
Fold and Unfold for Program Semantics 

Graham Hutton 
Languages and Programming Group 

Department of Computer Science 
University of Nottingham, UK 

http://www.cs.nott.ac.uk/-gmh 

Abstract 

In this paper we explain how recursion operators can be used 
to structure and reason about program semantics within a 
functional language. In particular, we show how the re- 
cursion operator fold can be used to structure denotational 
semantics, how the dual recursion operator unfold can be 
used to structure operational semantics, and how algebraic 
properties of these operators can be used to reason about 
program semantics. The techniques are explained with the 
aid of two main examples, the first concerning arithmetic 
expressions, and the second concerning MiIner’s concurrent 
language CCS. The aim of the paper is to give functional 
programmers new insights into recursion operators, program 
semantics, and the relationships between them. 

1 Introduction 

Many computations are naturally expressed as recursive pro- 
grams defined in terms of themselves, and properties proved 
of such programs using some form of inductive argument. 
Not surprisingly, many programs will have a similar recur- 
sive structure, and many proofs will have a similar inductive 
structure. To avoid repeating the same patterns of program 
and proof again and again, special recursion operators and 
proof principles that abstract out the common patterns can 
be introduced, allowing us to concentrate on the details that 
are specific to each different application. 

In the functional programming community, much previ- 
ous work in this area has focussed on a recursion operator 
called fold, and on its associated proof principle called uni- 
versality. Fold captures a common programming pattern 
in which a list of values is processed in a certain recursive 
manner, and universality captures a common pattern of in- 
ductive proof concerning programs that process lists. Fold 
and universality have proved useful in a variety of applica- 
tion areas, including algorithm construction [l, 11, 21, hard- 
ware construction [7, 61, compiler construction [12], and au- 
tomatic program transformation [20, 3, 81. Using ideas from 
category theory, fold has been uniformly generalised from 
lists to a large class of recursive datatypes [lo, 141. 

In this paper we are concerned with the application of 
recursion operators in the area of program semantics. One 
of the most popular styles of semantics is the denotational 
approach [19], in which the meaning of programs is defined 
using a valuation function that maps programs into values 
in an appropriate semantic domain. The valuation function 
is defined using a set of recursion equations, and must be 
compositional in the sense that the meaning of a program 
is defined purely in terms of the meaning of its syntactic 
subcomponents. In fact, the pattern of recursion required 
by compositionality is precisely the pattern of recursion cap- 
tured by fold. Hence, a denotational semantics can be char- 
acterised as a semantics defined by folding over program syn- 
tax. Although widely known in certain circles, many func- 
tional programmers are still not aware of this connection. 

The recursion operator fold has a natural dual, called 
unfold, which captures a common programming pattern in 
which a list of values is produced (as opposed to processed) in 
a certain recursive manner. The dual proof principle, again 
called universality, captures a common pattern of coinduc- 
tive proof concerning programs that produce lists. Unfold 
has also been generalised from lists to a large class of recur- 
sive datatypes [lo, 141. While applications of fold abound, 
relatively little attention has been given to unfold in the 
functional programming community. 

Another popular style of semantics is the operational ap- 
proach [17], in which the meaning of programs is defined us- 
ing a transition relation that captures single execution steps 
in an appropriate abstract machine. The transition relation 
is defined using a set of inference rules, and the meaning of a 
program is given by repeatedly applying the relation to gen- 
erate a transition tree that captures all possible execution 
paths of the program. In fact, the pattern of recursion used 
to construct transition trees is precisely the pattern of recur- 
sion captured by unfold. Hence, an operational semantics 
can he characterised as a semantics defined by unfolding to 
transition trees. This connection has been developed using 
category theory [18, 211, hut most functional programmers 
are not aware of this connection. 

In this paper we explain how recursion operators can 
he used to structure and reason about program semantics 
within the functional language Haskell [16]. In particular, 
we show how fold can he used to structure denotational se- 
mantics, how unfold can he used to structure operational 
semantics, and how algebraic properties of these operators 
can he used to reason about program semantics. 

The techniques are explained with the aid of two main ex- 
amples, the first concerning arithmetic expressions, and the 
second concerning Milner’s concurrent language CCS [15]. 

280 

http://crossmark.crossref.org/dialog/?doi=10.1145%2F289423.289457&domain=pdf&date_stamp=1998-09-29


As the paper proceeds we adopt an increasingly categorical 
approach to semantics, to give a deeper understanding of 
the issues. However, previous knowledge of category theory 
is not required. The aim of the paper is to give functional 
programmers new insights into recursion operators, program 
semantics, and the relationships between them. 

2 Denotational semantics 

In denotational semantics [19], the meaning of terms is de- 
fined using a valuation function that maps terms into values 
in an appropriate semantic domain. In this section we ex- 
plain how a denotational semantics can be characterised as 
a semantics defined by folding over syntactic terms. 

