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0. INTRODUCTION

This paper describes an approach for verifying programs in the presence of data
abstraction, object types, and information hiding. The genesis of this work was
the Extended Static Checking project (ESC) [Detlefs et al. 1998], which applies
program verification technology to systems programs written in Modula-3. The
aim of ESC is not to prove full functional correctness, but to prove the absence of
common errors, such as array index errors, nil dereference errors, race conditions,
deadlocks, etc.

One of the biggest problems we encountered in the ESC project is that the
verification methodology we know from the literature does not seem to apply to
the systems programs in the Modula-3 libraries. The problem is not that the
programs use low-level tricks or unsafe code; the problem is that the programs use
patterns of modularization and data abstraction that are richer than those treated
in the verification literature. This is not an artifact of Modula-3, but would apply
to any modern object-oriented language.

The data abstraction technology we know from the literature extends and re-
fines the seminal paper on data abstraction by C.A.R. Hoare [1972]. In particular,
ACM Transactions on Programming Languages and Systems, Vol. ?, No. ?, October 2001.
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Hoare and all subsequent treatments that we know impose the requirement that all
of the concrete variables used to represent an abstraction must be declared in the
same module. This requirement is too strict: if it were applied to the Modula-3
libraries, many small modules would have to be combined, with a loss of desirable
information-hiding. For example, this requirement would force the various sub-
types of our example in Section 4, readers (buffered input streams), to be declared
in one common module. Writing specifications is supposed to improve the structure
of a program, so it is ironic that standard treatments of data abstraction are in-
compatible with good modularization. Therefore, in this paper we weaken Hoare’s
requirement and allow the concrete variables used to represent an abstraction to
be divided among several modules.

A key technical challenge is to check modules where an abstract variable is visible,
some of the concrete variables used to represent it are visible, but the representation
function that connects them is not visible. To meet this challenge, we introduce
a new specification construct called the abstraction dependency. This construct
specifies that an abstraction connection exists between the variables, but does not
specify the actual representation function, which can be confined to a more private
scope. There are different types of dependencies, and these types produce a useful
taxonomy of the patterns of abstraction in modular software.

Abstraction dependencies give the programmer considerable freedom in arranging
the declarations of abstract variables, concrete variables, abstraction representation
functions, and dependencies among the modules of a program. Too much freedom:
without further restrictions, we would lose the property of modular soundness,
that is, the property that the separate verifications of the individual modules of
the program suffice to ensure the correctness of the composite program. We there-
fore impose several requirements, called modularity requirements, and argue that
modular verification is sound for programs that meet the modularity requirements.

An essential aspect of information hiding in software design was enunciated in
a classic paper of Parnas [1972], which we paraphrase as “every module hides a
secret”. To clarify the role of our dependencies, we distinguish two secrets involved
in data abstraction: (a) the representation function and (b) the identity of the
variables that are arguments to the representation function. We have found designs
in which secret (b) should be less closely guarded (visible in more modules) than
secret (a). The abstraction dependency makes it possible to achieve this.

1. ON THE NEED FOR DATA ABSTRACTION

Before we get into the details of our generalization, we set the stage by reviewing
the role of data abstraction in modular verification.

To check that a large program does what it is supposed to do, we must study it
piece by piece. Nobody’s short-term memory is big enough to hold all the details of
a large program. If the checking effort (formal or informal) is to be manageable, we
cannot afford to re-examine the body of a procedure for every one of its calls. This
is the reason for writing specifications, formal or informal. Given specifications, we
check that each procedure meets its specification, assuming that the procedures it
calls meet theirs.

This checking process is called modular verification, and for simple programming
languages it has been understood since C.A.R. Hoare’s work on axiomatic semantics

ACM Transactions on Programming Languages and Systems, Vol. ?, No. ?, October 2001.



4 · K.R.M. Leino and G. Nelson

in the 1960s. (As long as the bulk of the verification is done modularly, we do
not exclude simple whole-program checks, such as the check that each procedure
is implemented somewhere in the program.) The central goal of this paper is
to understand modular verification in the presence of two modern programming
features: data abstraction and information hiding.

A procedure specification includes a precondition and a postcondition. The pre-
condition is the part of the contract to be fulfilled by the caller of the procedure,
and the postcondition is the part of the contract to be fulfilled by the procedure
implementation. But precondition and postcondition are not enough: the specifi-
cation also includes a “modifies list” that limits which variables the procedure is
allowed to modify. Without the modifies list, the contract would allow a procedure
to have arbitrary side effects on any variable not constrained by the postcondition,
which would make the contract useless to the caller.

It is possible to view the modifies list as syntactic sugar for extra conjuncts in
the postcondition, asserting that every variable not mentioned in the modifies list is
unchanged. That is, in a program with three variables x , y, and z , the specification

requires P modifies x ensures Q

could be “desugared” into

requires P ensures Q ∧ y = y ′ ∧ z = z ′

in which primed variables denote post-values and unprimed variables denote pre-
values. We cannot, however, use this desugaring to pretend that each procedure
specification consists of a precondition and postcondition only. The reason is that,
in modular verification, we never know, when verifying a procedure, what the set of
all variables in the final program will be. Perhaps x , y, and z are the only variables
visible where the procedure is declared, but more variables may be visible where
the procedure is called. Therefore, in this paper we take the view that the modifies
list is an integral part of the specification. Although we will rewrite modifies lists,
the rewriting is different for different scopes.

Unfortunately, and perhaps surprisingly to those who have used verification more
in principle than in practice, the methodology described so far is still inadequate.
In many cases, it would be preposterous to try to list every piece of state that
might be modified by a call to a procedure. For example, what would be the list
for the putchar procedure from the C standard I/O library? What putchar does
is simply write a character to output, but anybody who has implemented an I/O
system will be aware that the list of what can be modified during the execution of a
call to putchar is very long. It includes, for example, the I/O buffers, the internal
state of the device drivers for the disk and network, the device registers in these
drivers, and the disk and network themselves. The minor problem is that this list
is long; the major problem is that the variables in the list are not visible at the
point of declaration of putchar, and to make them visible would be to give up on
information hiding, which would be to resign the game before it starts.

The solution to this difficulty —at least the only solution that we can imagine—
is data abstraction: the use in specifications of abstract variables whose values are
not directly manipulated by the compiled program but are instead represented as
functions of other variables, abstract or concrete. Abstractly, putchar modifies a
ACM Transactions on Programming Languages and Systems, Vol. ?, No. ?, October 2001.
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single abstract variable, of a simple type (say, sequence of byte). All the internal
state, from buffers to devices, must be treated as concrete state that is part of the
representation of the abstract state.

Some people see data abstraction as an algorithm design methodology only, as a
methodology for deriving an efficient algorithm from a simple algorithm by chang-
ing the representation of the state. We have no quarrel with their use of data
abstraction, but our point is that data abstraction is also an essential ingredient
in any scheme for modular verification of large systems, since it seems to be the
only hope for writing a useful modifies list for a procedure whose implementation
changes the system state at many levels of abstraction.

Having identified the general idea of the solution to the putchar problem as data
abstraction, we would add that the patterns of data abstraction that arise in verify-
ing putchar are beyond the current state of the art of specification: we believe that
no semantics or methodology presented in the literature is equal to the task. We
feel that by defining the notion of an abstraction dependency and providing a sound
methodology for static dependencies, this paper takes two important steps toward
the goal of reasoning about such programs. But our lack of a soundness theorem
for dynamic dependencies, and our immature treatments of cyclic dependencies,
array dependencies, and modular invariants, make it clear that much methodology
remains to be invented before the goal is within reach.

2. VALIDITY AS AN ABSTRACT VARIABLE

The generalized data abstraction described in this paper is relevant regardless of
whether verification is being used for full functional correctness or for more limited
aims, such as the ESC aim of verifying the absence of certain classes of errors only.
The examples in this paper will be ESC verifications. These verifications tend to
have a typical form, which is described in this section.

In a typical ESC verification, we associate two abstract variables with each type,
valid and state. The first of these records whether objects of the type satisfy the
internal representation invariant required by the implementation, and the second
represents the abstract value of variables of the type.

If we were verifying full functional correctness, we would have to write many
specifications about the state variable. But in doing extended static checking, we
rarely say anything about the state. We aren’t proving that the program meets
its full functional specification, only that it doesn’t crash. The main purpose of
the state variable is to account for the side effects in the implementations of the
methods, which otherwise would lead to spurious errors reported by the verifier.
Indeed, in many ESC verifications, we don’t even bother to provide the concrete
representation for state.

In contrast to state, the checking performed by ESC depends critically on valid .
Most operations on an object o will have valid [o] as a precondition. The checker
uses the concrete representation for valid to translate valid [o] into a concrete pre-
condition, which it then uses in proving that the implementation of the operation
does not cause an error.

In Hoare’s original paper on data abstraction, the notion of a validity invariant
was built into the methodology. Initialization was required to establish validity and
all other operations were required to preserve it. In contrast, we consider valid to
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be an abstract variable like any other; the programmer explicitly provides valid as
a precondition (and/or postcondition), and the implementation infers the details of
validity in terms of the concrete state via the usual process of data abstraction. Our
approach has several advantages over Hoare’s, of which we mention one: we allow
operations like closing a file, which destroy validity. Such operations are frequently
essential in order to deallocate resources.

3. DEFINITION OF NOTATION

This section introduces the notation and terminology of the formal system that we
use for modeling programs in the rest of the paper.

Modularity. A program is a collection of declarations. Declarations introduce
names for entities (such as types, abstract and concrete variables, and methods)
and/or specify properties of named entities (such as subtype relationships, represen-
tations of abstract variables, method specifications, and method implementations).
The declarations of a program are partitioned into units (sometimes called inter-
faces and modules). The declarations in effect in a unit are its own declarations
and the declarations in effect in units that it imports. If an entity E is declared in
a unit M , it is known as M .E in importers of M and known simply as E within
M . For example:

unit M unit N import M
type T . . . uses of M .T . . .
. . . uses of T . . .

In this paper, we sometimes write E instead of M .E when M is clear from the
context.

One of the purposes —perhaps the main purpose— of module systems is to reduce
the portion of a program that must be read and potentially fixed to accommodate
a change, addition, or deletion of a declaration. With our very general system of
units, the portion of the program sensitive to a declaration in a unit M is exactly
the set of units that import M directly or indirectly.

A set of units D is called a scope if it is closed under imports, that is, if whenever
a unit M in D imports a unit N , then N is also in D . A declaration is visible in a
scope if it appears in one of the units in the scope.

We use units and imports in this paper since they are simple and extremely gen-
eral. Restrictive patterns are common in practice. For example, Modula-3 requires
that every unit be an interface unit, which can declare procedures and methods but
not declare implementations, or an implementation unit, which can declare imple-
mentations but which cannot be imported (and therefore has the property that no
other portion of the program can be sensitive to it). As another example, CLU im-
poses a correspondence between units and type declarations. We have not imposed
such restrictions in this paper, because they seem orthogonal to the modularity
issues that we are discussing.

Our units provide all of the functionality of accessibility modifiers like private
and public in languages like C++ and Java. By way of illustration, here is a tiny
Java class together with a possible translation into our notation (the translation
ACM Transactions on Programming Languages and Systems, Vol. ?, No. ?, October 2001.
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uses some notation that will be defined below):

class T {
private int x ;
public void m(int y) {

C
}

}

unit Public
type T
proc m(this :T , y: int)

unit Private import Public
var x :T → int
impl m(this :T , y: int) is

C
end

An advantage of the units version is that the Public unit has no need to import
any units that are required by m’s implementation only.

Types. In this paper, we will use primitive types like int and bool, as well as
object types and array types. Our objects are like those of Simula, Modula-3, and
Java (excluding interface types): they are implicitly references, and each object type
has a uniquely determined direct supertype. More precisely, an object is either nil
or a reference to a set of data fields and methods; a method is a procedure that will
accept the object as its first parameter. Equality of objects is reference equality.
An object type determines the names and types of a prefix of the fields and the
names and signatures of a prefix of the methods of its objects.

An object type T is declared

type T <: S

where S is an object type declared elsewhere. This introduces the name T for
a new object type whose direct supertype is S , meaning that T contains all the
fields and methods of S and possibly includes other fields and methods declared
elsewhere. The “<: S” is optional; if omitted, S defaults to an anonymous object
type serving as the root of the subtype hierarchy.

Every object has a dynamic type determined when it is allocated. Every expres-
sion has a static type determined at compile time. If v is the dynamic value of an
expression E , v has dynamic type D , and E has static type S , then conventional
static type-checking rules assure that D is a subtype of S .

We consider a data field, abstract or concrete, to be a map from objects to values.
Thus, where others write

class T { . . . int f ; . . . }
we write

type T
var f :T → int

(Figure 0 shows a more realistic example.) Also, we write f [t ] where others write t .f
to denote the value of the f field of object t . We refer to T and int as the index type
and range type of f , respectively. The class notation forces f to be co-declared with
T , whereas our notation allows them to be declared independently. This generality
is not problematical; in fact, it simplifies the semantics. We call the variables (like
f ) that represent fields “maps”. They might also be called “functions”, but we
prefer a name that emphasizes that they are values in a first-order theory.

ACM Transactions on Programming Languages and Systems, Vol. ?, No. ?, October 2001.
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If T is a type, we write

array[T ]

to denote the type of (references to) arrays with element type T . If a is of type
array[T ] and is non-nil, then number(a) denotes the number of elements in a,
and a[i ] denotes element i of a for 0 ≤ i < number(a). To properly model the
fact that arrays are references, we introduce the predeclared map variable elems :
the expression elems [a] denotes the sequence of elements referred to by an array
a. For example, a = b means that a and b reference the same sequence, while
elems [a] = elems [b] means that the sequences referenced have the same elements.
In fact, a[i ] is shorthand for elems [a][i ].

If T is an object type, new(T ) allocates and returns a new object of dynamic
type T . For any type T , new(T ,n) allocates and returns a new array of dynamic
type array[T ] and of length n.

A method m for type T is declared and specified as follows:

proc m(t :T , . . . args . . .):R
requires P
modifies w
ensures Q

where in the signature “(t :T , . . . args . . .):R”, T is an object type, t is the self
parameter, args lists the names and types of any additional parameters, and R is
the result type. In this paper, all parameters are in-parameters. In addition to
declaring the name and signature of the method, the declaration associates with it
the precondition P , postcondition Q , and modifies list w . A program can contain
at most one declaration for a given method for a given type; for example, we don’t
allow strengthening a method specification in a subtype (this is a simplification
that does not actually limit expressiveness, see p. 348 of [Leino 1998b]). In the
postcondition, result denotes the result value, primed variables denote values in
the post-state, and unprimed variables denote values in the pre-state. If the precon-
dition or postcondition is omitted, it defaults to true; if the modifies list is omitted,
it defaults to the empty list.

A method m for type T can be implemented differently for each subtype of T .
A method implementation of m for some subtype U of T is declared by

impl m(u:U , . . . args . . .):R is S end

where S is an executable statement, and the implementation signature

(u:U , . . . args . . .):R

coincides with the declared signature except (possibly) for the type of the first
parameter. Statement S must satisfy (that is, the verifier checks that it satisfies)
the specification associated with the m method for T . The ideas in this paper
don’t depend on the particular executable statements allowed. The examples in
this paper use Algol-like executable statements, whose meaning we hope will be
clear to the reader.

A method is called by

t .m(. . . args . . .)
ACM Transactions on Programming Languages and Systems, Vol. ?, No. ?, October 2001.
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type Rat
spec var valid : Rat → bool
type Ratio <: Rat
var num, den: Ratio → int
rep valid [r : Ratio] ≡ den[r ] > 0
type CFrac <: Rat
var parquo: CFrac → array[int]
rep valid [cf :CFrac] ≡

parquo[cf ] �= nil ∧
〈 ∀ i :: 1 ≤ i < number(parquo[cf ]) ⇒ parquo[cf ][i ] > 0 〉

Fig. 0. An example program, illustrating that representation of an abstract variable can be
subtype-specific.

where t is an object (the actual self parameter), m is a method name, and args
is a list of any additional actual parameters. It would be more logical to write
m(t , . . .) instead of t .m(. . .), but whereas we chose to be logical (f [t ]) rather than
conventional (t .f ) for field accesses, we choose to be conventional rather than logical
for method calls. The static type of t is used in determining the declaration and
specification of m. The declaration is used to type-check the actual parameters and
determine the static type of the result, the specification is used to reason about the
semantics of the call. The dynamic type of t is used at run-time to determine which
implementation of m to invoke. Since all method implementations are proved to
meet their specifications, and since the dynamic type of t is a subtype of the static
type of t , it is sound to reason about the semantics of the dynamic dispatch in this
way.

