CORE EXTERNAL REQUEST ”"lll' “llll ll“l || ““l' “Ill Ill”

IR

COR-10249030

RapidILL
CSIRO
ATTN: SUBMITTED: 2020-03-16 13:37:15
PHONE: PRINTED: 2020-03-16 14:15:38
FAX: REQUEST NO.: COR-10249030
E-MAIL: SENT VIA: Rapid ILL
RAPIDILL NO.: 15920879
COR Core Copy Book Chapter
TITLE: Functional Programming
PAGES REQUESTED: 353-370
DATE: 1990
AUTHOR OF ARTICLE: Graham Hutton
TITLE OF ARTICLE: Parsing Using Combinators
ISBN: 9781447131663
OTHER NOS/LETTERS: OCLC: 853259250
CALL NUMBER: http://rapid.exlibrisgroup.com/redirect?thid=MTEyNzkxNDA=
DELIVERY: Odyssey: odyssey.rapid.exlibrisgroup.com/ILL
REPLY: Mail:

Provided bv the CSIRO Document Deliverv Service 2/8

353
Parsing Using Combinators

Graham Hutton
Department of Computing Science

University of Glasgow
Scotland, UK

Abstract

In combinator parsing, the text of parsers resembles BNF notation. We
present the basic method, and show how it may be extended to more practical
parsers. We address the special problems of layout, and parsers with separate
lexical and syntactic phases. In particular, an elegant new way of handling
the offside rule is given. Many examples and comments are included.

1 Introduction

Broadly speaking, a parser may be defined as a program which analyses text to
determine its logical structure. For example, the parsing phase in a compiler takes
a program text as input, and produces a parse tree which expounds the structure
of the program. Many programs can be improved by having their input parsed.
The form of input which is acceptable is usually defined by a context-free grammar,
using BNF notation. Parsers themselves may be built by hand, but are most often
+ generated automatically using tools like Lex and Yacc from Unix [1].

Although there are many methods of parsing, one in particular has gained
widespread acceptance for use in lazy functional languages. In combinator pars-
ing, parsers are modelled directly as functions. Working in a higher-order language,
it is quite natural to consider higher-order functions which combine or transform
parsers. What may be surprising however, is that this approach leads to a parsing
notation in which the text of parsers closely resembles BNF notation itself. In this
manner, parsers are quick to build, and simple to understand and modify.

Combinator parsing is considerably more powerful than the commonly used
methods, being able to handle ambiguous grammars, and providing full backtrack-
ing if it is needed. In fact, we can do more than just parsing. Arbitrary semantic
actions may be added to parsers, allowing their results to be manipulated in any
way we please. For example, we could imagine generating some form of abstract
machine code as programs are parsed.

Although the underlying principles are widely known, dating back to [2], little
has been written on combinator parsing itself. In this paper we present the basic
method, and show how it may be extended to more practical parsers. The first
section collects all the basic material, and includes many examples and comments.
In the remainder of the paper, we address the special problems of layout, and parsers
with separate lexical and syntactic phases. In particular, we present an elegant new

K. Davis et al. {eds.), Funcrional Programming

© British Computer Society 1990

354

way of handling the offside rule. After working through this paper, the reader should
have sufficient knowledge to build a parser for a language like Miranda'.

The techniques we present may be used in any lazy functional language with a
higher-order/polymorphic style type system. However, all our programming exam-
ples are given in Miranda. The particular features and library functions of Miranda
are explained as they are used. A library of parsing functions taken from this paper
may be obtained by e-mail from the author, at (graham@cs.glasgow.ac.uk).

2 Parsing Using Combinators

A parser may be viewed as a function from a string of symbols to a result value. To
be able to combine parsers in sequence, we also need to know how much of the input
was used in producing the result. Thus, combinator parsers return a pair, comprising
a result value and the unused suffix of the input string. Sometimes a parser may
not be able to produce a result. For example, it may be looking for a letter, but
find a digit. A parser produces a result only if there is successful recognition of the
input string as a sentence of the grammar. In such cases the parser is said to have
succeeded, otherwise it has failed.

To help us see how parsers fit together, it is useful to consider their types. From
what has been seen already, the basic type is [symbol] — (value, [symbol]). However,
we must also take into account that a parser may fail. Rather than defining a new
algebraic type for the success or failure of a parser, we choose to have parsers return
a list of pairs as their result, with the empty list [J denoting failure, and a singleton
list indicating success. Although this representation may seem a little strange at
the moment, all will become clear later on.

Since we want to specify the type of any parser, regardless of the kind of symbols
and values it works with, these types are included as extra parameters. In Miranda,
such free type variables are indicated by stars.

parser * *x == [x] -> [(x*,[*])]

For example, a parser for arithmetic expressions may have type (parser char
expr), indicating that it takes a string of characters, and produces an expression tree.
Notice that parser is not a new type as such, but an abbreviation (or synonym),
whose sole purpose is to make types involving parsers easier to understand.