Formally, a denotational semantics for a language T of 
syntactic terms comprises two components: a set V of se- 
mantic values, and a valuation function [ 1 : T -+ V that 
maps terms to their meaning as values. The valuation func- 
tion must be compositional in the sense that the meaning of 
a compound term is defined purely in terms of the meaning 
of its T-subterms. When the set of semantic values is clear, 
a denotational semantics is often identified with a composi- 
tional valuation function. 

2.1 Arithmetic expressions 

As an example, let us consider a language of simple arith- 
metic expressions, built up from the set Z of integer values 
using the addition operator +. The language E of such ex- 
pressions is defined by the following grammar: 

E ::= Z ] E+E 

We assume that parentheses can be used to disambiguate 
expressions if required. The grammar for expressions can 
be directly translated into a Haskell datatype definition, pa- 
rameterised over the type of values for flexibility: 

data Expr a = Val a 1 Add (Expr a) (Expr a) 

For example, the expression 1+ (2 + 3) is represented by the 
value Add (Val 1) (Add (Val 2) @al 3) ). From now on, 
we mainly consider expressions represented in Haskell. 

Arithmetic expressions have an the obvious denotational 
semantics, given by taking V as the Haskell type Int of in- 
tegers and [ 1 : Expr Int + Int as the evaluation function 
for expressions defined recursively as follows: 

[Val nl = n 

I[Add 2 Yn = bn + Ml 

This definition satisfies the compositionality requirement, 
because the meaning of compound expressions of the form 
Add 1: y is defined purely by applying + to the meanings of 
the subexpressions z and y. The evaluation function can be 
translated directly into a Haskell function definition: 

eval :: Expr Int -> Int 
eval (Val r-t) =n 
eval (Add x y) = eval x + eval y 

For example, eval (Add (Val I) (Add (Val 2) (Val 3))) = 
1+(2+3) = 6, or drawing expressions as trees: 

eval = 1 + = 6 

i I A A 
Val 2 Val 3 2 3 

Looking at this example, we see that an expression is evalu- 
ated by removing each constructor Val (or equivalently, re- 
placing each constructor Val by the identity function id on 
integers), and replacing each constructor Add by the addi- 
tion function (+) on integers. That is, even though eval 
was defined recursively, its behaviour can be understood 
non-recursively as simply replacing the two constructors for 
expressions by the functions id and (+). 

2.2 Fold for expressions 

Abstracting from the specific case of eval, we can consider 
the general case of a denotational semantics deno that gives 
meaning to arithmetic expression by replacing each Val by 
a function f, and each Add by a function g. By definition, a 
semantics defined in this manner will be compositional, be- 
cause the meaning of addition is defined purely by applying 
g to the meanings of the two argument expressions: 

deno (Val n) =fn 
deno (Add x y) = g (den0 x) (deno y) 

Since the behaviour of such functions can be understood 
non-recursively, why don’t we actually define them in this 
manner? This is precisely what fold allows us to do. Using 
fold for arithmetic expressions, we can define denotational 
semantics for expressions simply by supplying the function f 
that replaces each Val and the function g that replaces each 
Add. For example, using fold the denotational semantics 
eval can be simply defined as follows: 

eval = fold id (+) 

As another example, using fold we can define an alternative 
semantics camp tha.t doesn’t evaluate expressions directly, 
but rather compiles expressions into a list of instructions for 
execution using a stack. As for eval, defining the semantics 
using fold makes it compositional by definition: 

data Inst = PUSH Int 1 ADD 

conlp :: Expr Int -> [Instl 
camp = fold f g 

uhere 
fn = [PUSH nl 
g xs ys = xs ++ ys ++ [ADD] 

For example, camp (Add (Val 1) (Add @al 2) (Val 3))) 
= [PUSH 1, PUSH 2, PUSH 3, ADD, ADD]. 

The fold function itself can be defined simply by ab- 
stracting on the free variables f and g in the general defini- 
tion of a denotational semantics deno for expressions: 

fold f g (Val n) =fn 
fold f g (Add x y) = g (fold f g x) (fold f g y) 

281 



The type of fold is given by the following inference rule: 

f :: a -> b I3 :: b -> b -> b 

fold f g : : Expr a -> b 

2.3 Generalising 

Of course, the use of fold to define denotational seman- 
tics is not specific to our language of arithmetic expressions, 
but can be generalised to many other languages. For exam- 
ple, consider extending expressions with integer variables of 
the form Var c for any character c. Then the fold opera- 
tor would simply be generalised to take an extra argument 
function h to replace each constructor Var in an expression: 

fold f g h (Val n) =fn 
fold f g h (Add x y) = g (fold f g h x) 

(fold f g h y) 
fold f g h (Var c) =hc 

In turn, the denotational semantics eval would be gener- 
alised to give the meaning of expressions as functions from 
stores (containing the value of each variable) to integers. 
Assuming a type Store for stores and a function find for 
looking up the value of a variable in a store, eval is defined 
using the generahsed fold as follows: 

eval :: Expr Int -> (Store -> Int) 
eval = fold f g h 

where 
f n = \s -> n 
g fx fy = \s -> fx s + fy s 
h c = \s -> find c s 

Again, defining the semantics using fold makes it composi- 
tional by definition. As in this example, the set of seman- 
tic values for most non-trivial languages will usually involve 
functions in some way. For a more general discussion on the 
use of fold to return functions, see [4]. 