Abstraction. A data field can be declared to be abstract by preceding its decla-
ration with spec. For example:

spec var valid :T → bool

An abstract field occupies no memory at run-time; it is a fictitious field whose value
(or representation) is defined as a function of other fields. An abstract variable
cannot appear in ordinary program text; it appears only in specifications. The
representation is declared by a syntax like

rep valid [t :T ] ≡ f [t ] �= 0

which means that for any non-nil object t of type T , the abstract value of valid [t ]
is true if and only if f [t ] �= 0.

The representation of an abstract variable can be different for different subtypes.
As an example, consider the object type Rat representing rational numbers, and
two of its subtypes, Ratio, which represents each rational as a ratio, and CFrac,
which represents each rational as a continued fraction (which is a representation
of a rational as a sequence of integers), see Figure 0. These declarations specify
that the concrete representation of valid [q] varies depending on the dynamic type
of q: for rationals represented as ratios, validity means that the denominator is
positive, whereas for continued fractions, validity means that each partial quotient
is positive, except possibly the first.

ACM Transactions on Programming Languages and Systems, Vol. ?, No. ?, October 2001.



10 · K.R.M. Leino and G. Nelson

A rep declaration given at a type T applies to all non-nil objects of type T ,
including those whose dynamic type is a subtype of T . One might think that it
would be possible to override a rep declaration at T with another rep declaration
at some subtype of T , but this is not allowed, since it would be unsound. Checking
compliance with this rule is a whole-program check, but it is simple.

The variables appearing in the right-hand side of the rep declaration for an
abstract variable are called dependencies of the abstract variable. The dependencies
can themselves be either concrete or abstract. To avoid any possible confusion, we
state that our abstraction dependencies are not related to use-def dependencies
[Aho et al. 1986].

A major novelty of our approach is to require that dependencies be declared
explicitly. For example, standing alone, the representation

rep valid [t :T ] ≡ f [t ] �= 0

is forbidden on the grounds that it contains an undeclared dependency. Allowing
the representation requires an explicit dependency declaration of the form

depends valid [t :T ] on f [t ]

In this paper, we sometimes omit the “:T” when T is obvious or unimportant.
The depends declaration can be subtype-specific, just like the rep declaration.
For example, the representations in Figure 0 might be accompanied by

depends valid [r :Ratio] on den[r ]
depends valid [cf :CFrac] on parquo[cf ], elems [parquo[cf ]]

The validity of the continued fraction cf depends both on the array parquo[cf ] and
on the contents of the array. These are different dependencies and both must be
declared, as shown above. The validity of the ratio r depends only on den[r ].

This paper is principally concerned with two forms of dependencies, static and
dynamic. A static dependency has the form

depends a[t :T ] on c[t ] (0)

A dynamic dependency has the form

depends a[t :T ] on c[b[t ]] (1)

For the static dependency (0), two variables a[t ] and c[x ] are connected if x = t ,
which can be determined statically; for the dynamic dependency (1), a[t ] and c[x ]
are connected if x = b[t ], a condition that involves the dynamic value of b[t ].
In each case, a is an abstract variable and c is either an abstract or a concrete
variable. In the case of the dynamic dependency, b is concrete. A dependency on
the contents of an array counts as a dynamic dependency, with elems playing the
role of c. Other forms of dependencies will be discussed in Section 9.1, but static
and dynamic dependencies are more common and fundamental.

A major goal of this paper is to design a discipline for the placement of depen-
dency declarations in a multi-module program. The paper is long, but the main
conclusion is short: the static dependency (0) must be visible wherever c is, and
the dynamic dependency (1) must be visible wherever b is.
ACM Transactions on Programming Languages and Systems, Vol. ?, No. ?, October 2001.
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Dependencies affect the verification process in several ways. One way is modifies
list desugaring. For example, in a scope where

depends a[t ] on c[t ]

is visible, the modifies list

modifies a[t ]

is desugared into

modifies a[t ], c[t ]

This reflects the common-sense view that the license to modify an abstract variable
implies the license to modify its representation. The precise details of modifies list
desugaring will be described later in the paper.

4. EXAMPLE: READERS

From our experience with ESC, we have found that dependencies are not just a
detail but a key ingredient of the specification language that we used constantly.
However, since dependencies are a tool for programming in the large, no small
example does them full justice. This section presents the smallest example we
know that motivates the essential points: a simplified version of readers, which
are the object-oriented buffered input streams used in the standard I/O library of
Modula-3. A key point that the example will illustrate is that modern information
hiding together with subtyping creates situations where both an abstract variable
and one or more of its dependencies are visible, but the associated representation
is not visible. In these situations, sound modular verification would be impossible,
but dependencies save the day.

Readers (and their output counterparts, writers) were invented by Stoy and
Strachey [1972] for the OS6 operating system. Although Stoy and Strachey never
used the word “object” or “class” in describing them, they are in fact one of the
most compelling examples of the engineering utility of object-oriented program-
ming. Each reader is an object with a buffer and a method for refilling the buffer.
Different subtypes of readers override the refill method with code appropriate to
that type of reader; for example, a disk reader fills the buffer from the disk, a
network reader from the network.

As part of the ESC project, we have mechanically verified the absence of errors
from most of the Modula-3 standard I/O library, including all the standard reader
subtypes. In this paper we want to focus on generalized data abstraction, and
many of the complexities of the actual I/O system would distract us from this
focus, so we will simplify the reader interface rather drastically. (The actual code
and specifications that we have used as input to the Extended Static Checker can
be found on the web [Extended Static Checking for Modula-3 ].)

Our simplified interface Rd declares the type T representing a reader, and spec-
ifies the two methods getChar and close, see Figure 1. Since our examples show
ESC verifications only, we specify the range type of state as any, and we ignore the
effects on state in the ensures clauses. We use the convention that rd .getChar()
returns −1 when rd is exhausted, and otherwise returns the next byte of input.
The specification of close reflects the design decision that a reader can be closed
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unit Rd
type T
spec var valid :T → bool
spec var state:T → any
proc getChar(rd : T ): int

requires valid [rd ]
modifies state[rd ]
ensures −1 ≤ result < 256

proc close(rd : T )
requires valid [rd ]
modifies valid [rd ], state[rd ]

Fig. 1. The interface Rd , which declares type T representing readers.

unit RdRep import Rd
var lo, cur , hi : Rd .T → int
var buff :Rd .T → array[byte]
spec var svalid : Rd .T → bool
rep valid [rd : Rd .T ] ≡

0 ≤ lo[rd ] ≤ cur [rd ] ≤ hi [rd ] ∧
buff [rd ] �= nil ∧ hi [rd ] − lo[rd ] ≤ number(buff [rd ]) ∧
svalid [rd ]

proc refill(rd : Rd .T )

requires valid [rd ]
modifies state[rd ]
ensures cur [rd ] = cur ′[rd ]

depends valid [rd : Rd .T ] on lo[rd ], cur [rd ], hi [rd ], buff [rd ], svalid [rd ]
depends state[rd :Rd .T ] on lo[rd ], cur [rd ], hi [rd ], buff [rd ],

elems[buff [rd ]]
depends svalid [rd : Rd .T ] on lo[rd ], hi [rd ], buff [rd ]

Fig. 2. The interface RdRep, which defines the buffer structure common to all objects of type
Rd .T .

only once (a second call to close requires validity, which may have been destroyed
by the first call).

We call attention to the absence of valid [rd ] from the modifies list of getChar . In
our system, this specifies that calls to getChar preserve validity. This specification
is enforced even if state and valid are represented in terms of the same data fields.

Next we describe the unit that defines the generic buffer structure (by generic,
we mean common to all readers, as opposed to subtype-specific), see Figure 2. The
integer cur [rd ] is the index in the abstract stream rd of the next byte to be returned
by getChar . The integers lo[rd ] and hi [rd ] delimit the range of bytes in the abstract
stream that are contained in the buffer buff [rd ] (see Figure 3).

Interface RdRep declares and specifies the refill method, but leaves its imple-
mentation to various subtypes. The convention used by refill is that the call
rd .refill() must make at least one new byte available (that is, it must establish
cur [rd ] < hi [rd ]), unless rd is exhausted, in which case it must establish the condi-
tion cur [rd ] = hi [rd ].

The postconditions of getChar and refill don’t reflect the conventions for signal-
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 buff [ rd ]

 lo [ rd ]
 cur [ rd ]

 hi [ rd ]

Abstract
Source

... ...

Fig. 3. Buffer representation of readers.

ing that the reader is exhausted (nor does the variable state model the condition
that the reader is exhausted), because our example is an ESC verification, not a
verification of full functional correctness.

The rep declaration reveals the representation of the abstract variable valid
in terms of the concrete variables lo, cur , hi , and buff . In addition, because
subtypes may have their own validity invariants, the interface declares the abstract
variable svalid , and adds the conjunct svalid [rd ] to the representation of valid [rd ].
The intended meaning of svalid [rd ] is that rd satisfies the validity invariant of its
dynamic type. Each subtype of Rd .T will include a rep declaration specifying the
representation of svalid for readers of that subtype. For example, a reader for a
disk file would include a file handle as one of its fields, and its svalid would include
the validity of the file handle.

The depends declaration for valid is explained by our requirement that de-
pendencies be explicit—without it, the methodology would forbid the displayed
rep declaration on the grounds that valid contains undeclared dependencies. The
depends declarations for state and svalid are more subtle and will be explained
later.

The generic implementation includes an implementation of getChar , shown in
Figure 4. The actual Modula-3 readers package includes many routines in the
generic implementation that are identical to getChar from the point of view of mod-
ularity and information hiding: routines to read a line, to read a decimal numeral,
integral or floating point, and so on. All of these generic routines are available to
any subclass implementor “for free”. We find this a very attractive feature of the
readers design, although some people contend that all of these operations should be
implemented by every subtype rather than by generic code. In any case, we think
that even those who would have designed readers differently would agree that the
present design is credible enough that a programming methodology should be able
to handle it.

To give the flavor of an ESC verification, consider checking that cur [rd ] − lo[rd ]
is a valid index into buff [rd ] in the implementation of getChar . Since valid [rd ] is a
precondition of getChar , and is specified to be preserved by rd .refill(), we conclude
that valid [rd ] holds at the first semicolon. Thus, the validity of the index boils
down to showing that

0 ≤ cur [rd ] − lo[rd ] ∧ cur [rd ] − lo[rd ] < number(buff [rd ]) (2)
ACM Transactions on Programming Languages and Systems, Vol. ?, No. ?, October 2001.
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unit RdImpl import Rd ,RdRep
impl getChar(rd : Rd .T ): int is

if cur [rd ] = hi [rd ] then rd .refill() end ;
if cur [rd ] = hi [rd ] then

result := −1
else

result := buff [rd ][cur [rd ] − lo[rd ]] ;
cur [rd ] := cur [rd ] + 1

end
end

Fig. 4. The implementation unit RdImpl , which contains the implementation of the method
getChar .

follows from

valid [rd ] ∧ cur [rd ] �= hi [rd ] (3)

Since RdImpl imports RdRep, the representation of valid [rd ] is visible. Since this
representation contains the conjunct lo[rd ] ≤ cur [rd ], the first conjunct of (2)
follows immediately. The proof of the second conjunct is:

cur [rd ] − lo[rd ]
< { cur [rd ] ≤ hi [rd ] ∧ cur [rd ] �= hi [rd ] (from (3)) }

hi [rd ] − lo[rd ]
≤ { valid [rd ] }

number(buff [rd ])

Returning to general comments about rd .getChar(), notice that the implemen-
tation modifies cur [rd ], but the modifies clause in the specification of the method
getChar does not mention cur [rd ]. Why does the methodology allow this? Be-
cause of modifies list desugaring, as mentioned in the previous section. Modifies
list desugaring gives getChar the license to modify cur [rd ], because getChar is spec-
ified to modify state[rd ], which is declared in RdRep to depend on cur [rd ]. This
explains why cur [rd ] was declared a dependency of state[rd ].

Having written RdRep and RdImpl , we have specified a design for the input
streams, but please note that our implementation has barely begun, since we have
not yet implemented a single refill method. The design allows the rest of the
implementation to be structured as a collection of subtypes of Rd .T , each of which
implements its own refill (and close) method. The design also allows the private
declarations of these subtypes to be hidden in separate units. To illustrate the
modularity issues that arise when a subtype is defined, we now give the interface
(Figure 5) and implementation (Figure 6) of a trivial type of reader, a blank reader,
which delivers a sequence of blanks whose length is determined at initialization
time. More precisely, the expression new(BlankRd .T ).init(n) allocates, initializes,
and returns a reader that delivers a stream of exactly n blanks. The conjunction
“result = brd” in the postcondition specifies that the init method returns the
object that it initializes, a convention we have found useful. The implementation of
the method stores the argument n in the field num[brd ] for later use by the method
refill . The method also initializes the lo, cur , and hi fields in the obvious way,
ACM Transactions on Programming Languages and Systems, Vol. ?, No. ?, October 2001.
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unit BlankRd import Rd
type T <: Rd .T
proc init(brd :T , n: int): T

requires 0 ≤ n
modifies valid [brd ], state[brd ]
ensures valid ′[brd ] ∧ result = brd

Fig. 5. Unit BlankRd declares a subtype BlankRd .T of Rd .T , whose readers deliver streams of
blanks.

unit BlankRdImpl import Rd , RdRep, BlankRd
var num: BlankRd .T → int
rep svalid [brd : BlankRd .T ] ≡ hi [brd ] ≤ num[brd ]
impl init(brd : BlankRd .T , n: int): BlankRd .T is

num[brd ] := n ;
buff [brd ] := new(byte,min(8192, n)) ;
lo[brd ] := 0 ; cur [brd ] := 0 ;
hi [brd ] := number(buff [brd ]) ;
for i := 0 to hi [brd ] − 1 do

buff [brd ][i ] := 32
end ;
result := brd

end
impl refill(brd : BlankRd .T ) is

lo[brd ] := cur [brd ] ;
hi [brd ] := min(lo[brd ] + number(buff [brd ]),num[brd ])

end
depends state[brd :BlankRd .T ] on num[brd ]
depends svalid [brd :BlankRd .T ] on num[brd ]

Fig. 6. The blank reader implementation unit BlankRdImpl .

allocates a buffer of size up to 8192 (that is, up to 8 kilobytes), and fills the buffer
with blanks (code 32). The implementation unit for blank readers declares num to
be a further dependency of state and svalid

As we shall see later, it is critical to the verification of the module that each blank
reader brd satisfy the invariant hi [brd ] ≤ num[brd ]. Therefore, the implementation
unit BlankRdImpl provides a subtype-specific representation for svalid , effectively
strengthening the general reader validity invariant as needed for the particular
subtype BlankRd .T .

Recall that the refill method is specified to preserve validity. Each refill imple-
mentation must therefore be proved to maintain validity, so we must prove that
brd .refill() does not change valid [brd ]. Sometimes proof obligations of this form
can be discharged simply by observing that no operation in the method body has
any effect on the variable that must be preserved. But in the present case, this
simple approach doesn’t suffice, since the refill implementation modifies the repre-
sentation of valid . Instead we must use the rep declaration and prove the conjuncts
of valid [brd ] one by one. Among them is that at exit,

cur ′[brd ] ≤ hi ′[brd ]
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Since the body of refill does not change cur [brd ] and makes hi ′[brd ] equal to

min(cur [brd ] + number(buff [brd ]),num[brd ])

proving this postcondition boils down to showing that each argument to min is at
least cur [brd ]. For the first argument, this follows from the fact that the number
of any array is non-negative. The proof for the second argument is:

valid [brd ]
⇒ { rep for valid }

cur [brd ] ≤ hi [brd ] ∧ svalid [brd ]
= { brd is of type BlankRd .T , rep for svalid for this type }

cur [brd ] ≤ hi [brd ] ∧ hi [brd ] ≤ num[brd ]
⇒ { transitivity }

cur [brd ] ≤ num[brd ]

We present this calculation in detail to illustrate that the verification of the refill
method of even the trivial BlankRd .T requires the subtype-specific validity con-
junct. (The need for the svalid conjunct is more conspicuous in more interesting
reader subtypes.)