2.1 Primitive parsers

The primitive parsers are the building blocks of combinator parsing. The first of
these corresponds to the € symbol in BNF notation, denoting the empty string.
The succeed parser always succeeds, without actually consuming any of the input
string. Since the outcome does not depend upon the input, its result value must be
completely pre-determined, so is included as an extra parameter to the parser.

succeed :: ** -> parser * *%

succeed v inp = [(v,inp)]

1Miranda is a trademark of Research Software Limited.

355

This definition relies on partial application to work properly. The order of the
arguments means that if succeed is only applied to its first argument, the result is a
parser (i.e. a function) which always succeeds with this value. For example, (succeed
5) is a parser which always returns the value 5. Furthermore, even though succeed
plainly has two arguments, its type would suggest that it has only one. There is
no magic, the second argument has simply moved inside the type of the result, as
would be clear upon expansion according to the parser synonym.

The second primitive parser is in some sense the opposite of the first, in that it
always fails, regardless of the input.

fail :: parser * *x*
fail inp = []

The final primitive parser we define allows us to recognise individual symbols
in the input string. Rather than enumerating the acceptable symbols, it is usually
more convenient to provide the set implicitly, via a predicate which determines if
an arbitrary symbol is a member. Not surprisingly, successful parses return the
consumed symbol as their result value.

satisfy :: (* -> bool) -> parser * *
satisfy p [= fail []
satisfy p (x:xs) = succeed x xs , p x

= fail xs , otherwise

This parser may be regarded as the primitive or canonical parser, through which
all others factor. In simpler words, all other parsers will ultimately be defined in
terms of satisfy. Notice how succeed and fail are used in this example. Although
they are not strictly necessary, their presence makes the parser easier to read. It is
also important to note that satisfy trivially fails if there is no input.

Using satisfy we can define a parser for single symbols.

literal :: * -> parser * ¥
literal x = satisfy (=x)

For example, applying the parser (1iteral ’3’) to the input string "345" gives
the result [(3’,"45")]. In the definition of literal, (=x) is an example of an
operator section, in this case denoting the function which compares its argument
with x. Sectioning is a useful syntactic convention which enables us to partially
apply infix operators. It is explained in more detail in the Miranda manual.

2.2 Combinators

Now that we have the basic building blocks, we consider how they should be put
together to form useful parsers. In BNF notation, larger grammars are built piece-
wise from smaller ones using | to denote alternation, and juxtaposition to indicate
sequencing. So that combinator parsers resemble BNF notation, we define two

356

higher-order functions which correspond directly to these operators. Since higher-
order functions like these combine parsers to form other parsers, they are often
referred to as combinators® for short. We will use this term from now on.

The alt combinator corresponds to alternation in BNF. The parser (p1 $alt
p2) recognises anything that either p1 or p2 would. Normally we would interpret
either in a sequential (or exclusive) manner, returning the result of the first parser
to succeed, and failure if neither does. This approach is taken in [3]. In combinator
parsing however, we use inclusive either. That is, it is acceptable for both parsers to
succeed, in which case we return both results. In other words, instead of restricting
parsers to a single result, we allow an arbitrary number. This explains why we
decided to have a parser return a list of results.

Under this interpretation, alt is implemented simply by appending (denoted by
++ in Miranda) the result of applying both parsers to the input string. In-keeping
with the BNF notation, we use the Miranda $ notation and define this combinator
as an infix operator. Just as for sectioning, the infix notation is merely a syntactic
convenience. In particular, (x $£ y) is equivalent to (f x y) in all contexts.

alt :: parser * *x -> parser * ** -> parser * *x
(p1 $alt p2) inp = p1 inp ++ p2 imp

The reader may wish to verify that failure is the identity element for alternation.
That is, (fail $alt p) = (p $alt fail) = p. In practical terms this means that
alt has the expected behaviour if only one of the parsers succeeds.

There are two interesting implications in allowing parsers to produce more than
one result. Perhaps the most obvious is that we can handle ambiguous grammars,
with all possible parses being produced if so required. The feature has proved
particularly useful in natural language processing [4]. More often that not however,
we are only interested in the single longest parse of an input string (i.e. that which
consumes the most symbols). For this reason, it is normal in combinator parsing
to arrange for the parses to be returned in descending order of length. Although
this may sound quite difficult, in practice it usually happens quite naturally without
much special planning.

The second advantage is equally interesting. Under lazy evaluation, returning a
list of results automatically gives us an equivalent to backtracking [2]. That is, even
though a particular parse may fail, we do not necessarily need to start again. Some
of the work in getting to failure may be re-used in trying the next parse. We need
only go back to last alt where we haven’t yet tried the second branch. In practical
terms, this behaviour arises from the depth first traversal inherent in all top-down
methods such as combinator parsing.

The then combinator corresponds to sequencing in BNF. The parser (p1 $then
p2) recognises anything that both p1 and p2 would if placed in succession. Since
the first parser may succeed with many results, each with an input stream suffix,
the second parser must be applied to each of these in turn. In this manner, two
results are produced for each successful parse, one from each of the parsers. They
are combined (by pairing) to form a single result for each parse.

20ur informal use of this term is consistent with the standard A-calculus meaning.