In general, we have the following simple connection be- 
tween denotational semantics and fold operators: 

Denotational semantics 

Folding over syntax trees 

3 Operational semantics 

In operational semantics [17], the meaning of terms is de- 
fined using a transition relation that captures execution steps 
in an appropriate abstract machine. In this section we ex- 
plain how an operational semantics can be characterised as 
a semantics defined by unfolding to transition trees. 

Formally, an operational semantics for a language T of 
syntactic terms comprises two components: a set S of states, 
and a transition relation -+ c S x S that relates states to 
all the states that can be reached by performing a single ex- 
ecution step. (For some applications, a more general notion 
of transition relation may be appropriate, but this simple 
notion suffices here.) If (s,s’) E -, we say that there is 
a transition from state s to state s’, and usually write this 
as s + s’. When the set of states is clear, an operational 
semantics is often identified with a transition relation. 

3.1 Arithmetic expressions 

Returning to our example from the previous section, simple 
arithmetic expressions have an obvious operational seman- 
tics, given by taking S as the Haskell type Expr of expres- 
sions, and ---) c Expr x Expr as the transition relation defined 
by the following three inference rules: 

Add (Val n) (Val m) + Val (n + m) 

x - 2’ Y - Y’ 

Addxy + Addx’y Add x y + Add 2: y’ 

The first rule states that two values can be added together to 
give a single value, and the last two rules permit the first rule 
to be applied to either argument of an addition expression. 
For example, the (concrete) expression (1 + 2) + (3 + 4) has 
two possible transitions, because the first transition rule can 
be applied to either argument of the top-level addition: 

(1+2)+(3+4) - 3+(3+4) 

(1+2)+(3+4) - (1+2)+7 

By repeated application of a transition relation, is is pos- 
sible to generate a transition tree that captures all possible 
execution paths for a syntactic term. For example, the ex- 
pression (1 + 2) + (3 + 4) gives rise to the following transition 
tree, which captures the two possible execution paths: 

10 10 

The inference rules defining the transition relation for 
expressions can be easily translated into a Haskell function 
definition. The relation is represented as a list-valued func- 
tion that maps expressions to lists of expressions that can 
be reached by performing a single execution step: 

trans *. Expr Int -> [Expr Intl 
trans (Val n) *i Cl 
trans (Add (Val n) (Val m)) = [Val (n+m)l 
trans (Add x y) 

= [Add x’ y I x' <- tram xl ++ 
[Add x y’ I y’ <- trans yl 

In turn, we can define a Haskell datatype for transition trees, 
and an execution function that converts expressions into 
trees by repeated application of the transition function: 

data Tree a = Node a [Tree al 

exec : : Expr Int -> Tree (Expr Int) 
exec e = Node e [exec e’ I e’ <- trans el 

Looking at the definition of exec, we see that an expres- 
sion is executed to yield a tree by taking the expression 
unchanged as the root of the tree (or equivalently, applying 
the identity function id on expressions), and generating a 

282 



list of residual expressions to be processed to give the sub- 
trees by applying the trans function. That is, even though 
exec was defined recursively, its behaviour can be under- 
stood non-recursively as simply applying the identity func- 
tion id to generate the root expression, and the transition 
function trans to generate a list of residual expressions to 
be processed to generate the subtrees. 

3.2 Unfold for trees 

Abstracting from the specific case of exec, we can consider 
the general case of an operational semantics oper that gives 
meaning as trees by using a function f to generate the root 
of the tree, and a function g to generate a list of residual 
values to be processed to generate the subtrees: 

oper : : a -> Tree b 
oper x = Node (f x) [oper x’ I x’ <- g xl 

Since the behaviour of such functions can be understood 
non-recursively, why don’t we actually define them in this 
manner? This is precisely what unfold allows us to do. 
Using unfold for trees, we can define operational semantics 
as trees simply by supplying the function f that generates 
the root of the tree, and the function g that generates the 
residual values. For example, using unfold the operational 
semantics exec can be simply defined as follows: 

exec = unfold id trans 

The unfold function itself is defined simply by abstract- 
ing on the free variables f and g in the general definition of 
an operational semantics oper as trees: 

unfold f g x = 
Node (f x) [unfold f g x’ I x’ <- g xl 

The type of unfold is given by the following inference rule: 

f :: a -> b g : : a -> [al 

unfold f g : : a -> Tree b 

3.3 Generalising 

Of course, the use of unf old to define operational semantics 
is not specific to our language of arithmetic expressions, but 
can be generalised to many other languages. That is, we 
have the following simple connection between operational 
semantics and unfold operators: 

I 1 

I Operational semantics 1 

Q 
Unfolding to transition trees 

This is precisely dual to the connection for denotational se- 
mantics given in the previous section. Hence, taking a struc- 
tured approach to program semantics using recursion opera- 
tors has revealed a duality between denotational and opera- 
tional semantics that might otherwise have been missed. In 
the next section we will see that using recursion operators 
also brings benefits when proving properties of sem. 

