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Abstract
It is time-consuming and error-prone to imple-
ment inference procedures for each new prob-
abilistic model. Probabilistic programming ad-
dresses this problem by allowing a user to spec-
ify the model and having a compiler automat-
ically generate an inference procedure for it.
For this approach to be practical, it is impor-
tant to generate inference code that has reason-
able performance. In this paper, we present a
probabilistic programming language and com-
piler for Bayesian networks designed to make ef-
fective use of data-parallel architectures such as
GPUs. Our language is fully integrated within
the Scala programming language and benefits
from tools such as IDE support, type-checking,
and code completion. We show that the compiler
can generate data-parallel inference code scal-
able to thousands of GPU cores by making use
of the conditional independence relationships in
the Bayesian network.

1. Introduction

Machine learning, and especially probabilistic modeling,
can be difficult to apply. A user needs not just to design
the model, but also to implement the right inference proce-
dure. There are many different inference algorithms, most
of which are conceptually complicated and difficult to im-

plement at scale. Despite the enthusiasm that many engi-
neers who practice data analysis have for machine learning,
this complexity can be a barrier to deployment. Any effort
to simplify the use of machine learning would thus be very
useful.

Probabilistic programming (Goodman, 2013), as intro-
duced in the BUGS project (Thomas et al., 1992), is a way
to simplify the application of machine learning based on
Bayesian inference. The key feature of probabilistic pro-
gramming is separation of concerns: the user specifieswhat
needs to be learned by describing a probabilistic model,
while the compiler automatically generates thehow, that is,
the inference procedure. In probabilistic programming, the
programmer writes a program whose semantics is a prob-
ability distribution. Using a compiler-generated inference
algorithm, the programmer can then sample from this dis-
tribution.

However, doing inference on probabilistic programs is
computationally intensive and challenging. As a result, de-
veloping algorithms to perform inference is an active area
of research. These include deterministic approximations
(such as variational methods) and Monte Carlo approxima-
tions (such as MCMC algorithms). The problem is that
most of these algorithms are conceptually complicated, and
it is not clear, especially for non-experts, which one would
work best for a given model.

To address the performance issues, our work has been
driven by two observations. The first observation is that
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good performance starts with the appropriate inference al-
gorithms, and selecting the right inference procedure is of-
ten the hardest problem. For example, if our compiler emits
only Metropolis-Hastings inference with generic proposals,
there are models for which our programming language will
be of no use, even given large amounts of computational
power. We must design the compiler in such a way that we
can include the latest inference research while reusing pre-
existing analyses and optimizations, or even mix inference
techniques. Consequently, we have designed our compiler
as a modular framework where one can add a new inference
algorithm while reusing already implemented analysis and
optimizations. For that purpose, our compiler uses an in-
termediate representation (IR) for probability distributions
that serves as a target for modeling languages and as a basis
for inference algorithms.

The second observation is if we wish to continue to ben-
efit from advances in hardware wemust focus on pro-
ducing highly parallel inference algorithms. We claim
that many MCMC inference algorithms are highly data-
parallel (Hillis & Steele, 1986; Blelloch, 1996) if we take
advantage of the conditional independence relationships of
the input model (e.g. the assumption ofi.i.d. data makes
the likelihood independent across data points). Moreover,
we can automatically generate good data-parallel inference
with a compiler. Such inference will run very efficiently on
highly parallel architectures such as Graphics Processing
Units (GPUs). It is important to note that parallelism brings
an interesting trade-off for performance since some infer-
ence techniques (such as collapsing for Gibbs sampling)
can result in less parallelism and will not scale as well.

In this paper, we present our compilation framework,
namedAugur. To start (section 2), we demonstrate how
to specify the latent Dirichlet allocation (LDA) model
(Blei et al., 2003) in our language and use it to learn the
topics from a corpus of text. We then review the two con-
tributions of our work, with a focus on our LDA exam-
ple. First (section 3), we describe how we support dif-
ferent modeling languages by embedding them into Scala
using Scala’s macro system, which provides type check-
ing and IDE support, and we describe the probabilistic IR.
Second, we describe data-parallel versions of Metropolis-
Hastings and Gibbs sampling that scale on the GPU and
speed up sampling (section 4). Next, we present the results
of our preliminary benchmarks, which include compar-
isons against other implementations of inference for LDA
but also against our own hand-written data-parallel and op-
timized implementation of a Gibbs sampler for LDA (sec-
tion 5). The paper uses LDA as a running example, but
many more models can be expressed in Augur, and we
present examples of regression, clustering, and classifica-
tion (section 6). Finally, we compare our work with other
research in probabilistic programming (section 7).

