
24 IEEE SOFTWARE | PUBLISHED BY THE IEEE COMPUTER SOCIETY 0740 -7459 / 19©2019 I EEE

Editor: Gerard J. Holzmann
Nimble Research
gholzmann@acm.org

RELIABLE CODE

IN THE VERY early days of C,
the compiler written by Den-
nis Ritchie and supplied with
the UNIX operating system en-
tirely defined the language. As
the number of users and C im-
plementations grew, however,
so too did the need for a lan-
guage standard—a contract be-
tween users and implementers
about what should and should
not count as C. This effort be-
gan in 1983 with the formation
of a committee tasked with
producing “an unambiguous and
machine-independent definition of
the language C” and led to the ANSI
C Standard in 1989.1 In retrospect, it
was not until this date, 17 years af-
ter the first compiler, when C’s most
notorious language feature slithered
into the world: undefined behavior.

Trustworthy Programmers
The 1989 standard (and every one
that has followed, with nearly un-
changed wording) defines this term
as “behavior … for which the Stan-
dard imposes no requirements” (Sec.
1.6).2 At the time, many understood
undefined behavior to be a necessary

part of language design. “[Undefined
behavior] is absolutely essential for
standardization purposes,” wrote
Tony Hoare in 1969, “since other-
wise the language will be impossible
to implement efficiently on differ-
ing hardware designs.”3 The 1989
standard committee justifies it as in
the spirit of C, which it summarizes
with phrases such as “trust the pro-
grammer” and “make it fast, even if
it is not guaranteed to be portable.”4

Since C89, an appendix of each C
standard has attempted to enumerate
the individual cases of undefined be-
havior in the language. In C89, that
appendix counted 95 instances of un-
defined behavior (Appendix A.6.2).2

By C18, this number had crept up
to 205 (Appendix J).5 And this list

likely leaves out many cases,
as anything not explicitly
described as “undefined” in
the normative body of the
standard might still be un-
defined simply by “omission
of any explicit definition of
behavior” (Sec. 4.3).5 Even
attempting to characterize
the extent to which unde-
fined behavior permeates
the standard requires careful
reading between the lines.

And yet it accounts for
many serious programmer errors.
There are the big ones, of course,
which are generally well understood:
invalid pointer arithmetic, division
by zero, and dereferencing invalid or
null pointers. The ignominious rep-
utation of C programs for poor se-
curity and exploitability is entirely
attributable to undefined behavior.
But many other undefined behav-
iors appear to be the work of a ma-
licious language lawyer, serving no
other purpose than to trip up oth-
erwise well-intentioned, standards-
conforming programs. For example,
a nonempty source file ending in any-
thing other than a new-line character
 results in undefined behavior (Sec.
5.1.1.2).5 Other sources of undefined
behavior are a complicated minefield

Dealing With C’s
Original Sin
Chris Hathhorn and Grigore Roşu

Digital Object Identifier 10.1109/MS.2019.2921226
Date of publication: 20 August 2019

TR
A
FF
IC
_A

N
A
LY
ZE

R

RELIABLE CODE

	 SEPTEMBER/OCTOBER 2019 | IEEE SOFTWARE � 25

not intended to make portability eas-
ier but to make specific optimizations
more tractable (such as the strict alias-
ing rules; see the section “Strict Alias-
ing Violation”).

Optimization at Any Cost
Undefined behavior is very much a
language design choice. The standard
could severely limit the scope of al-
lowed optimizations in its presence or
require compilers to produce warn-
ings or errors in many of the more
trivial cases, often with little impact
on program performance or the com-
plexity of C implementations. We be-
lieve most users and implementers of
C have since come around to the idea
that much undefined behavior, or at
least the extent to which it has pro-
liferated in C and been exploited by
optimizing compilers, is a mistake. If
null references were a “billion dollar
mistake” according to Tony Hoare,6
the liberal use of undefined behav-
ior by C standards might exceed that
amount by a few orders of magnitude.

As compilers become more sophis-
ticated, they increasingly optimize
under the assumption that programs
never encounter undefined behavior,
to a surprising and sometimes danger-
ous effect when a program actually
does contain it. Programs that worked
for a decade might start crashing in
unexpected ways or spilling sensitive
information after the compiler is up-
graded. Undefined behavior so per-
meates the C standard, after all, that
we would be unlikely to find a C pro-
gram of nontrivial size without it.