357
then :: parser * %% ~> parser * *%k -> parser * (k% k%)

(p1 $then p2) inp = [((v1,v2),out2) | (vi,outl) <~ pl inp;
(v2,0ut2) <- p2 outi]

This combinator is an excellent example of list comprehension notation, anal-
ogous to set comprehension in mathematics (e.g. {22 | z € N A z < 10} defines
the first ten squares), except that lists replace sets, and elements are drawn in a
determined order. Combinator parsing is not dependant upon list comprehension
notation, but much of the elegance will be lost if it is not available.

Since alternation and sequencing are the primitive combining forms, it is impor-
tant to consider how they interact with themselves, and each other. Firstly, it is
easy to verify that alternation is associative. That is, (p $alt q) $alt r =p $alt
(q $alt r). In practice this means we do not not need to worry about bracketing
repeated alternation correctly. On the other hand, sequencing is not associative, due
to the tupling of results from the component parsers. In Miranda, all infix operators
defined using the $ notation are assumed to associate to the right. Thus, when we
write (p $then q $then r) it is interpreted as p $then (q $then r).

When they appear together in the same expression, sequencing is normally as-
sumed to have higher precedence than alternation. Unfortunately, in Miranda all
user defined infix operators are deemed to have the same precedence. This means
that extra bracketing will sometimes be needed to disambiguate expressions involv-
ing both alt and then. Even if such declarations are permitted in the language, it
is usual to take a new line for each alternative in a lengthy expression.

2.3 Manipulating values

Part of the result from a combinator parser is a value. When two parsers are
combined in sequence we get a pair of values. So that we are not limited to binary
parse trees, we need some way of manipulating the default result values from parsers.
This is the purpose of the using combinator. The parser (p $using £) has the same
behaviour as p, except that the function £ is applied to each of its result values.

using :: parser ¥ *k -> (k% -> ¥kk) -> parser * ¥¥x
(p $using £) inp = [(f v,out) | (v,out) <- p inp]

Although this combinator has no counterpart in pure BNF notation, it does have
much in common with the {- -} operator in YACC notation [1]. In fact, the using
combinator does not restrict use to building parse trees. Arbitrary semantic actions
can be used, allowing values to be manipulated in any way we please. For example,
in section 2.4 we show how to make an evaluator for arithmetic expressions from
a parser for expressions, simply by changing the actions. In the remainder of this
section we define some useful parsers and combinators.

In BNF notation, repetition occurs often enough to merit its own abbreviation.
When zero or more repetitions of a phrase p are admissible, we simply write p*.
Formally, this notation is defined by the equation p* = p p* | €. The many combinator
corresponds directly to this operator, and is defined in much the same way.

368

many :: parser * ** -> parser * [*x]

many p = ((p $then many p) $using coms) $alt (succeed [])

The action cons is the uncurried version of the list constructor (:), defined by
cons (x,xs) = x:xs. Since combinator parsers return all possible parses according
to a grammar, if failure occurs on the nth application of (many p), n results will be
returned, one for each of the 0 to n—1 successful applications. Following convention,
the results are returned in descending order of length. For example, applying the
parser many (literal ’a’) to the input "aaab" gives the output

[(naaau , ubn) s (uaau s "ab") , (uau . "aab") , (nu s "aaab")]

Not surprisingly, the next parser corresponds to the other common iterative form,
denoted by + in BNF notation. The parser (some p) has the same behaviour as
(many p), except that it recognises one or more repetitions instead of zero or more.
Note that (some p) may fail, whereas (many p) always succeeds.

some :: parser * ** -> parser * [*x]

some p = (p $then many p) $using cons

Using this combinator we can build parsers for numbers and words. A number
is simply a sequence of digits, and a word a sequence of letters.

number :: parser char [char]
word :: parser char [char]

number = some (satisfy digit)
where digit x = 0’ <= x <= '9’

word = some (satisfy letter)
where letter x = (’a’ <= x <

’2’) \/ (’A’ &= x <= 'Z’)

The next combinator is a generalisation of the literal primitive in section 2.1,
allowing us to recognise specific strings, instead of single symbols. The parser
(string xs) recognises the complete sequence of symbols xs. In particular, the
parser fails if only a prefix of the list is available.

string :: [*¥] -> parser * [*]

succeed []
(literal x $then string xs) $using coms

string (]
string (x:xs)

As well as being used the define other parsers, the using combinator is often used
to prune unwanted components from a parse tree. Recall that two parsers composed
in sequence produce a pair of results. Sometimes we are only interested in one of
these components. For example, it is common to throw away reserved words such
as “begin” and “where” during parsing. In such cases, two special versions of the
sequential combinator are useful, which throw away either the left or right result
values, as indicated by the position of the extra letter in their names.