Our main result is that not only are some inference algo-
rithms highly data-parallel and amenable to GPU execu-
tion, but a compiler canautomaticallygenerate such GPU
implementations effectively.

2. Example: Latent Dirichlet Allocation

As an example, we first present the specification of the la-
tent Dirichlet allocation model (Blei et al., 2003) in Augur
and show how to use it to learn the topics present in a set
of documents. The supplementary material contains other
examples of probabilistic models in Augur.

2.1. Specification of LDA

The specification of the LDA model in Augur is presented
in figure 1. The probability distribution is defined as a Scala
object (object LDA) and is composed of two declara-
tions. First, we declare the support of the probability distri-
bution as a class that must be namedsig. Here the support
is composed of four arrays, with one each for the distribu-
tion of topics per document (theta), the distribution of
words per topic (phi), the topics assigned to the words
(z), and the words in the corpus (w). The support is used to
store the inferred model parameters. These last two arrays
are flat representations of ragged arrays, and so we do not
require the documents to be of equal length.

The second declaration specifies the Bayesian network as-
sociated with LDA and makes use of our domain specific
language for Bayesian networks. The DSL is marked by the
bayes keyword and delimited by the following enclosing
brackets. The model first declares the parameters of the
model: K for the number of topics,V for the vocabulary
size,M for the number of documents, andN for the array
that associates each document with its size.

In the model itself, we define the hyper-parameters (values
alpha andbeta) for the Dirichlet distributions and draw
K Dirichlet samples of dimensionV for the distribution of
words per topic (phi) andM Dirichlet samples of dimen-
sionK for the distribution of topics per document (theta).
Then, for each word in each document, we draw a topicz
from theta, and finally a word fromphi based on the
topic we drew forz.

2.2. Using the model

Once a model is specified, it can be used as any other Scala
object by writing standard Scala code. For instance, one
may want to use the LDA model with a training corpus
to learn a distribution of words per topic and then use it
to learn the per-document topic distribution of a test cor-
pus. An implementation is presented in Figure 2. First the
programmer must allocate the parameter arrays which con-
tain the inferred values. Then the signature of the model
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1 object LDA {
2 class sig(var phi : Array[Double], var theta : Array[Double], var z : Array[Int],

var w : Array[Int])
3
4 val model = bayes {
5 (K: Int,V: Int,M: Int,N: Array[Int]) => {
6
7 val alpha = vector(K,.1)
8 val beta = vector(V,.1)
9

10 val phi = Dirichlet(V,beta).sample(K)
11 val theta = Dirichlet(K,alpha).sample(M)
12 val w =
13 for(i <- 1 to M) {
14 for(j <- 1 to N(i)) {
15 val z: Int = Categorical(K,theta(i)).sample()
16 Categorical(V,phi(z)).sample()
17 }
18 }
19 observe(w)
20 }
21 }}

Figure 1.Specification of the latent Dirichlet allocation model in Augur. The model specifies the probability distributionp(φ, θ, z | w).
The keywordbayes introduces the modeling language for Bayesian networks.

is constructed which encapsulates the parameters. The
LDA.model.map command returns the MAP estimate of
the parameters given the observed words.

To test the model, a new signature is constructed con-
taining the test documents, and the previously inferred
phi values. ThenLDA.model.map is called again, but
with both the phis and the words observed (by supplying
Set("phi")). The inferred thetas for the test documents
are stored ins test.theta, for display or use as fea-
tures in another system.

3. A Modular Compilation Framework

Before we detail the architecture of our compiler, it is use-
ful to understand how our LDA example goes from a spec-
ification down to CUDA code running on the GPU. There
are two distinct compilation phases. The first happens
when the programmer compiles his program with a com-
mand such as (assuming that the code from Figure 1 is in a
file namedLDA.scala)

scalac -classpath augur.jar LDA.scala

The fileaugur.jar is the package containing our com-
piler. The first phase of compilation happens statically, dur-
ing normalscalac compilation. In this phase, the block
of code following thebayes keyword is transformed
into our intermediate representation for probability distri-
butions. The second compilation phase happens at run-
time, when the programmer calls theLDA.model.map

method. At that point, the IR is transformed, analyzed, and
optimized, and finally, CUDA code is emitted and run.

