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Abstract. We consider the manipulability of the price mechanism on
Leontief economies, a natural abstraction that arises in the design and
optimization of modern data centers. Although there are well known,
and commonly used, (non-price based) strategyproof mechanisms in this
setting, we show that pricing is not strategyproof. However, we prove that
the maximum gain from manipulation is bounded by a factor of 2− 1/n
when there are n players and in many natural settings the maximum gain
is significantly less. For example, in homogeneous settings or those with a
dominant good there are no profitable manipulations, while in extremely
heterogeneous situations, the gain from strategic manipulations appears
to be small and vanish in the limit of large n. The gains from collusive
manipulations are proportionally smaller with a bound of 2− k/n when
there are k colluding players out of n.
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1 Introduction

In this paper we study price mechanisms for economies with Leontief utility
functions. These economies naturally arise in the design of modern data centers
and cloud computing systems [1] where players submit tasks (computer pro-
grams), which require a fixed ratio of resources, such as CPU, memory, data
transfer, etc., and their utility is simply the number of completed tasks. This is
the model behind the development of the Dominant Resource Fairness algorithm
[5, 4] which is used by the Mesos platform for sharing commodity clusters be-
tween multiple diverse cluster computing frameworks. Mesos (and its underlying
DRF algorithm) are in use in several production and research clusters.

The design of the DRF algorithm was based on both fairness and strategic
considerations, including the requirement that the system be immune to ma-
nipulation [5]; indeed, DRF (and other related “water-filling” algorithms) can
be characterized by basic axioms combined with strategyproofness [4]. However,
DRF is a centralized algorithm (albeit simple to implement) and among those
operating datacenters there is much interest in decentralized algorithms with a



particular focus on price based algorithms. In this paper we study whether one
can design simple price based mechanisms for these systems that achieve many
of the properties of DRF, focusing on strategyproofness.

Our first result is negative; decentralized pricing is not strategyproof and
there are no pricing mechanisms that can implement DRF. However, our next
results are more nuanced and less negative. We show that in the worst case the
gain from manipulation is at most a multiplicative factor of 2 − 1/n for the
manipulator when there are n players while in many natural economies the gain
from manipulation is much smaller. For example, in economies with homoge-
neous preferences or those with a dominant good there are no possible gains
from manipulation, while at the other extreme, in very heterogeneous economies
manipulation can be profitable, but the gains are typically less than 7% with
two players, 1% with 6 players and 1/2% for 10. We then extend the analysis
to group manipulations and show that the gains from group deviations lead to
smaller multiplicative gains (but greater absolute gains) which are bounded by
2− k/n in the worst case when k out of n players collude.

2 Model and Definitions

Our model is that of a Leontief economy.5 We will assume that there are n
players and 1 unit of each of m goods. Let xij be the amount of good j allocated
to agent i subject to the constraint

∑
i xij ≤ 1 for all goods j. The utility of

an agent, or number of tasks, is given by U(xi; ai) = minj xij/aij where each
player’s preferences are parameterized by a preference vector ai ∈ ℜn

+.
We consider mechanisms M which define the allocation given a set of pref-

erences, i.e. x = M(a). We assume that mechanisms are symmetric under per-
mutations of the players and goods. The two main requirements for mechanisms
are efficiency and strategyproofness. Efficiency implies that the vector of utilities
induced by M , u(M(a); a), is Pareto efficient, there is no allocation that strictly
dominates it. Strategyproofness implies that no player can misrepresent their
utility to improve their outcome. Formally, this can be written as

u(M(a); ai) ≥ u(M(a−i, a
′
i); ai)

for all a′i ∈ ℜn
+. Equivalently, for Leontief utilities, this requires that there does

not exist any a′i such that M(a)i > M(a−i, a
′
i)i.