Read-only by specification. The calculation that cur [brd ] ≤ num[brd ] follows
from valid [brd ] would be in vain if the generic code could modify hi [brd ]. If, for
example, the generic implementation of rd .getChar() would sometimes increment
hi [rd ], then it could destroy svalid [rd ], which could cause all kinds of errors. To
prevent this, the Modula-3 interface from which we translated RdRep contains the
following English comment:

The generic code modifies cur [rd ], but not lo[rd ], hi [rd ], or buff [rd ]. (4)

This guarantee is essential to subtypes, since between calls to their refill methods,
they may need to know that lo, hi , and buff have not been changed by the generic
code.

How do we translate the sentence (4) into a formal specification? Modula-3 does
not have any kind of readonly qualifier for field declarations. Java and C++ have
qualifiers like private and protected that limit access to some field to the type
where it is declared (or to that type and its subtypes), but neither of them (not
even C++) has a qualifier like

readonlytothistypewritabletosubtypes

which is the sort of qualifier that would actually be needed in this case. Clearly we
cannot expect a programming language to have a qualifier that enforces this highly
particular access policy, but modular verification won’t be sound unless the policy
is formally stated and enforced.

We wrestled with the problem for some time before realizing happily that abstrac-
tion dependencies provide a neat solution. In fact, the third dependency declaration
in RdRep, which states that svalid [rd ] depends on lo[rd ], hi [rd ], and buff [rd ], is the
desired formalization of (4). For if the generic code were to modify any of these
fields, the presence of the dependency would imply that svalid , and therefore valid ,
might be changed. In other words, in a scope where lo[rd ], hi [rd ], and buff [rd ] are
known to be part of the representation of svalid [rd ], but the explicit representation
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is unknown, the only hope for maintaining svalid [rd ] invariant is to avoid modifying
lo[rd ], hi [rd ], and buff [rd ]. We call this technique “read-only by specification”.

Summary. To repeat our main conclusion from this example, we see that modular
verification with subtyping creates situations where both an abstract variable and
one or more of its dependencies are visible, but where the associated representation
is not visible. We have seen two instances of this:

— The dependencies of state are specified in RdRep, but no representation for
state is specified. The dependencies must be visible so that the implementations
of operations that modify the state (for example, getChar) will have the license to
modify the concrete variables that represent the state. The representation declara-
tion cannot be visible, for two reasons. First, because we are doing extended static
checking only, we never give a representation for the state. Second, even if we were
doing full-scale verification, the representation would be subtype-specific, but the
dependencies must be visible in the generic scope.

— The dependencies of svalid are specified in RdRep, but no representation for
svalid is given there. The dependencies are necessary to prevent generic operations
from modifying the variables that are reserved for the use of subtypes. But it is
clearly impossible to present a representation declaration for svalid in the RdRep
scope, since the whole point of svalid is to allow subtypes to include their own
invariants as part of validity: these invariants can’t be known in the generic scope.

Explicit dependencies may seem verbose, and it would be nice to be able to infer
them automatically. But this will not always be possible. For example, of the three
depends declarations in RdRep, we can imagine inferring the first (from the rep
declaration for valid), but the second and third could not be automatically inferred
since they are used to specify non-trivial design decisions (namely, which fields can
be modified by generic code, and which can be modified by subtypes only).

This concludes our example of the role of dependencies in modular verification.
In the remainder of the paper, we investigate different kinds of dependencies and
the way they affect the verification process.

5. STATIC DEPENDENCIES

In this section, we describe more fully how dependencies affect the verification
process. Our guiding principles are:

— Abstraction function principle. An abstract variable is a function of the con-
crete variables on which it depends.

— Abstraction modification principle. The license to modify an abstract variable
implies the license to modify its concrete representation, but the license to modify
a concrete variable does not imply the license to modify an abstract variable that
depends on it.

Our technique is to rewrite preconditions, postconditions, modifies lists, and rep
declarations into equivalent forms that contain concrete variables only. In this
section, we will describe the rewriting steps and explain how they follow from the
principles.
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We confine ourselves to static dependencies for simplicity; in Section 7, we will
extend this material to dynamic dependencies.

We feel it only fair to warn the reader that this section on dependencies and
the next section on soundness of modular verification are rather technical. They
record the design decisions that we took in order to build a checker that handles
realistic programs. We thought it appropriate to record this design in enough
detail that others could replicate our results, should they desire to. An alternative
approach, that of Müller and Poetzsch-Heffter [Müller 2001], avoids many of the
technicalities of these two sections, but the essential methodological requirements
that our approach uncovers emerge in their approach as well, and the degree to
which their approach admits automation is an open question.

5.0 Functionalization

Guided by the abstraction function principle, and following in the footsteps of
Hoare, we introduce a new function symbol for each abstract variable. In this paper,
we write F.a to denote the function symbol introduced for the abstract variable a.
The idea is that F.a gives a’s value as a function of the concrete state. Occurrences
of a in preconditions and postconditions are replaced by function applications of
the form F.a(. . .). For example, a[t ] > 6 becomes F.a(. . .)[t ] > 6. The arguments
to F.a are the variables on which a depends. The process of substituting F.a for a
is called functionalization.

The rep declaration for a is rewritten into an appropriate axiom about F.a (a
rep axiom). If a is visible but its representation is not, then F.a occurs in the
rewritten program but its rep axiom does not. In this case, the methodology treats
F.a as an uninterpreted function.

Functionalization and pointwise axioms. There are more details to be presented
about functionalization. We will introduce them with an example. Consider

spec var a:T → X
var c:T → Y
var d :T → Z
depends a[t :T ] on c[t ], d [t ]

(5)

Then occurrences of a are replaced by the expression F.a(c, d). Had c for exam-
ple also been abstract, functionalization would continue, producing the expression
F.a(F.c(. . .), d).

Notice that c, d , and F.a(c, d) are all maps (that is, fields). In typical functional-
ized expressions, we can expect to encounter expressions like F.a(c, d)[t ]. Allowing
F.a to take maps as arguments is technically convenient, but without further re-
strictions, it would allow F.a(c, d)[t ] to depend on the entire maps c and d , which
we do not want: our view is that the dependency declaration (5) implies that a[t ]
is unchanged by a modification to c[s ] or d [s ] for s �= t . We enforce this point of
view by imposing a pointwise axiom on each abstraction function. In the case of a,
c, and d above, this axiom is:

〈 ∀ t :T , c0, c1, d0, d1 ::
c0[t ] = c1[t ] ∧ d0[t ] = d1[t ]
⇒ F.a(c0, d0)[t ] = F.a(c1, d1)[t ] 〉

(6)
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We would like to emphasize that in (6), variables c0, c1, d0, and d1 are dummies,
not program variables. Even if program variables c and d were abstract, there
would be no need to functionalize the dummies in (6).

For each abstract variable, there will be a pointwise axiom for each subtype of its
index type, since different subtypes may have different dependencies. For example,
consider

type T
spec var a:T → X
type U <: T
var c:U → Y
depends a[u:U ] on c[u]
type V <: T
var d :V → Z
depends a[v :V ] on d [v ]

There will be three pointwise axioms, one for each of the types T , U , and V . The
axiom for T is (6), the same as the axiom where c and d had index type T . The
axiom for U is

〈 ∀ u:U , c0, c1, d0, d1 ::
c0[u] = c1[u]
⇒ F.a(c0, d0)[u] = F.a(c1, d1)[u] 〉

The axiom for V is similar.
When rewriting a postcondition, a post-value a′ leads to post-values in the ar-

guments to F.a. For example, the postcondition of init for blank readers includes
the conjunct

valid ′[brd ]

This is rewritten into

F.valid(lo′, cur ′, hi ′, buff ′,F.svalid(lo′, hi ′, buff ′,num ′))[brd ]

The number of arguments of F.a depends on the number of dependencies of a
that are visible in the scope where the rewriting takes place. For example, in the
unit RdRep, F.svalid has three arguments, whereas in BlankRdImpl , F.svalid has
four arguments because of the extra dependency of svalid [brd ] on num[brd ]. Within
the verification of any one unit, all occurrences of F.a have the same number of
arguments.

Rep axioms. We now explain how a rep declaration is rewritten into a rep axiom.
A rep declaration has the form

rep a[t :T ] ≡ R

where the only free variables allowed in R are fields that are dependencies of a, and
each occurrence of such a field must be indexed by the dummy t . For definiteness,
suppose that these dependencies are

var c:T → X
var d :T → Y
depends a[t :T ] on c[t ], d [t ]
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This rep declaration is rewritten into the rep axiom

〈 ∀ t :T , cV , dV :: t �= nil ⇒ F.a(cV , dV )[t ] = R(c, d := cV , dV ) 〉

in which we use the assignment operator to denote substitution. In this axiom,
we have appended V ’s in the names of the dummies to emphasize that they are
universally quantified dummies, not the program variables c and d .

The same treatment works with minor alterations to accommodate subtype-
specific rep declarations and dependencies. For example, the rep declarations
in

type T
spec var a:T → W
var c:T → X
depends a[t :T ] on c[t ]

type T0 <: T
var d :T0 → Y
depends a[t :T0] on d [t ]
rep a[t :T0] ≡ R0

type T1 <: T
var e:T1 → Z
depends a[t :T1] on e[t ]
rep a[t :T1] ≡ R1

produce the rep axioms

〈 ∀ t :T0, cV , dV , eV :: t �= nil ⇒ F.a(cV , dV , eV )[t ] = R0(c, d := cV , dV ) 〉
〈 ∀ t :T1, cV , dV , eV :: t �= nil ⇒ F.a(cV , dV , eV )[t ] = R1(c, e := cV , eV ) 〉

Note that different rep axioms are produced for the different rep declarations. Note
also that all dependencies of a for any subtype become arguments to F.a, and each
axiom ignores those arguments that are irrelevant to its subtype.

Examples. In the unit RdRep described previously, the precondition of refill is
written

valid [rd ]

Using the static dependencies of valid [rd ], this precondition is rewritten into

F.valid(lo, cur , hi , buff , svalid)[rd ]

Since svalid is itself abstract, the rewriting continues:

F.valid(lo, cur , hi , buff ,F.svalid(lo, hi , buff ))[rd ] (7)

which is the final functionalized form of valid [rd ] in the scope RdRep.
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As an example of a rep axiom, the rep for valid in RdRep is rewritten into

〈 ∀ rd :Rd .T , loV , curV , hiV , buffV , svalidV ::
rd �= nil ⇒
(F.valid(loV , curV , hiV , buffV , svalidV )[rd ] ≡

0 ≤ loV [rd ] ≤ curV [rd ] ≤ hiV [rd ] ∧
buffV [rd ] �= nil ∧
hiV [rd ] − loV [rd ] ≤ number(buffV [rd ]) ∧
svalidV [rd ]) 〉

(8)

To see how these formulas work together, consider the verification of the method
refill . The rewritten precondition (7) together with the rep axiom (8) allow the
verifier to conclude that buff [rd ] �= nil, by instantiating buffV to buff , loV to lo,
and so on.

Because RdRep contains no rep declaration for svalid , F.svalid remains an un-
interpreted function in this scope. A subtype-specific rep axiom is produced in the
scope of an implementation of a reader subtype like BlankRd .

Our final example illustrates reasoning about the abstraction function as an unin-
terpreted function symbol. Consider the following generic procedure, which replaces
a reader’s buffer, copying the contents of the old buffer into the new:

proc copyBuffer(rd :Rd .T )
requires valid [rd ]
modifies state[rd ]

impl copyBuffer(rd :Rd .T ) is
var nb := new(byte,number(buff [rd ])) in

for i := 0 to number(buff [rd ]) − 1 do
nb[i ] := buff [rd ][i ]

end ;
buff [rd ] := nb

end
end

The proof that copyBuffer maintains valid [rd ] boils down to proving

lo[rd ] = lo′[rd ] ∧ hi [rd ] = hi ′[rd ] ∧ elems [buff [rd ]] = elems ′[buff ′[rd ]]
⇒
svalid [rd ] = svalid ′[rd ]

which functionalizes into

lo[rd ] = lo′[rd ] ∧ hi [rd ] = hi ′[rd ] ∧ elems [buff [rd ]] = elems ′[buff ′[rd ]]
⇒
F.svalid(lo, hi , buff )[rd ] = F.svalid(lo′, hi ′, buff ′)[rd ]

But this cannot be proved, since distinct arrays may have the same elements. Thus,
the methodology would forbid copyBuffer , on the grounds that it possibly destroys
the validity of rd . This prohibition is required by the reader design, since generic
code is not allowed to modify buff . For example, the design of readers allows a
subtype to cache the buffer pointer, but such a cache would be invalidated un-
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expectedly by copyBuffer . Thus, reasoning about the abstraction function as an
uninterpreted function symbol enforces the read-only by specification idiom.

An alternative design for readers would have replaced the dependency

depends svalid [rd ] on buff [rd ]

by

depends svalid [rd ] on elems [buff [rd ]]

In this design, copyBuffer would be legal, and it would be illegal for subtypes to
assume that the buffer pointer remains unchanged by generic code.

So much for rewriting preconditions and postconditions. Now we consider rewrit-
ing modifies lists.

5.1 Modifies list desugaring

Guided by the abstraction modification principle (page 17), we introduce a closure
operation on modifies lists. The closure operation expands the modifies list as
required by the first half of the principle without expanding it so much as to violate
the second half of the principle. The rewritten specification allows a method to
modify a field f [s ] (abstract or concrete) if and only if the closure of the method’s
modifies list includes f [s ]. Thus the rewriting is parameterized by the definition
of closure. In this section, we first define the rewriting from a closed modifies
list, and then define the closure operation appropriate for static dependencies. In
Section 7.1, we will define the closure operation for dynamic dependencies.

Modification constraints. Closed modifies lists are rewritten into modification
constraints. Consider a specification

modifies M ensures P (9)

occurring in a scope D . We rewrite this specification into

modifies N ensures P ∧ Q

where N is the list of all concrete maps f for which a term of the form f [E ] occurs
in the closure of M , and Q is a conjunction with one conjunct for each map variable
visible in the scope. The conjunct for a particular map f asserts that f [s ] changes
only where it is allowed to change. That is, if { f [E1], . . . , f [En ] } is the set of terms
in the closure of M of the form f [. . .] (that is, the set of terms whose outer map
variable is f ), then the conjunct for f is

〈 ∀ s :: f [s ] = f ′[s ] ∨ s = E1 ∨ . . . ∨ s = En 〉
We call this conjunct the modification constraint for f , and we call {E1, . . . ,En} the
set of modification points of f . The modification constraint for a map variable limits
the points at which the variable may be modified, that is, it protects the variable
from change at other points. In particular, if the dependencies of an abstract
variable a are changing at points where a itself is not allowed to be changed, a’s
modification constraint limits the modification of a’s representation to preserve the
values at points where a is not allowed to change. We say that a is protected from
changes to its representation.
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(A practical note: When verifying an implementation, ESC does not bother to
produce a modification constraint for a map if a syntactic scan of the implementa-
tion determines that the map is never changed by the implementation.)

This strengthening of the postcondition occurs before the postcondition is func-
tionalized.

Closure definition. A set of terms M is statically closed in a scope D if

a[E ] ∈ M ∧ “depends a[t ] on c[t ]” ∈ D ⇒ c[E ] ∈ M

(We have intentionally ignored the type of E and the index types of a and c in
this definition. Thus, a closed set of terms may include f [E ] even if E is not of
the index type of f . Actually, ESC does use type information to produce a smaller
closure, but in retrospect, we don’t think it makes much difference.)

The static closure of a modifies list is its smallest statically closed superset.
For example, in the scope of the unit BlankRdImpl , the static closure of valid [brd ]

is

lo[brd ], cur [brd ], hi [brd ], buff [brd ], svalid [brd ],num[brd ]

Example. As an artificial example, suppose that f is a concrete field and consider
the dependencies

depends g[t ] on f [t ]
depends h[t ] on f [t ]

g h

f

and the modifies list

modifies g[u], f [v ]

The static closure of this modifies list is

modifies g[u], f [u], f [v ]

This produces the rewritten specification

modifies f
ensures 〈 ∀ s :: g[s ] = g ′[s ] ∨ s = u 〉 ∧

〈 ∀ s :: f [s ] = f ′[s ] ∨ s = u ∨ s = v 〉 ∧
〈 ∀ s :: h[s ] = h′[s ] 〉

Notice that since there are no modification points for h, the conjunct for h in the
rewritten postcondition does not allow it to be changed anywhere. Thus, the second
half of the abstraction modification principle is satisfied: the license to modify g[u]
does not imply the license to modify h[u], even though g[u] and h[u] have the
concrete dependency f [u] in common. Also, the license to modify f [v ] does not
imply the license to modify g[v ] or h[v ].