Our framework is therefore composed of two distinct com-
ponents that communicate through the IR: the front end,
where domain specific languages are converted into the IR,
and the back end, where the IR can be compiled down
to various inference algorithms (currently Metropolis-
Hastings, and Gibbs sampling). To define a modeling lan-
guage in the front end, we make use of the Scala macro
system. The macro system allows us to define a set of
functions (called “macros”) that will be executed by the
Scala compiler on the code enclosed by the macro. We
are currently focusing on Bayesian networks (as presented
in our example for LDA), but other DSLs (e.g. , Markov
random fields) could be added without modifications to the
back end. The implementation of the macros to define the
Bayesian network language is conceptually uninteresting
so we will not give further details. Our Bayesian network
language is fairly standard, with the notable exception that
it is implicitly parallel.

Separating the compilation into two distinct phases gives us
many advantages. As our language is implemented using
Scala’s macro system it provides automatic syntax high-
lighting, method name completion and code refactoring in
any IDE which supports Scala. This greatly improves the
usability of the DSL as no special tools need to be devel-
oped to support it. This macro system allows Augur to use
Scala’s parser, semantic analyzer (e.g., to check that vari-
ables have been defined), and type checker. Also we bene-



Augur: a Modeling Language for Data-Parallel Probabilistic Inference

1 val phi = new Array[Double](k * v)
2 val theta_train = new Array[Double](doc_num_train * k)
3 val z_train = new Array(num_tokens_train)
4 val s_train = new LDA.sig(phi, theta_train, z_train, w_train)
5 LDA.model.map(Set(), (k, v, doc_num_train, docs_length_train), s_train, s_train,

samples_num, Infer.GIBBS)
6
7 val z_test = new Array(num_tokens_test)
8 val theta_test = new Array[Double](doc_num_test * k)
9 val s_test = new LDA.sig(phi, theta_test, z_test, w_test)

10 LDA.model.map(Set("phi"), (k, v, doc_num_test, docs_length_test), s_test, s_test,
samples_num, Infer.GIBBS)

Figure 2.Example use of the LDA specification. FunctionLDA.model.map returns a maximum a posteriori estimation. It takes as
arguments, in order, the set of variables to observe (on top of the ones declared as observed in the model specification), the hyperpa-
rameters, the initial parameters, the output parameters, the number of iterations and the inference to use. The parameters are stored in
LDA.sig.

fit from the Scala compiler’s optimizations such as constant
folding and dead code elimination.

Then, because the IR is compiled to CUDA code at run-
time, we know the values of all the hyper-parameters, and
the size of the dataset. This enables better optimization
strategies, and also gives us key insights into how to extract
parallelism (see section 4.2). For example, when compiling
LDA, we know that the number of topics is much smaller
than the number of documents and thus parallelizing over
documents will produce more parallelism than paralleliz-
ing over topics.

Finally, we also provide a library which defines standard
distributions such as Gaussian, Dirichlet, etc. In addition
to these standard distributions, each model denotes its own
user-defined distribution. All of these distributions are sub-
types of theDist supertype. Currently, theDist interface
provides two methods:map, which implements maximum
a posteriori estimation;sample, which returns a sequence
of samples.

Note that even though our main interest is in GPU compu-
tation, it is possible to re-target the backend for other archi-
tectures, such as multiprocessors (using OpenMP) or dis-
tributed systems (using MPI). For example, our compiler
has an option to emit standard sequential C code, though
we mainly use this feature for debugging purposes.

4. Generation of Data-Parallel Inference

When an inference procedure is invoked on a model (e.g.
LDA.model.map), the IR is compiled down to CUDA in-
ference code for that model. Informally, our IR expressions

are generated from the Backus-Naur form grammar below

P ::= p(
→

X)
∣

∣

∣ p(
→

X

∣

∣

∣

→

X)
∣

∣

∣ PP

∣

∣

∣

1

P
∣

∣

∣

N
∏

i

P

∣

∣

∣

∫

X

P dx

∣

∣

∣ {P}c

The goal of the IR is to make the sources of parallelism in
the model more explicit and to support analysis of the prob-
ability distributions present in the model. For example, a

∏

indicates that each sub-term can be evaluated in parallel.

In the rest of this section, we explain how the compiler gen-
erates data-parallel samplers that exploit the conditional in-
dependence structure of the model. We will use the LDA
example to explain how the compiler analyzes the model
and generates the inference.

