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Abstract

Computational cognitive modeling has been established as a useful methodology for exploring and validating quantitative theories
about human cognitive processing and behavior. In some cases, however, complex models can create challenges for parameter explora-
tion and estimation due to extended execution times and limited computing capacity. To address this challenge, some modelers have
turned to intelligent search algorithms and/or large-scale computational resources. For an emerging class of models, epitomized by
attempts to predict the time course effects of cognitive moderators, even these techniques may not be sufficient. In this paper, we present
a new methodology and associated software that allows modelers to instantiate a model proxy that can quickly interpolate predictions of
model performance anywhere within a defined parameter space. The software integrates with the R statistics environment and is com-
patible with many of the fitting algorithms therein. To illustrate the utility of these capabilities, we describe a case study where we are
using the methodology in our own research.
� 2013 Elsevier B.V. All rights reserved.
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1. Introduction

Most cognitive models contain parameters that may be
adjusted in order to match human performance as closely
as possible. For example, models that include prior knowl-
edge might parameterize how well learned each piece of
knowledge is, as well as how easily confused it is with other
knowledge. Learning models may require an estimation of
learning rate. These are just a couple of examples reflecting
general attributes of cognition that may be tuned for par-
ticular people, tasks, and contexts (see Wong, Cokely, &
Schooler, 2010, for some examples).

The tunable parameters of a model define a parameter

space, with dimensionality the same as the number of model
parameters. In fitting parameters to models, the range of the
parameter space is sometimes constrained by imposing

theoretical constraints on parameter values. Fitting a model
to empirical data constitutes a search within the constrained
parameter space to find the parameter values that best aligns
the model’s performance with humans.

Parameter fitting varies widely across modeling method-
ologies, formalisms, and situations. For example, some
models may support mathematical manipulation to
determine the precise location of optima via the roots of a
derivative. For some other types of models, including com-
putational models that run in simulation, it is common prac-
tice to fit using a trial-and-error technique comparable to
mentally performing a gradient descent. As the dimensional-
ity of the parameter space increases, however, the viability of
this approach is undermined.

In some cases, higher dimensional computational
models may exhibit predictable relationships between the
model parameters and performance measures. Such rela-
tionships allow the high dimensional parameter space to
be approximated by several lower dimensional spaces,
which can be more easily managed with previously
mentioned techniques. Unfortunately, this is not always
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the case. Software-based models that are particularly slow
to execute or that have a complex high dimensional param-
eter space may make manual fitting solutions intractable.
In these cases, modelers can turn to intelligent search algo-
rithms, large-scale computational resources, or a combina-
tion thereof.

Intelligent search algorithms automate computational
model fitting while minimizing the number of model runs.
Techniques including adaptive mesh refinement (Best
et al., 2009), parallel genetic algorithms (Kase & Ritter,
2009), simulated annealing (Raymond, Fornberg, Buck-
Gengler, Healy, & Bourne, 2008), hill climbing (Kase,
2008), and stochastic regression trees (Moore, 2011) have
all been proposed for fitting computational cognitive mod-
els in large, complex parameter spaces.

Large-scale computational resources allow model runs
to be distributed among many processors simultaneously.
Each tunable model parameter can be enumerated within
its theoretically reasonable range using fixed increments.
The resulting combinations of parameter values constitute
a grid (see Fig. 1), and the points in the grid can be evenly
distributed among available computational resources for
parallel execution. To further reduce computational over-
head, some modelers have implemented intelligent search
algorithms on large-scale computing systems (Kase & Rit-
ter, 2009; Moore, 2011), which combine the benefits of
both approaches to reducing model exploration and opti-
mization times.

For some classes of models, the computational challenge
of fitting is problematic even when the combination of
intelligent search algorithms and large-scale computational
resources are applied. For example, there has been recent
interest in models that predict or explain the mechanisms
behind cognitive moderators such as caffeine (Kase, Ritter,

& Schoelles, 2009), emotions (Belavkin, 2001; Marinier,
Laird, & Lewis, 2009), time-on-task effects (Gonzalez, Best,
Healy, Kole, & Bourne, 2011; Gunzelmann, Moore, Gluck,
Van Dongen, & Dinges, 2010), sleep loss (Gunzelmann,
Gross, Gluck, & Dinges, 2009), stress (Ritter, Reifers,
Klein, & Schoelles, 2006), and aging (Meyer, Glass, Mueller,
Seymour, & Kieras, 2001). Furthermore, Dancy, Ritter, and
Berry (2012) propose a link between architectural parame-
ters and thirst, hunger, and the startle response.