4 Reasoning about semantics 

One of the main reasons for defining the formal semantics 
of programming languages is to support formal reasoning 
about languages and programs written in them. In this sec- 
tion we explain how properties of semantics can be proved 
using the uniuer.9aZityof the recursion operator fold [13, 141, 
rather than explicit structural induction. 

4.1 Arithmetic expressions 

Consider the following three equations concerning our se- 
mantics for (finite) simple arithmetic expressions: 

(1) and [deno e’ = deno e I e’ <- trans e] = True 

(2) and [size e' < size e I e’ <- trans el = True 

(3) and Cn == deno e I n <- vals (oper e)] = True 

The first equation states that the transition function pre- 
serves the denotational semantics of expressions. The sec- 
ond equation states that the transition function decreases 
the size of expressions, where the size is defined as the num- 
ber of Add constructors. The last equation states that the 
denotational and operational semantics are equivalent, in 
the sense that the integer values in the transition tree gener- 
ated by the operational semantics are all equal to the value 
obtained from the denotational semantics. The auxiliary 
functions size and vals are easy to define. 

Equations (1) and (2) above can be proved by induction 
on the structure of e. In turn, by making use of these two 
auxiliary results, (3) can be proved by induction on the size 
of e. However, the two proofs using structural induction can 
also be proved using the universality of fold, which avoids 
the need for explicit use of induction. 

4.2 Universality for expressions 

For simple arithmetic expressions, the universality of fold 
is captured by the following equivalence: 

h (Val n) = f n 
h (Add x y) = g (h x) (h y) 

h = fold f g 

This equivalence states that fold f g is the unique solution 
to the first two equations, and can itself be proved using 
a simple structural induction. Indeed, the two equations 
are precisely the assumptions required to show that h = 
fold f g using structural induction. For specific cases then, 
by verifying the two assumptions (which can typically be 
done without the need for induction), we can then appeal 
to universality to complete the inductive proof that h = 
fold f g. In this manner, universality captures a common 
pattern of inductive proof, just as fold itself captures a 
common pattern of recursive definition. 

To prove equation (1) above using the universality of 
fold, it must first be expressed in the form h = fold f g. 
In this case, h can be defined simply by abstracting over e 
on the left-hand side of the equation: 

h e = and [deno e = deno e’ I e ’ <- trans el 

283 



Abstracting on the right-hand side of the equation gives the 
constant function \e -> True, which can be expressed in the 
form fold f g by defining f n = True and g x y = x %% y. 
Hence, by appealing to the universality of fold for expres- 
sions, we can conclude that equation (1) is equivalent to the 
following two equations: 

h (Val n) = True 
h (Add x y) = (h x) %% (h y) 

These equations can now be verified by routine calculations, 
without the need for an explicit induction. Universality can 
also be used to prove (2) in a similar way, again without the 
need for an explicit induction. 

5 Concurrent processes in CCS 

Up to this point, all our examples have been concerned with 
arithmetic expressions. For the remainder of the paper we 
show how our techniques apply to a real-life example, Mil- 
ner’s language CCS (Calculus of Concurrent Systems) for 
describing concurrent processes [15]. In this section we con- 
sider the Haskell datatypes required for the syntax and se- 
mantics of CCS processes, and show how they can be defined 
in an abstract manner as least jixpoints of functors. As we 
shall see in subsequent sections, this approach will permit a 
more abstract treatment of the semantics of processes. 

Given a set N of process names, and a set o of process 
actions, the language P of processes in CCS is defined by 
the following grammar: 

P ::= N -constants 

1 
-prefixing 

5: I Pi -(finite) choice 

I p 
-parallelism 

I prfi 

-restriction 
- rela belling 

We assume that parentheses can be used to disambiguate 
processes if required. Named processes are defined by (pos- 
sibly recursive) equations. The set o of actions is assumed to 
comprise input actions a, b, c, . . ., the corresponding output 
actions a,&, E, ., and the silent action T used to indicate 
synchronisation. A relabelling function f is a function from 
actions to actions that preserves their underlying structure, 

in the sense that f(~) = f(x) and f(r) = r. 
As a simple example of a process, consider the recursive 

equation A = a.A + b.A. Intuitively, this equation defines 
the process A that can either perform the action a and then 
continue as A again, or perform the action b and then con- 
tinue as A again. More formally, the meaning of a process 
can be described by a (possibly infinite) transition tree, in 
which the nodes represent the states of the process, and the 
edges are labelled with the actions that are performed in 
moving between states. For example, the meaning of A is 
given by the infinite tree pictured in Figure 1. 