4.1. Generation of a data-parallel Metropolis sampler

In the case where the user wants to use Metropolis-Hastings
inference on the LDA model, the compiler needs to emit
code for a functionf that is proportional to the distribution
the user wants to sample from. This function is then linked
with our library implementation of Metropolis-Hastings.
The functionf is composed of the product of the prior and
the likelihood of the model and is extracted automatically
from the model specification. In the case of LDA,f is de-
fined as

f(θ, φ, z, w) = p(w|φ, z)p(z|θ)p(θ)p(φ)

which is equal to (and represented in our IR as)




M
∏

i

p(θi)

N(i)
∏

j

p(wij |φzij )p(zij |θi)





(

K
∏

k

p(φk)

)

In this form, the compiler knows that the distribution fac-
torizes into a large number of terms that can be evaluated in
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parallel and then efficiently multiplied together, and more
specifically, in particular it knows that the data isi.i.d. and
that it can optimize accordingly. In this case, each docu-
ment contributes to the likelihood independently, and they
can be evaluated in parallel. In practice, we work in log-
space, so we perform summations. The compiler can then
generate the CUDA code for the evaluation off from the
IR representation. This code generation step is conceptu-
ally simple and we will not explain it further.

It is interesting to note that despite the simplicity of this
parallelization the code scales reasonably well: there is a
large amount of parallelism because it is roughly propor-
tional to the number of documents; uncovering the paral-
lelism in the code does not increase the overall quantity of
computation that has to be performed; and the ratio of com-
putation to global memory accesses is high enough to hide
memory latency bottlenecks.

4.2. Generation of a data-parallel standard Gibbs
sampler for LDA

Alternatively, the compiler can generate a Gibbs sam-
pler for LDA. Currently we cannot generate a collapsed
or blocked sampler, but there is interesting work re-
lated to dynamically collapsing or blocking variables
(Venugopal & Gogate, 2013) and we leave it to future work
to extend our compiler with this capability.

To generate a Gibbs sampler, the compiler needs to figure
out how to sample from each univariate distribution. As
an example, to drawθm as part of the(τ + 1)th sample,
the compiler needs to generate code that samples from the
following distribution

p(θτ+1
m |wτ+1, zτ+1, θτ+1

1 , ..., θτ+1
m−1, θ

τ
m+1, ..., θ

τ
M )

To accomplish this, the compiler implements an algebraic
rewrite system that attempts to rewrite the above expression
in terms of expressions it knows (i.e., the joint distribution
of the entire model). We show a few selected rules below
to give a flavor of the rewrite system.

(a) P
P

⇒ 1

(b)
∫

P (x)Q dx ⇒ Q
∫

P (x)dx

(c)
N
∏

i

P (xi) ⇒
N
∏

i

{P (xi)}q(i)=true

N
∏

i

{P (xi)}q(i)=false

(d) P (x) ⇒ P (x,y)∫
P (x,y) dy

Rule (a) states that like terms can be canceled. Rule (b)
says that terms not dependent on the variable of integra-
tion can be pulled out of the integral. Rule (c) says that
we can partition a product over N-terms into two products,
one where a predicateq is satisfied on the indexing vari-
able and one where it is not. Rule (d) is a combination of

Algorithm 1 Sampling from Dirichlet(α) M times
Input: arrayα of sizen
for M documents in paralleldo

for i = 0 to n− 1 do
v[i] ∼ Gamma(a[i])

end for

s =
n−1
∑

0
a[i] in parallel

for i = 0 to n− 1 in paralleldo
v[i] = v[i]

s

end for
end for
Output: arrayv

the product and sum rule. Currently, the rewrite system is
just comprised of rules we found useful in practice, and it
easy to extend the system to add more rewrite rules. We
will review properties of this rewrite system toward the end
of this section.

Going back to our example, the compiler might rewrite the
desired expression into the one below:

p(θτ+1
m )

N(m)
∏

j

p(zmj|θ
τ+1
m )

∫

p(θτ+1
m )

N(m)
∏

j

p(zmj |θ
τ+1
m )dθτ+1

m

In this form, it is clear that each of theθ1, . . . , θm is inde-
pendent of the others after conditioning on the other ran-
dom variables. As a result, they may all be sampled in
parallel.

At each step, the compiler can test for a conjugacy relation.
In the above form, the compiler recognizes that thezmj are
drawn from a categorical distribution andθm is drawn from
a Dirichlet, and can exploit the fact that these are conjugate
distributions. The posterior distribution forθm is:

Dirichlet(α+ cm)

wherecm is a vector whosekth entry is the number ofz
associated with documentm that were assigned topick.
Drawing for eachθm can be done in parallel with a simple
algorithm (algorithm 1) that samples from a Dirichlet by
normalizing Gamma variates (Marsaglia & Tsang, 2000).
Also, we now know that the drawing of eachz must include
a counting phase.

