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RELIABLE CODE

IN THE VERY early days of C, 
the compiler written by Den-
nis Ritchie and supplied with 
the UNIX operating system en-
tirely defined the language. As 
the number of users and C im-
plementations grew, however, 
so too did the need for a lan-
guage standard—a contract be-
tween users and implementers 
about what should and should 
not count as C. This effort be-
gan in 1983 with the formation 
of a committee tasked with 
producing “an unambiguous and 
machine-independent definition of 
the language C” and led to the ANSI 
C Standard in 1989.1 In retrospect,  it 
was not until this date, 17 years af-
ter the first compiler, when C’s most 
notorious language feature slithered 
into the world: undefined behavior.

Trustworthy Programmers
The 1989 standard (and every one 
that has followed, with nearly un-
changed wording) defines this term 
as “behavior … for which the Stan-
dard imposes no requirements” ( Sec. 
1.6).2 At the time, many understood 
undefined behavior to be a necessary 

part of language design. “[Undefined 
behavior] is absolutely essential for 
standardization purposes,” wrote 
Tony Hoare in 1969, “since other-
wise the language will be impossible 
to implement efficiently on differ-
ing hardware designs.”3 The 1989 
standard committee justifies it as in 
the spirit of C, which it summarizes 
with phrases such as “trust the pro-
grammer” and “make it fast, even if 
it is not guaranteed to be portable.”4

Since C89, an appendix of each C 
standard has attempted to enumerate 
the individual cases of undefined be-
havior in the language. In C89, that 
appendix counted 95 instances of un-
defined behavior (Appendix A.6.2).2

By C18, this number had crept up 
to 205 (Appendix J).5 And this list 

likely leaves out many cases, 
as anything not explicitly 
described as “undefined” in 
the normative body of the 
standard might still be un-
defined simply by “omission 
of any explicit definition of 
behavior” ( Sec. 4.3).5 Even 
attempting to characterize 
the extent to which unde-
fined behavior permeates 
the standard requires careful 
reading between the lines.

And yet it accounts for 
many serious programmer errors. 
There are the big ones, of course, 
which are generally well understood: 
invalid pointer arithmetic, division 
by zero, and dereferencing invalid or 
null pointers.  The ignominious rep-
utation of C  programs for poor se-
curity and exploitability is entirely 
attributable to undefined behavior. 
But many other undefined behav-
iors appear to be the work of a ma-
licious language lawyer, serving no 
other  purpose than to trip up oth-
erwise well-intentioned, standards-
conforming programs. For example, 
a nonempty source file ending in any-
thing other than a new-line character 
 results in undefined  behavior ( Sec. 
5.1.1.2).5  Other sources of undefined 
behavior are a complicated minefield 
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not intended to make portability eas-
ier but to make specific optimizations 
more tractable (such as the strict alias-
ing rules; see the section “Strict Alias-
ing Violation”).

Optimization at Any Cost
Undefined behavior is very much a 
language design choice. The standard 
could severely limit the scope of al-
lowed optimizations in its presence or 
require compilers to produce warn-
ings or errors in many of the more 
trivial cases, often with little impact 
on program performance or the com-
plexity of C implementations. We be-
lieve most users and implementers of 
C have since come around to the idea 
that much undefined behavior, or at 
least the extent to which it has pro-
liferated in C and been exploited by 
optimizing compilers, is a mistake. If 
null references were a “billion dollar 
mistake” according to Tony Hoare,6 
the liberal use of undefined behav-
ior by C standards might exceed that 
amount by a few orders of magnitude.

As compilers become more sophis-
ticated, they increasingly optimize 
under the assumption that programs 
never encounter undefined behavior, 
to a surprising and sometimes danger-
ous effect when a program actually 
does contain it. Programs that worked 
for a decade might start crashing in 
unexpected ways or spilling sensitive 
information after the compiler is up-
graded. Undefined behavior so per-
meates the C standard, after all, that 
we would be unlikely to find a C pro-
gram of nontrivial size without it.

C programmers often object that, 
on every platform they will ever tar-
get, integers are represented with 
two’s-complement arithmetic, which 
wraps on overflow, and creating in-
valid pointers will not crash the ma-
chine. Conversely, dereferencing a 
null pointer will cause a segmentation 

fault, and division by zero will cause 
an exception. But in C, these are all 
behaviors of a particular version of a 
particular compiler. Compilers will 
decide to change such behavior in un-
expected ways when it becomes con-
venient to do so, regardless of how one 
might expect the underlying hardware 
to behave in each case. Programming 
in standards-conforming C means 
programming for the strange abstract 
machine described by the standard, 
not for any particular compiler or 
hardware implementation.