Assuming types Nanre and Act for names and actions re- 
spectively, the grammar for processes can be directly trans- 
lated into a Haskell datatype definition: 

data Proc = Con Name 
I Pre Act Proc 
I Cho [Procl 
1 Par Proc Proc 
I Res Proc Act 
I Rel Proc (Act -> Act) 

a b 

/\ 

Figure 1: Transition tree for A = a.A + b.A 

(The Proc type could be parameterised over the type of 
actions, but we use a fixed type Act for simplicity.) In turn, 
a datatype for trees can be defined as follows: 

data Tree = Node [(Act ,Tree)] 

However, there is another approach to defining Proc and 
Tree that will permit the semantics of processes as trees to 
be defined in a more abstract manner. Rather than defin- 
ing these types directly as recursive datatypes, we prefer to 
define them indirectly as least fixpoints of functors. 

5.1 least fixpoints 

In semantics, it is common to model recursively defined val- 
ues as least fixpoints of non-recursively defined functions 
[19]. For the special case of recursively defined types, the 
least fixpoint Fix f of a type constructor f (a function from 
types to types) can be defined in Haskell as follows: 

nentype Fix f = In (f (Fix f)) 

For example, the recursive type Proc can be expressed as the 
least fixpoint of a non-recursive type constructor P, where 
the definition for P is precisely the same as for the original 
Proc type, except that each recursive call within the defini- 
tion is replaced by an instance of a type parameter p: 

type Proc = Fix P 

data P p = Con Name 
1 Pre Act, p 
I Cho Cpl 
I Par p p 
1 Res p Act 
1 Rel p (Act -> Act) 

Constructors for the new Proc type are defined simply by 
applying the tag In to the constructors for P: 

con n = In (Con n) 
pre a p = In (Pre a p) 
cho ps = In (Cho ps) 

par P 9 = In (Par p q) 
res p a = In (Res p a) 
rel p f = In (Rel p f) 

In turn, the recursive type Tree can be expressed as the 
least fixpoint of a non-recursive type constructor T: 

type Tree = Fix T 

data T t = Node C(Act,t)l 

284 



Given the above definitions, it can be shown that the 
Proc and Tree types defined as least fixpoints are isomorphic 
to the original types defined using explicit recursion. That 
is, the types are equivalent in the sense that there is a one- 
to-one correspondence between their values. 

5.2 Functors 

The next concept to be considered is that of a functor, which 
comes from category theory [9]. The notion of a functor is 
captured as a built-in class in Haskell, defined a.s follows: 

class Functor f where 

map :: (a -> b) -> (f a -> f b) 

This definition states that a type constructor f is a member 
of the class Functor if it is equipped with a map function 
that lifts functions of type a -> b to functions of type f a 
-> f b. Although not made explicit in the Haskell defini- 
tion, a functor must also preserve the identity function and 
distribute over function composition, in the sense that: 

map id = id 
map (g.h) = (map g).(map h) 

For example, the type constructor P can be made into an 
instance of the class Functor with the following definition: 

instance Functor P where 
map f x = case x of 

Con n -7 Con n 
Pre a p -> Pre a (f p) 
Cho ps -7 Cho [f p 1 p <- psi 
Par p q -> Par (f p) (f q) 
Res p a -> Res (f p) a 
Rel p g -> Rel (f p) g 

It is easy to verify that this definition satisfies the equations 
required of a functor. In turn, the type constructor T can 
be made into an instance of the class Functor as follows: 

instance Functor T where 
map f (Node xs) = 

Node [(a, f t) 1 (a,t) <- xsl 

In summary, we have now expressed the recursive type 
Proc as the least fixpoint of a non-recursive functor P, and 
the recursive type Tree as the least fixpoint of the non- 
recursive functor T. The map functions for both functors play 
no role yet, but they will in subsequent sections. 

6 Operational semantics of CCS 

As for most languages involving some form of concurrency, 
the standard semantics for CCS is an operational semantics 
1151. In this section we show how the operational semantics 
for processes as trees can be defined in Haskell in an abstract 
manner using a polytypic version of fold. 

The operational semantics of CCS is given by a transition 
relation + C P x o x P, where P is the set of processes, and 
o is the set of actions. If (P, a, P’) E -+, we say that the 
process P can perform the action a to become the process P’, 
and usually write this as P 2 P’. The transition relation 
+ is defined by the following set of inference rules: 

z (A = P) 
a.P -% P 

P -5 P’ Q * 9’ P -% P’ Q:Q’ 
PIQ~P’IQ PIQ~PIQQ’ P 1 Q I, P’ I Q’ 

b 
P -+ P’ 

(a, ii # b) 
P3 P’ 

P\a -f+ P’\a P[f] ‘2’ P’[f] 

For example, using these rules the named process A defined 
by A = a.A + b.A has two possible transitions: 

A:A A- bA 

By repeated application of the transition relation, it is pos- 
sible to generate a (possibly infinite) transition tree that 
captures all possible execution paths for a process. For ex- 
ample, the process A gives rise to the tree in Figure 1. 