The case of theφ variables is slightly more interesting. In
this case, we want to sample from

p(φτ+1
k |wτ+1, zτ+1, θτ+1, φτ+1

1 , ..., φτ+1
k−1, φ

τ
k+1, ..., φ

τ
K)

After the application of the rewrite system to this expres-
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Algorithm 2 Sampling from K Dirichlet
Input: matrixa of sizek by n
for i = 0 to n− 1 in paralleldo

for j = 0 to k − 1 do
v[i, j] ∼ Gamma(a[i, j])

end for
v ×

→

1
end for
Output: matrixv

sion, the compiler discovers that this is equal to

p(φk)
M
∏

i

N(i)
∏

j

{p(wi|φzij )}k=zij

∫

p(φk)
M
∏

i

N(i)
∏

j

{p(wi|φzij )}k=zijdφk

The key observation that the compiler takes advantage of
to reach this conclusion is the fact that thez are distributed
according to a categorical distribution and are used to index
into theφ array. Therefore, they partition the set of words
w into K disjoint setsw1 ⊎ ... ⊎ wk, one for each topic.
More concretely, the probability of the words that belong
to topic k can be rewritten in partitioned form using rule
(c) as

M
∏

i

N(i)
∏

j

{p(wij |φzij )}k=zij

This expresses the intuition that once a word’s topic is
fixed, the word depends on only one of theφk distribu-
tions. In this form, the compiler recognizes that it should
draw from

Dirichlet(β + ck)

whereck is the count of words assigned to topick. In gen-
eral, the compiler detects patterns like the above when it
notices that samples drawn from categorical distributions
are being used to index into arrays.

In the previous case, sampling from a DirichletM times in
parallel was straightforward and effective. In this case, it is
not, because parallelizing over the number of topicsK will
typically not provide sufficient parallelism for a scalable
GPU execution, as we need an order of magnitude more
threads to use the GPU effectively. Thus, while the com-
piler can exploit the conditional independence present in
the model, a smarter compiler can discover other sources of
parallelism as well. Since drawings from theGamma dis-
tributions are independent from each other, it is possible to
implement the sampling as presented in algorithm 2. In this
version, for each vocabulary word in parallel, we draw the
gammas for all of the topics. Then to compute the normal-
izing constants, we multiply the resulting matrix by a unit
vector using CUBLAS. Finally, we normalize the matrix.

This is an instance where the two-stage compilation proce-
dure described in section 3 is useful, because the compiler
is able to use information about the relative sizes ofK and
V to decide that algorithm 2 may be more efficient.

Finally, the compiler turns to analyzing thezij . In this case,
it will again detect that they can be sampled in parallel but
it will not be able to detect a conjugacy relationship. It will
then detect that thezij are drawn from discrete distribu-
tions, so that the univariate distribution can be calculated
exactly and sampled from. In cases where the distributions
are continuous, it can try to use another approximate sam-
pling method as a subroutine for drawing that variable.

The rules in the rewrite system can be roughly divided into
two groups. The first group contains simplification and nor-
malization rules such asP (X) × 1 = P (X). These rules
are repeatedly applied until we reach a normal form. The
second group of rules contains more advanced rules that
could potentially lead to cycles. Examples include the sum
and product rules, the partitioning rule presented in this
section, or rules related to integrals. An application of a
rule from the second group can be followed by applications
of rules from the first group to renormalize the expression.
The compiler uses predefined pipelines of these rewrites to
uncover conjugacy relationships.

The rewrite system is not specific to LDA. A rule such as
the partitioning presented above corresponds to a common
pattern in probabilistic modeling where a categorical ran-
dom variable is used to index a vector of random variables
(e.g. mixture model). More generally, the rewriting pro-
cess always terminates and it is deterministic. In the case
where a conjugacy relation cannot be found for one of the
univariate conditionals, the compiler can revert to using the
Metropolis-Hastings algorithm. In general, the compiler
could also use methods such as Rejection sampling or slice
sampling. It would be useful to be able to characterize
the class of models for which Augur can be expected to
discover the intended conjugacy relationships of a model.
It is a difficult problem since in all generality, the model
could contain complicated arithmetic expressions (for in-
stance, a polynomial regression with order 5 or higher).
Note that in many simple practical cases, the compiler will
discover conjugacy relationships despite the use of arith-
metic operations because the optimizer will simplify the
model enough.