The effects of many cognitive moderators unfold accord-
ing to specific, well-known mathematical signatures. For
example, drug influence is usually described as an exponen-
tial decay quantified by half-life (for example, Reder et al.,
2007). Giambra and Quilter (1987) used a two-term
exponential function to describe the decline in sustained
attention over time. The sleep research community has gen-
erated a number of mathematical models that describe the
homeostatic and circadian effects of sleep loss on alertness
(for examples see McCauley et al., 2009; Neri, 2004).
Lastly, numerous physiological influences on cognition
have been represented mathematically in systems like
Hummod (Hester et al., 2011) or physiologically-based
pharmacokinetic models (e.g., Gearhart, Robinson, &
Jakubowski, 2009; Gerlowski & Jain, 1983).

Because the effects of cognitive moderators vary dis-
tinctly over time, a thorough behavioral model validation
suggests fitting performance at multiple points in time.
Testing the fit of a single parameter combination then
involves evaluating the model multiple times to compare
against data at critical points in the time series. This effec-
tively multiplies the computational burden of the fitting
process by the number of sessions involved, which can be
problematic for slow, highly parameterized models, even
with the benefit of large-scale computational resources
and intelligent search algorithms.

Given this computational burden, an alternative to fit-
ting the entire time course is appealing. For example, one
could find the best fits for each session independently and
subsequently report a correlative statistic across the entire
time series to demonstrate a relationship between the mod-
erator function and model parameters. This is similar to an
approach we have used successfully in some of our earlier
work (e.g., Gunzelmann, Gluck, Moore, & Dinges, 2012;
Gunzelmann, Moore, et al., 2009). It is a reasonable
approach for circumstances where the empirical noise is
low and there is little colinearity between model parame-
ters. However, if either condition is unknown or not met,
this approach can be problematic.

For example, consider the case where there are multiple
parameters that have some colinearity. Under these cir-
cumstances, there may be a region of the parameter space
where similarly good fits to human performance are
observed.2 In these cases, stochasticity in the model’sFig. 1. A full combinatorial mesh can be sampled to construct a response

surface. This space is comprised of two continuous parameters, both
sampled from 0 to 7 with a step size of 1. The spheres represent the
sampled points of the actual surface, which is checkered. The vertical axis
represents one of the model’s dependent measures as sampled at each
point in the grid.

2 Colinearity among model parameters rightfully raises concerns about
over-parameterization, however, it may be limited to only some sessions of
the empirical data.
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performance will impact the selection of optimal parameter
values within the region. The resulting stochastically
determined parameter values are likely to be misleading
with regard to the relationship of the parameters to the
moderator function, if one exists. Noise in the empirical
data can disrupt regressions similarly by obscuring system-
atic underlying relationships.

By fitting the model against the entire time course simul-
taneously, the impact of these issues can be reduced while
maximizing statistical power, because fitting will use the
full set of empirical data rather than subsets of the data
relating to particular values for the moderator. This will
become particularly important as research on topics such
as sleep loss, stress, alcohol and age begin to focus on indi-
vidual differences.

Unfortunately there are few tools and little guidance in
the literature to support such efforts. This paper begins to
fill that gap by describing a fitting approach that we used
for our fatigue research to fit empirical data from individ-
ual participants at the resolution of their performance in
individual sessions. We begin with a description of the
methodology in the next section, and later describe a
specific case study.

2. Procedure

The fitting methodology described in this paper involves
two stages. In the first stage the behavior of the model is
captured by sampling a uniform grid as described in the
introduction for large-scale computational resources. An
intelligent search algorithm is then used in the second stage
to mine the data and locate optima. The intelligent search
algorithm will require model samples that fall between
nodes on the sampled grid, and rounding may introduce
undesirable error in the performance estimates of the
model. Therefore, an interpolation algorithm is used to
predict model behavior so the model appears to operate
continuously across the discretely sampled parameter space
for the search algorithm. The software that produces the
interpolations is called Sif, and that will be described in
more detail later. First we will discuss options for obtaining
the model data across a uniform grid.

2.1. Obtaining a uniform grid of samples

Constructing an evenly sampled full mesh such as shown
in Fig. 1 begins with the selection of parameter ranges,
which will define the boundaries of the available parameter
space, and parameter increments, which will influence the
accuracy of the interpolated values. A basic understanding
of the model’s performance characteristics is required when
selecting these values.

Appropriate spacing for the initial parameter grid is
essential, and will likely require some experimentation and
testing to determine the appropriate increments for each
parameter. Abrupt changes in the influence of parameters,
or non-monotonicity, could negatively impact the quality

and accuracy of the interpolation. As a starting point, a visu-
alization of the response surface can show the range of valid
behavior and the gradients can help prescribe parameter
increments (Gluck, Stanley, Moore, Reitter, & Halbrugge,
2010). Once decided, large-scale computational resources
can be used to sample the parameter space at each point until
the central tendency is revealed. This paper will describe sev-
eral potential approaches to acquiring these data.

The first, and most likely simplest, option available to
cognitive modelers is a high-performance computing grid
called MindModeling (Harris, 2008; see http://mindmodel-
ing.org to get started). MindModeling pools computational
resources from individual volunteers and high performance
computing clusters to sample model parameter spaces. The
system was originally designed for ACT-R models, but
recent additions now expand support to include models
written in Lisp, Python, R, Java, or any compiled software.