Some of the confusion around un-
defined behavior perhaps comes from 
two further categories defined by the 
standard: unspecified behavior and 
implementation-defined behavior. In 
the former case, the standard gives 
compilers a choice among a set of 
possible values or behaviors (e.g., the 
order of evaluation of function argu-
ments), with no requirement that the 
compiler make the same choice in ev-
ery instance. Implementation-defined 
behavior (e.g., the size of int) differs 
from unspecified behavior only in the 
requirement that each compiler must 
document its choice. These other cate-
gories of behavior can be confused for 
undefined behavior, but they are radi-
cally different: the standard constrains 
the behavior of compilers to a small 
set of alternatives in these cases. With 
undefined behavior, the standard im-
poses no constraints at all. Whereas 
relying on implementation-defined 
behavior might cause an issue when 
porting a program to a new hardware 
platform, relying on undefined behav-
ior is nearly always a bug, and often 
a serious bug. It might cause issues 
when upgrading the compiler, recom-
piling with different flags, or accept-
ing input from a malicious user.

In a sense, undefined behavior rep-
resents a blank check to an optimiz-
ing compiler. An optimizing compiler 

wants nothing more, after all, than 
to rewrite programs into their most 
pristine form, namely a nop. This mo-
tivation perhaps provides a theoreti-
cal limit to what a compiler will do 
to undefined programs, but in prac-
tice, optimizations predicated on the 
lack of undefined behavior can result 
in eliding critical security checks or 
overwriting memory. An optimizing 
compiler will not, in good faith, cause 
a program with undefined behavior to 
reformat a hard disk, but the attacker 
exploiting the undefined behavior re-
sulting from a buffer overrun might.

That’s Nice,  
but I’m Stuck With C
How should one deal with undefined 
behavior, given its prevalence and the 
ever-growing willingness of optimiz-
ing compilers to exploit it? Aware-
ness is perhaps the most important 
first step. We must resign ourselves 
to the reality that programming in 
C means encountering undefined be-
havior in our own programs.

One benefit of the age and popu-
larity of C is the number of analyzers 
available. Many of these are free and 
easy to use, such as Valgrind and the 
clang sanitizers (UBSan, ASan, MSan, 
and TSan). Other tools, such as static 
analyzers and our tool, RV-Match 
(see the section “Examples”), have 
more overhead and complexity but 
can catch more undefined behavior. 
We should use these tools, of course, 
whenever possible. At the same time, 
we must avoid hubris and a false sense 
of security where undefined behavior 
is concerned. It is, unfortunately, very 
difficult to catch all cases of it, and no 
analyzer (or combination of analyz-
ers) is perfect. Using analyzers is no 
substitute for being familiar with the 
standard and (at least) the most im-
portant classes of undefined behav-
ior. Good references here are the SEI 
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CERT C Coding Standard7 and John 
Regehr,8 who provides more exam-
ples and suggestions for dealing with 
undefined behavior.

Examples
Here we present a few examples of 
undefined behavior and investigate 
how an optimizing compiler handles 
them. We also demonstrate the use of 
our tool, RV-Match, which is avail-
able for free download.9 RV-Match 
is a C reference implementation au-
tomatically generated from an open 
source formal semantics of the C 
language.10 Unlike modern optimiz-
ing compilers, which have a goal of 
producing binaries that are as small 
and as fast as possible at the expense 
of compiling programs that may be 
undefined, RV-Match instead aims 
at mathematically rigorous dynamic 
checking of programs for strict con-
formance with the C standard. The 
RV-Match command-line interface 
we will demonstrate here is kcc, a 
program meant to function as a drop-
in replacement for compilers such as 
gcc and clang.

Signed Integer Overflow
As a first example, consider this pro-
gram (overflow.c):

char * safe_copy(char * src, int buf_size) {
 � buf_size += 1;	� //for null 

terminator.
 � if (buf_size <= 0) return NULL;	� //check for 

overflow.

  char * dest = malloc(buf_size);
  strncpy(dest, src, buf_size);
  return dest;
}
int main() {
  char * foo = “foo”;
  char * copy1 = safe_copy(foo, strlen(foo));
  if (copy1) puts(copy1);
  char * copy2 = safe_copy(foo, INT_MAX);

  if (copy2) puts(copy2);
}

Compiled with gcc (version 7.3) or 
clang (version 6.0) with no flags, this 
program appears to execute correctly. 
The check for overflow appears to 
work: when executing the program, 
it only prints “foo” once and termi-
nates normally. But when enabling 
optimizations in clang, we get:

$ clang --O3 overflow.c
$ ./a.out
foo
Segmentation fault

Why is this? The short answer: in-
teger overflow is undefined, so it is fu-
tile attempting to check for overflow 
(with buf_size <= 0) after it has already 
occurred (at buf_size += 1). The stan-
dard requires compilers to preserve 
nothing about an execution that even-
tually encounters undefined behavior. 
As a result, undefined behavior can 
sometimes appear to propagate back-
wards through time because compil-
ers are not required to prove code is 
free of undefined behavior before 
reordering it.