It is interesting to note that many of the optimizations used
in the literature to improve the mixing time of a Gibbs sam-
pler, such as blocking or collapsing can reduce the amount
of available parallelism by introducing dependencies be-
tween previously independent variables. The use of such
techniques in a system like Augur introduces interesting
tradeoffs: it is not always beneficial to “eliminate” some
variables (for example by collapsing) if it results in more
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dependencies for the remaining variables. The amount of
parallelism in the inference produced by the compiler de-
pends directly on the amount of conditional independence
in the model. Consequently, in its current state, the com-
piler would not produce good parallel code for a model like
a hidden Markov model because of the dependencies be-
tween observations.

5. Experimental Study

To evaluate the code generated by our compiler, we com-
pare its performance with that of Factorie (McCallum et al.,
2009) on the LDA example (specifically the Factorie 1.0.0-
M6 release). Like Augur, Factorie is a Scala library that
tries to make it easier to use machine learning algorithms.
However, in contrast to Augur’s language-based approach,
Factorie allows users to express graphical models by con-
structing and composing Scala objects. These objects are
then passed as input to several inference algorithms written
in Scala.

Factorie features two implementations of LDA. First, it has
a collapsed Gibbs sampler (Griffiths & Steyvers, 2004) de-
fined using its primitives for constructing graphical mod-
els. In addition, it includes an alternate collapsed Gibbs
sampler specific to LDA, known as SparseLDA (Yao et al.,
2009) (not to be confused with Sparse Stochastic LDA);
SparseLDA is a specialized and highly optimized sampler
for LDA and is implemented in Scala. The former repre-
sents what a user of Factorie could write, while the latter
represents what an expert familiar with the recent literature
on inference algorithms tuned for LDA could do.

Like the collapsed Gibbs variant in Factorie, Augur re-
quires only a model specification; the inference is supplied
by the Augur compiler. Our aim is to see if exploiting the
parallelism provided by the GPU can lead to runtime per-
formance equivalent to a specialized model-specific infer-
ence method, whilst using general-purpose inference meth-
ods and compile-time optimizations.

We tried to compare Augur against other probabilistic
programming languages, but some were unable to han-
dle the experimental data set. For instance, the Stan
(Hoffman & Gelman, In press) system has a prohibitive
memory requirement (more than 40 GB) for our data set1.
Many other probabilistic programming systems discussed
in Section 7 focus on language design and expressiveness
rather than on scalability and performance and we do not
consider them for this reason.

We also compare the performance of the code generated
by our compiler against an optimized hand-written CUDA

1Stan uses Hamiltonian Monte Carlo as its inference method,
which does not perform well on LDA and other topic models.

1 10 102 103 104 105
−2

−1.9

−1.8

−1.7

−1.6

−1.5

−1.4

−1.3

−1.2
·105

1222232425
26

27
28 29 210 211

1222 23 24 25 26 27 28 29 210 211

1 2 22 23

24
25 26 27 28 29 210 211

1
2

22
23

24

25
26

27 28

29

210

211

Runtime (seconds)

lo
g
1
0

P
re

d
ic

tiv
e

P
ro

b
ab

ili
ty

Predictive Probability v. Training Time

Augur
Cuda
Factorie(Collapsed)
Factorie(Sparse)

Figure 3.Evolution of the predictive probability over time for up
to 2048 samples and for four implementations of LDA infer-
ence: Augur, hand-written CUDA, Factorie’s Collapsed Gibbs
and SparseLDA.

implementation of a Gibbs sampler for LDA. The hand-
written implementation is optimized for the particular sys-
tem we use for these experiments, and carefully manages
data locality and data transfers between the different mem-
ories of the GPU. We expect the hand-written implementa-
tion to form an upper-bound on inference speed.

5.1. Experimental Setup

We used a corpus extracted from the simple English vari-
ant of Wikipedia, with standard stopwords removed. This
gives a corpus with 48556 documents, a vocabulary size of
37276 words, and approximately 3.3 million tokens. From
that we sampled 1000 documents to use as a test set, re-
moving words which only appear in the test set. To evaluate
the model fit we use the log predictive probability measure
(Hoffman et al., 2013) on the test set.