MindModeling provides a web page submission system
to modelers (see Fig. 2). Here the modeler specifies a list
of independent variables (i.e. free parameters in the model)
including the range and step size for each, the dependent
variables (i.e. performance measures), administrative
information, and the model itself. Once submitted, Mind-
Modeling distributes the model to available computational
resources for execution. The programmatic interface
between MindModeling and the model varies depending
on the type of model, but it is kept as simple as possible.
In some cases MindModeling will simply call a specified
function with parameter values and expect the model to
print out a labeled list of dependent measures in response.
For stochastic models, the callback function will need to
contain the necessary logic to repeatedly run the model
to produce a reliable measure of central tendency before
reporting aggregated results.

When the grid is complete, MindModeling provides the
results in a simple text file named “results.txt” that enumer-
ates the model’s dependent measures at each point in the
grid. Appendix A shows a partial listing of a results.txt file
generated from MindModeling. The file is suitable for
importing into most analysis tools such as R. It also pro-
duces a configuration file (hurricane_config_file.txt) that
describes the format of the parameter space and is compat-
ible with the interpolation tool described later in this paper,
called Sif (see Appendix B for an example).

Distributed high performance computing (HPC) clusters
provide an alternative option to modelers with access to
such resources, which may be the case for many govern-
ment and academic employees. Unfortunately the specific
usage of such systems varies, so detailed information must
be obtained from the particular system’s documentation
and administrators. Here we describe the general approach
to using a distributed Linux cluster.

From the user’s perspective, a distributed Linux HPC
cluster appears much like a large network of individual
Linux systems all attached to the same file server. Several
“head nodes” allow interactive Linux access via command
line shell. From the head nodes, users can create job scripts
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and submit them into a queue for execution. Some basic
knowledge of shell scripting will be necessary. Specially for-
matted comment lines at the top of the job script provide
details to the scheduler about things such as how many
processing cores to reserve, how long they need to be
reserved, and what account to bill the time against. The
scheduler executes the job script on computational
resources when they become available.

The simplest strategy to make use of distributed Linux
clusters is to create a small program that generates and
submits job script files. The generated files should contain
the code to execute the model at each unique combination
of parameter values in the space and save the results on the
file server. The potential for parallelization is maximized
when each job script runs the model for a single parameter
combination in the space, but this can require millions of
job scripts, which is impractical for most schedulers.
Instead, multiple points in the parameter space can be
managed in a single job script. The maximum number of
job scripts to generate will depend upon the limitations
imposed by the scheduler and the administrators of the sys-
tem. Most systems allow you to see queued jobs, and this

information can be used to get a feel for the distribution
of job submissions that are tolerated on any particular sys-
tem. As with MindModeling, the logic of running stochas-
tic models repeatedly and aggregating the results is the
responsibility of the modeler. Appendix C provides an
example script that was run on a DoD distributed Linux
HPC system as an example but it will require heavy adap-
tation for use on another cluster.

A third option also makes use of HPC systems, but it
does so more robustly and usually more efficiently than
the previous method. We have developed a piece of soft-
ware called Cell, which is designed to perform cognitive
model searches and explorations of parameter spaces on
HPC systems. One capability of Cell is to sample a model
into a grid space such as the one desired here. Only one job
script is necessary to run Cell on an HPC, and that job
script can be queued as many times as is reasonable/
desired. This relieves the modeler of the burden of writing
software to generate and submit job scripts and submitting
them in batches as described in the previous paragraph.

The job script should be defined so that each Linux sys-
tem in the cluster runs a single instance of Cell. The Cell
software randomly selects a point in the mesh grid and
repeatedly samples until a configured level of standard
error in the model’s performance is obtained. Note that
unlike the other two approaches described above, the mod-
eler does not need to run the model repeatedly and aggre-
gate the results – that functionality is built into Cell. Upon
completing a point in the parameter space, Cell will repeat
the process with another randomly selected point. Data are
shared across systems via log files on the shared drive that
are regularly scanned for updates. (A more efficient net-
work broadcasting approach is also available for those
HPC systems that allow it.)

Because the Cell software may be running across many
machines at the same time, it is inevitable that a point will
be selected that has already been completed by another
computational node. In this case, Cell will either agree with
the earlier assessment of standard error and select a
different point, or it will continue adding samples until
the standard error is within the preconfigured range. (A
discrepancy in standard error calculation between two
computational nodes can occur if there is a communication
failure when writing or reading data for that node, or if the
first node failed to complete sampling the point.) With this
approach, many computational nodes double-check the
work of their peers. Because data are shared across sys-
tems, two machines can select the same point in the param-
eter space and work on it at the same time. As each
machine runs out of points to work on, the process grace-
fully winds down (see Fig. 3).

