default types are made short sothat there is less chance of name con
icts in older compilers that restrict symbols to lessthan 8 characters.#define _type_name 1 /* comment */For example, the probe statement \lib bcopy,memcpy" checks to see if bcopy() and/ormemcpy() are available in a standard library (most likely /lib/libc.a). On an old BSDUnix system, the output of this probe is likely to be:#define _lib_bcopy 1 /* bcopy() in default lib(s) */If the application code desires to use memcpy() exclusively then the probe output can beused to mimic or replace memcpy () as follows:#if _lib_bcopy && !_lib_memcpy#define memcpy(to,from,size) (bcopy(from,to,size),to)#endifThe optional blocks in a probe statement are labeled and indicate actions to be done. Eachblock is of the form:label{line...}end

Certain block labels indicate that the respective blocks contain actions to be done after aprobe is executed. These labels are:fail: If the probe fails then the block is evaluated as a shell script and its output iscopied to the output �le.pass: If the probe succeeds then the default output is suppressed, the block is evaluatedas a shell script and its output is copied to the output �le.note: If the probe succeeds then the block is output as a single comment.cat: If the probe succeeds then the block is copied to the output �le.Other block labels mean that the respective blocks de�ne probe code to override the re-spective default code templates if any. A probe is consider successful if it exits with status0. These block labels are:run: The block is run a shell script and the output is copied to the output �le.preprocess: The block is preprocessed as a C program.compile: The block is compiled as a C program.link: The block is compiled and linked as a C program.execute: The block is compiled and linked as a C program and is then executed; theoutput is ignored.output: The block is compiled and linked as a C program, is then executed and theoutput is copied to the output �le.Below is an example of checking to see if the mmap() system call is available and if it doesthe job. In this case, the default probe code template to check for the existence of mmap() insome standard library (e.g., /lib/libc.a) is not good enough. The execute block indicatesthat the given program must be compiled and run to ensure that mmap() exists and worksas expected. The probe success is de�ned by returning 0 at the end of execution.lib mmap sys/types.h fcntl.h sys/mman.h execute{main(argc,argv)int argc;char* argv[];{ int fd;caddr_t p;if((fd = open(argv[0],0)) < 0)return 1;if(!(p = (caddr_t)mmap(0,1024,PROT_READ,MAP_SHARED,fd,0L)) ||p == ((caddr_t)-1))return 1;return 0;}}end

4. Writing and executing probesA typical probe is a fragment of C code to be processed in some form. As discussedin Section 3, certain probe types come with default code templates but others must besupplied. This section discusses the style for writing C code in probe tests and brie
y talksabout the Iffe interpreter.4.1. C code in Iffe probesTo eliminate duplication and ease the writing of probe code, Iffe automatically pro-vides a number of preprocessor macros for code in the blocks (preprocess, compile, link,and execute). With proper use of these macros, code for probes can be written to betransparently compilable with di�erent C language variants including K&R-C, ANSI-C,and C++ . The macros are:STD : This symbol is #defined to 1 if the compiler is some
avor of ANSI-C or C++.Otherwise, it is de�ned to be 0.VOID : This is de�ned to be void for ANSI-C and C++ and char for older C.ARG ((x)): This macro function expands function prototypes depending on the underlyingC language. Note that the extra pair of parentheses is required to avoidvariable argument macro con
icts.NIL (type): This is a convenient macro that expands to ((type)0).BEGIN EXTERNS , END EXTERNS :These macros should be used around extern declarations to prevent their Cnames from being mangled by certain C++ implementations.Below is another example probe taken from the s�o library. This probe checks to see ifthe routine cleanup() of the stdio package is called when a program exits. s�o uses thisinformation along with other information on exiting conventions of the local environmentto con�gure its own clean-up procedure upon program exiting. Note that the type exit isapplication-de�ned.exit cleanup note{ exit() calls _cleanup() }end execute{_BEGIN_EXTERNS_extern void exit _ARG_((int));extern void _exit _ARG_((int));_END_EXTERNS_void _cleanup() { _exit(0); }main() { exit(1); }}endThe probe works by explicitly calling from main() the exit() routine with an exit status1 to signify probe failure. However, if cleanup() is called implicitly, it will call exit()which causes the program to exit with status 0 to signify probe success. Note that bynecessity this probe must be both compiled and run. exit cleanup is de�ned on our local