All experiments were run on a single workstation with
an Intel Core i7 3770 @3.4GHz CPU, 32 GB RAM,
a Samsung 840 SSD, and an NVIDIA Geforce Titan
(@837MHz). The Titan runs on the Kepler architecture.
All probability values are calculated in double-precision.
The CPU performance results using Factorie are calculated
using a single thread, as the multi-threaded samplers are
neither stable or performant in the tested release. The GPU
results use all 896 double precision ALU cores available in
the Titan2.
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5.2. Results

Our first experiment (figure 3) compares the convergence
of the predictive probability over time for the four systems.
We compute the predictive probability and record the time
after drawing2i samples, fori ranging from 0 to 11 in-
clusive. The time is reported in natural logarithm of run-
time in milliseconds. It takes Augur 8.1 seconds to draw
its first sample, whereas it takes less than a second for the
sparse implementation. The reason Augur starts so slowly
is that we need to compile the model to CUDA code, call
nvcc to compile the result, and copy the data to the graph-
ics card. Augur’s predictive probability for 0 samples (not
shown above) is much lower than that of the two Facto-
rie versions because they incorporate the prior when no
samples have been drawn, whereas currently Augur does
not. Notice that the sparse implementation and Augur draw
2048 samples in about the same amount of time. However,
the predictive probability of the sparse implementation is
much lower and decreasing. It takes 6.7 more hours for
the collapsed LDA implementation to draw 2048 samples
than it does for the other systems. Finally, even though
the hand-written CUDA implementation starts much faster
than Augur’s, they have similar run time characteristics as
the number of samples increases. Augur’s good perfor-
mance compared to the hand-written CUDA implementa-
tion (that carefully optimize data transfers and locality)is
due to the high ratio of computations to global memory ac-
cesses in inference code.

We have two unanswered questions about this experiment.
First, we do not understand why the predictive probability
of Factorie’s collapsed Gibbs sampler is lower than that of
the hand-written CUDA code or Augur. We tried different
random number generators, but that did not significantly
change the performance. Second, we do not understand
why SparseLDA performance decreases over time. How-
ever, the resulting topics are reasonable so it could be that
predictive probability applies poorly to SparseLDA. In any
case, we hope this still demonstrates the time per sample
performance.

In an attempt to confirm this result, our second experiment
(figure 4) reports again on the predictive probability over
time for the collapsed LDA implementation and Augur.
In this experiment, we have made 10 runs with different
train/test splits and present the timings with error bars. We
also made an additional 10 runs while changing the random
seed for the random number generators and the results are
similar. We reduced the maximum number of samples to
512 as generating results for the Collapsed Gibbs sampler
was proving prohibitive in terms of runtime for repeated

2The Titan has 2688 single precision ALU cores, but single
precision resulted in poor quality inference results, though the
speed was greatly improved.
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Figure 4.Average over 10 runs of the evolution of the predictive
probability over time.

experiments.

Our third experiment (figure 5) reports on the natural log-
arithm of run time in milliseconds to draw 512 samples as
the number of topics varies. The sparse implementation’s
running time does not increase as quickly as Augur’s as
the number of topics increases. As a result, it runs faster
when the number of topics is large. This is because Au-
gur’s Gibbs sampler is linear in the number of topics dur-
ing the step of sampling each of thezij . In contrast, the
SparseLDA sampler was found to be sublinear in the num-
ber of topics (Yao et al., 2009). This is due to the way the
topics are represented, where each word can appear inn

topics wheren is the number of occurrences of that word.
The collapsed Gibbs sampler’s performance blows up when
the number of topics is increased, as seen in our results and
in the experiments in (Yao et al., 2009). Again, Augur’s
generated code is on par with the hand-written CUDA im-
plementation.

In general, the reason Augur is much faster than the
collapsed Gibbs sampler is the sheer number of parallel
threads, even though Augur requires more FLOPS to draw
each sample (as it is not a collapsed sampler). This high-
lights the importance of good parallelization strategies for
the inference code, as the performance benefit of GPUs
can be extracted only by generating large amounts of par-
allelism, in our case at least 896 simultaneous threads.

6. Other Examples

We present a few examples of model specifications in Au-
gur, covering three important topics in machine learning:
regression (6.1, 6.2), clustering (6.3, 6.4), and classifica-
tion (6.5). Our goal is to show how a few popular models
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Figure 5.Comparison of scalability of Augur, hand-written
CUDA, Factorie’s collapsed Gibbs and SparseLDAw.r.t the num-
ber of topics.

can be programmed in Augur. For each of these examples,
we first describe the support of the model, and then sketch
the generative process, relating the most complex parts of
the program to their usual mathematical notation.