Finally, functionalization produces

modifies f
ensures 〈 ∀ s :: F.g(f )[s ] = F.g(f ′)[s ] ∨ s = u 〉 ∧

〈 ∀ s :: f [s ] = f ′[s ] ∨ s = u ∨ s = v 〉 ∧
〈 ∀ s :: F.h(f )[s ] = F.h(f ′)[s ] 〉
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That is, the specification allows changes to f at indices u and v , provided the
changes preserve the value of F.h(f )[s ] for all s , and F.g(f )[s ] for all s except u.

6. SOUNDNESS OF MODULAR VERIFICATION

We remind the reader that we are interested in modular soundness, that is, the
property that the separate verifications of the individual modules of the program
suffice to ensure the correctness of the composite program.

The standard approach for reasoning about procedure calls breaks down for mod-
ular programs. The standard approach reasons about a procedure call by assuming
that it meets its specification, and discharges this assumption by verifying the im-
plementation of the procedure. The approach breaks down if the specification is
interpreted differently in the two contexts. But as we have seen, the meaning of
a modifies list depends on the scope in which it is used. In particular, it may
be desugared differently when reasoning about a call to a procedure than when
reasoning about the implementation of the procedure.

To be more precise about modular soundness, we will define scope monotonicity,
which means that anything verifiable in a scope is also verifiable in any larger scope.
Then, we will argue that modular soundness is equivalent to scope monotonicity.
The notion of scope monotonicity seems to be new.

For a scope D and a procedure implementation P in D , the judgment

D � P

means that P meets its specification in D . More precisely, let

requires Pre modifies M ensures Post (10)

be the result of desugaring the specification of P in scope D , as described in Sec-
tion 5. Let A be the body of P , and let R be the conjunction of pointwise axioms
and rep axioms in D , as described in Section 5.0. The requirement is that R
implies that A meets the specification (10). In checking this, the verification con-
dition generator reasons about method calls within A by using their specifications
as desugared in D .

We say that � is monotonic with respect to scope if, for any procedure implemen-
tation P and scopes D and E ,

if D ⊆ E , then D � P implies E � P

If we can prove that � is monotonic with respect to scope, then it is reasonable
to say that our modular verification system is sound. For, if P has been verified
in a scope D , that is, if we have proved D � P , it follows by monotonicity that
E � P , where E is the entire program. Thus, anything that verifies in a limited
scope would also verify had there been no information hiding and all information
had been global.

It is too much to hope that � be monotonic in any program whatsoever. We will
impose some requirements, called modularity requirements, such that � is mono-
tonic in any program that meets the requirements. We will also argue that these
requirements are reasonable from a methodological point of view, that is, that they
don’t rule out useful designs.
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Our notion of modular soundness is different from the soundness of an axiomatic
semantics with respect to an operational semantics. The consistency of axiomatic
and operational semantics is certainly important, but it concerns the conventional
control structures of programming in the small, like iteration and conditionals.
These are mostly irrelevant to the issues of information hiding in programming in
the large, which are the issues of concern in this paper. In this paper, we simply
assume that the standard operational semantics is consistent with the axiomatic
semantics of a single-module program. Therefore, any discrepancy between the
axiomatic and operational semantics is due to unsound modular verification.

6.0 Visibility requirement

Our first modularity requirement is the visibility requirement. A program satisfies
the visibility requirement if each of its static dependencies

depends a[t ] on c[t ]

is visible in every scope in which both a and c are visible.
It is easy to see that this requirement is necessary to have any hope of achieving

scope monotonicity. Suppose there were a scope where a and c are visible but the
dependency is not. In such a scope, it is provable that a change to c has no effect
on a. But this would not be provable in a larger scope where the dependency is
visible.

The requirement is necessary for informal as well as formal checking. If a pro-
gram violated the requirement, it would be impossible to reason about a and c in
the scope where they are visible but the dependency is not. In such a scope, an
assignment to c could change a unexpectedly, and a call to a procedure that mod-
ifies a could change c unexpectedly. Nothing in the program text warns of either
side effect. Almost all failures of scope monotonicity can be traced to unexpected
side effects of this sort.

For example, consider what would happen if the dependency

depends svalid [rd ] on hi [rd ]

were placed not in unit RdRep but in unit BlankRdImpl . A modular checking
methodology would then allow the generic implementation, where the dependency
of svalid on hi is not visible, to increase the value of hi [rd ] beyond num[rd ], which
for blank readers destroys validity.

6.1 Top-down requirement

The second modularity requirement is the top-down requirement. A program satis-
fies the top-down requirement if, for each of its static dependencies

depends a[t ] on c[t ]

variable a is visible in every scope in which c is visible.
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Here’s an example of a rather pathological program unit that violates the top-
down requirement.

unit U import Rd ,RdRep
type T <: Rd .T
spec var isEven:T → bool
depends isEven[t :T ] on cur [t ]
rep isEven[t :T ] ≡ cur [t ]mod2 = 0
proc P(t :T )

requires Rd .valid [t ], isEven[t ]
modifies Rd .state[t ]

impl P(t :T ) is
t .getChar() ; assert cur [t ]mod2 = 0

end

This pathological unit would verify, since

—the precondition of P requires isEven[t ],
—isEven[t ] does not appear in the modifies list of getChar , and consequently,

isEven[t ] is formally provable at the exit of the call to t .getChar( ), and
—the representation of isEven[t ] implies cur [t ]mod2 = 0.

But of course the assert would fail at run-time, since getChar will change the parity
of cur [t ].

At first, this problem may not seem like a failure of scope monotonicity, but it is.
The getChar method verified in the scope RdImpl , where it was presented earlier in
the paper. But if the scope RdImpl were expanded by importing the unit U , then
getChar would no longer verify, because it does not preserve the value of isEven[t ].

To put it another way, the problem is that isEven is not visible in the scope where
getChar is implemented, and therefore the desugaring of getChar ’s specification
does not strengthen the postcondition to protect isEven from change. The top-down
requirement ensures that isEven is visible wherever cur is, and thus any procedure
that modifies cur and claims not to modify isEven will be checked appropriately.

To be completely clear, we are not suggesting that isEven should have been
declared where cur was introduced. isEven should never have been introduced
at all, the program is useless and mistaken. Our point is to identify a particular
modularity requirement that is violated by this useless pile of code: the top-down
requirement.

Here is an explanation of the name of this requirement. The reader package was
designed in a top-down fashion, and cur was introduced as part of the concrete
representation of Rd .state and Rd .valid . To come along later and define a new
unit (U ) that attempts to use cur for part of the representation of something else
(isEven) would be a violation of top-down design. We believe that imposing the top-
down requirement for static dependencies does not rule out any useful designs. As
we shall see in Section 7, the situation is more interesting for dynamic dependencies.

6.2 Static placement rule

There is a simple discipline that guarantees that both the visibility and top-down
requirements are satisfied, called the static placement rule: simply place each static
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dependency

depends a[t ] on c[t ]

in the unit that declares c. We leave it to the reader to show that the visibility and
top-down requirements follow from this rule. Furthermore, the converse is almost
true: for programs without cyclic imports, if both requirements are satisfied, then
the static placement rule is satisfied as well. Thus, if we’d like, we can replace both
requirements by the rule. We have stated the requirements separately, because they
seem to be separable concerns, and are used in different parts of the soundness proof.

6.3 Residues

The visibility and top-down requirements are two giant steps toward modular
soundness. But they don’t quite reach the goal. If they did, then the following
implication would be true, for any procedure implementation P and scopes D and
E containing static dependencies only:

D � P and D ⊆ E and E satisfies the two modularity requirements
⇒
E � P

Unfortunately, given what we have said so far, this is false. There is one more
technicality that must be introduced to fix the problem, called residues. Here is an
artificial program that demonstrates the problem:

unit A
type T
spec var a:T → any
var c:T → int
depends a[t :T ] on c[t ]
proc outer(t :T )
proc inner(t :T ) modifies a[t ] ensures c[t ] = c′[t ]
impl outer(t :T ) is t .inner() end

The absence of a modifies list for outer means that a call to outer has no side
effects. We will now argue that without residues, unit A verifies. We then argue
that it should not verify. Finally, we will define residues and explain how they fix
the problem.

As described in Section 5, the modifies list a[t ] of the call t .inner() has the static
closure a[t ], c[t ], so the rewritten specification of t .inner() (before functionalization)
is

modifies c
ensures c[t ] = c′[t ] ∧

〈 ∀ s :: c[s ] = c′[s ] ∨ s = t 〉 ∧
〈 ∀ s :: a[s ] = a′[s ] ∨ s = t 〉

After functionalization, the specification is

modifies c
ensures c[t ] = c′[t ] ∧

〈 ∀ s :: c[s ] = c′[s ] ∨ s = t 〉 ∧
〈 ∀ s :: F.a(c)[s ] = F.a(c′)[s ] ∨ s = t 〉
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The first two lines imply that c[s ] does not change for any s . The third line then
implies that a[s ], that is, F.a(c)[s ], also does not change for any s . Therefore, the
call t .inner() has no side effects at all, and the body of outer will verify.

But we now argue that outer ’s body should not verify. Consider the following
unit B , providing an implementation of inner .

unit B import A
var d :A.T → int
depends a[t :A.T ] on d [t ]
impl inner(t :A.T ) is d [t ] := 0 end

Unit B reveals another dependency (d) of a, which the implementation of inner in
fact modifies. Unit B will verify in isolation, because inner modifies only variables
in the static closure of its modifies list a[t ].

We are in trouble, because outer ’s side effect on d will be unexpected in a scope
that sees d together with outer ’s specification:

unit C import A,B
proc R(t :A.T ) modifies a[t ]
impl R(t :A.T ) is

var dd := d [t ] in t .outer() ; assert dd = d [t ] end
end

This implementation verifies, because outer ’s modifies list does not include d , but
clearly the assert will fail at run-time.

This is a failure of scope monotonicity, because although outer ’s body verifies in
the unit A, it would not do so in the larger scope of unit B , where d is visible and
the call t .inner() will be desugared to have a side effect on d [t ].

We blame the failure on the body of outer . Here’s an informal explanation of
why: Procedure outer , which is specified to be side-effect free, calls inner , which
modifies a. Although a depends on c, it should not be inferred that a depends only
on c. Therefore, the call to inner should be inconsistent with outer ’s modifies list.

Individual residues. To change our rewriting so that outer ’s body will not verify,
we introduce residues. The residue of an abstract variable a, written res .a, can be
viewed as a stand-in for those of a’s dependencies that are not visible. Residues
are introduced automatically by the methodology and cannot be mentioned explic-
itly in specifications or programs. The methodology treats every abstract variable
declaration

spec var a:T → X

as a shorthand for the three declarations

spec var a:T → X
var res .a:T → any
depends a[t :T ] on res .a[t ]

The implicit dependency of a on res .a introduces res .a into the static closure of
any modifies list that mentions a, just as for explicit dependencies.

Desugaring of modifies lists as described in Section 5 will now work out soundly
for this example. The modifies list a[t ] of the call t .inner() in the body of outer
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unit D
type T
spec var a: T → int
spec var b:T → int
var c:T → int
depends b[t :T ] on c[t ]
proc outer(t : T ) modifies a[t ]
proc inner(t : T ) modifies a[t ]
impl outer(t : T ) is

var cc := c[t ] in
c[t ] := 0 ; t .inner() ; c[t ] := cc

end
end

Fig. 7. Example program that motivates shared residues.

has the static closure a[t ], res .a[t ], c[t ], so the rewritten specification of t .inner()
(before functionalization) is

modifies c, res .a
ensures c[t ] = c′[t ] ∧

〈 ∀ s :: c[s ] = c′[s ] ∨ s = t 〉 ∧
〈 ∀ s :: res .a[s ] = res .a′[s ] ∨ s = t 〉 ∧
〈 ∀ s :: a[s ] = a′[s ] ∨ s = t 〉

This allows both a[t ] and res .a[t ] to change, and therefore the implementation of
outer will not verify.

We would like to point out that residue variables are an implementation tech-
nicality. Users of an automatic program checker based on our methodology need
not be aware of them: users never write them, and the only time users would ever
read them is in a warning message that a procedure might modify some residue
variable in violation of the procedure’s modifies list. The user must learn that such
a warning means that the corresponding abstraction was modified by some proce-
dure call in a manner that could have changed details of the representation that
are not visible in the verification scope.

Shared residues. We are now very close to modular soundness, so close that it
took our colleague Jim Saxe to find a sufficiently pathological example to demon-
strate that we are not yet there. The example is shown in Figure 7. In this scope,
the implementation of outer verifies, because a[t ] and res .a[t ] are allowed to be
changed, c[t ] is restored to its initial value, res .b[t ] is not changed by the body, and
the invariance of b[t ] (i.e., of F.b(res .b, c)[t ]) follows from the invariance of res .b
and c. But in a larger scope in which it is revealed that a and b have a common
dependency, outer will not verify:

unit E import D
var d :D .T → int
depends a[t :D .T ] on d [t ]
depends b[t :D .T ] on d [t ]
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In scope E , the required proof of invariance of b[t ] for outer does not go through.
The modification constraint for b that is added to the postcondition of outer is

〈 ∀ s :: F.b(res .b, c, d)[s ] = F.b(res .b, c′, d ′)[s ] 〉 (11)

The modification constraints for b and d that we get to assume at the return from
the call to inner are

〈 ∀ s :: d [s ] = d ′[s ] ∨ s = t 〉 ∧
〈 ∀ s :: F.b(res .b, store(c, t , 0), d)[s ] = F.b(res .b, store(c, t , 0), d ′)[s ] 〉 (12)

where the expression store(c, t , 0) denotes a map like c but mapping t to 0.
But (11) does not follow from (12). Although inner is constrained to modify d

only in ways that preserve F.b(res .b, c, d), this constraint is in force only for the
value of c at the time of the call to inner , which in terms of the initial value of c is
store(c, t , 0). Therefore, scope monotonicity and modular soundness do not hold.

To restore modular soundness, we must arrange either that outer verifies in unit
E or that it does not verify in unit D . We choose the latter, that is, we take the
view that outer was misprogrammed: modifying part of the representation (c) of an
abstraction (b) whose representation is hidden and then calling a method (inner)
that may manipulate the abstraction is methodologically unjustifiable, even if the
modification of c is restored after the call.

Consider that the example might continue as follows:

rep b[t :T ] ≡ c[t ] · d [t ]
impl inner(t :T ) is

if c[t ] = 0 then d [t ] := d [t ] + 1 end
end

This possible continuation shows clearly that the failure of outer to verify in unit
E is appropriate, and therefore its verification in unit D is inappropriate.

The essential difficulty revealed by Saxe’s example is that two abstract variables
that have no common dependency in a small scope may turn out to have a common
dependency in a larger scope. To fix our proof system to be modularly sound, we will
force all small-scope verifications to respect the possibility that larger scopes may
reveal common dependencies. To do this, we introduce another residue variable, a
shared residue sres to augment the individual residues introduced earlier.

In more detail, sres is a predeclared variable visible in all scopes. The method-
ology treats every abstract variable declaration

spec var a:T → X

as shorthand for

spec var a:T → X
depends a[t :T ] on sres [t ]
var res .a:T → any
depends a[t :T ] on res .a[t ]

The combination of individual and shared residues achieves modular soundness.
For Saxe’s example, the attempted verification of outer in unit D will now fail: the
details of the failure are exactly the previously described details of the failure of
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outer to verify in unit E (see formulas (11) and (12)) with sres playing the role of
d .

It seems necessary to introduce both the shared residue and the individual
residues. Here is an example that shows that the shared residue alone does not
suffice for modular soundness. We begin with a small unit G:

unit G
type T
spec var a:T → X
spec var b:T → Y
proc outer(t :T ) modifies a[t ]
proc inner(t :T ) modifies b[t ] ensures b[t ] = b′[t ]
impl outer(t :T ) is t .inner() end

The following unit H shows that in a larger scope, the call to inner may have side
effects that are not allowed by outer ’s specification:

unit H import G
var c:T → Z
depends b[t :T ] on c[t ]

But with the shared residue variable only, inner ’s modification of the shared residue
is consistent, in unit G, with outer ’s modification constraint. To achieve the veri-
fication failure that we need, we must distinguish res .a from res .b.