C programmers often object that,
on every platform they will ever tar-
get, integers are represented with
two’s-complement arithmetic, which
wraps on overflow, and creating in-
valid pointers will not crash the ma-
chine. Conversely, dereferencing a
null pointer will cause a segmentation

fault, and division by zero will cause
an exception. But in C, these are all
behaviors of a particular version of a
particular compiler. Compilers will
decide to change such behavior in un-
expected ways when it becomes con-
venient to do so, regardless of how one
might expect the underlying hardware
to behave in each case. Programming
in standards-conforming C means
programming for the strange abstract
machine described by the standard,
not for any particular compiler or
hardware implementation.

Some of the confusion around un-
defined behavior perhaps comes from
two further categories defined by the
standard: unspecified behavior and
implementation-defined behavior. In
the former case, the standard gives
compilers a choice among a set of
possible values or behaviors (e.g., the
order of evaluation of function argu-
ments), with no requirement that the
compiler make the same choice in ev-
ery instance. Implementation-defined
behavior (e.g., the size of int) differs
from unspecified behavior only in the
requirement that each compiler must
document its choice. These other cate-
gories of behavior can be confused for
undefined behavior, but they are radi-
cally different: the standard constrains
the behavior of compilers to a small
set of alternatives in these cases. With
undefined behavior, the standard im-
poses no constraints at all. Whereas
relying on implementation-defined
behavior might cause an issue when
porting a program to a new hardware
platform, relying on undefined behav-
ior is nearly always a bug, and often
a serious bug. It might cause issues
when upgrading the compiler, recom-
piling with different flags, or accept-
ing input from a malicious user.

In a sense, undefined behavior rep-
resents a blank check to an optimiz-
ing compiler. An optimizing compiler

wants nothing more, after all, than
to rewrite programs into their most
pristine form, namely a nop. This mo-
tivation perhaps provides a theoreti-
cal limit to what a compiler will do
to undefined programs, but in prac-
tice, optimizations predicated on the
lack of undefined behavior can result
in eliding critical security checks or
overwriting memory. An optimizing
compiler will not, in good faith, cause
a program with undefined behavior to
reformat a hard disk, but the attacker
exploiting the undefined behavior re-
sulting from a buffer overrun might.

That’s Nice,
but I’m Stuck With C
How should one deal with undefined
behavior, given its prevalence and the
ever-growing willingness of optimiz-
ing compilers to exploit it? Aware-
ness is perhaps the most important
first step. We must resign ourselves
to the reality that programming in
C means encountering undefined be-
havior in our own programs.

One benefit of the age and popu-
larity of C is the number of analyzers
available. Many of these are free and
easy to use, such as Valgrind and the
clang sanitizers (UBSan, ASan, MSan,
and TSan). Other tools, such as static
analyzers and our tool, RV-Match
(see the section “Examples”), have
more overhead and complexity but
can catch more undefined behavior.
We should use these tools, of course,
whenever possible. At the same time,
we must avoid hubris and a false sense
of security where undefined behavior
is concerned. It is, unfortunately, very
difficult to catch all cases of it, and no
analyzer (or combination of analyz-
ers) is perfect. Using analyzers is no
substitute for being familiar with the
standard and (at least) the most im-
portant classes of undefined behav-
ior. Good references here are the SEI

RELIABLE CODE

26	 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

CERT C Coding Standard7 and John
Regehr,8 who provides more exam-
ples and suggestions for dealing with
undefined behavior.

Examples
Here we present a few examples of
undefined behavior and investigate
how an optimizing compiler handles
them. We also demonstrate the use of
our tool, RV-Match, which is avail-
able for free download.9 RV-Match
is a C reference implementation au-
tomatically generated from an open
source formal semantics of the C
language.10 Unlike modern optimiz-
ing compilers, which have a goal of
producing binaries that are as small
and as fast as possible at the expense
of compiling programs that may be
undefined, RV-Match instead aims
at mathematically rigorous dynamic
checking of programs for strict con-
formance with the C standard. The
RV-Match command-line interface
we will demonstrate here is kcc, a
program meant to function as a drop-
in replacement for compilers such as
gcc and clang.