The inference rules defining the transition relation for 
processes can be easily translated into a Haskell function 
definition. The relation is represented as a list-valued func- 
tion that maps processes to lists of (actionprocess) pairs 
that arise from single execution steps: 

trans :: Proc -> [(Act,Proc)l 
trans (In x) = case x of 

Con n -? trans (defn n) 
Pre a p -> C(a,p)l 
Cho ps -> concat (map trans ps) 
Par p q -7 [(a, par p’ q) I 

(a,p’) <- trans pl ++ 
C(b, par p q') I 

(b,q’) <- trans ql ++ 
[(Tau, par p’ q’) 1 

(a,p’) <- tram3 p, 
(b,q’) <- trans q, 
synch a bl 

Res p a -7 [(b, res p’ a) 1 
(b,p’) <- trams p, 
strip a /= strip bl 

Rel p f -7 [(f a, rel p’ f) I 
(a,p’) <- trans pl 

The auxiliary function defn maps process names to their 
definitions and should be defined as appropriate by the user, 
while synch decides if two actions can synchronise, and 
strip removes any bars from an action to give its under- 
lying name. Both synch and strip are easy to define. 

In turn, we can define an execution function that con- 
verts processes into trees by repeated application of the tran- 
sition function using the unfold function for trees: 

exec :: Proc -> Tree 
exec = unfold trans 

The general purpose unfold function for our type Tree of 
transition trees can itself be defined as follows: 

unfold f x = 
In (Node [(a, unfold f x’) I (a.x’) <- f xl) 

However, by exploiting the fact that Tree is defined as the 
least fixpoint of a functor, the execution function can be 
defined in a more abstract manner by repeated application 
of a transition co-algebra using a polytypic version of unfold 
that is not specific to any particular recursive datatype. 

285 



6.1 Co-algebras 

The concept of a co-algebra that we use comes from category 
theory, and generalises the idea of a transition function. In 
Haskell, a co-algebra for a functor f is a function of type 

a -> f a 

for some specific type a. For example, the transition func- 
tion for processes can be converted into a transition co- 
algebra for the functor T by the following simple definition: 

trans ’ :: Proc -> T Proc 
trans’ p = Node (trams p) 

A more general example of a co-algebra concerns the fixpoint 
type Fix f. In particular, the inverse function out of the 
tag In is a co-algebra for any functor f: 

out :: Fix f -> f (Fix f> 
out (In x) = x 

6.2 Polytypic unfold 

The co-algebra out is special among all co-algebras for a 
functor f, being in fact the final co-algebra. Technically, 
this means that for any other co-algebra g : : a -> f a, 
there is a unique function unfold g : : a -> Fix f such 
that the following diagram commutes [13, 141: 

unfold g 
a-----------+Fixf 

fa 
map (unfold g) 

*f (Fix f) 

Using this diagram and the fact that out is the inverse to 
In, the unfold function itself can be defined as follows: 

unfold g = In . map (unfold g) . g 

That is, the function unfold g first applies the co-algebra 
g to break down an argument of type a into a structured 
value of type f a, then applies the function map (unfold 
g) to recursively process each of the a components to give 
a value of type f (Fix f 1, and finally applies the tag In to 
give a value of the recursive type Fix f. In this manner, 
unfold is a general purpose function for producing values of 
a recursive type using a simple pattern of recursion. 

While previously we defined unfold functions that were 
specific to particular recursive datatypes (for example, trees) 
the above version of unfold is polytypic [5], in the sense 
that it can be used with any recursive datatype that can be 
expressed as the least fixpoint of a functor. 

In the case of processes, because the datatype Tree is 
expressed as the least fixpoint of the functor T, and the tran- 
sition function is expressed as a co-algebra trans ’ for T, the 
execution function that maps processes to trees can now be 
defined using the polytypic version of unfold: 

exec :: Proc -> Tree 
exec = unfold trans’ 

In summary, we have now expressed the operational se- 
mantics of processes as trees as the unique function unfold 

tram’ that makes the following diagram commute: 

unfold trans ’ pro= - - - - - - - - - - + Tree 

trans ’ 

I I 

out 

T Proc *T Tree 
map (unfold trans.‘) 

7 Denotational semantics of CCS 

In the previous section we defined an operational seman- 
tics for processes a.s trees by unfolding a transition func- 
tion expressed as a co-algebra. In this section we consider 
the less well-known denotational semantics for processes as 
trees, and show how it can be defined in a dual manner by 
folding a combining function expressed as an olgebru. 