359

xthen :: parser * ** -> parser % *¥% -> parser * *%x
thenx :: parser * ** -> parser * *%¥% -> parser * *x*

pl $xthen p2
pl $thenx p2

(p1 $then p2) $using snd
(p1 $then p2) $using fst

[}

The actions fst and snd are the standard projection functions on pairs, defined
by fst (x,y) = x and snd (x,y) = y. The two abbreviations xthen and thenx
throw away selected components from a compound result. Sometimes we are not
interested in the result values at all, only that the parser actually succeeds. For
example, if we find a reserved word during lexical analysis, it may be convenient to
return some short representation rather than the string itself. The return combi-
nator is useful in such cases. The parser (p $return v) has the same behaviour as
P, except that it returns the value v if successful.

return :: parser * %% <> %% ~> parser ¥ *%x%

p $return v = p $using (const v)
where const x y = x

2.4 Example

To conclude our introduction to combinator parsing, we will work through the deriva-
tion of a simple parser. Our example is adapted from [5]. Suppose we have some
programs which manipulate arithmetic expressions, defined in Miranda as follows:

expr ::= Num num | expr $Add expr | expr $Sub expr
| expr $Mul expr | expr $Div expr

While this representation is reasonable from a programming point of view, even
small expressions are difficult to understand in this form. The obvious solution is
to define a pretty-printer which converts expressions to a more readable form for
display. For example, it is easy to define a function showexpr such that

showexpr ((Num 3) $Mul ((Num 6) $Add (Num 1))) = "3%(6+1)"

If expressions are to be viewed in short notation, it would seem equally rea-
sonable that they should also be supplied in this form. While pretty-printing is
notionally quite simple, the inverse operation of parsing is usually thought of as be-
ing much more involved. As we shall see however, a combinator parser for arithmetic
expressions is no more complicated than a simple pretty-printer.

Before we start thinking about parsing, we must define a BNF grammar for
expressions. To begin with, the algebraic type expr may itself be cast in BNF
notation. All we need do is include parenthesised expressions as an extra case.

ezpn u= ezpn + ezpn | expn — expn | expn x expn | expnfezpn |
digit* | (expn)

360

Although this grammar could be used as the basis of the parser, in practice it
is useful to impose a little more structure. To simplify expressions, multiplication
and division are normally assumed to have higher precedence than addition and
subtraction. For example, 3 + 5 * 2 is interpreted as 3 + (5 * 2). In grammatical
terms, this means introducing a new non-terminal for each level of precedence.

ezpn u= term +term |term — term | term
term u= factor * factor | factor/ factor | factor
factor = digit* | (expn)

While addition and multiplication are clearly associative, division and subtrac-
tion are sometimes assumed to associate to the left. The natural way to express
this convention in the grammar is with left recursive production rules (such as
expn = expn — term). Unfortunately, in top-down methods such as combinator
parsing, it is well known that left recursion leads to non-termination of the parser
[1). In section 4.1 we show how to transform a grammar to eliminate left recursion.
For the present however, we will leave the grammar alone, and use parenthesis to
disambiguate expressions involving repeated operations.

Now that we have a grammar for expressions, it is a simple step to build a com-
binator parser. The BNF description is simply re-written in combinator notation,
and augmented with semantic actions to manipulate the result values. In fact, it
is convenient to remove all non-numeric symbols within the parser itself, using the
special sequential forms xthen and thenx.

expn = ((term $then literal ’+’ $xthen term) $using plus) $alt
((term $then literal ’-’ $xthen term) $using minus) $alt
term

term = ((factor $then literal ’#' $xthen factor) $using times) $alt
((factor $then literal '/’ $xthen factor) $using divide) $alt
factor

factor = (number $using value) $alt
(literal ’(’ $xthen expn $thenx literal ’)’)

All that remains is to define the semantic actions which build the parse tree.
Since the parser has already stripped the non-numeric components, the arithmetic
actions simply take a pair as their argument. In the following, numval is the standard
Miranda function which converts a numeric string to the corresponding number.

value xs = Num (numval xs)
plus (x,y) = x $Add y
minus (x,y) = x $Sub y
times (x,y) = x $Mul y
divide (x,y) = x $Div y

This completes the parser. For example, expn "2+(4-1)*3" gives

[(Add (Num 2) (Mul (Sub (Num 4) (Num 1)) (Num 3)) , "*),
(Add (Num 2) (Sub (Num 4) (Num 1)) , "x3n),
(Nun 2 S, 1R)]

361

More than one result is produced because the parser is not forced to consume
all the input. As we would expect however, the longest parse is returned first. This
behaviour results from the careful ordering of the alternatives in the parser.

Although a parse tree is the natural output from a parser, there is no such restric-
tion in combinator parsing. For example, simply by replacing the standard semantic
actions with the following set, we have an evaluator for arithmetic expressions:

value xs = numval xs
plus (x,y) =x+y
minus (x,y) =x -y
times (x,y) =x *y
divide (x,y) = x div y

Under this interpretation,
expn n2+(4_1)*3u = [(11’nn)’ (s’n*sn)’ (2’n+(4_1)*3u)]

We could imagine many other useful interpretations. For example, in [5] actions
are given which transform arithmetic expressions to postfix (reverse-polish) notation,
for evaluation on a stack-based machine.

3 Layout Conventions

Unlike the arithmetic expression example of the previous section, most programming
languages have a fairly large and involved syntax. To make life a little more pleasant
for the programmer, there is usually a set of layout rules which specify how white-
space (spaces, tabs and newlines) may be used to improve readability. In this section
we consider two common layout conventions, and show how they may be interpreted
in combinator parsing.