All three procedures produce data reflecting the central
tendency of model performance at each point in the param-
eter space. The data will be used by Sif to provide quick
predictions of model behavior or parameter values within
the bounds of the grid searched. The data needs to be in
the form of space-separated text files such as the partial

Fig. 2. An example ACT-R model submission to construct a 2 dimen-
sional full combinatorial mesh (71 � 191) with MindModeling.
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listing in Appendix A, where each line contains a list of
parameter values followed by a list of model results. As
mentioned above, MindModeling produces such a file as
its normal output. Cell does as well, although it spreads
the data across multiple files (which is fine for Sif). When
using a non-Cell based HPC approach, it is incumbent
upon the modeler to correctly format the results file(s).

2.2. Using Sif

Sif must be provided with meta-information about the
result file’s format before it can interpret it correctly. For
example, it needs to know how many parameters were used
and how many measures from the model were taken so it
knows how many columns of data to expect. When using
MindModeling to acquire the model data, this file is gener-
ated automatically for you (hurricane_config_file.txt).
Otherwise, it must be created from scratch, but it was
intentionally designed for simplicity (see Appendix B). Cell
uses the exactly the same format for its configuration file
that Sif does, so once created for Cell it can be recycled
for use by Sif without modification.

The Sif server is started from the command line with an
option that specifies the configuration file to use. The grid
data file(s) can be quite large, and it can take several min-
utes for Sif to read through them, validate completeness,
and organize its internal data structures. Therefore, Sif
was designed as a client/server architecture so the server
that loads that model data can be started and configured
once for many client requests. Once started, the server
remains idle until it receives a request from a client; it must
be running to process client requests.

The Sif client issues queries by providing a set of param-
eter values to the Sif server by means of a network socket.
The server interpolates the model prediction based on the
nearest sampled points in the parameter space and returns
the result. The process is analogous to the hypertext trans-
fer protocol (HTTP) used by web browsers and servers to
manage web page requests. Parameter values are provided
instead of URLs, and model predictions are returned
instead of a web page. The Sif client comes in the form
of a command line program where the query results are
printed out, or it can be run as a function within R and
the data are returned as an array of values (R-Sif).

(a)

(b)
(c)

(d)
Fig. 3. (a) Node 1 selects and samples Point A until the standard error is within specifications, and then moves onto another randomly selected point. (b)
Node 2 selects Point A but first examines the data collected by Node 1 to revalidate that standard error is within specifications. (c) If Node 2 finds that the
standard error is not within specifications, it will continue sampling Point A until it is. (d) Occasionally Node 2 may select Point A before Node 1 has
completed sampling. In this case, both nodes will sample the same point and monitor each other’s progress until standard error is within specifications.
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Regardless of the client used, the Sif server must already
be initialized before it can service requests. Between client
requests the Sif server can be stopped and restarted as
desired because the clients do not maintain connections
(much like a web server restarting between browser
requests). The data grid can potentially be expanded during
this time, if desired. The only requirements are that the new
data plus the old data must still adhere to a uniformly sam-
pled grid, and the configuration file must be updated to
account for the new grid size and granularity of the com-
bined data sets.

2.3. Sif’s interpolation algorithm

The interpolation algorithm warrants a more detailed
explanation. When considering a two dimensional parame-
ter space, one might expect the response surface to be com-
prised of a grid of rectangles constructed out of the points
of the mesh (see Fig. 4). However, this would be erroneous
because each corner of the “rectangle” is measured inde-
pendently and there is no guarantee that the four points
are planar. Therefore an interpolation algorithm that can
account for the inevitable warping in arbitrary dimensions
is used to compute interpolated values:

V ¼
X2n

i¼1

V i

Yn

j¼1

1� dij

Dj

� �
ð1Þ

The equation sums the contributing influence of each
measured sample, Vi, enclosing the requested point in an
n dimensional space. The inner product,

Qn
j�1ð1�

dij

Dj
Þ, is

the weight for each sample based on the orthogonal dis-
tance along each dimension, j. The orthogonal distance in
a single dimension is simply 1� dij

Dj
, where dij represents

the distance from the interpolation point to the sample Vi

along dimension j, and Dj represents the total distance
along dimension j between the nearest surrounding samples
(see Fig. 4).

Sif’s computational performance is independent of grid
size (i.e. O(1) in big-O notation) as long as the amount of
data does not incur secondary effects such as page swap-
ping from the operating system. Sif’s performance at
approximating model behavior will depend upon the grid
granularity, with smaller sample increments producing
more accurate results, as well as the shape of the response
surface(s) at any given point.