SunOS 4.1 system. We shall not go into detail about why this probe is necessary. Su�ce itto say that it was done when the s�o library was ported to an environment where there isno atexit()-like function and the code is expected to compile in a normal C environmentbut it may be linked with C++ code.4.2. The Iffe interpreterAs Iffe is a part of the build procedure, it must be maximally portable. For thisreason, the Iffe interpreter is written in the Bourne shell language which is supported onall known UNIX systems. It currently stands at about 1200 lines of code. The interpreterhas a single option: if the �rst argument is \{" then the probe output is written to thestandard output rather than the default FEATURE/name. Other arguments are interpretedas Iffe statements, where a \:" argument is the statement separator.Below are a few typical interpreter invocations. The �rst one runs the probe tests infeatures/lib. The second one sets the compiler to CC, i.e., the C++ compiler, then runs theprobe tests in features/stdio.c. The last one tests to see if socket() and sys/socket.hare available and writes the output to the terminal. This is a useful way to �nd out quicklycertain information about the programming environment.iffe run features/libiffe set cc CC : run features/stdio.ciffe - lib,sys socket5. Comparisons with other approachesThe idea of automatically con�guring a software system by probing the native platformunderlies the build procedure of many popular systems such as Perl [WS90] and olderversions of Ksh and Nmake. Some have gone as far as writing code to make exhaustivelists of virtually all machine properties [Pem92]. The problem with this approach is that thelists often include much more than necessary and may cause unwanted side e�ects due to thelarge number of symbols. The programs that generate such lists are also susceptible to theusual problems in porting and maintenance. Another approach based on a combination ofparameter and con�guration �les is reported in [TC92]. A cursory look at the examples givenin the paper show that this approach relies on some scheme of broad platform classi�cation(e.g., references to bsd43 or mips). As observed in Section 2, this scheme does not alwayswork and requires much more knowledge from the installer than necessary.Closer in spirit to Iffe is the Metaconfig system by Larry Wall. This works by main-taining a glossary of symbols and a depository of probe units corresponding to the symbolsin the glossary. Then, each application generates a shell script that includes all probescorresponding to source symbols that appear in the glossary. This script is packaged withthe build procedure and run to generate the correct de�nitions of needed symbols each timethe system is rebuilt. Though this is similar to the Iffe approach, there are fundamentaldi�erences between the systems at di�erent usage levels as discussed below.At the speci�cation level, the symbols in the Metaconfig glossary are similar to thosegenerated by Iffe from the type and name attributes of probe statements. However, be-cause the glossary is centrally maintained, it can become arbitrarily large, cumbersome and

di�cult to master. By separating type and name as independent components of a symbol(Section 3) and de�ning a small number of default type probe code templates, Iffe reducesthe e�ort to specify probes for such symbols. In fact, most Iffe probes for common objects(e.g., checking the existence of bcopy()) reduce to single lines of speci�cation. Sharing ofporting knowledge is done by reusing probe scripts. Thus, each application can de�ne oracquire exactly the symbols and probes that it needs.At the code shipment level, Metaconfig introduces an asymmetry between the providerand receiver of a software system because the receiver may lack the means to make theMetaconfig-generated script. If new probes are required during a port by the receiver,the only recourse is to modify this script which is not a simple procedure since the scriptcan be quite large and complex. Further, since the script is automatically generated, it isalso the wrong place to place such porting knowledge. Iffe scripts are treated as parts ofthe source code. The Iffe interpreter is usually shipped along with the source code. In thisway, both the provider and receiver of a system see exactly the same thing. As the Iffelanguage is relatively simple, new probes required by porting can be easily recorded.Finally, at the development level, the reliance on a single script for parametrization meansthat slight changes in probes may trigger long rebuilds since this script must be rebuilt andrun. Though this is not a problem with software already advanced to a stable stage, it can bea serious nuisance during porting e�orts. In addition, in an environment where parallel buildis available (e.g., running nmake on a network of homogeneous machines), theMetaconfig-generated script can be the bottleneck and cause ine�ective use of computing resource.The Iffe approach of making a correspondence between source probe �les (in features)and generated headers (in FEATURE) holds an advantage because separate headers can begenerated on a as-needed basis and then they can be simultanously generated on di�erentprocessors if the environment allows. This approach also �ts well with the general philosophyof build tools such as Make [Fel79] and Nmake that certain objects are generated fromother source objects.6. ConclusionAs stated at the start of this paper, the portability problem boils down to �ndingout from a platform exactly which of its features are required and whether such featuresperform as expected. Any scheme of answering this question based on a broad classi�cationof platforms (e.g., BSD vs. SYSV or SPARC vs. MIPS) is doomed to fail because modernenvironments tend to contain ad hoc mixtures of features. Even when a required feature isavailable, a bane to programmers is that its implementation quality can vary greatly fromplatform to platform. For example, the mmap() system call is a good alternative to read()for reading disk data on many modern UNIX systems because it avoids a bu�er copy. Buton certain platforms, mmap() simply does not work and on others, its performance can beworse than read(). This makes it hard to e�ect high quality implementation of criticalsoftware components such as the bu�ered I/O library s�o. Iffe and its accompanyingprogramming style provide an e�ective solution by enabling programmers to target speci�cplatform features and perform a variety of tests to determine their acceptability. The highlevel Iffe language also provides a convenient mechanism to record porting knowledge ina form that is easily shared among software developers.