The residue constraint. In summary, in addition to the modularity requirements,
we impose the following residue constraint :

Each abstract variable a implicitly depends on res .a and on sres , and
neither res .a nor sres appears in any user-supplied declaration.

It may now seem that we need additional shared residue variables for every pair
(or subset) of abstract variables. But this is not the case, as our soundness theorem
shows.

6.4 Modular soundness for static dependencies

The two modularity requirements and the residue constraint are the whole story.
We can now state the modular soundness theorem for static dependencies:

Theorem 6.0. Modular soundness for static dependencies For any scopes D and
E containing static dependencies only, and any procedure implementation P in D,

D � P and D ⊆ E and
D and E satisfy the two modularity requirements and the residue constraint
⇒
E � P

We have proved this theorem, but since the proof is more than 80 pages long and
has been printed elsewhere [Leino and Nelson 2000], we have not asked TOPLAS
to include it here. Instead, we briefly outline the proof.

The soundness theorem states that any implementation that verifies in a scope
D will also verify in a scope E that contains D . The proof is by induction on the
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number of declarations in E \ D : that is, we can imagine proceeding from D to E
by adding declarations gradually, proving for each addition that the verifiability of
the method implementation is not lost. For some kinds of added declarations (type
declarations, rep declarations, method declarations, and method implementation
declarations), the proof is quite easy. The hard case is where the added declarations
consist of a new field together with some number of dependencies on the field.

In this hard case, let ε be the new field. The are two differences between the
small-scope and large-scope verification conditions.

The first difference is that, for any abstract variable a that depends on ε in
the large scope, occurrences of a are functionalized differently in the two scopes.
Wherever we have in the small scope a subexpression like F.a(sres , . . .), we have
instead in the large scope a subexpression like F.a(sres , . . . , ε). The soundness
proof handles this difference by instantiating the universally quantified sres with
something like the pair (sres , ε).

The second and more difficult difference is that modifies lists are desugared dif-
ferently in the two scopes: the modification constraints in the large scope mention
ε, but the corresponding modification constraints in the small scope do not. This
adds a proof obligation to the large scope that was not present in the small scope
(namely that ε is changed only at its modification points). It also changes the
desugaring of method calls within the implementation being verified, adding as-
sumptions about how these calls modify ε. The proof handles this difference by
using individual residues: it can be shown that the set of modification points of ε
equals the union of the modification points of the individual residue variables res .a
for all a that depend on ε. This fact, and the fact that the small-scope verification
condition includes that the method meets its modification constraints for each such
res .a, together imply that the new modification condition (for ε) in the large-scope
verification condition is valid.

A rather different approach has been taken in the PhD thesis of Peter Müller
[2001], done under the supervision of

Arnd Poetzsch-Heffter. In the Müller/Poetzsch-Heffter approach, each verifica-
tion condition is an implication whose consequent is scope independent and whose
antecedent is a conjunction whose strength is a monotonic function of the scope
in which the verification condition is constructed. This makes the soundness the-
orem trivial. Differences between their system and ours that contribute to their
short soundness proof include: they encode the dependency relation in the logic,
they introduce a single variable for the whole heap rather than variables for the
data fields visible in a particular scope, and they do not functionalize abstract
variables. As a consequence of their design, they do not need residue variables.
The Müller/Poetzsch-Heffter system has been used to verify some small programs.
These verifications were interactive rather than automatic. It seems that the com-
plexity of our soundness proof is the cost of design decisions that we took in order
to build a checker that is practical to use on realistic systems programs.

This marks the end of our presentation of static dependencies. In the next section,
we describe dynamic dependencies.
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7. DYNAMIC DEPENDENCIES

Most of the dependencies that arise in top-down program design are static. By a
top-down design, we mean a design in which each successive layer of implementation
provides the representation of the abstraction specified in layers above. However,
not all useful designs are top-down. A bottom-up design is often better, in which
an object type is defined and later used to build higher-level objects, which may
not even have been envisioned at the time the first type was defined. Most of the
dependencies that arise in bottom-up design are dynamic.

Recall that a dynamic dependency has the form

depends a[t ] on c[b[t ]]

This means that the abstract state a[t ] is represented in terms of the concrete
state c[b[t ]], which is a field not of the object t but of the separate object b[t ].
The field b is called a pivot field. Pivot fields introduce a level of indirection that
makes dynamic dependencies more complicated than static dependencies. Static
dependencies allow the representation of an abstraction to be divided among several
modules; dynamic dependencies allow it also to be divided among several dynami-
cally allocated objects.

For example, sequences are useful abstractions. To define sequences and then use
them in different ways is a bottom-up approach, which leads to the use of dynamic
dependencies. To see this, consider a set type Set .T implemented in terms of a
sequence type Seq.T . Somewhere in the set implementation, there will be a field,
say q, declared as

var q:Set .T → Seq.T

The representation of the validity and state of a set s will inevitably involve proper-
ties of the sequence q[s ]. Almost always, for example, set validity requires validity
of the underlying sequence, in which case we have

rep Set .valid [s :Set .T ] ≡ . . . ∧ Seq.valid [q[s ]]

This rep declaration requires the dependency

depends Set .valid [s :Set .T ] on Seq.valid [q[s ]]

which is dynamic, with pivot field q.
In proceeding from static to dynamic dependencies (and, in Section 9, to other

dependencies and invariants), the character of our results changes. The design of
our methodology will more and more be guided by programming judgment of what
is appropriate, rather than a mathematical observation of what is correct. We will
end up with a system that we hope is consistent and sound, but with no soundness
theorem. For those readers who may be alarmed by this, we make two observations.

The first observation is that mathematical hygiene is not the same thing as
methodological value. The Algol 60 report may not be up to the metamathemat-
ical standards of the Journal of Symbolic Logic, but it was certainly a valuable
contribution to programming methodology.

The second observation is that although our treatment of dynamic dependencies
is unfinished mathematically, and we have no soundness theorem, it nevertheless
compares favorably even on this dimension with much of the published work in
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related areas. Data abstraction functions that depend on concrete state that is
distributed between various dynamically linked objects have been used implicitly
by programmers, as we found when we verified the Modula-3 libraries with our
checker, but in the literature, the problem of reasoning about such programs has
not been identified and confronted directly. Related problems, like rep exposure
and aliasing, have been the subject of much discussion and many strictures, but
the discussions have often been so imprecise as to sweep critical issues under the
rug.

The material in the remainder of the paper is a record of what we learned by
implementing a program verifier and applying it to thousands of lines of modern
systems programs. The record is at a sufficient level of precision to allow others to
duplicate our results by reimplementing our verifier.

In this section, we will explain how dynamic dependencies affect functionaliza-
tion and modifies list desugaring, and then explain what we believe about their
modularity requirements.

7.0 Functionalization

Functionalization in the presence of dynamic dependencies is analogous to func-
tionalization in the presence of static dependencies only. Both of the fields in the
right-hand side of the dynamic dependency become arguments to the abstraction
function.

For example, in the presence of the dependencies

depends a[t ] on e[t ]
depends a[t ] on c[b[t ]]

the functionalized form of a[x ] is

F.a(e, c, b)[x ]

or, more precisely, taking residues into account,

F.a(sres , res .a, e, c, b)[x ]

The pointwise axiom for F.a is

〈 ∀ t , sres0, sres1, res .a0, res .a1, e0, e1, c0, c1, b0, b1 ::
sres0[t ] = sres1[t ] ∧ res .a0[t ] = res .a1[t ] ∧ e0[t ] = e1[t ] ∧
c0[b0[t ]] = c1[b1[t ]]

⇒
F.a(sres0, res .a0, e0, c0, b0)[t ] =
F.a(sres1, res .a1, e1, c1, b1)[t ] 〉

We don’t introduce anything like residue variables for dynamic dependencies.

7.1 Modifies list desugaring

Unlike functionalization, which is pretty much the same for static and dynamic
dependencies, modifies list desugaring is surprisingly different in the two cases. It
has taken us several tries to converge on a desugaring that suits all the examples
that we know.
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In this subsection, we assume that no abstract variable depends, directly or
indirectly, on itself. This restriction will be lifted in Section 9.0.

To explain the issues, we start by exploring the obvious extension of the approach
for static dependencies, and show how this goes wrong. Then we give what we
think is the right desugaring, followed by two more supporting examples. Finally,
we impose a restriction that seems to be necessary to make the desugaring sound.

Recall the main points of Section 5.1:

—the definition of closure,
—the rule that modifies M allows the modification of anything in the closure of

M , and
—the modification constraints that enforce the rule.

We will reuse the second and third points. That is, to accommodate dynamic
dependencies, we redefine closure and leave everything else the same.

The need to close upwards. Recall that a set of terms M is statically closed in a
scope D if it satisfies the property

a[E ] ∈ M ∧ “depends a[t ] on c[t ]” ∈ D ⇒ c[E ] ∈ M (13)

The obvious extension to include dynamic dependencies is to require in addition:

a[E ] ∈ M ∧ “depends a[t ] on c[b[t ]]” ∈ D ⇒ c[b[E ]] ∈ M (14)

To give this new closure a name, we define a set of terms M to be downward closed
in a scope D if it satisfies (13) and (14). Will we get a good desugaring if we replace
“static closure” with “downward closure” in Section 5.1? Unfortunately not.

To explain why the replacement doesn’t work, we give a straightforward example
of integer sets implemented in terms of extensible integer sequences. Figure 8 shows
the two interfaces, together with ESC-style specifications. (In these interfaces,
we have varied our convention and elected not to return anything from the init
methods.) A simple implementation of all Set objects, in which all elements are
kept in a sequence with duplicates allowed, begins as shown in Figure 9.

The whole point of this example is: what will be the effective modifies list used
in reasoning about the call to Seq.init in the body of Set .init? Since Seq.init(sq)
modifies valid [sq], state[sq], and length[sq], the modifies list (before closure) of the
call q[st ].init() is

modifies Seq.valid [q[st ]],Seq.state[q[st ]],Seq.length[q[st ]]

This is also the modifies list after closure, since it is already downward closed (not
counting residues, which we will ignore since they are irrelevant to this example).
Transforming the closed modifies list into modification constraints, the postcondi-
tion of the rewritten specification is

ensures 〈 ∀ sqv :: Seq.valid [sqv ] = Seq.valid ′[sqv ] ∨ sqv = q[st ] 〉 ∧
〈 ∀ sqv :: Seq.state[sqv ] = Seq.state ′[sqv ] ∨ sqv = q[st ] 〉 ∧
〈 ∀ sqv :: Seq.length[sqv ] = Seq.length′[sqv ] ∨ sqv = q[st ] 〉 ∧
〈 ∀ stv :: Set .valid [stv ] = Set .valid ′[stv ] 〉 ∧
〈 ∀ stv :: Set .state[stv ] = Set .state ′[stv ] 〉 ∧
〈 ∀ stv :: q[stv ] = q ′[stv ] 〉
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unit Set
type T
spec var valid : T → bool
spec var state: T → any
proc init(st : T )

modifies valid [st ], state[st ]
ensures valid ′[st ]

proc insert(st : T , x : int)
requires valid [st ]
modifies state[st ]

proc delete(st : T , x : int)
requires valid [st ]
modifies state[st ]

proc member(st : T , x : int):bool
requires valid [st ]

unit Seq
type T
spec var valid : T → bool
spec var length: T → int
spec var state: T → any
proc init(sq : T )

modifies valid [sq ], state[sq ], length[sq ]
ensures valid ′[sq ] ∧ length′[sq ] = 0

proc addhi(sq : T , x : int)
requires valid [sq ]
modifies state[sq ], length[sq ]
ensures length′[sq ] = length[sq ] + 1

proc get(sq :T , i : int): int
requires valid [sq ] ∧ 0 ≤ i < length[sq ]

Fig. 8. The interfaces Set for sets and Seq for sequences.

unit SetImpl import Set ,Seq
var q :Set .T → Seq .T
rep Set .valid [st :Set .T ] ≡ q [st ] �= nil ∧ Seq .valid [q [st ]]
depends Set .valid [st :Set .T ] on q [st ],Seq .valid [q [st ]]
depends Set .state[st :Set .T ] on Seq .state[q [st ]],Seq .length[q [st ]]
impl init(st :Set .T ) is

q [st ] := new(Seq .T ) ; q [st ].init()
end

impl insert(st :Set .T , x : int) is q [st ].addhi(x) end
..
.

Fig. 9. The implementation unit SetImpl .
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The fourth conjunct “protects” the higher-level abstraction Set .valid from a change
to its representation. In the old world of static dependencies only, this was nec-
essary, but in the new world with dynamic dependencies, it is preposterous. The
whole purpose of the Seq.init call is to modify the validity of the enclosing set.

The example shows that using the downward closure produces too strong an
ensures clause, that is, too small a closure.

Let us summarize what the example has shown about the difference between
static dependencies and dynamic dependencies. In the presence of a static depen-
dency of a[t ] on c[t ], the presence of the term c[x ] in the modifies list does not, and
should not, imply the presence of a[x ] in the closure, since the license to modify
a concrete variable does not imply the license to modify an abstract variable that
depends on it. However, in the presence of a dynamic dependency of a[t ] on c[b[t ]],
the example shows that the presence of the term c[x ] in the modifies list should
imply the presence of a[t ] in the closure, for any t such that b[t ] = x . That is, we
must close upwards as well as downwards.

Dynamic closure. In the next few paragraphs, we define the closure that we use
when desugaring modifies lists in the presence of dynamic dependencies, which we
call the dynamic closure. We have already indicated that it is larger than the
downward closure. In fact, it is the union of the downward closure with a portion
of the upward closure (defined soon).

Another change from our previous treatment is that the closure will contain
expressions of the form f −1. We call these “map inverses”, but they are not to be
thought of as ordinary notation, for example, the notation does not imply that f is
invertible: they are a syntactic fiction that will be eliminated when the closure is
transformed into a modification constraint. The elimination is achieved by rewriting
an equality of the form

s = f −1
1 [ f −1

2 [· · · [ f −1
n [E ]]]] (15)

into
fn [· · · [ f2[ f1[s ]]]] = E

All of the map inverses will be eliminated by this rewriting, because the terms of
the closure of a modifies list affect the rewritten specification only in modification
constraints, in which map inverses will occur only in equalities of the form (15).

The dynamic closure in a scope D of a modifies list M is the union of the
downward closure in D of M with the upward closure in D of the flexible subset of
M .

The flexible subset of a set of terms M in a scope D consists of those terms f [E ]
where D contains no dependency of the form depends a[t ] on f [t ].

A set of terms M is upward closed in a scope D if

c[E ] ∈ M ∧ “depends a[t ] on c[t ]” ∈ D ⇒ a[E ] ∈ M
c[E ] ∈ M ∧ “depends a[t ] on c[b[t ]]” ∈ D ⇒ a[b−1[E ]] ∈ M

The upward closure of a set of terms is its smallest upward-closed superset.

Examples. Let us redo the Set .init example with the new rule. The desugaring
begins, as before, with the modifies list from the specification, namely

modifies Seq.valid [q[st ]],Seq.state[q[st ]],Seq.length[q[st ]]
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The dynamic closure of this list includes the term

Set .valid [q−1[q[st ]]]

since the scope includes the dependency

depends Set .valid [st ] on Seq.valid [q[st ]]

This extra term in the closure weakens the modification constraint for Set .valid .
With the downward closure, the constraint was

〈 ∀ stv :: Set .valid [stv ] = Set .valid ′[stv ] 〉
However, with the dynamic closure, the constraint is

〈 ∀ stv :: Set .valid [stv ] = Set .valid ′[stv ] ∨ stv = q−1[q[st ]] 〉
which when map inverses are eliminated becomes

〈 ∀ stv :: Set .valid [stv ] = Set .valid ′[stv ] ∨ q[stv ] = q[st ] 〉
which in turn is functionalized to

〈 ∀ stv :: F.Set .valid(sres , res .Set .valid , q,
F.Seq.valid(sres , res .Seq.valid))[stv ]

=
F.Set .valid(sres ′, res .Set .valid ′, q ′,

F.Seq.valid(sres ′, res .Seq.valid ′))[stv ]
∨ q[stv ] = q[st ] 〉

which eliminates the problem since the disjunct q[stv ] = q[st ] allows the method
to change the validity of st . (The disjunct also allows the method to change the
validity of any other set whose q field coincides with the q field of st . This accurately
reflects the semantics of the situation, and we take it as evidence that our rewriting
is appropriate. It is a different issue whether the designer of Set .T should allow
such sharing of the q field—probably not, as explained in Section 9.3.)