In the next section we will introduce a case study featur-
ing a model of the psychomotor vigilance task (PVT). The
PVT is a reaction time task that has been shown to be
highly sensitive to the impact of fatigue on cognitive pro-
cessing (e.g., Dinges & Powell, 1985). Before delving into
the details of the PVT, however, we would like to conclude
this section by providing some evidence of Sif’s perfor-
mance. We do so by selecting two sets of parameters and
comparing the PVT model’s response with that predicted
by Sif. The parameters were chosen such that they reside
as far from the nearest grid samples as possible. In other
words, they are centered within the surrounding grid

samples, thus requiring the most speculative interpolation
possible. The results, shown in Fig. 5, are response time
distributions. Both samples showed strong matches
between Sif’s predictions and the model’s performance,
with root mean squared errors of .0015 and .0021, and cor-
relations of .999 and .997.

To contextualize the description of the software and
methodology, we describe a specific case study in the next
section. As foreshadowed, the case study focuses on fitting
the PVT model within the context of our fatigue research
(e.g., Gunzelmann, Gluck, Moore, & Dinges, 2012; Gun-
zelmann, Moore, Salvucci, & Gluck, 2011; Gunzelmann,
Gross, et al., 2009).

3. Fatigue and the pyschomotor vigilance task

Much of our work on fatigue focuses on a model of the
PVT, which is a reaction time task used frequently in
research on sleep as an index of alertness (Dinges & Powell,
1985). The model is implemented in ACT-R (Anderson,
2007), and it is relatively fast compared to many other
ACT-R models because of the limited knowledge required
to execute the task.

Washington State University (WSU) has developed a
mathematical approach to predicting fatigue in the form
of abstract, quantified values (McCauley et al., 2009). Their

Fig. 4. The hypercubes formed by a uniformly sampled mesh are typically
not planar. Interpolating a point in the middle of hypercube (represented
by the ”X”) requires special consideration for the warping that can occur
by the non-planar corners. The blow up section shows the enclosing nodes
around point X, V1 through V4, and the relationships required to
interpolate X in the non-planar rectangle using Eq. (1).
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equations use sleep history combined with circadian and
homeostatic effects as the basis for their predictions. We
have previously demonstrated the benefits of linking fati-
gue predictions to parameters in ACT-R so that behavioral
predictions can be made that span dependent measures and
tasks (e.g., Gunzelmann et al., 2009, 2012, 2011). One
advantage to binding fatigue predictions to architectural
parameters is that predictions can be made in novel tasks
without acquiring data under conditions of sleep loss
(Gunzelmann & Gluck, 2009; Gunzelmann et al., 2011).
Our goal was to determine the relationship between the
WSU fatigue predictions and the ACT-R PVT model at
level of fidelity such that we could make predictions about
changes in individual performance across time during indi-
vidual sessions distributed across days without sleep.

There are two parameters in ACT-R that we manipulate
to account for degraded performance in the PVT resulting
from sleep loss. These are iu, which represents initial pro-
duction utility, and ut, which represents production utility
threshold. They are both involved with the production
selection and execution process.

By default, model productions are assigned a “utility”

value of the amount specified by iu, and their utility plus
a random noise component must be higher than ut to be
eligible to fire. The closer iu is to ut, the greater the odds
that an otherwise eligible production will not fire. If no
production is executed, there is a gap in processing called
a microlapse (Gunzelmann et al., 2009), which leads to fur-
ther decrements on the production’s utility. From a theo-
retical perspective, decreases in iu reflect degradations in
alertness, whereas changes in ut capture the impact of
effort, with lower values representing greater effort.

Assuming a linear relationship between the WSU fatigue
predictions and the PVT model parameters, the influence
of fatigue on iu and ut can be expressed as follows, where
B(t) is the biomathematical model prediction at time t:

iu ¼ b1BðtÞ þ b3

ut ¼ b4BðtÞ þ b6

ð2Þ

The complexity of the fitting challenge, however, is actu-
ally greater than this. Whereas the WSU predictions, B(t),
provide a general prediction of fatigue based on sleep
patterns and time awake, they do not account for changes

unfolding over shorter time frames, like time on task effects
and the vigilance decrement (Ackerman, 2010; Warm,
Parasuraman, & Matthews, 2008). For the PVT, we have
shown that this can be approximated with an additional
linear pressure on iu and ut as follows, where m is the num-
ber of minutes on task (Gunzelmann et al., 2010):

iu ¼ b1BðtÞ þ b2mþ b3

ut ¼ b4BðtÞ þ b5mþ b6

ð3Þ

Furthermore, we have shown that the processing cycle
rate of the PVT model should be considered an individual
difference (Gunzelmann, Moore, Gluck, Van Dongen, &
Dinges, 2009), and so we also allow the corresponding
parameter in ACT-R, dat, to vary across participants,
though this parameter is constant across time awake and
time on task. Therefore, to achieve our goal of fitting indi-
vidual participants, it is necessary to find the optimal val-
ues for the 6 beta coefficients and dat for each participant
in our experiment. In other words, fitting each individual
requires searching a 7 dimensional parameter space.