In general the construction of efficient and strategyproof mechanisms for
economies is challenging and for many classes of economies such mechanisms
do not exist [6, 9]; however, for Leontief economies there do exist many efficient
and strategyproof mechanisms [8, 5, 4, 7]. Our main example is a class of water
filling mechanisms which are efficient and strategyproof [4].6 The idea behind
these mechanisms is to normalize the preference vectors ai → ai/N(ai), where

5 Note that we are considering a steady state model for an online dynamic process.
See [5] for more details.

6 In fact they are even group strategyproof.



N is some vector norm and then to find the largest utility that all players can
attain, i.e. find the largest γ > 0 such that the allocation where xi = γai/N(ai)
is feasible. The DRF mechanism is simply the water filling mechanism for the
L∞ norm, i.e. N(ai) = maxj aij . Note that unlike many analyses of economies,
we do not require that all goods are fully allocated. In a data center, as in many
other systems, there is no need to allocate goods that are not required by any
player. (See [7] for a further discussion of the implications of this point.)

3 The Price Mechanism

We now consider price mechanisms. A price mechanism is a set of prices p ∈ ℜm
+ ,

one for each good, where the players choose the bundle of goods that maxi-
mizes their utility while not exceeding their budget which we define to be 1, i.e.∑

j xijpj ≤ 1 for all players i. We will assume that players are non-wasteful and
do not purchase more of any good than they require, so xi will be proportional
to ai.

The main advantage of a price mechanism is its decentralized implementation
via the tâtonnement [11]. This is the mechanism by which prices for each good
are adjusted independently according to a simple procedure – lower the price
if supply exceeds demand and raise it if demand exceeds supply. Although the
tâtonnement need not converge in general economies [10] our numerical results
suggest that it does in Leontief economies.

It is important to note that if the tâtonnement converges, it will converge to a
set of prices where the price of any slack good must be 0. We call these decentral-
ized price mechanisms and consider them in the remainder of the paper as the
value of a price mechanism is in its implementation through the tâtonnement.

In a Leontief economy the decentralized price mechanism is unique as shown
in [2], which also provided a polynomial algorithm for their computation. Thus,
we will call these prices and the associated purchases by the players, the decen-
tralized price mechanism, denoted by MP .

One can also consider price mechanisms which do not satisfy the dual-
slackness conditions arising from the tâtonnement. In this case there can be
many different price mechanisms, but it can be shown (under certain regularity
conditions) that even these non-decentralizable mechanisms can not be strate-
gyproof.

For example, consider the following preferences:

a1 = (1, 0), a2 = (0, 1), a3 = (1, ϵ), a4 = (1, 2ϵ)

for small ϵ > 0. In the DRF mechanism, both players 3 and 4 attain the same
utility, but this is not possible in any pricing mechanism. Since both goods must
have non-zero prices due to the single-mindedness of players 1 and 2, the cost
(for the same utility) will be strictly greater for player 4 than for player 3, but
they both have the same amount of money to spend.



4 Manipulability

It is easy to see that the decentralized price mechanism is not strategyproof. For
example, consider:

a1 = (1, 0), a2 = (1, 3/2), a3 = (1, 3/2).

If all users purchase truthfully, the first resource will be priced and the second
will be free. This means user 1 will get 1/3 of the available supply of the first
good, resulting in u1 = 1/3. If user 1 instead purchases according to a false
preference vector of a′1 = (1, 3/5), the first good will be free and the second will
be priced. This means user 1 will get 1/3 of the available supply of the second
good (and throw it away), so he will also take 5/9 the available supply of the first

good, resulting in u′
1 = 5/9. This is a proportional improvement of 1/3

5/9 = 5/3.

In fact, this example is the worst possible case for 3 users.

Theorem 1. For Leontief economy with n players and preferences given by a
for any any a′i,

ui(M
P (a−i, a

′
i); ai) ≤ (2− 1/n)ui(M

P (a), ai).