3.1 Free-format input

At the syntactic level, programs comprise a sequence of tokens. Many languages
adopt free-format input, imposing few restrictions on the use of white-space. It is
not permitted inside tokens, but may be freely inserted between them, although it is
only strictly necessary when two tokens would otherwise form a single larger token.
White-space is normally stripped out along with comments during a separate lexical
phase, in which the program to be parsed it divided into its component tokens. This
approach is developed in section 4.3.

For many simple parsers however, a separate lexer is not actually needed (as is the
case for the arithmetic expression parser of the previous section), but we still might
want to use white-space to make things easier to read. The nibble combinator
provides a simple solution. The parser (nibble p) has the same behaviour as p,
except that it eats up any white-space in the input string before or afterwards.

nibble :: parser char * -> parser char *

nibble p = white $xthen p $thenx white
vhere white = many (any literal " \t\n")

362

The any combinator used in this definition can often be used to simplify parsers
involving repeated use of literal or string. It is defined as follows.

any :: (* => parser ** *xx) -> [¥] -> parser *¥ *kx
any p = foldr (alt.p) fail

The library function foldr captures a common pattern of recursion over lists.
It takes a list, a binary operator @ and a value a, and replaces each constructor (:)
in the list by ®, and the empty list [] at the end by a. Often « is chosen to be
the right identity for ®. For example, foldr (+) 0 [1,2,3] = 1+(2+(3+0)) = 6.
The infix dot (.) denotes function composition, defined by (£.g) x = £ (g x). It
should be clear that any has the following behaviour:

any p [x1,x2,...,xn] = (p x1) $alt (p x2) $alt ... $alt (p xn)

If we now take a simple parser, and place a single nibble wherever we would like
to allow white-space, we have an analogue to free-format input, without altering the
structure of the parser at all. In practice, nibble is most often used with reserved
words and symbols, so that following abbreviation is useful.

symbol :: [char] -> parser char [char]
symbol = nibble.string

For example, applying the parser (symbol "hi") to thestring™ hi there",
gives ("hi","there") as the first result. There are two points worth noting about
free-format input. First of all, it is good practice to indent programs to reveal their
structure. Although free-format input allows us to do this, it does not prevent us
doing it wrongly. Secondly, extra symbols are usually needed in programs to guide
the parser in determining their structure. The classic examples are “begin”, “end”
and semi-colon from Pascal. Experience has shown that such symbols can be a
nuisance to the accomplished programmer, and a source of confusion to beginners.

3.2 The offside rule

Another approach to layout, as adopted by many functional languages, is to con-
strain the generality of free-format input just enough so that extra symbols to guide
the parser are no longer needed. This is normally done by imposing a weak inden-
tation strategy, and having the parser make intelligent use of layout to determine
the structure of programs. For example, consider the following program:

a = b+c
wvhere
b = 10
c = 15-5

d = a*x2

363

It is plainly obvious from the indention that a and d are intended to be top-
level definitions, with b and ¢ local to a. The constraint which guarantees that we

can always determine the structure of programs in this manner is usually given by
Landin’s offside rule [6], defined as follows:

If a syntactic class obeys the offside rule, every token of an object of
the class must lie either directly below, or to the right of its first token.
A token which breaks this rule is said to be offside with respect to the
object, and terminates its parse.

In Miranda, the offside rule is applied to the body of definitions, so that extra
symbols are not needed to separate definitions, or indicate block structuring. The
offside does not force a specific way of indenting programs, so we are still free to use
our own personal styles. It is worthwhile noting that there are other interpretations
of the offside rule. For example, the languages Occam (7] and Haskell [8] both take
a slightly different approach.

3.3 The offside combinator

Inkeeping with the spirit of combinator parsing, we would like to define a new
combinator which encapsulates the offside rule, and hides all the messy details.
Given a parser, the offside combinator should transform it to reflect the additional
constraints imposed by the offside rule. That is, the parser (offside p) should only
succeed if p consumes precisely those symbols which are onside with respect to the
first symbol in the input string.

Although the offside combinator is easy to imagine in principle, it is perhaps
not so obvious how it should be implemented. The problem is that parsers only
see a suffix of the entire input string, having no knowledge of what has already
been consumed by previous parsers. To implement the offside rule we need to know
the context of the input, to decide which of the following symbols are onside. Qur
solution to this problem is the key to the offside combinator. Rather than actually
passing an extra argument to parsers, we will simply assume that each symbol in
the input string has been paired with its row/column position at some stage prior
to parsing. To simplify to types of parsers involving the offside rule, we use the
abbreviation (pos *) for a symbol of type * paired with its position:

pos * == (*,(num,num))

Since the input string is now assumed to contain the position of each symbol,
the primitive parsing function satisfy must be changed slightly. As row/column
numbers are present only to guide the parser, it is reasonable to have satisfy throw
this information away from consumed symbols. In this manner, the annotations in
the input string are of no concern when building parsers, being entirely hidden
within the parsing notation itself. The other parsers defined in terms of satisfy
need a minor change to their types, but otherwise remain the same.

satisfy :: (* -> bool) -> parser (pos *) *

satisfy p [] = fail []