The data set we are fitting against consists of 24 sessions
spread across 3 days of sleep deprivation (n = 26), and we
used a biomathematical model (McCauley et al., 2009) to
generate predictions of fatigue, B(t), at each session based
on sleep history and time awake. Furthermore, we have
aggregated the empirical data from each 10-min session
into two “half-sessions” whose means are equivalent to
the means of minutes 3 and 8 (see Fig. 6). This aggregation
reduces noise in the data while retaining two within-session
samples needed to estimate b2 and b5. As a result we have a
total of 48 half-sessions of empirical data for each individ-
ual that we fit against.

Because the model is stochastic, multiple runs are
required to reveal the central tendency for comparison to
the empirical data. Typically for the PVT we use 100 runs
for this purpose, so testing a single set of coefficients
against 48 half-sessions would require 4800 model runs.
Even for a small, fast model like the PVT this would take
about an hour to run. This is avoided with Sif, which can
quickly interpolate model predictions at each of the 48 sets
of parameters without resorting to rounding techniques
that would introduce undesired error.

Fig. 5. Each plot represents a random sample from the PVT parameter space, showing the model’s actual performance overlaid with Sif’s predicted
performance.
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The R statistical package (R Development Core Team,
2011) provides a variety of methods for searching parame-
ter spaces. We have developed R-Sif, an R interface to exe-
cute Sif queries. R-Sif includes most of the same code that
is compiled into the standard Sif client, except it is pack-
aged as a shared library loadable by R and coupled with
a few convenience functions written in R.

Once the R-Sif library is loaded and initialized, a query.-

sif() function can be used to interpolate and import data
from the model parameter space into R. Each call interpo-
lates one sample out of the model parameter space based
on the architectural parameters (i.e. independent variables)
supplied as an argument. The resulting dependent variables
are returned as an ordered list.

The list returned from the query.sif() function can be
compared to empirical data to produce a measure of fit-
ness, whether it be Pearson’s R, root mean square error,
or some other calculation. Testing one set of parameters
(b1 through b6 and dat) results in a predicted response time
distribution that is summarized in 48 bins. These 48 predic-
tions must be compared and aggregated with the corre-
sponding empirical response distribution to produce one
overall fitness measure. Wrapping this procedure into a
function that returns the comparison result amounts to a
“fitness function” which can be used by many of R’s gen-
eral-purpose optimization and fitting routines such as
nlm() and optim(). Most optimization routines in R require
a fitness function, so in many cases it is straightforward to
swap out one fitting algorithm for another with no changes
to the fitness function itself. Appendix D provides a more
detailed explanation along with examples.

Regardless of the optimization algorithm chosen, the
results will yield predictions for coefficients b1 through b6

and dat. As mentioned previously, the McCauley et al.
(2009) biomathematical model provides fatigue estimates
given time away and sleep history, so we are now equipped
to make detailed performance predictions for any partici-
pant at any moment using Eq. (3) to parameterize our
model. At this point we have achieved our goal of mapping
the biomathematical model predictions and within-task
fatigue predictions onto cognitive architecture parameters
for any individual at any moment in time.

Although it is impractical to test experimentally, we can
estimate the computational savings that Sif provides. Fit-
ting a single participant using R’s genoud function
described in Appendix D required 7553 calls to the fitness
function, with each call requiring 48 model predictions.
Extrapolating to 26 participants and assuming conservative
model run times of 1 min/sample, it would require approx-
imately 17 years of computational time to produce fits such
as those described in this paper with real model runs
instead of Sif interpolations. With Sif, the computational
time for 26 participants is about 8 h, which is over four
orders of magnitude improvement.

4. Conclusion

Our research began with an effort to link dynamic fluc-
tuations in alertness with a cognitive architecture (e.g.,
Gunzelmann et al., 2009). Although we have made excel-
lent progress in this research, we have been constrained
at times due to limitations in our methodology. Until
now, we have not had tools with enough statistical power
to produce a single unifying model of fatigue that spans
several days, at an individual level, capable of making pre-
dictions at any point during the task. The increased statis-
tical power of fitting all sessions simultaneously, as
described in this paper, has allowed us to construct such
a model. A critical step along the way was to develop the
necessary tools.

The Sif software is an important development that pro-
vides a generic proxy service for any model with continu-
ous parameters. The proxy provides good performance
and based on our tests, predictions are very close to actual
model runs. Of course this necessitates that the data sup-
plied to Sif is at an appropriate level of granularity. If,
for example, the mesh is too sparse, the proxy will not be
able to convey higher frequency characteristics of model
behavior. The modeler will need to have some basic under-
standing of the parameter space and its frequency charac-
teristics in order to choose a suitable level of granularity.
The modeler should also verify that the predicted model
performance corresponds to the actual performance of
the model for parameter values corresponding to best fits
of the empirical data—we do not advocate using the inter-
polated data for purposes of making quantitative assess-
ments of fit. A disparity can indicate that the grid used
was too sparse.