Proof: Let A be the matrix of preferences normalized so that Ai1 = 1 and good
1 is chosen so that the best deviation by player 1 is to increase a1j for some
set of j ̸= 1. In addition, we can assume that the columns of A are linearly
independent by small perturbations and then removing slack goods. Define t to
be the row vector such that ti is the utility of player i. Feasibility implies that
tA = e where ej = 1 for all goods j. Multiplying both sides by A† yields tD = s
where

Dij =
∑
k

aikajk

and sj =
∑

k ajk.
When the preferences a and a′1 are chosen to maximize proportional gain for

user 1, before (resp. after) user i changes her demand, user 1’s utility must be in
local minimum (resp. maximum) so ∂ti/∂a1k = 0. Some algebra yields D−1

1k = sd
where

di = (D−1(∂D/∂aik)D
−1)i.

Then note that ∂D/∂aik is a square matrix with ith row and column as a·k and
0 elsewhere. From this one sees that swapping rows or columns (except the first
ones) in A does not affect any of the terms in this equation, which implies that
the original preferences were of the form

a1 = (1, α, α, . . . , α)

and for j > 1,

aj = (1, β, β, . . . , β).



Solving this yields t1 = (β− 1)/(β−α). Choosing α = 0, β = n/(n− 1) and the
deviation α′ = n/(2n− 1) yields an initial utility of t1 = 1/n and a final utility
of t′1 = (2− 1/n)/n proving the result. ⊓⊔

In addition, in many common cases, the gain from strategic manipulation is
smaller. First consider an economy with a unique dominant good, i.e., the largest
element, j such that aij = maxjaij , of every preference vector is the same.

Theorem 2. For Leontief economy with n players and preferences given by a,
where there is a unique dominant good, there are no profitable deviation, i.e., for
any any a′i,

ui(M
P (a−i, a

′
i); ai) ≤ ui(M

P (a), ai).

Proof: To simplify the presentation assume that there are 2 goods and the domi-
nant good is strict for player 1. The extension to the general case follows readily.
Thus, we can assume that ai1 = 1 and ai,2 < 1 for all i. First note that the
equilibrium must allocate the same amount of good 1 and set p2 = 0. In order
to influence p1 player 1 must increase a12 past the point where the demand for
good 2 becomes tight under the original prices which implies that a′12 > 1. Now,
for any set of equilibrium prices p1, p2 player 1 will receive the smallest share of
good 1, and thus x′

11 ≤ 1/n, with no gain in utility. ⊓⊔

Note that this covers the homogeneous case where all players have the same
preferences. Next consider very heterogeneous preferences. In this case, where
the aij ’s are chosen i.i.d. uniformly on [0, 1] we find that the worst manipulation
is small with high probability. The size of this bound appears to decrease with
the number of players, with gains of less than 7% for 2 players, decreasing to
gains of less than 1% with 6 players and gains of less than 1/2% with 10 players.
Thus, while the worst case bound increases with n we conjecture that the average
case bound decreases (eventually to 0) with n.

Lastly, we consider the case in which multiple players collude and coordinate
their misrepresentations of their preferences and show that this does not change
the analysis significantly.

Theorem 3. For Leontief economy with n players and preferences given by a
for any subset S of the players and any a′S,

ui(M
P (a−S , a

′
S); ai) ≤ (2− |S|/n)ui(M

P (a), ai)

for some i ∈ S.

Proof: This proof is similar to the one for theorem 1, and reduces to the case
of 2 goods where all colluding agents share a preference vector as do all the
non-colluding players. ⊓⊔



5 Open Problems

In the data center setting, which is best modeled resource allocation with Leontief
utilities, our results give both bad news and good news about price mechanisms.
While they cannot replicate DRF nor even be strategy proof, their manipula-
bility appears to be rather limited. Thus, price mechanisms in such settings are
neither a panacea nor a plague for resource allocation in the data center setting,
and more work is needed to completely characterize their properties. For in-
stance, it is not clear whether the the tâtonnement process converges in Leontief
(and other special) economies. In addition, we have only begun to characterize
the degree of manipulability, and need more precise manipulability bounds under
various assumptions for the demand profiles. Lastly, are there normative char-
acterizations for the allocations pricing mechanisms produce, similar in spirit to
the characterizations for DRF [4] and the Nash Bargaining solution [3]?
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