We can see exactly where the un-
defined behavior occurs if we run 
the same program through kcc:

$ kcc overflow.c
$ ./a.out
foo
Signed integer overflow:
    > in safe_copy at overflow.c:7:7
    in main at overflow.c:19:7

  Undefined behavior (UB-CCV1):
  �  see C11 section 6.5:5
  �  see C11 section J.2:1 item 36
  �  see CERT-C section INT32-C
  �  see MISRA-C section 8.1:3

But what exactly caused the 
clang-compiled program to crash in 

this example? It is unlikely to have 
simply elided the buf_size <= 0 check 
because it still serves a purpose in 
perfectly defined executions where 
the argument to safe_copy is nega-
tive. If we check the generated object 
code, we can see what the optimizer 
actually did to this program:

safe_copy:
	 pushq  %r15
	 pushq  %r14
	 pushq  %rbx
	 movq  %rdi, %r14
	 test1   %esi, %esi	 # test buf_size
	 js LBB0_1     # jump if buf_size is negative
	 add1  $1, %esi	 # add 1 to buf_size
	 # […]

It moved the test for overflow to 
before the increment, allowing the 
function to avoid an extra increment 
for the case in which the test fails.

Unsequenced Side Effects
Consider this program (unseq.c):

int main() {
    int x = 0;
    return (x = 1) + (x = 2);
}

When compiled with clang, this 
program returns 3 but with gcc 
we unexpectedly get 4. We can see 
where the problem is by running this 
program through kcc:

$ kcc unseq.c
$ ./a.out
Unsequenced side effect on scalar object with side 
effect of same object:
    > in main at unseq.c:5:7

  Undefined behavior (UB-EIO8):
  �  see C11 section 6.5:2
  �  see C11 section J.2:1 item 35
  �  see CERT-C section EXP30-C
  �  see MISRA-C section 8.1:3
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The expression in the return state-
ment invokes undefined behavior by as-
signing to x twice without an intervening 
sequence point. We can check the object 
code generated by gcc to see how the opti-
mizer exploited this undefined behavior:

mov1 $0, –4(%rbp) # x = 0;
mov1 $1, –4(%rbp) # x = 1;
mov1 $2, –4(%rbp) # x = 2;
mov1 –4(%rbp), %eax #
add1 %eax, %eax #
ret  # return x + x;

Gcc simply sequenced both assign-
ments before the addition. Optimizations 
like this can turn even innocuous- seeming 
undefined behaviors into bugs affect-
ing the  behavior of a program.

Strict Aliasing Violation
Consider this program (alias.c):

int foo(int * p, long * q) {
  *p = 1;
  *q = 0;
  return *p + *q;
}
int main() {
  long x = 0;
  return foo((int *)&x, &x);
}

Compiled with clang and no flags, 
this program returns 0. If we en-
able optimizations (–O3), it returns 1. 
What is going on here? Let us check 
this program with kcc:

$kcc alias.c
$./a.out
Type of lvalue (int) not compatible with the 
effective type of the object being accessed (long):
 > in f at alias.c:2:7
  in main at alias.c:9:7

 Undefined behavior (UB-EIO10):
   see C11 section 6.5:7
   see C11 section J.2:1 item 37

   see CERT-C section EXP39-C
   see MISRA-C section 8.1:3

The standard generally allows 
compilers to assume pointers to ob-
jects of different types will not point 
to the same object. These are the 
strict aliasing rules, and violating 
them is undefined behavior. Regard-
less of whether we happen to be 
on a platform where int and long are 
both the same size and represented 
in the same way, accessing the same 
object through both p and q in this 
program is undefined behavior, and 
optimizers will exploit it. Checking 
the generated object code, we can 
see how clang does just that:

foo:
 mov1 $1, (%rdi) # *p = 1;
 movq $0, (%rsi) # *q = 0;
 mov1 $1, %eax #
 retq  # return 1;

The assumption that p and q do 
not alias leads clang to evaluate the 
expression in the return statement to 
a constant 1.

W e like the idea of a lan-
guage that sacrif ices 
everything—safety, se-

curity, perhaps even correctness—in 
the name of performance. We like 
the idea of a language that trusts 
its users and holds no hands. Such a 
language, however, should probably 
be a niche language, only pulled out 
when performance is needed above 
all else. It should probably not be 
a language still taught as a lingua 
franca in computer science depart-
ments across the world and still used 
in safety- and security-critical em-
bedded systems.

At the same time, it is hard to imag-
ine a C without undefined behavior. 
The first C standard included it, and 
it survives as a feature of the language 
today because it is easy: it is easy for 
the standards committees because it 
requires less consensus, it is easy for 
the implementers because it requires 
less error handling and simpler run-
times, and it is easy for the optimiz-
ers because it removes complicated 
proof obligations when transforming 
programs. And  because of how easy 
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it makes bringing C to new platforms, 
perhaps undefined behavior is also 
responsible for C’s rise in popularity 
and its persistence as a general-pur-
pose programming language today. 
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