Signed Integer Overflow
As a first example, consider this pro-
gram (overflow.c):

char * safe_copy(char * src, int buf_size) {
 � buf_size += 1;	� //for null

terminator.
 � if (buf_size <= 0) return NULL;	� //check for

overflow.

  char * dest = malloc(buf_size);
  strncpy(dest, src, buf_size);
  return dest;
}
int main() {
  char * foo = “foo”;
  char * copy1 = safe_copy(foo, strlen(foo));
  if (copy1) puts(copy1);
  char * copy2 = safe_copy(foo, INT_MAX);

  if (copy2) puts(copy2);
}

Compiled with gcc (version 7.3) or
clang (version 6.0) with no flags, this
program appears to execute correctly.
The check for overflow appears to
work: when executing the program,
it only prints “foo” once and termi-
nates normally. But when enabling
optimizations in clang, we get:

$ clang --O3 overflow.c
$./a.out
foo
Segmentation fault

Why is this? The short answer: in-
teger overflow is undefined, so it is fu-
tile attempting to check for overflow
(with buf_size <= 0) after it has already
occurred (at buf_size += 1). The stan-
dard requires compilers to preserve
nothing about an execution that even-
tually encounters undefined behavior.
As a result, undefined behavior can
sometimes appear to propagate back-
wards through time because compil-
ers are not required to prove code is
free of undefined behavior before
reordering it.

We can see exactly where the un-
defined behavior occurs if we run
the same program through kcc:

$ kcc overflow.c
$./a.out
foo
Signed integer overflow:
   > in safe_copy at overflow.c:7:7
   in main at overflow.c:19:7

  Undefined behavior (UB-CCV1):
  � see C11 section 6.5:5
  � see C11 section J.2:1 item 36
  � see CERT-C section INT32-C
  � see MISRA-C section 8.1:3

But what exactly caused the
clang-compiled program to crash in

this example? It is unlikely to have
simply elided the buf_size <= 0 check
because it still serves a purpose in
perfectly defined executions where
the argument to safe_copy is nega-
tive. If we check the generated object
code, we can see what the optimizer
actually did to this program:

safe_copy:
	 pushq  %r15
	 pushq  %r14
	 pushq  %rbx
	 movq  %rdi, %r14
	 test1  %esi, %esi	 # test buf_size
	 js LBB0_1   # jump if buf_size is negative
	 add1  $1, %esi	 # add 1 to buf_size
	 # […]

It moved the test for overflow to
before the increment, allowing the
function to avoid an extra increment
for the case in which the test fails.

Unsequenced Side Effects
Consider this program (unseq.c):

int main() {
   int x = 0;
   return (x = 1) + (x = 2);
}

When compiled with clang, this
program returns 3 but with gcc
we unexpectedly get 4. We can see
where the problem is by running this
program through kcc:

$ kcc unseq.c
$./a.out
Unsequenced side effect on scalar object with side
effect of same object:
   > in main at unseq.c:5:7

  Undefined behavior (UB-EIO8):
  � see C11 section 6.5:2
  � see C11 section J.2:1 item 35
  � see CERT-C section EXP30-C
  � see MISRA-C section 8.1:3

RELIABLE CODE

SEPTEMBER/OCTOBER 2019 | IEEE SOFTWARE 27

The expression in the return state-
ment invokes undefined behavior by as-
signing to x twice without an intervening
sequence point. We can check the object
code generated by gcc to see how the opti-
mizer exploited this undefined behavior:

mov1 $0, –4(%rbp) # x = 0;
mov1 $1, –4(%rbp) # x = 1;
mov1 $2, –4(%rbp) # x = 2;
mov1 –4(%rbp), %eax #
add1 %eax, %eax #
ret # return x + x;

Gcc simply sequenced both assign-
ments before the addition. Optimizations
like this can turn even innocuous- seeming
undefined behaviors into bugs affect-
ing the behavior of a program.

Strict Aliasing Violation
Consider this program (alias.c):

int foo(int * p, long * q) {
 *p = 1;
 *q = 0;
 return *p + *q;
}
int main() {
 long x = 0;
 return foo((int *)&x, &x);
}

Compiled with clang and no flags,
this program returns 0. If we en-
able optimizations (–O3), it returns 1.
What is going on here? Let us check
this program with kcc:

$kcc alias.c
$./a.out
Type of lvalue (int) not compatible with the
effective type of the object being accessed (long):
 > in f at alias.c:2:7
 in main at alias.c:9:7

 Undefined behavior (UB-EIO10):
 see C11 section 6.5:7
 see C11 section J.2:1 item 37

 see CERT-C section EXP39-C
 see MISRA-C section 8.1:3

The standard generally allows
compilers to assume pointers to ob-
jects of different types will not point
to the same object. These are the
strict aliasing rules, and violating
them is undefined behavior. Regard-
less of whether we happen to be
on a platform where int and long are
both the same size and represented
in the same way, accessing the same
object through both p and q in this
program is undefined behavior, and
optimizers will exploit it. Checking
the generated object code, we can
see how clang does just that:

foo:
 mov1 $1, (%rdi) # *p = 1;
 movq $0, (%rsi) # *q = 0;
 mov1 $1, %eax #
 retq # return 1;

The assumption that p and q do
not alias leads clang to evaluate the
expression in the return statement to
a constant 1.