Here is an example to show why the dynamic closure is the union of two closures,
rather than, for example, the upward closure of the downward closure or some kind
of bi-directional closure. Suppose that we were doing full functional verification
instead of extended static checking only, and that sets were represented by sequences
without duplicates. Then we would have the dependency

depends Set .valid [st ] on Seq.state[q[st ]]

since the rep declaration for Set .valid [st ] would forbid duplicates in q[st ], which is
an assertion about Seq.state[q[st ]]. In addition, we still have the dependency

depends Set .state[st ] on Seq.state[q[st ]]

If the dynamic closure were the upward closure of the downward closure, then the
dynamic closure of the modifies list

modifies Set .state[st ]

would include Set .valid [st ]. Thus, in the scope of the implementation, any operation
that changes the state of a set would be allowed also to modify its validity, which
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would be preposterous. (It would also be unsound, since in the scope of a client of
the Set interface, such a side effect would be unexpected.)

Finally, here is an example to show why the dynamic closure contains the full
upward closure of the flexible terms of a modifies list, rather than a single level.
Suppose R is a subtype of Rd .T (see Section 4), that

var rq:R → Seq.T

is a sequence-valued field of R readers, and that the subtype-specific validity of R
readers depends on the validity of the associated sequence:

depends svalid [r :R] on Seq.valid [rq[r ]]

In this scenario, we would argue that a call that modifies Seq.valid [rq[r ]] should be
allowed to modify both svalid [r ] and Rd .valid [r ].

Dependency segregation. Our desugaring of modifies lists requires a restriction,
which we call the dependency segregation restriction: no field c occurs both in a
static dependency of the form a[t ] on c[t ] and in a dynamic dependency of the form
z [s ] on c[b[s ]]. Because of the visibility and top-down requirements, this restriction
can easily be enforced modularly.

To see that this restriction is necessary, consider the following example:

unit A
...
depends a[t ] on c[t ]
proc P(t) modifies c[t ]

unit B import A
...
depends z [s ] on c[b[s ]]
. . . call t .P() . . .

Because c[t ] is not in the flexible subset of the modifies list of P , the caller in B
expects the value of z [b−1[t ]] to be unchanged. However, if the implementation of
P is placed in unit A (or in any unit where the dynamic dependency is not visible),
then no modification constraint will be added to the implementation to enforce the
unchangedness of z .

The dependency segregation restriction does not seem to rule out any useful
programs.

7.2 Modularity requirements for dynamic dependencies

The visibility and top-down requirements that we impose for static dependencies
both have analogues for dynamic dependencies, but the analogues are significantly
different from the originals. One of the differences is that because pivot fields can
be updated dynamically, several of the requirements for dynamic dependencies can
be checked only by reasoning about specifications, not by a simple check on the
placement of declarations. Our methodology enforces the requirements of this sort
by transforming an annotated input program into another annotated program that
will verify exactly when the input program would verify and the input program
obeys the requirements.
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Before getting into these deep waters, we describe the one modularity requirement
for dynamic dependencies that can be checked simply by looking at the placement
of declarations.

Pivot visibility requirement. The pivot visibility requirement requires that a dy-
namic dependency

depends a[t ] on c[b[t ]]

be visible anywhere b is.
This can be enforced simply by checking that the dependency is placed in the

same unit as the declaration of b.
Here is the reason we impose the requirement. If there were a scope where a

and b are visible but the dependency is not, then a modification to b[t ] could
change a[t ] unexpectedly. The requirement is not burdensome, since the module
that implements the abstraction a usually declares both the pivot field and the
dependency.

It would probably be sound to require only that the dependency be visible where
both a and b are, but we have not found any examples where the extra flexibility
of this weaker requirement would be of any engineering use.

Absence of abstract aliasing. The visibility requirement for static dependencies
prevents unexpected side effects between an abstract variable and its representation.
For the dynamic dependency of a[t ] on c[b[t ]], the pivot visibility requirement
prevents unexpected side effects between a and b, but we still need to protect
against unexpected side effects between a and c. This is the function of absence of
abstract aliasing.

For static dependencies, the problem is solved by requiring the dependency to be
visible anywhere both a and c are, but for dynamic dependencies, this would be
undesirably strict. For example, consider the sets and sequences described earlier.
This strict version of the requirement would force the dependency (and therefore
the pivot field as well) to be declared in the public interface Set instead of in the
private implementation where they belong. (It is obviously unreasonable to place
the pivot and dependency declarations in the public interface Seq, since sets may
not have been envisioned when sequences were defined.)

To find the right modularity requirement, we focus on the situation that goes
wrong, and use our judgment as programmers to assign blame. The situation that
goes wrong is an unexpected side effect between a[t ] and c[u] for some values t and
u. For the side effect to happen, it must be that b[t ] = u. For the side effect to be
unexpected, it must occur in a scope where a and c are visible but the dependency
is not. Because of the pivot visibility requirement, it must therefore be that b is
not visible either.

More formally, we say that abstract aliasing occurs if execution reaches some
point in the program text where, for some expressions E and F and pivot field b,
all free variables of E and F are visible, b is not visible, and E = b[F ] ∧ E �= nil.
Notice that the condition E = b[F ] makes sense even outside the scope of b, since b’s
value exists even at program points where b is not visible. We require that programs
be designed so that abstract aliasing does not occur. This requirement, together
with the pivot visibility requirement, is the analogue for dynamic dependencies of
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the visibility requirement for static dependencies.
So much for the definition of abstract aliasing. A further question is to find a

static discipline for avoiding the problem.
One simple discipline that prevents abstract aliasing would be to forbid com-

municating a pivot value b[t ] into or out of the scope declaring b. All forms of
communication must be forbidden, including communication via procedure param-
eters, procedure results, and global and heap locations. We say that the value of a
pivot field transferred into or out of the scope of the field’s declaration is leaked.

Unfortunately, the simple discipline of forbidding all leaking is too strict, for
several reasons. For example, initialization methods occasionally take parameters
that are stored into pivot fields. Also, methods of container classes must return the
elements of the container. Most compellingly, to operate on a pivot, an implemen-
tation of an abstraction must pass the pivot value to the pivot’s own methods.

We have defined a more flexible discipline for avoiding leaking, which solves the
three problems mentioned in the previous paragraph. But our solution is not totally
satisfactory, and instead of describing it in this paper, we refer the reader to the
companion paper Wrestling with rep exposure [Detlefs et al. 1998].

Disjoint ranges requirement. The disjoint ranges requirement states that pivot
fields declared in distinct units have disjoint ranges. That is, if b and d are pivot
fields whose declarations occur in different units, then, at any procedure boundary,

〈 ∀ s , t :: b[s ] = d [t ] ⇒ b[s ] = nil 〉
where s and t range over non-nil objects. The requirement is enforced by rewriting
pre- and postconditions.

To motivate the disjoint ranges requirement, we first recall the motivation for the
top-down requirement for static dependencies. In the presence of the dependencies

depends a[t ] on c[t ]
depends v [t ] on c[t ]

the methodology protects related abstractions by adding the postcondition

v [t ] = v ′[t ]

to any procedure specified with modifies a[t ]. If the dependency of v [t ] on c[t ]
were not visible, the translation would be unable to add this postcondition, making
modular verification unsound. Soundness is achieved for static dependencies by
imposing the top-down requirement.

The top-down requirement works for static dependencies, but it would be ridicu-
lously strict to generalize it in the obvious way for dynamic dependencies. For ex-
ample, it would be too strict to require that Set .valid be visible wherever Seq.valid
is, since Set is a higher-level abstraction, which quite possibly was not envisioned
when Seq was designed.

The disjoint ranges requirement is the analogue of the top-down requirement,
but for dynamic instead of static dependencies. Consider the following variables
and dependencies:

depends a[t ] on c[b[t ]]
depends v [t ] on c[d [t ]]
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and a procedure P specified with modifies a[t ]. Then P is allowed to modify a[t ]
and c[b[t ]], but not v [s ] for any s , not even when d [s ] = b[t ]. If d is visible in
the scope containing P ’s body, then modifies list desugaring adds an appropriate
conjunct to the postcondition. But if d is not visible in that scope, the only way
to guarantee that v [s ] is unchanged is to guarantee d [s ] �= b[t ], which is ensured by
the disjoint ranges requirement.

Swinging pivots restriction. Consider the modifies list

modifies b[t ]

It gives a procedure the license to modify b, but only at t . More precisely, the
procedure is required to establish the postcondition

〈 ∀ s :: b0[s ] = b′[s ] ∨ s = t 〉
where, in this discussion, we write b′ for the final value of b and b0 for the initial
value of b.

Now consider the modifies list

modifies b[t ], c[b[t ]]

It, too, gives a procedure the license to modify b, only at t . In addition, it allows the
modification of c at one point only. But is this point b0[t ] or b′[t ]? It is traditional
to choose the first alternative, allowing the modification of c only at b0[t ], and we
follow this tradition. However, the possibility that b0[t ] may be different from b′[t ]
causes a difficulty, which we will now describe.

Consider the following artificial procedure that returns from a reader not the
current character but the second character:

proc secondChar(rd :Rd .T ): int
requires valid [rd ]
modifies state[rd ]

impl secondChar(rd :Rd .T ) is
result := rd .getChar() ;
result := rd .getChar()

end

We certainly hope that this implementation will verify: since rd .getChar()’s speci-
fication requires valid [rd ] and modifies state[rd ], that same specification should be
satisfied by two calls in a row. Indeed, it does verify in a scope where only Rd is
imported.

Unfortunately, as we discovered when using our ESC checker on the Modula-3
I/O system, the implementation does not verify if RdRep is imported! The problem
is that, in the presence of the dependencies declared in RdRep, the checker will issue
a spurious warning because of the possibility that the first call to getChar changes
buff [rd ] and the second call changes the contents of the new buff [rd ]. Thus the net
effect is inconsistent with our interpretation of secondChar ’s specification

modifies state[rd ]

since this desugars to

modifies buff [rd ], elems [buff [rd ]], . . .
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which allows changing elems [buff0[rd ]], but not elems [buff ′[rd ]].
Reversing the tradition does not help: if secondChar ’s specification were desug-

ared to allow modification of elems at buff ′[rd ] instead of at buff0[rd ], then the
checker would warn about the possibility that the first call to getChar changes the
contents of the buffer and the second call changes the buffer pointer.

This problem is a failure of modular soundness, which can only be rectified in
two ways: by changing the proof system so that secondChar does not verify when
only Rd is imported, or by changing it so that secondChar does verify when RdRep
is imported. Our engineering judgment is that the latter course is the right one.
The best way we have found to achieve this is to impose a rather strict requirement
that we call the swinging pivots restriction: a procedure specified to modify a pivot
field is allowed to change it only to nil or to a value newly allocated within the
procedure. This discipline is enforced formally by adding, for each pivot field b, a
conjunct to the postcondition of every procedure:

〈 ∀ s :: b0[s ] = b′[s ] ∨ b′[s ] = nil ∨ ¬alloc0[b′[s ]] 〉 (16)

where alloc0[x ] means the object x was allocated in the pre-state (Section 8.1 pro-
vides more details about alloc). With this postcondition of getChar , the spurious
warnings will not occur, since the problematic control paths are inconsistent with
the strengthened postcondition.

As we have described it, the swinging pivots restriction is too strict. For example,
the restriction forbids an initialization method from assigning one of its parameters
to a pivot field in the object being initialized, which is occasionally necessary. It
is straightforward to revise the swinging pivots restriction to accommodate such
assignments, by adding a disjunct to (16), but we won’t describe it in this paper
since it requires the nomenclature defined in Wrestling with rep exposure [Detlefs
et al. 1998].

We can envision situations where even the revised restriction is too strict, for
example, a double-buffered reader implementation in which one buffer is being
filled while the other is being emptied. But the swinging pivots restriction is the
best solution to the problem that we know.

8. REASONING ABOUT TYPES AND ALLOCATION

A central issue described in this paper is the rewriting of specifications found in
a modular program into specifications about which one can reason using standard
techniques for verifying one-scope programs. Although those techniques have been
described widely in the literature, there are some areas where we have had to
innovate in order to build the Modula-3 Extended Static Checker, in particular in
the areas of reasoning about types and allocation. We describe these techniques
here, both because some of the techniques related to allocation are new, and because
this material interacts with the modularity issues discussed in Section 9.

8.0 Reasoning about types

Conditions that the language guarantees can be assumed by the methodology with-
out proof. We call such conditions “freeconditions”. For example, in checking a
procedure implementation like

impl P(t :T , n:nat) is . . . end
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we get the free preconditions t �= nil and n ≥ 0, from the language semantics for
method calls and the language definition of nat. The full story is more complicated,
since the value of type nat might be a field of some object rather than a simple
parameter.

Therefore, every verification condition R in a scope D is discharged under the
background predicate for D :

BackgroundPredD ⇒ R

The background predicate is a conjunction of axioms formed from the declarations
that are visible. This subsection gives a flavor of what the background predicate
contains.

For every type T , the background predicate contains the definition of a predicate
symbol is$T , which asserts that its argument is of type T . In addition, for each
object type T , the background predicate contains a constant tc$T representing the
typecode of T . If T is declared to be a subtype of an object type U , the background
predicate will contain the conjunct

subtype1(tc$T , tc$U )

For an object type T , is$T is defined by the conjunct

〈 ∀ t :: is$T (t) ≡ t = nil ∨ subtype(typecode(t), tc$T ) 〉
where subtype is the reflexive, transitive closure of subtype1.

Data fields are treated as maps from objects to values. For every map type
T → U occurring in the program, the background predicate defines a predicate
symbol field$T$U . One of the axioms about field$T$U asserts that applying a
map to a value in its domain produces a value in its range:

〈 ∀ f , t :: field$T$U (f ) ∧ is$T (t) ∧ t �= nil ⇒ is$U (f [t ]) 〉
For the full details of the background predicate of a small object-oriented lan-

guage, we refer the reader to the axiomatic semantics of Ecstatic [Leino 1997]. The
background predicate used for Modula-3 in the Extended Static Checker is similar,
but more complicated, because, for example, Modula-3 has a larger variety of types.

8.1 Reasoning about allocation

Consider the following specification puzzle: A procedure P takes a filename as
a parameter, opens the named file, reads four bytes, and returns their value as
an integer. We would like to specify P with an empty modifies list, since P is
essentially functional from the point of view of the client. However, it is impossible
to implement P without side effects on allocated data. For example, if a file reader
is used, its buffer will be changed.

Our solution is to make it implicit in the specification of every procedure that
modifications to newly allocated state are allowed. Thus, although P ’s modifies list
is empty, its implementation is allowed to change the fields of the file reader, since
it allocates that reader (but if P used a pre-existing reader rd , it would have to
mention state[rd ] in the modifies list, as usual). We say that by convention we allow
“free modification of unused state”. In fact, we have already used this convention:
BlankRd .init modifies the contents of the buffer. This is allowed by our convention,
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because the buffer is newly allocated, but it would have been inconsistent with the
modifies list otherwise.

We believe this convention is sound with respect to the standard operational
semantics, but we have neither proved it nor noticed that anyone else has.

The convention affects the desugaring of specifications. To describe this in more
detail, we must explain the semantics of allocation. Since successive calls to the
storage allocator return different results, it must be that the calls have some side
effect. Informally, the side effect is to extend the set of allocated objects. In
the formal semantics, the side effect is to change the “allocated” property of the
returned object from false to true. We model this property with the predeclared
boolean object field alloc.

The program expression new(T ) is sugar for

var x in
x �= nil ∧ ¬alloc[x ] ∧ x ∈ T

→
alloc[x ] := true ; result := x

end

that is, nondeterministically choosing any non-nil, unallocated object of type T ,
and allocating and returning it.

The modifies list of every procedure implicitly contains alloc, and the postcondi-
tion of every procedure implicitly includes

〈 ∀ s :: alloc[s ] ⇒ alloc′[s ] 〉
that is, the procedure can allocate objects, but not deallocate them (we assume the
usual fiction of garbage collected languages wherein objects are allocated but never
deallocated).