7.1 Algebras 

In the spirit of category theory, the notion of a co-algebra 
is dual to that of an algebra. In Haskell, an algebra for a 
functor f is a function of type 

f a -> a 

for some specific type a. For example, the tag function In 
: : f (Fix f) -> Fix f is an algebra for any functor f. A 
more specific example of a co-algebra concerns the semantics 
of processes as trees. In particular, it is natural to define an 
algebra for the functor P as follows: 

comb :: P Tree -> Tree 
comb x = In (Node (case x of 

Con n -> 
Pre a t -> 
Cho ts -> 
Par t u -> 

denode (eval (defn n)) 
C(a,t)l 

Res t a -> 

Rel t f -> 

concat (map denode ts) 
[(a, comb (Par t’ u)) I 

(a,t’) <- denode tl ++ 
[(b, comb (Par t u’)) 1 

(b,u’) <- denode ul ++ 
[(Tau, comb (Par t’ u’)) 1 

(a,t’) <- denode t, 
(b,u’) <- denode u, 
synch a b1 

C(b, comb (Res t ’ a)) I 
(b,t’) <- denode t, 
strip a /= strip bl 

C(f a, comb (Rel t’ f)) 1 
(a,t’) <- denode t])) 

The auxiliary function eval will be defined shortly, while 
denode is the destructor function for trees: 

denode :: Tree -> [(Act,Tree)I 
denode (In (Node xs)) = xs 

We refer to comb as a combining function, because it 
takes a value built by applying a CCS operator to trees 
rather than to processes, and combines the trees into a single 
tree by interpreting the operator in the appropriate manner 
for trees. For example, the third case for parallel compo- 
sition Par t u states that if the tree t has an a-labelled 
branch to a subtree t ‘, the tree u has a b-labelled branch to 
a subtree u ’ , and the actions a and b can synchronise, then 
the resulting combined tree has a Tau-labelled branch to the 
recursively computed subtree comb (Par t ’ u’). 

286 



7.2 Polytypic fold 

The algebra In is special among all algebras for a functor 
f, being in fact the initial algebra. Technically, this means 
that for any other algebra g : : f a -> a, there is a unique 
strict function fold g : : Fix f -> a such that the follow- 
ing diagram commutes [13, 141: 

f (Fix f) 
map (fold g) 

*f a 

Fixf-----------+a 

fold g 

Using this diagram and that fact that In is the inverse to 
out, the fold function itself can be defined as follows: 

fold g = g . map (fold g) . out 

That is, the function fold g first applies the function out 
to break down an argument of the recursive type Fix f into 
a structured value of type f (Fix f), then applies the func- 
tion map (fold g) to recursively process each of the Fix f 
components to give a value of type f a, and finally applies 
the algebra g combine all the a components into a single 
result value of type a. In this manner, fold is a general 
purpose function for processing values of a recursive type 
using a simple pattern of recursion. 

While previously we defined fold functions that were 
specific to particular recursive datatypes (for example, ex- 
pressions), the above version off old is polytypic. Moreover, 
the definition for fold is precisely dual to that for unfold. 
Hence, taking an abstract approach to recursion operators 
has revealed an explicit duality between fold and unfold 
that might otherwise have been missed. 

Returning to processes, because the datatype Proc is ex- 
pressed as the least fixpoint of the functor P, and the com- 
bining function is expressed as an algebra comb for P, the 
denotational semantics of processes as trees can now be de- 
fined using the polytypic version of fold: 

eval : : Proc -> Tree 
eval = fold comb 

In summary, we have now expressed the denotational se- 
mantics of processes as trees as the unique strict function 
fold comb that makes the upper square in the diagram be- 
low commute, and dually, the operational semantics of pro- 
cesses as trees as the unique function unfold trans’ that 
makes the lower square commute. 

P Proc 
map (fold comb) 

+P Tree 

In comb 

fold comb --------+ 
hoc 1 1 _ _ - _ - - _ - + Tree 

I 
unfold trams ’ 

I 
trans ’ 

I 
out 

+ + 
T Proc 

map (unfold trans') 
*T Tree 

8 Reasoning about CCS 

We have now defined both operational and denotational se- 
mantics for CCS. It is natural to ask how the two semantics 
are related. In this section we show that they are equal by 
exploiting the universality of the recursion operator fold. 

8.1 Universality of fold 

For arbitrary recursive datatypes expressed as the least fix- 
points of functors, the universal property of fold is captured 
by the following equivalence (for strict h): [13, 141: 

g * map h = h . In ++ h = fold g 

Because fold is a polytypic operator, so this universal prop- 
erty is a polytypic proof principle [5]. Returning to our se- 
mantics for processes, it is easy to verify that unfold trans’ 
is strict, using the definitions of the functions concerned, 
together with the strictness of tags defined using newtype. 
Hence, applying the universal property gives: 

unfold trans' = fold comb 

0 

comb . map (unfold trans’) = unfold trans’ . In 

The final equation above can now be verified by a routine 
induction on the size of an argument p : : P Proc, where 
the size is defined as the number of In tags in p. Hence our 
operational and denotational semantics for CCS are equal 
for all processes of finite size. Further work is still required 
to extend the proof to processes of infinite size. 

The two semantics can also be proved equal using the 
dual universal property of unfold rather than that of fold, 
but the proof works out simpler using the later. 