W e like the idea of a lan-
guage that sacrif ices
everything—safety, se-

curity, perhaps even correctness—in
the name of performance. We like
the idea of a language that trusts
its users and holds no hands. Such a
language, however, should probably
be a niche language, only pulled out
when performance is needed above
all else. It should probably not be
a language still taught as a lingua
franca in computer science depart-
ments across the world and still used
in safety- and security-critical em-
bedded systems.

At the same time, it is hard to imag-
ine a C without undefined behavior.
The first C standard included it, and
it survives as a feature of the language
today because it is easy: it is easy for
the standards committees because it
requires less consensus, it is easy for
the implementers because it requires
less error handling and simpler run-
times, and it is easy for the optimiz-
ers because it removes complicated
proof obligations when transforming
programs. And because of how easy

A
B

O
U

T
 T

H
E

 A
U

T
H

O
R

S

CHRIS HATHHORN is a software engineer at Runtime Verification,

Inc. His research focus is on turning a formal semantics of C into a

tool for catching bugs in real programs. Hathhorn received a Ph.D.

in computer science from the University of Missouri. Contact him at

chris.hathhorn@runtimeverification.com.

GRIGORE ROŞ U is the chief executive officer of Runtime Verification,
Inc. and a computer science professor at the University of Illinois at
Urbana–Champaign, where he leads the Formal Systems Laboratory.
Roşu received a Ph.D. in computer science from the University of Cali-
fornia at San Diego. His research interests include programming lan-
guages; formal methods and software engineering; and, in particular,
how to increase the safety, security, and dependability of computing
systems. Contact him at grigore.rosu@runtimeverification.com.

RELIABLE CODE

28	 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

it makes bringing C to new platforms,
perhaps undefined behavior is also
responsible for C’s rise in popularity
and its persistence as a general-pur-
pose programming language today.

References
1.	B. W. Kernighan and D. M. Ritchie,

The C Programming Language, 2nd

ed. Englewood Cliffs, NJ: Prentice

Hall, 1978.

2.	Programming Language C, ANSI

X3.159-1989, 1990.

3.	T. Hoare, “An axiomatic basis for com-

puter programming,” Commun. ACM,

vol. 12, no. 10, pp. 576–580, 1969.

4.	ANSI X3J11 Committee. (1990).

“Rationale for American national

standard for information systems—

Programming language—C.”

[Online]. Available: http://home

.nvg.org/~skars/programming

/C_Rationale.pdf

5.	Information Technology—Pro-

gramming Languages—C, ISO/IEC

9899:2018, 2018. [Online]. Available:

https://www.iso.org/standard/74528

.html

6.	T. Hoare, “Null references:

The billion dollar mistake,” pre-

sented at QCon London.

Aug. 25, 2009. [Online]. Available:

https://www.infoq.com

/presentations/Null-References-

The-Billion-Dollar-Mistake-

Tony-Hoare

7.	Software Engineering Institute, “SEI

CERT C Secure Coding Standard.”

Accessed on: June 1, 2019. [Online].

Available: https://wiki.sei.cmu.edu

/confluence/display/c

8.	P. Cuoq and J. Regehr, “Undefined

behavior in 2017,” Embedded in

Academia, July 4, 2017. [Online].

Available: https://blog.regehr.org

/archives/1520

9.	Runtime Verification, “RV-Match.”

Accessed on: June 1, 2019. [Online].

Available: https://runtimeverification

.com/match/

10.	K Framework, “Semantics of C in

K,” GitHub. Accessed on: June 1,

2019. [Online]. Available: https://

github.com/kframework/c-semantics

Digital Object Identifier 10.1109/MS.2019.2930379

2019 IEEE Computer
Society Election
Volunteer Leadership Is Vital

www.bit.ly/cs-election-19
Vote Before
23 Sept. 2019