364

satisfy p (x:xs) = succeed a xs , p a
' fail xs , otherwise
where (a,(r,c)) = x

We are now able to define the offside combinator. The only complication is that
white-space must be treated as a special case, since it is never offside. In fact, the
white-space in the input is somewhat redundant, since having symbols paired with
their position may be viewed as an extreme form of layout. It is therefore both
convenient and reasonable to assume that white-space has been stripped from the
input prior to parsing. Most parsers will have a separate lexical phase anyway, in
which both comments and white-space are removed, so this is no great problem.

offside :: parser (pos *) *x -> parser (pos *) *x*

offside p inp = [(v,inpOFF) | (v,[]) <- p inpON]
vhere
inpON takewhile (onside (hd inp)) inp
inpQOFF = drop (#inpON) inp
onside (a,(r,c)) (b,(r’,c’)) = r’>=r & c’>=c

This combinator is quite unlike any of the others, so worth some explanation.
The offside rule tells us that for offside p to succeed, it must consume precisely
the onside symbols in the input string, so it is sufficient to only apply p to the
longest onside prefix (inpON). The pattern (v, [1) in the list comprehension filters
out parses which do not consume all such symbols. For successful parses, we simply
return the result value v, and remaining portion of the input string (inpOFF).

It is interesting to note that offside does not depend upon the structure of the
symbols in the input, only that they are paired with their position. For example, it
is irrelevant whether symbols are single characters or complete tokens.

For completeness, the four standard Miranda functions used in the definition of
offside are as follows. The function (takewhile p) returns the longest prefix of
a list, in which property p holds of each element. The function hd returns the first
element of a list, defined by hd (x:xs) = x. The function (drop n) removes the
first n elements from the front of a list. Finally, (#) denotes the length of a list.

4 Building Complete Parsers

Many simple grammars can be parsed in a single phase, but most programming
languages need two distinct parsing phases - lexical and syntactic analysis. Since
lexical analysis is nothing more than a simple form of parsing, it is not surprising
that lexers themselves may be built as combinator parsers. In this section we work
through an extended example, showing that by careful choice of notation, two-phase
parsers are no more complicated to build than one-phase parsers.

4.1 Example language

We develop a parser for a small programming language, similar in form to Miranda. -
The following program shows all the syntactic features we are considering.

365

fxy=addab

where
a =25
bP=subxy

answer = mult (f 3 7) &"

If a program is well-formed, the parser should produce a parse tree, according to
the following type. Even though local definitions are attached to definitions in our
language, it is normal to have them at the expression level in the parse tree.

script ::= Script [def]
def ::= Def var [var] expn
expn = Var var | Num num | expn $Apply expn | expn $Where [def]

var == [char]

The context-free aspects of the syntax may be characterised by the following
BNF grammar. Ambiguity is resolved by the offside rule, which is applied to the
body of definitions, so that special symbols to separate definitions and delimit scope
are not needed. The non-terminals var and num denote variables and numbers
respectively, defined in the usual way.

prog u= defn*

defn = wvart “=" body

body = expr [“where” defnt]
expr u= expr prim|prim
prim u= var | num | “("ezpr“)”

As we would expect, the left associativity of function application is expressed
with a left recursive production rule (i.e. expr ::= expr prim | prim). As already
mentioned in section 2.4, left recursion and top-down parsing methods do not mix.
If we are to build a combinator parser for this grammar, we must first eliminate the
left recursion. Consider the canonical left recursive production rule:

a = aff |y

What language is generated by a? By unwinding the recursion a few times, it is
clear that a single 4, followed by any number of fs is acceptable. Thus, we would
assert that a = /" is equivalent to « ::= af | 7. The proof is simple:

8"

v(B*Ble) [properties of #]

18*B | e [distributivity)

(v8%) Blv [properties of sequencing]
= aff |y [definition of «]

i

In the context of our example language, this law means that we may safely replace
the expr production rule with ezpr ::= prim prim*, which simplifies to ezpr ::=
prim*. In other words, by applying a simple transformation to the grammar, we
have eliminated left recursion in favour of iteration.

366

4.2 Layout analysis

Recall that the offside combinator assumes that white-space in the input is re-
placed by row/column annotations. To this end, each character is paired with its
position during a simple layout phase prior to lexical analysis. Both white-space
and comments will be stripped by the lexer itself, as is normal practice.

prelex = pl (0,0)

where
pl (r.c) O =0
pl (r,c) (x:xs) = (x,(r,c)) : pl (r,tab c) xs , x = ’\t’
= (x,(r,e)) : pl (r+1,0) xs , x = ’\n’

= (x,(r,c)) : pl (r,c+1) xs , otherwise
tab ¢ = ((c div 8)+1)%8

4.3 Lexical analysis

The primary function of lexical analysis is to divide the input string into its compo-
nent tokens. Each token is made up of two separate parts ~ a tag and an attribute
value. Two strings only have the same tag if they may be treated as equal during
syntax analysis. When more than one string matches a token, sufficient information
to tell them apart is returned as the attribute value of the token. In practice, it is
convenient to return the string itself. Thus,

token == (tag, [char])

If a token is uniquely determined by its tag, the empty-string should be used as
its attribute value. For example, we could imagine (Ident,"add") and (Lpar,"")
as tokens corresponding to the strings "add" and "(". While it is fine to refer to
identifiers and numbers by their tag during syntax analysis, having to invent and use
tags for reserved words and symbols is somewhat tedious. For this reason, rather
than having separate tags for each reserved word and symbol, we will bundle them
all together under the single tag Symbol, with the string itself as the attribute value:

tag ::= Ident | Number | Symbol | Junk

For example, the tokens (Number,"123") and (Symbol,"where") correspond
to the strings "123" and "where". The special tag Junk is used for things like
white-space and comments, which should be stripped before syntax analysis.