Recall that, for every field g, a modifies list desugars to a conjunct in the post-
condition of the form

〈 ∀ s :: g[s ] = g ′[s ] ∨ s = E0 ∨ s = E1 ∨ . . . 〉
where the E ’s are the modification points allowed for g by the modifies list. With
our allocation convention, this conjunct becomes

〈 ∀ s :: g[s ] = g ′[s ] ∨ ¬alloc[s ] ∨ s = E0 ∨ s = E1 ∨ . . . 〉
This allows the procedure to modify g at any newly allocated object.

The specification language admits assertions that quantify over all objects of a
particular type. Such assertions are considered by convention to apply to allocated
objects only. For example, a universal quantification 〈 ∀ x :T :: P(x ) 〉 occurring
in a specification is desugared into

〈 ∀ x :T :: alloc[x ] ⇒ P(x ) 〉
except if it occurs in a postcondition, in which case it is desugared into

〈 ∀ x :T :: alloc′[x ] ⇒ P(x ) 〉
These kinds of assertions are not common in pre- or postconditions, but they are
common in program invariants, which will be discussed in Section 9.3.

ACM Transactions on Programming Languages and Systems, Vol. ?, No. ?, October 2001.



46 · K.R.M. Leino and G. Nelson

Unlike the mini-language used in this paper, many programming languages allow
declarations to specify default values for object fields. These will become important
when we discuss program invariants in Section 9.3. Taking default values into
account, the desugaring of new must be altered slightly from the version given
above. Suppose, for example, that f is one of T ’s fields, and that the default value
of f is the constant C . Then new(T ) is sugar for

var x in
x �= nil ∧ ¬alloc[x ] ∧ x ∈ T ∧ f [x ] = C

→
alloc[x ] := true ; result := x

end

This desugaring nondeterministically chooses an object whose f field has the right
value. (We prefer this to an alternative desugaring which assigns f [x ] := C after
choosing x . Our version reduces the number of assignments, which speeds mechan-
ical checking.)

The story we have told so far about new is not new. For example, our story is
essentially equivalent to that given by Hoare and Wirth [1973] in their classic paper
on an axiomatic semantics for Pascal. We were surprised to find, when applying
our checker to the Modula-3 library, that the story doesn’t work. The following
artificial program illustrates the problem:

type T ,U
var f :T → U
proc P(t :T ) requires t �= nil
impl P(t :T ) is

var u:U in
u := new(U ) ;
assert f [t ] �= u

end
end

Procedure P , which takes an object t as a parameter and allocates a new object
u, will crash if the f field of t is u. As programmers, we know this won’t ever
happen, but nothing we have said so far allows this procedure to be verified. We
have ensured that new returns a previously unallocated object, but we have not
ensured that all reachable objects are allocated. This problem seems to be less
appreciated than the more easily solved problem of ensuring that new returns a
previously unallocated object.

The background predicate helps, since we can arrange that it provide the assump-
tion alloc[t ] for each parameter or global variable of an object type. But as the
example shows, this is not sufficient, since alloc[f [t ]] does not follow logically from
alloc[t ]. The basic idea of our solution is to introduce into the methodology the free
assumption that fields of allocated objects are themselves allocated, that is, that for
every declared field f whose range type is an object type, alloc is closed under f . It
is not enough to assume this condition once and for all in the background predicate,
since both alloc and f are mutable. Instead, the closure condition is an implicit
pre- and postcondition of every procedure, including new. We will not describe
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the details here, since they are not particularly relevant to modular verification.
Instead, we refer interested readers to the axiomatic semantics of Ecstatic [Leino
1997].

9. FURTHER CHALLENGES

Static and dynamic dependencies allow us to check many parts of the Modula-3
run-time library that we were unable to check without them. But there remain
programming paradigms that are used in practice and seem sound and modular to
which our approach does not apply. This section describes some of these challenges
and some tentative ideas we have for addressing them.

9.0 Cyclic dependencies

Dynamic dependencies give rise to the possibility of cyclic dependencies, that is, an
abstract variable may depend on itself indirectly, via some pivot fields. Indeed, this
happens in the case of a “filter” object that “forwards” method calls to an instance
of one of its supertypes. For example, consider a DOSRd .T subtype of Rd .T that
returns all the characters of a given child reader, but with carriage return characters
filtered out:

unit DOSRd import Rd
type T <: Rd .T
proc init(drd :T , rd :Rd .T ):T

requires rd �= nil ∧ valid [rd ]
modifies valid [drd ]
ensures valid ′[drd ] ∧ result = drd

(For simplicity, we’re ignoring state.) The expression new(DOSRd .T ).init(rd)
allocates, initializes, and returns a new DOS reader with child reader rd . The
implementation of DOS readers will need to store the child reader in some field of
the DOS reader, say ch:

var ch:DOSRd .T → Rd .T

The implementation will also have to give the representation of svalid for DOS
readers, which will include a conjunct expressing that the child is valid:

rep svalid [drd :DOSRd .T ] ≡ . . . ∧ valid [ch[drd ]]

This requires the dynamic dependency

depends svalid [drd :DOSRd .T ] on valid [ch[drd ]]

Combined with the static dependency of valid [rd ] on svalid [rd ] in RdRep, this
produces a cycle of dependencies.

To accommodate cyclic dependencies, we make two changes to our proof system.
We will describe the two changes for the case that there is exactly one pivot field
involved in any cycle. This is the only case that we have implemented in ESC,
although we believe that the ideas could be generalized.

The first change is in taking the closure of a modifies list. We need to make some
change to prevent the closure from being infinite. We introduce two new notations
allowed in closures: f ∗[t ] and f −∗[t ]. Intuitively, they represent the set of terms

t , f [t ], f [f [t ]], . . .
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and the set of terms

t , f −1[t ], f −1[f −1[t ]], . . .

respectively. These notations appear in the closures of modifies list, but they are
fictions that are eliminated when the closures are transformed into postconditions.
Since we assume only one pivot field per cycle, the infinite set of terms produced
by the closure rules described previously can be summarized in a finite set of terms
involving the new notations. For example, in the context of the implementation of
DOS readers, the modifies list

modifies valid [drd ]

has the closure
valid [ch∗[drd ]], svalid [ch∗ [drd ]],
valid [ch−∗[drd ]], svalid [ch−∗ [ch−1[drd ]]]

Recall that modifies lists are closed, and then closed modifies lists are turned into
modification constraints in postconditions. Thus, to eliminate our new notations,
we must show how to rewrite them into modification constraints. The license to
modify a[b∗[t ]] gives rise to the postcondition contribution

〈 ∀ s :: a[s ] = a′[s ] ∨ t b−→
nil

s 〉

where the notation t b−→
x

s , read “t reaches s via (applications of) b, not going

through x”, is defined by Nelson [1983]. Similarly, the license to modify a[b−∗[t ]]
gives rise to the postcondition contribution

〈 ∀ s :: a[s ] = a′[s ] ∨ s b−→
nil

t 〉
The second change to our proof system is to the pointwise axiom for any abstract

variable involved in a cycle of dependencies. We will describe the change by means
of an example. To set the stage, we consider first an example with a dynamic but
non-cyclic dependency, say

depends a[t ] on e[t ]
depends a[t ] on c[b[t ]]

The pointwise axiom for a (leaving out residues) is

〈 ∀ s , e0, e1, c0, c1, b0, b1 :: e0[s ] = e1[s ] ∧ c0[b0[s ]] = c1[b1[s ]]
⇒ F.a(e0, c0, b0)[s ] = F.a(e1, c1, b1)[s ] 〉

Now let the dynamic dependency be cyclic:

depends a[t ] on e[t ]
depends a[t ] on a[b[t ]]

The new pointwise axiom for a (leaving out residues) is

〈 ∀ s , e0, e1, b0, b1 ::
〈 ∀ r :: s b0−→

nil
r ⇒ e0[r ] = e1[r ] ∧ b0[r ] = b1[r ] 〉

⇒ F.a(e0, b0)[s ] = F.a(e1, b1)[s ] 〉
ACM Transactions on Programming Languages and Systems, Vol. ?, No. ?, October 2001.



Data abstraction and information hiding · 49

That is, a[t ]’s value depends only on the e and b fields of objects reachable from t
via b.

We will illustrate this pointwise axiom by showing the verification of the init
method of DOS readers, implemented as:

impl init(drd :T , rd :Rd .T ):T is
ch[drd ] := rd ; lo[drd ] := 0 ; . . . ; result := drd

end

where we assume the elided code initializes the cur , hi , and buff fields of drd to
satisfy the validity requirements given in RdRep. The first part of this verification is
showing that the assignment to the ch field establishes svalid [drd ]. This is easy since
the init method requires valid [rd ] as a precondition. The second part is showing
that the assignment does not affect the validity of any other reader (except as
allowed by the modifies list). As we have already remarked, the closure of the
modifies list includes

valid [ch∗[drd ]], valid [ch−∗ [drd ]]

which produces the postcondition

〈 ∀ s :: valid [s ] = valid ′[s ] ∨ drd ch−→
nil

s ∨ s ch−→
nil

drd 〉
which is functionalized to

〈 ∀ s :: F.valid(ch, lo, . . .)[s ] = F.valid(ch′, lo′, . . .)[s ]
∨ drd ch−→

nil
s ∨ s ch−→

nil
drd 〉

which follows from the pointwise axiom for valid , which is

〈 ∀ s , ch0, ch1, lo0, lo1, . . . ::
〈 ∀ r :: s ch0−→

nil
r ⇒ ch0[r ] = ch1[r ] ∧ lo0[r ] = lo1[r ] ∧ . . . 〉

⇒
F.valid(ch0, lo0, . . .)[s ] = F.valid(ch1, lo1, . . .)[s ] 〉

We leave the proof to the reader.
In the verification of the init method of DOS readers, no properties of the reach-

ability predicate were used: it might as well have been an uninterpreted predicate.
Properties of the reachability predicate come into play when verifying a non-trivial
operation on the DOS reader whose implementation modifies the child reader (for
example the refill method, which recursively invokes the refill method of the child).

In summary, we have described the essential ideas of a proof system for cyclic
dependencies. More details are described by Rajeev Joshi [1997]. At least two
problems still remain: Cyclic dependencies with more than one pivot field per cycle
require some generalization. Also, even with just one pivot field per cycle, our
rewriting produces verification conditions that are beyond the limit of what our
automatic theorem prover can handle efficiently.

9.1 Yet more dependencies

We have concentrated on static and dynamic dependencies because they play a
central role in the patterns of abstractions in the library programs we took as test

ACM Transactions on Programming Languages and Systems, Vol. ?, No. ?, October 2001.



50 · K.R.M. Leino and G. Nelson

cases in the ESC project, not because we can’t imagine other kinds of dependencies.
In this section, we sketch what we know about other dependencies.

If a global abstract variable (not a field) depends on a global concrete variable
(not a field), we call it an entire dependency. For example,

spec var k : int
var m,n:nat
rep k ≡ m − n
depends k on m,n

This kind of abstraction occurs frequently in papers on data refinement, but in
practice we have found static and dynamic dependencies far more frequent. One
place in which entire dependencies are useful is in reasoning about module initial-
ization, which we will address in Section 9.2. We have a soundness theorem for
entire dependencies, and the modularity requirements are essentially the same as
those for static dependencies, that is, the dependency of a on c must be placed in
the unit that declares c [Leino 1995].

If an abstract field (not a global variable) depends on a global concrete variable
(not a field), we have a dependency of the form

depends a[t ] on g

As an example of how this might come up, consider an abstract type whose instances
contain unique id fields. Each id field is initialized from a global counter, gcount .
This might well lead to a representation of validity of the form

rep valid [t ] ≡ . . . ∧ id [t ] < gcount

which in turn would require a dependency of the form

depends valid [t ] on gcount

However, the soundness of these dependencies is problematical, and our current
view is that they are not useful and should be forbidden. To specify a data type
containing unique identifiers, we recommend using program invariants, as will be
described in Section 9.3.

If an abstract field depends on concrete fields of the elements of an array, we
have an array dependency. We would suggest overloading the notation for dynamic
dependencies: if b[t ] has type array[U ] and c is a field with index type U , then

depends a[t ] on c[b[t ]]

is an array dependency that allows a[t ] to depend on the sequence of values

c[b[t ][0]], c[b[t ][1]], . . .

So an array dependency seems akin to a dynamic dependency, but with an array
of pivots instead of just one.

As an example of an array dependency, consider a type T representing sets of
elements of type E . Suppose that the implementation automatically enlarges itself
when necessary, and that enlarging requires rehashing the current elements, and
that rehashing an element requires that the element be valid. Then, the validity of
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the set will require the validity of all its elements. If the elements are held in an
array, say b, then the validity of the set will have the form

rep T .valid [t :T ] ≡
. . . ∧ 〈 ∀ i :: 0 ≤ i < number(b[t ]) ⇒ E .valid [b[t ][i ]] 〉

which involves the array dependency

depends T .valid [t :T ] on E .valid [b[t ]]

We suspect that array dependencies are a straightforward generalization of dynamic
dependencies, but we have not investigated them thoroughly.

One can imagine many other kinds of dependencies, for example,

depends a[t ] on c[b[d [t ]]]

But we have never been able to make a strong case that such dependencies are
useful.

9.2 Checking initialization order

Initializing global data is more complicated in a multi-module program than in a
single-module program and is a common source of programming errors. Some of
the procedures in a module require that the module’s globals be initialized, but
generally not all of them: for example, any procedure that is used in performing
the initialization. Thus, there are two classes of procedures: those that require
prior initialization of the module and those that don’t. A common error is to
inadvertently call a procedure of the first class before initialization is complete,
either through confusion over which class a procedure is in, or because the linker
initializes the modules in an unexpected order.

We suggest that data abstraction can help in solving this problem. The idea is
to introduce into the interface of each module a boolean abstract variable, called
an init variable, which means the module has been initialized. Procedures of the
first class require the init variable as a precondition, while those of the second
class do not. The purpose of a module body is to ensure an init variable as a
postcondition; to achieve this, it may call other procedures that modify and ensure
the init variable.

A programmer can also require one or more init variables of other modules as
preconditions of the module body. The linker calls the module bodies in an order
such that each body’s precondition is established before it is called, or reports a
cycle if this is impossible. Each module provides a rep declaration that connects
its init variable to the globals of the module, so occurrences of init variables in
specifications are desugared like any other abstract variable.

An init variable generally depends on the global variables in the module. These
dependencies satisfy the modularity requirements for entire dependencies since they
are placed in the same units as the declarations of the globals, and thus present no
problem to modular verification. An init variable may also depend on other init
variables, since

rep Minit ≡ Ninit ∧ . . .

where Minit and Ninit are the init variables of two modules M and N , is a simple
way of giving M ’s procedures of the first class the right to call N ’s procedures of
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unit M
type T
spec var a: T → . . .
..
.

proc P(t : T ) modifies a[t ]

unit N
type U
spec var c:U → . . .
...

proc R(u: U ) modifies c[u]

unit MImpl import M ,N
var b:T → U
depends a[t : T ] on c[b[t ]]
...

impl P(t : T ) is . . . R(b[t ]) . . . end

Fig. 10. A prototypical example involving a dynamic dependency.

the first class. Unfortunately, the dependency of Minit on Ninit is most naturally
placed in the implementation of module M , a unit that declares neither Minit nor
Ninit . Thus, this dependency violates both the visibility and top-down require-
ments, which in general destroys soundness. We have several ideas for restoring
soundness while allowing init variables to depend on one another. These ideas are
based on the observation that init variables change only from false to true. But we
have not proved a soundness theorem.

9.3 Invariants

In practice, almost all pivot fields are injective (one-to-one), that is, if b is a pivot
field and u and v are distinct objects in the domain of b, then b[u] and b[v ] are
distinct (or they are both nil). The reason for this is easily seen by considering the
prototypical example involving a dynamic dependency, shown in Figure 10. The
call to R from P modifies c[b[t ]]. This affects the value of a[t ]. If the pivot field
b were not injective, it would also affect a[u] for any u such that b[u] = b[t ]. In
general, when a[t ] is modified by changing part of its representation c[b[t ]], the
only hope for showing that the modification obeys the modifies list

modifies a[t ]

is to require the injectivity of b.
Note that although we find injectivity necessary to be able to verify interesting

programs, we have not found injectivity to be a requirement for soundness.
By the way, it is surprisingly difficult to verify a procedure that initializes an

injective field. While showing that a command like

b[t ] := new(U )

maintains the injectivity of b is easy, a command like

b[t ] := NewU ()
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does not verify, even if procedure NewU is specified to ensure ¬alloc[result] ∧
alloc′[result]. The checker dreams up the possibility that NewU allocates a new
U object, squirrels it away into some b field, and then returns it. To cope with this
problem, we enrich the specification language with the expression virgin[x ], which
means that x is not, and has never been, the value of any object field or global
variable. The details are found in a paper by Leino and Stata [1999b].