Another important development was the R interface to
Sif. By providing a direct interface between the model
proxy and R, a large library of analytical tools is availed
to the modeler. In this paper we showed how to leverage
some of the optimization functions, but R has an incredibly
rich amount of functionality and there are other libraries
and functions useful for working with model data. For
example, the plotting libraries can be used to produce pub-
lication-ready graphics to describe model behavior. As
another example, some of the statistical tests could be used
for model comparisons.
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Fig. 6. Assuming a linear relationship between time on task and
performance, then the mean of the first half-session distribution should
equate to the mean of the minute 3 distribution, while the mean of the
second half-session distribution should equate to the mean of the minute 8
distribution.
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It could be argued that the creation of tools that enable
more convenient and more complex model parameter fit-
ting increases the likelihood of abuse through over-fitting.
However, we would counter that the validity of this
argument depends on the nature of the over-fitting. For
example, an over-abundance of free parameters is perhaps
the most common and serious mistake that leads to
over-fitting, yet it has little to do with the technology that
performs the fitting. The modeler must address this risk by
seeking the most parsimonious theory possible, and some
fitting algorithms and tool chains can actually help with
that analysis (Gluck et al., 2010).

This paper used our model of the PVT as a case study to
walk through the issues and resolution, but the methodol-
ogy is applicable to fitting any model to time series data
when the fluctuations in model parameter values that
change over time can be guided mathematically. For exam-
ple, drug influence is often characterized by metabolic half-
life, which could be mapped to theoretically suitable model
parameters with scaling coefficients determined by the
methodology described in this paper. The HumMod simu-
lation system (Hester et al., 2011) instantiates many such
mathematical models that can be used to moderate cogni-
tive parameters (Dancy et al., 2012).

Furthermore, the tools described in this paper can be
applied more generally to any parameter fitting task that
requires large numbers of model runs. For example, if a
model is to be validated against many data sets (perhaps
while exploring individual differences among hundreds of
participants), using Sif to mine the model can be more
computationally efficient than repeating individual
searches.

This paper presents tools and a methodology to find
relationships between mathematical and computational
models. As interest in capturing the effects of cognitive
moderators grows, modelers will be faced with similar
challenges to the ones described in this paper. When the
parameter space is unknown or does not allow for deter-
mining coefficients through a post hoc regression, a meth-
odology such as the one described in this paper will be
necessary to establish the relationship between physiologi-
cal predictions and architectural parameters. All of the
software discussed in this paper, including Cell, Sif, and
R-Sif, is available upon request.
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Appendix A. Partial listing of a grid data file

Wait Hedge-
up

Hedge-
down

Motor-
prep

Reaction-
time

0 1 0.75 0.0145 375.0
0 1 0.75 0.01 475.0
0 1 0.75 0.01225 475.0
0 1 0.75625 0.03475 375.0
0 1 0.76875 0.01675 375.0
0 1 0.75625 0.019 375.0
. . .

The first line of the data file can optionally contain column head-
ers. Columns are separated by white space. In this example, the
first 4 columns are model parameters, while the fifth column is
the computed reaction time with those parameters.

Appendix B. Example cell/sif configuration file

# The following lines define 5 model parameters. The
numbers indicate the start value,

# the end value, and the number of steps, respectively.
Note that this is very similar to, but

# slightly different from the MindModeling submission
page format.

IV = initial-wait 0 25 10 Constrained
IV = hedge-up 1 2.5 40 Constrained
IV = hedge-down .75 1 40 Constrained
IV = motor-feature-prep-time .01 .1 40 Constrained
IV = dat .025 .07 9 Constrained

# The following lines define what metrics are expected
from the model.

DV = go-quant-25.0
DV = go-quant-75.0
DV = go-quant-125.0
DV = go-quant-175.0
DV = go-quant-225.0
DV = go-quant-275.0
DV = go-quant-325.0
DV = go-quant-375.0
DV = go-quant-425.0
DV = go-quant-475.0
DV = go-quant-525.0
DV = go-quant-575.0
DV = go-quant-625.0
DV = go-quant-675.0
DV = go-quant-725.0
DV = go-quant-775.0
DV = go-quant-825.0
DV = go-quant-875.0
DV = go-quant-925.0
DV = go-quant-975.0

(continued on next page)
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# The following indicates
Tolerances = 0
# Indicates a full combinatorial mesh, such as shown in

Fig. 2
Distribution = FullMeshSpace
# The directory location of the results file(s)
Logs=.
# All results files will have the following prefix
LogPrefix = results

Appendix C. Example HPC job submission file

# This single job file covers five nodes in a large
parameter space. The file was

# automatically generated by a custom script designed
for this particular model and

# corresponding parameter space. This is one of many
job scripts created.

# The following lines inform the scheduler how long to
run the job (3 h), what

# type of machine we would like (2-core SMP machines),
and where to bill the time.

#!/bin/bash
#BSUB-W 03:00
#BSUB-o outfile
#BSUB-e errfile
#BSUB-J MakeSub-0–0
#BSUB-q standard
#BSUB-n 2
#BSUB-a SMP
#BSUB-P WPDOUSAF2772APAL