Like all other parsers, lexers will ultimately be defined in terms of the primitive
parsing function satisfy. Earlier we decided that this was a good place to throw
away the position of all consumed symbols. Now we actually need some of this
information, since tokens must be paired with their position. Rather than changing
satisfy again, and having row/column numbers visible everywhere, we define a
new combinator which encapsulates the process of pairing a token with its position.
Since it will be applied once to each parser corresponding to a complete token, it is
a convenient place in which to tag each token as well.

The tok combinator takes a parser and a tag, and modifies the parser so that
strings are built into tokens, and paired with the position of their first character. In
other words, the tok combinator changes a parser with result type [char] into a
parser with result type (pos token).

367

tok :: parser (pos char) [char] -> tag -> parser (pos char) (pos token)

(p $tok t) inp = [(((t,xs),(r,c)),out) | (xs,out) <- p inp]
where (x,(r,c)) = hd inp

For example, (string "where" $tok Symbol) is a parser which produces the
result ((Symbol,"where"),(r,c)) if successful, where (r,c) is the position of the
"w" character in the input string. Notice that tok may fail with parsers which admit
the empty string, in trying to select the position of the first character when none of
the input string is left. It is reasonable to ignore this problem however, since tokens
are always at least one character in length, to guarantee termination of the lexer.

We now turn our attention to lexical analysis itself. Thinking for a moment
about what the lexer actually does, it should be clear that the general structure will
be as follows, where each pi is a parser, and ti a tag:

many ((p1 $tok t1) $alt (p2 $tok t2) $alt ... $alt (pn $tok tn))

This structure will remain the same foz all lexers. All that will change is the
parsers and tags. It is therefore convenient to wrap the general structure up inside
a definition which takes care of all the messy details. Given a list of parsers and
tags [(p1,t2),(p2,t2),...], the lex combinator builds a lexical analyser.

lex :: [(parser (pos char) [char],tag)] -> parser (pos char) [pos token]

lex = many.(foldr op fail)
where (p,t) $op xs = (p $tok t) $alt xs

The standard functions (.) and foldr were explained in section 3.1. Using the
tok abbreviation, we may define the lexer for our language as follows:

lexer :: parser (pos char) [pos token]
lexer = lex [(some (any literal " \t\an") , Junk),
(string "where" , Symbol),

(word , Ident),
(number , Number),
(any s‘cring [n(n,u)u,u._.u] , Symbol)]

One of the secondary functions of the lexer is to resolve lexical conflicts. There
are basically two kinds. First of all, classes may overlap. For example, reserved
words are usually also acceptable as identifiers. Secondly, some strings may be
interpreted as different numbers of tokens. For example, “>=" could be seen either
as a single token representing the operator (>), or as two entirely separate tokens.

In our lexer, there is only one such conflict — the reserved word "where". We
arrange for the correct interpretation by ordering the tokens according to their
relative priorities (e.g. reserved words appear before identifiers). Apart from the
necessary ordering, in a large lexer it is a good idea to order tokens by probability
of occurrence. This simple step can considerably improve performance.

368

4.4 Scanning

Since there is no natural identity element for the list constructor (:) used by many
to build up the list of tokens, white-space and comments are not removed by the
lexer itself, but tagged as junk to be removed afterwards. The strip function takes
the output from the lexer, and removes all tokens with Junk as their tag:

strip :: [pos token] -> [pos token]
strip = filter (("=Junk).fst.fst)

The standard function (filter p) retains only those elements of a list which
satisfy the predicate p, defined by filter p xs = [x | x <~ xs ; p x]. Forex-
ample, filter (>5) [1,6,2,7] has value [6,7].

4.5 Syntax analysis

Lexical analysis has made the initial jump from characters to tokens. Syntax analysis
completes the parsing process, by combining tokens to form a parse tree. For things
like identifiers and numbers, their precise value is not important during syntax
analysis, only that they are in fact identifiers and numbers. Thus, we can imagine
an analogue to the literal primitive, which matches any token of a given class,
regardless of its attribute value. In fact, once we have parsed a token, its tag becomes
somewhat redundant, in much the same way as its position becomes redundant after
being consumed by the satisfy primitive. To this end, the parser (kind t) only
recognises tokens of class t, returning their attribute value (i.e. spelling) if successful.

kind :: tag -> parser (pos token) [char]

kind t = (satisfy ((=t).fst)) $using snd

For example; (kind Ident) matches any identifier, returning its spelling if suc-
cessful. Because reserved words and symbols are bundled under the single tag
Symbol, the kind function is not much use in these cases. We need a special function
which matches on the spelling of symbols. Thus, the parser (1it xs) only admits
the token (Symbol,xs). Again the tag is redundant after parsing.