How should a programmer use the specification language to record the design
decision that a field is to be injective? One might first try to include this as part
of the representation of an object’s validity, producing a rep declaration like

rep valid [t :T ] ≡ . . . ∧ (b[t ] = nil ∨ 〈 ∀ s :T :: s �= t ⇒ b[s ] �= b[t ] 〉)
But this seems problematical. It makes valid [t ] depend not just on b[t ], but on
b[s ] for all s of the appropriate type. It seems perverse to think of this unbounded
collection of b[s ]’s to be part of the “representation” of valid [t ].

A simpler and better strategy is to extend the specification language with the
notion of a program invariant : a declaration of the form

invariant J

records the intention that the predicate J hold at every procedure call and return
in the entire program. For example, to specify the injectivity of b, the following
program invariant can be used:

invariant 〈 ∀ t , u:T :: t �= nil ∧ u �= nil ∧ t �= u
⇒ b[t ] �= b[u] ∨ b[t ] = nil 〉

The methodology enforces program invariants with two requirements. First, it
requires that J be true at the “beginning of time”. Second, it requires that every
procedure respect J (assuming that all the procedures it calls respect J ), that is,
it conjoins J to the pre- and postcondition of every procedure implementation and
procedure call.

The beginning-of-time test is straightforward and presents no modularity prob-
lems. It consists of the following proof obligation for each declared program invari-
ant J :

〈 ∀ t :: t = nil ∨ ¬alloc[t ] 〉 ⇒ J

That is, J must hold in a state in which no non-nil objects have been allocated.
More precisely, this proof obligation must follow from the background predicate. If
J contains free variables of primitive types like integers, then it must hold regardless
of their values. To enforce invariants about global variables, the init-vars technique
described in Section 9.2 is more useful. In our experience, we mostly use program
invariants to assert universally quantified properties of objects of a certain type,
like injectivity. In this case, the beginning-of-time test passes trivially.

The second test, that every procedure respects J , involves subtle modularity is-
sues. The basic idea is simple: when in a scope D the methodology desugars a
specification (either in reasoning about a procedure call or in checking a proce-
dure implementation), it adds to the pre- and postcondition all invariants whose
declarations are in D . If the program consists of a single global scope, then the
soundness of this approach is clear: the change to the pre- and postconditions is the
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same for reasoning about the calls as for checking the implementations. However,
if the program consists of many scopes, then modularity requirements must be im-
posed to achieve soundness, by ensuring that primitive steps in a scope where the
invariant is not visible cannot falsify the invariant. We will build up to the correct
modularity requirements in stages. To begin with, we assume that the invariant
contains concrete variables only.

The first modularity requirement for invariants that comes to mind is:

a program invariant must be declared near all of its free variables.

Two declarations are near one another if they are contained in the same unit. It
follows that they are visible in the same scopes.

This simple modularity requirement achieves soundness because an invariant can-
not be falsified except by modifying its free variables. Thus, those procedures whose
implementation lies outside the scope of the invariant preserve the invariant because
they cannot mention any of its free variables. The rest of the procedures are proved
to maintain the invariant.

Unfortunately, this simple requirement is too strong because of the special con-
crete variable alloc, which represents the set of allocated objects and occurs implic-
itly in almost all invariants: recall from Section 8.1 that a quantification

〈 ∀ t :T :: . . . 〉
is desugared to

〈 ∀ t :T :: alloc[t ] ⇒ . . . 〉
Consequently, it is necessary to loosen the simple rule to allow program invariants
to mention alloc. This introduces the danger of a procedure falsifying an invariant
invisible to it by modifying alloc. We address this difficulty by observing that
the only way a procedure can directly modify alloc is by performing an allocation,
and we can demand of an invariant that it be maintained by any allocation in
any portion of the program in which it is not visible. To this end, we say that
an invariant J passes the blind allocation test for a type T if J is invariant under
new(T ).

This brings us to the second version of the modularity requirement for invariants:

(0) a program invariant must be declared near all of its free concrete variables,
except alloc, and

(1) for all types T , either (a) T is declared near the invariant, or (b) the invariant
passes the blind allocation test for T , or (c) T is not mentioned in the invariant.

Here’s a sketch of a justification for this version of the modularity requirement:
Because of (0), the only invariant-falsifying primitive steps that we need to worry
about are those that modify alloc, that is, expressions of the form new(T ) for some
type T . But it is impossible for the expression new(T ) to falsify the invariant,
because for such a T , neither (a) nor (b) nor (c) could hold: not (a), since if T is
declared near the invariant, the invariant is visible wherever new(T ) can be called;
not (b), since the blind allocation test explicitly checks that new(T ) maintains the
invariant; and not (c), since new(T ) cannot falsify the invariant if the invariant
doesn’t mention T and passes the blind allocation test for T .
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unit U
type T
spec var valid : T → bool
proc init(t :T ): T

modifies valid [t ]
ensures valid ′[t ] ∧ result = t

unit UImpl import U
var id : T → int
. . . (other fields) . . .
rep valid [t :T ] ≡ . . .
var gcount : int
impl init(t : T ):T is

id [t ] := gcount ; gcount := gcount + 1
. . .
result := t

end

Fig. 11. An example module that uses unique identifiers.

In order to pass the blind allocation test, a programmer must choose appropriate
default values for the fields of an object type. For example, if a pivot is specified
to be injective, its default value should be nil.

Let us return to a problem that we touched on in Section 9.1, namely the problem
of declaring a data type containing unique identifiers, see Figure 11. To record the
design decisions about id and gcount , one can add to UImpl the program invariants:

invariant 〈 ∀ t :T :: t �= nil ∧ valid [t ] ⇒ id [t ] < gcount 〉
invariant 〈 ∀ t , u:T ::

t �= nil ∧ u �= nil ∧ valid [t ] ∧ valid [u] ∧ t �= u
⇒ id [t ] �= id [u] 〉

In this approach, the statements about id and gcount that were problematical
to place in the rep declaration (see Section 9.1) have been moved into program
invariants. The rep declaration for valid [t ] concerns only fields of t . This seems
an improvement, but this approach still has two problems: one is giving the public
init method the license to modify the private variable gcount , the other is allowing
the abstract variable valid to appear in a program invariant.

To solve the first problem, we can introduce an abstract variable, say istate for
internal state, in the interface U :

spec var istate: any

We then allow init to modify istate, but istate has no other occurrences in the
interface:

proc init(t :T ):T
modifies valid [t ], istate
ensures valid ′[t ] ∧ result = t

Finally, we add the entire dependency of istate on gcount to the module UImpl :

depends istate on gcount

which by downward closure gives init the license to modify gcount .
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The second problem is that the invariants mention valid [t ], but so far we have
considered invariants containing concrete variables only. We cannot just eliminate
the occurrences of valid [t ], since no default value for id will make the second invari-
ant pass the blind allocation test for T . The blind allocation test is needed, since
T is mentioned in the invariant but T and the invariant are not declared near one
another.

One way to solve the second problem is to allow abstract variables in program
invariants. We believe that it is sound to do so, provided that the invariant satisfies
(0) and (1) from above, and also, for each abstract variable a appearing in the
invariant:

(2) all dependencies of a are static, and
(3) either (a) the invariant is declared near a, or (b) the invariant is declared near

every rep declaration for a and near every dependency of a.

However, this story is getting more complicated than we like. Perhaps it is best
simply to forbid abstract variables from appearing in program invariants. If we
do, we need some other way of dealing with the occurrences of valid [t ] in the
program invariants in the unique identifiers example. This we can do simply by
inlining them, that is, by replacing valid [t ] by whatever expression is given as its
rep. Although awkward, this entails no loss of modularity or information hiding,
since the invariants occur in a scope (UImpl) where the representation of valid [t ]
is visible.

10. IMPLEMENTATION STATUS

Almost everything described in this paper has been implemented in the Modula-3
Extended Static Checker. Exceptions are:

(0) the checker implements only the individual residues, not the shared residue sres
described in Section 6 beginning on page 29,

(1) the checker does not enforce the dependency segregation restriction of Sec-
tion 7.1 on page 39, but instead uses a more general way of computing the
dynamic closure (“upward closure of dynamic predecessors”), which does not
necessitate the restriction,

(2) the checker does not enforce the disjoint ranges requirement of Section 7.2 (and
as mentioned in that section, we leave it to the programmer to avoid abstract
aliasing), and

(3) the checker does not implement the initialization order checking of Section 9.2.

Our experience with the checker is described in more detail in our companion
paper [Detlefs et al. 1998]. We have applied the checker to thousands of lines of
code, both from the Modula-3 libraries and from programs that use the libraries.
In specifying the libraries, we constantly used static and dynamic dependencies.

After experimenting with our Modula-3 checker, we embarked on another project
to build an extended static checker for Java [Extended Static Checking for Java ;
Leino et al. 2000]. In the ESC/Java project, we circumvented most of the difficulties
described in this paper by omitting data abstraction from the annotation language.
To partially make up for the omission, we provide object invariants [Leino and
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Stata 1997] and ghost variables, but the fundamental basis of our decision was to
accept less thorough checking in order to produce a simpler checker. For example,
without any feature for abstraction (like abstract variables presented here or like
data groups [Leino 1998a]), it is not possible to soundly specify and verify modifies
lists.

11. RELATED WORK

Most work on data abstraction seems to be directed at one of two goals: algorithm
design or structuring large systems.

When data abstraction is used for algorithm design, the representation is “in-
lined” into the site of use as the refinement step of the design [Back 1980; Gries
and Prins 1985; Lamport and Schneider 1985; Jones 1986; Morris 1989; Gries and
Volpano 1990; Gardiner and Morgan 1993]. Consequently, the work on this kind of
data abstraction is largely unconnected with the large system structuring problems
that we are concerned with in this paper. This is not to deny that the underly-
ing mathematics of data abstraction applies to both enterprises. Indeed, our first
verification condition generator did not use explicit functionalization of abstract
variables but instead used the “change of coordinates” approach common in algo-
rithm refinement. However, we found that the result was that our theorem-prover
was constantly forced to apply the “one-point rule” and that for our purposes,
explicit functionalization is preferred.

Turning to data abstraction for the purpose of structuring large systems, the
earliest treatments were in contexts where there was no independent information-
hiding mechanism (like our units) and therefore the problems addressed in the
present paper did not arise, or were ignored in the semi-formal treatments in the
literature. These treatments include Milner’s definition of simulation [Milner 1971],
Hoare’s classic treatment of abstraction functions [Hoare 1972], and the influential
work of Liskov and Guttag and the rest of the CLU community [Liskov and Guttag
1986].

The first programming language to support information hiding in the way our
units do was Mesa [Mitchell et al. 1979], with its definition modules and implemen-
tation modules. The Mesa designers appear to have been influenced by Parnas’s
classic paper on decomposing systems into modules [Parnas 1972]. Mesa in turn
influenced Modula [Wirth 1977], Modula-2 [Wirth 1982], Modula-3 [Nelson 1991],
Oberon-2 [Mössenböck and Wirth 1991], and Ada [American National Standards
Institute, Inc. 1983]. Ernst et al. [1994] have studied the problem of specifying
Modula-2 programs where the objects of a module may share some global state.
These authors share our concern for modular verification, but the possible scopes
they consider are not rich enough to allow subtypes or the RdRep interface of our
example.

Another, rather different, approach of hiding information is to classify declara-
tions as public or private. This approach is used in Oberon [Wirth 1988], C++
[Ellis and Stroustrup 1990], and Java [Gosling et al. 1996]. In the course of the
ESC/Java project [Extended Static Checking for Java ; Leino et al. 2000], we used
the modularity requirements of the units approach to guide our design for visibility
of invariants in the public/private approach [Leino and Stata 1997].
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One of the central ideas of this paper, explicit dependency declarations, were
introduced in Leino’s PhD thesis in 1995 [Leino 1995]. Between that time and
this, they have been applied in a number of contexts: they played a central role in
ESC for Modula-3 [Detlefs et al. 1998], and they were incorporated in the specifi-
cation languages JML [Leavens et al. 1999] and Larch/C++ [Leavens 1996] and in
the programming logic of Müller and Poetzsch-Heffter [2000]. Indeed, as we men-
tioned at the end of Section 6.4, the PhD thesis of Müller [2001] features a simpler
formalization of dependencies than ours. The formalization also covers a broader
range of dependencies, including dynamic dependencies, for which Müller provides
a soundness proof, provided the program uses the Universe Type System [Müller
and Poetzsch-Heffter 2001]. Another application (or reformulation) of dependency
declarations is Leino’s technique of Data Groups [1998a].

As described in Section 7.2, our first attempt at a solution to the problem of
abstract aliasing [Detlefs et al. 1998] is not fully satisfactory. We do find that our
framework of modular soundness and dynamic dependencies has allowed us to give
a more incisive definition of the problem than other approaches in the literature,
such as Hogg’s Islands [1991], Almeida’s Balloons [1997], Utting’s Extended Local
Stores [1995], the Flexible Aliasing Protection of Noble et al. [1998], and Boyland’s
Alias Burying [2001]. Perhaps the most promising approach to this problem is the
Universe Type System of Müller and Poetzsch-Heffter [2001], which was also de-
signed in conjunction with abstraction dependencies. We would also like to mention
a recent proposal with some promise, the “owner exclusion requirement”, invented
by Leino and Stata [1999a] and named by Arnd Poetzsch-Heffter.

A few other researchers have employed declarations similar to our depends dec-
laration connecting an abstract variable to the (more) concrete variables in its rep-
resentation. Daniel Jackson’s Aspect system [Jackson 1995] features dependencies
much like ours, but his motivation seems to be to avoid the need for reasoning about
the details of the actual representation, whereas we have argued that dependency
declarations are useful also in conjunction with full representation declarations. The
COLD specification language of Jonkers [1991] includes abstract variables (called
functions) and dependency declarations between them, but COLD seems not to
allow an abstract variable to appear in a modifies list, so it doesn’t address many
of the problems we have wrestled with.

12. CONCLUSIONS

We have applied precise formal methods to systems programs that are typical exam-
ples of the programming techniques used by careful and experienced contemporary
programmers. We found that the formal methods described in the verification
literature are inadequate to deal with the patterns of data abstraction and modu-
larization in these programs. We have developed new formal methods to address
these shortcomings.

Central to the new methods is the concept of an abstraction dependency, which is
a kind of abstraction of an abstraction function, in the same sense that an opaque
type is an abstraction of a concrete type. A dependency specifies one or more of
the variables that occur in an abstraction function, but hides the detailed definition
of the function. Just as an opaque type may be widely visible in a multi-module
program, while the corresponding concrete type may be visible only narrowly, we
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discovered that it is often useful to make a dependency more widely visible than
the abstraction function itself.

Different kinds of abstraction dependencies occur in different styles of design.
Top-down programming leads to static dependencies, where an abstract field of
an object is represented in terms of other fields of that same object. Bottom-
up programming with reusable libraries leads to dynamic dependencies, where an
abstract field of an object is represented in terms of fields of other objects, reachable
indirectly from the first object.

We have shown how to verify programs in the presence of static and dynamic
dependencies by rewriting modifies lists, preconditions, and postconditions.

For static dependencies, we have two simple modularity requirements, which are
laws for the placement of dependency declarations in a multi-module program. The
requirements do not seem to preclude any useful designs, and we have a formal proof
of modular soundness for the requirements. The formal proof makes use of our iden-
tification of modular soundness with the monotonicity of verifiability with respect
to scope. For dynamic dependencies, we have several modularity requirements, but
no soundness theorem, nor any confidence that the list of requirements is complete.

In our experience with static checking of contemporary program libraries, we have
found that we use dependencies constantly in our annotations. We have also found
that dependencies provide a new perspective on old problems like the problem of
encapsulation and rep exposure.
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