# The following runs the lisp-based cognitive model
using steel bank common lisp (sbcl)

# with 5 different sets of parameter values (i.e. 5 nodes in
the space).

# Six independent variable values are provided for each
model run as command line

# parameters, starting with the 0.
�/sbcl/sbcl – core �/sbcl/sbcl.core-quiet < mymodel.lisp

0 0 1.000517246 2.0098935135 0.015
�/sbcl/sbcl – core �/sbcl/sbcl.core-quiet < mymodel.lisp

0 1 0.9866429976 1.9959898206 0.015
�/sbcl/sbcl – core �/sbcl/sbcl.core-quiet < mymodel.lisp

0 2 0.897053506 1.9062101985 0.015
�/sbcl/sbcl – core �/sbcl/sbcl.core-quiet < mymodel.lisp

0 3 0.852123408 1.861184748 0.015
�/sbcl/sbcl – core �/sbcl/sbcl.core-quiet < mymodel.lisp

1 0 1.000517246 2.0098935135 0.015

# Deleting this file is used as a check to make sure that
the script completed successfully.

# If it does not disappear, an error occurred before it got
this far, and it can just

# be resubmitted.

rm falcon-MakeSub-0-0.job

Appendix D. R integration details

Initialization is accomplished by sourcing RSif.R which
will load the shared library and define the functions config-
ure.sif() and query.sif(). The configure.sif() function defines
the configuration file that will be used for all Sif queries, so
that must be passed as a parameter. For example:

At this point Sif can be queried. A Sif query requires two
arguments:

(1) A list of architectural parameter values (i.e. indepen-
dent variables), and

(2) The number of interpolated dependent measures that
are expected back. For example, a single query into
the parameter space may return 2 dependent vari-
ables such as reaction time and accuracy.

The function returns the results in an ordered list. For
example:

In this example, we pass two architectural parameters
into Sif (ut and iu), which would interpolate and return
39 dependent measures.3 The number of parameters and
the number of dependent measures returned should match
what is defined in the Cell configuration file.

R provides many functions for general-purpose optimi-
zation and fitting problems. During the course of this
research effort several were tested, but we chose the genoud

package (GENetic Optimization Using Derivatives)
(Mebane & Sekhon, 2011) because it reliably produced
good results (with a relatively larger computational bur-
den, it should be noted). However, most optimization rou-
tines in R use the same basic interface approach, so in most
cases it would be straightforward to swap out one algo-
rithm for another. Some examples of this will be provided
later.

Genoud, like other optimization routines, requires the
specification of a function that should be minimized or

3 In the case of the PVT model, each of the 39 dependent measures
represents a proportion of responses falling within a bin in a response time
distribution.
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maximized. It is through this function that the remaining
model-specific logic is provided. The function will be called
with a set of coefficients and is expected to return a measure
of fitness. To produce this result, the function will compute
the corresponding PVT model parameters at each half-ses-
sion based on the supplied coefficients and compute a fit-
ness metric with the empirical half-sessions. A simple
root mean square deviation was used as the fitness metric,
so the function essentially4 becomes:

. . .where targetData is a frame containing an individual
participant’s empirical dependent measures for each half-
session, and modelData is a similar frame for the model.

The calculateModelDataByHalfSession() is responsible
for computing the iu and ut values for each half -session,
querying Sif, and constructing a data structure for the
results. This code assumes that a global variable called
bmdata has been initialized to an array of predictions from
the boimathematical model of alertness. The data for min-
ute 3 is queried in the first loop, and minute 8 is appended
in the second:

Once the targetData frame is initialized, genoud can be
called with the command:

4 Colinearity among model parameters rightfully raises concerns about
over-parameterization, however, it may be limited to only some sessions of
the empirical data.
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In this example, the fitness function is specified with the
“fn” key while the number of parameters to optimize is
specified with “nvars.” A practical application of the gen-
oud function may specify additional parameters to opti-
mize or constrain the parameter search.

The calculateFitMetricByHalfSession() function can be
used with a number of optimization routines in R, making
algorithmic comparisons straightforward. For example, the
Nelder-Mead simplex method (Nelder & Mead, 1965)
might be desirable for its performance, and can be invoked
via the optim function as follows:

As with the genoud function, the fitness function is spec-
ified with the “fn” keyword. Nelder–Mead requires a seed
value—a starting point in the parameter space to begin
its search—that is specified with the “par” argument.
Another algorithm, simulated annealing, might be a rea-
sonable compromise between performance and quality:

As with the genoud function, practical applications may
need or benefit from specifying additional tuning parame-
ters for the optim function.
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