1lit :: [char] -> parser (pos token) [char]

1it xs = literal (Symbol,xs) $using snd

For example, (1it " (") only matches a left parenthesis. We may now build the
syntax analyser itself. Recall the BNF description of our example language.

prog = defn*

defn = vart “=" body

body :u= expr [“vhere” defn?]
expr = prim*

prim == wvar | num | “("ezpr®)”

369

As for the expression parser in section 2.4, we simply cast this description in com-
binator notation, and include semantic actions to build the parse tree. However we
must take into account the offside rule, which is used to disambiguate the grammar.
All we need do is apply the offside combinator to the body of definitions.

prog = many defn $using Script
defn = (some (kind Ident) $then lit "=" $xthen offside body) $using defnFN

body = (expr $then ((lit “"where" $xthen some defn) $opt [])) $using bodyFN
expr = sgome prim $using (foldll Apply)
prim = (kind Ident $using Var) $alt

(kind Number $using numFN) $alt
(it "(" $xthen expr $thenx 1lit ")")

The opt abbreviation used in this parser corresponds to the [---] notation in
BNF, denoting an optional phrase. It is defined by p $opt v = p $alt (succeed
v). To complete the parser, we must define the remaining semantic actions. But
first, the somewhat strange action (fo1d11 Apply) merits some explanation.

Recall that the original grammar in section 4.1 used left recursion to express
the left associativity of application. By transforming the grammar slightly, the
recursion was replaced by iteration. In combinator parsing, iteration corresponds
to many and some. These operators produce a list as their result. What we really
want in this case is a left recursive application spine. That is, if the result were the
list [x1,x2,x3,x4], it should be transformed to (((x1 @ x2) @ x3) @ x4), where @
denotes the application constructor Apply. To do this, we use a directed reduction
as for the any combinator in section 3.1, except that this time the operator should
be bracketed to the left instead of the right. That is, foldl should be used instead
of foldr. In fact we use foldl1, which is precisely the same, except that it only
works with non-empty lists, and hence we don’t need to supply a base case.

Of the three remaining semantic actions, the first two are quite straightforward,
simply converting the default result values to the internal form. The final action
takes into account that local declarations are found at the expression level in the
parse tree, while they are attached to definitions in the grammar.

defnFN (f:xs,e)
numFN xs

Def £f xs e
Num (numval xs)

L}

bodyFN (e, [1)
bodyFN (e,d:ds)

e
e $Where (d:ds)

)

4.6 The complete parser

The complete parser is obtained by composing the four phases. For simplicity, we
ignore the possibility of errors, assuming that both lexical and syntactic analysis are
always successful. Since only the first result value from each parser is required, the
function (£st.hd) is used to select this component.

parse :: [char] -> prg

parse = fst.hd.prog.strip.fst.hd.lexer.prelex

370

There are two points to be noted from this example. Firstly, through care-
ful choice of notation, two-phase parsers are no more complicated to build than
one-phase parsers. Secondly, the offside combinator succinctly implements the
assumption that the offside rule is used to disambiguate the grammar.

5 Summary

We started with a tutorial on the basic aspects of combinator parsing, going on to
develop the notation further, so that parsers for real programming languages could
be built, with separate lexical and syntactic phases. Special mention was given to
layout conventions, and in particular the offside rule. We demonstrated that a parser
for a Miranda style language could be built quickly and simply.

Many interesting and important aspects of combinator parsing have been omit-
ted. In particular, it is well known that combinator parsers may have unexpected
space and time behaviour, and are often not as lazy as we would expect. Simple
solutions to these problems are discussed in both [2] and [5].

Acknowledgements

Thanks are due to John Launchbury, David Murphy, Duncan Sinclair and Mary
Sheeran for their comments on various drafts of this paper. John in particular
has contributed a great deal. His comments, and interest in combinator parsing,
radically changed both the form and content of the paper.

References

[1] Alfred Aho, Ravi Sethi and Jeffrey Ullman. Compilers - Principles, Techniques
and Tools. Addison-Wesley, 1986.

[2] Philip Wadler. How to Replace Failure by a List of Successes. FPCA 85, LNCS
201, 1985.

[3] John Fairbairn. Making Form Follow Function. Glasgow University, 1986.

[4] Richard Frost and John Launchbury. Constructing Natural Language Inter-
preters tn Lazy Functional Languages. Glasgow University, 1988.

{5] John Launchbury. Parsing in a Functional Language using Higher Order Com-
binators. Glasgow University, 1988. (Unpublished)

[6] Peter Landin. The Next 700 Programming Languages. CACM Vol. 9, March
1966.

[7] Geraint Jones. Programming in occam. Prentice-Hall International, 1987.

[8] Paul Hudak and Philip Wadler (editors). Report on the Programming Language
Haskell. Glasgow University and Yale University. 1989. (Draft)