9 Summary and future work 

In this paper, we have shown how fold and unfold can be 
used to structure and reason about program semantics within 
Haskell. The paper is based upon categorical work on se- 
mantics, but explaining the ideas using Haskell makes them 
simpler, accessible to a wider audience, and executable. In- 
teresting topics for future work include: 

l The application of the techniques to further examples, 
including languages in different paradigms; 

l The use of monadic fold operators to structure the de- 
notational semantics of programming languages with 
imperative effects such as mutable state; 

s Exploring recursion operators and algebraic properties 
that correspond to non-structural patterns of induc- 
tion, such as induction on the size of values; 

s Further applications of fold and unfold. 

Acknowledgements 

This work is supported by Engineering and Physical Sciences 
Research Council (EPSRC) research grant GR/L74491 Struc- 
tured Recursive Programming. Thanks to colleagues in Birm- 
ingham, Cambridge, Glasgow, Nottingham, Oxford, and York 
for many useful comments and suggestions. 

287 



References 

PI 

PI 

[31 

[41 

[51 

[61 

[71 

PI 

PI 

WI 

[I21 

P31 

D41 

PI 

1161 

Richard Bird. Constructive functional programming. In 
Proc. Marktoberdorf International Summer School on 
Constructive Methods in Computer Science. Springer- 
Verlag, 1989. 

Richard Bird and Oege de Moor. Algebra of Program- 
ming. Prentice Hall, 1997. 

Andy Gill, John Launchbury, and Simon Peyton Jones. 
A short-cut to deforestation. In Proc. ACM Confer- 
ence on Functional Programming and Computer Archi- 
tecture, 1993. 

Graham Hutton. Fold. In preparation, 1998. 

Johan Jeuring and Patrik Jansson. Polytypic pro- 
gramming. In John Launchbury, Erik Meijer, and 
Tim Sheard, editors, Advanced Functional Program- 
ming, LNCS 1129, pages 68-114. Springer-Verlag, 1996. 

Geraint Jones. Designing circuits by calculation. Tech- 
nical Report PRG-TR-10-90, Oxford University, April 
1990. 

Geraint Jones and Mary Sheeran. Circuit design in 
Ruby. In Staunstrup, editor, Formal Methods for VLSI 
Design, Amsterdam, 1990. Elsevier Science Publica- 
tions. 

John Launchbury and Tim Sheard. Warm fusion: 
Deriving build-catas from recursive definitions. In 
Proc. ACM Conference on Functional Programming 
and Computer Architecture, 1995. 

Saunders MacLane. Categories for the Working Mathe- 
matician. Number 5 in Graduate Texts in Mathematics. 
Springer-Verlag, 1971. 

Grant Malcolm. Algebraic data types and program 
transformation. Science of Computer Programming, 
14(2-3):255-280, September 1990. 

Lambert Meertens. Algorithmics: Towards program- 
ming as a mathematical activity. In Proc. CWI Sympo- 
sium, Centre for Mathematics and Computer Science, 
Amsterdam, November 1983. 

Erik Meijer. Calculating Compilers. PhD thesis, Ni- 
jmegen University, February 1992. 

Erik Meijer, Maarten Fokkinga, and Ross Paterson. 
Functional programming with bananas, lenses, en- 
velopes and barbed wire. In John Hughes, editor, Proc. 
Conference on Functional Programming and Computer 
Architecture, number 523 in LNCS. Springer-Verlag, 
1991. 

Erik Meijer and Graham Hutton. Bananas in space: 
Extending fold and unfold to exponential types. In 
Proc. 7th International Conference on Functional Pro- 
gramming and Computer Architecture. ACM Press, San 
Diego, California, June 1995. 

Robin Milner. Communication and Concurrency. Pren- 
tice Hall, 1989. 

John Peterson et al. The Haskell language report, 
version 1.4. Available on the World-Wide-Web from 
http: //awn .haskell .org, April 1997. 

[I71 

[I81 

[191 

PO1 

Pll 

Gordon Plotkin. A structured approach to operational 
semantics. Report DAIMI-FN-19, Computer Science 
Department, Aarhus University, Denmark, 1981. 

Jan Rutten and Daniele Turi. Initial algebra and 
final coalgebra semantics for concurrency. III J.W. 
de Bakker et al., editor, Proc. A Decade of Concur- 
rency - Reflections and Perspectives, LNCS. Springer- 
Verlag, 1994. 

David A. Schmidt. Denotational Semantics: A Method- 
ology for Language Development. Allyn and Bacon, 
Inc., 1986. 

Tim Sheard and Leonidas Fegaras. A fold for all sea- 
sons. In Proc. ACM Conference on Functional Pro- 
gramming and Computer Architecture. Springer, 1993. 

Daniele Turi and Gordon Plotkin. Towards a math- 
ematical operational semantics. In Proc. IEEE Con- 
ference on Logic in Computer Science, pages 280-291. 
Computer Society Press, 1997. 

288 