7. References[BK89] Morris Bolsky and David G. Korn. The KornShell Command and ProgrammingLanguage. Prentice-Hall Inc., 1989.[Bou78] S. R. Bourne. The Unix Shell. AT&T Bell Laboratories Technical Journal,57(6):1971{1990, July 1978.[Fel79] S. I. Feldman. Make - A Program for Maintaining Computer Programs. Software- Practice and Experience, 9(4):256{265, April 1979.[Fow85] Glenn S. Fowler. The Fourth Generation Make. In Proceedings of the USENIX1985 Summer Conference, pages 159{174, June 1985.[FSV94] Glenn S. Fowler, John J. Snyder, and Kiem-Phong Vo. End-User Systems,Reusability, and High-Level Design. In Proc. of the 1994 USENIX Symp. onVery High Level Languages, October 1994.[KV91] David G. Korn and Kiem-Phong Vo. SFIO: Safe/Fast String/File IO. In Pro-ceedings of Summer USENIX Conference, pages 235{256. USENIX, 1991.[Pem92] S. Pemberton. The Ergonomics of Software Porting. Technical Report CS-R9266, Center for Mathematics and Computer Science of the Mathematical CentreFoundation, Amsterdam, December 1992.[TC92] D. Tilbrook and R. Crook. Large scale porting through parameterization. InProceedings of the USENIX 1992 Summer Conference, 1992.[Vo90] Kiem-Phong Vo. IFS: A Tool to Build Application Systems. IEEE Software,7(4):29{36, July 1990.[WS90] Larry Wall and Randal Schwartz. Perl. O'Reilly & Associates, 1990.BiographyGlenn Fowler is a Distinguished Member of Technical Sta� in the Software EngineeringResearch Department at AT&T Bell Laboratories in Murray Hill, New Jersey. He is cur-rently involved with research on con�guration management and software portability, and isthe author of Nmake, a con�gurable ANSI C preprocessor library, and the coshell networkexecution service. Glenn has been with Bell Labs since 1979 and has a B.S.E.E., M.S.E.E.,and a Ph.D. in Electrical Engineering, all from Virginia Tech, Blacksburg Virginia.David Korn received a B.S. in Mathematics in 1965 from Rensselaer Polytechnic Instituteand a Ph.D. in Mathematics from the Courant Institute at New York University in 1969where he worked as a research scientist in the �eld of transonic aerodynamics until joiningBell Laboratories in September 1976. He was a visiting Professor of computer science atNew York University for the 1980-81 academic year and worked on the ULTRA-computerproject (a project to design a massively parallel super-computer). Dave is currently asupervisor of research at Murray Hill, New Jersey. His primary assignment is to explorenew directions in software development techniques that improve programming productivity.His best know e�ort in this area is the Korn shell, Ksh, which is a Bourne compatible UNIX

shell with many features added. The language is described in a book which he co-authoredwith Morris Bolsky. In 1987, he received a Bell Labs Fellow award.John J. Snyder is a Member of Technical Sta� in the Software Engineering Research De-partment at AT&T Bell Laboratories, where he has done UNIX systems administration andnow works mostly on software for end-user systems. He received a Ph.D. in Econometricsfrom the University of Colorado in 1979. At that time he worked with FORTRAN on aCray-1 and UNIX on a DEC PDP 11/70 at the National Center for Atmospheric Researchin Boulder. After consulting in Mexico City for a couple of years, he joined AT&T in 1983.Kiem-Phong Vo is a Distinguished Member of Technical Sta� in the Software EngineeringResearch Department at AT&T Bell Laboratories in Murray Hill, New Jersey. His researchinterests include aspects of graph theory and discrete algorithms and their applications inreusable and portable software tools. Aside from obscure theoretical works, Phong hasworked on a number of popular software tools including the curses and malloc libraries inUNIX System V, s�o, a safe/fast bu�ered I/O library and DAG, a program to draw directedgraphs. Phong joined Bell Labs in 1981 after receiving a Ph.D. in Mathematics from theUniversity of California at San Diego. He received a Bell Labs Fellow award in 1991.