6.1. Univariate polynomial regression

Our first example model is for univariate polynomial re-
gression (Figure 6). The model’s support is composed of
the arrayw for the weights of each mononomial,x for the
domain data points andy for their image. The parameters
of the model are:N, the dataset size andM, the order of the
polynomial. For simplicity, this example assumes that the
domain ofx ranges from 0 to 2.

The generative process is: We first independently draw
each of theM weights,wi ∼ N(0, 1), then draw(x, y) as
follows:

xj ∼ Uniform(0, 2) (1)

yj ∼ N(

M
∑

i

wix
i
j , 1). (2)

For simplicity, the model is presented with many “hard-
wired” parameters, but it is possible to parameterize the
model to control the noise level, or the domain ofx.

6.2. Multivariate linear regression

The second example is a multivariate linear regression
(Figure 7). The support is composed of an arrayw for the
weights, a variablebias, and the arrays for thex andy
data points. The parameters of the model are:K dimen-
sion,N data size,xLower andxUpper which define the
domain ofx. The input data forx is aK ×N matrix flat-

tened into an array.

The generative process is: We draw the weightswk ∼
N(0, 1) for each of theK dimensions, a bias, and aK-
dimensionalx ∼ Uniform(xLower,xUpper), and fi-
nally y:

y ∼ N(

K
∑

j

wjxj , 1). (3)

6.3. Categorical mixture

The third example is a categorical mixture model (Figure
8). The model’s support is composed of an arrayz for the
cluster selection,x for the data points that we draw,theta
for the priors of the categorical that represents the data, and
phi for the prior of the indicator variable. The parameters
of the model are:N data size,K number of clusters, andV
for the vocabulary size.

The generative process is: For each of theN data points
we want to draw, we select a clusterz according to their
distributionphi and then draw from the categorical with
distribution given bytheta(z).

6.4. Gaussian mixture

The fourth example is a univariate Gaussian mixture model
(Figure 9). The model’s support is composed of an arrayz
for the cluster selection,x for the data points that we draw,
mu for the priors of the mean of the Gaussian,sigma for
the priors of the variance of the Gaussian, andphi for the
prior of the indicator variable. The parameters of the model
are:N data size,K number of clusters.

The generative process is: For each of theN data points
we want to draw, we select a clusterz according to their
distributionpi and then draw from the Gaussian centered
atmu(z) and of deviationsigma(z).

6.5. Naive bayes classifier

The fifth example is a binary naive Bayes classifier (Figure
10). The support is composed of an arrayc for the class
and an arrayf for the features,pC the prior on the positive
class, andpFgivenC an array for the probability of each
binary feature given the class. The hyperparameters of the
model are:N the number of data points,K the number of
features and. The features form a 2-dimensional matrix but
again the user has to “flatten” the matrix into an array.

The generative process is: First we draw the probability of
an event being in one class or the other aspC. We usepC
has the parameter to decide for each event in which class it
falls (c). Then, for each feature, we draw the probability of
the feature occurring,pFgivenC, depending on whether
the event is in the class or not. Finally, we draw the features
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1 object UnivariatePolynomialRegression {
2
3 import scala.math._
4
5 class sig(var w: Array[Double], var x: Array[Double], var y: Array[Double])
6
7 val model = bayes {
8 (N: Int, M: Int) => {
9

10 val w = Gaussian(0,1).sample(M)
11 val x = Uniform(0,2).sample(N)
12 val bias = Gaussian(0,1).sample
13 val y = for(i <- 1 to N) {
14 val monomials = for (j <- 1 to M) yield { w(j) * pow(x(i),j) }
15 Gaussian((monomials.sum) + bias, 1).sample()
16 }
17
18 observe(x, y)
19 }
20 }
21 }

Figure 6.Specification of a univariate polynomial regression

1 object MultivariateLinearRegression {
2
3 class sig(var w: Array[Double], var bias: Double, var x: Array[Double], var y:

Array[Double])
4
5 val model = bayes {
6 (K: Int, N: Int, xLower: Double, xUpper: Double) => {
7
8 val w = Gaussian(0, 1).sample(K)
9 val bias = Gaussian(0, 1).sample()

10 val x = for(i <- 1 to N) yield { Uniform(xLower, xUpper).sample(K) }
11
12 val y = for(i <- 1 to N) {
13 val basisFunctions = for(j <- 1 to K) yield { w(j) * x(i)(j) }
14 Gaussian((basisFunctions.sum) + bias, 1).sample()
15 }
16
17 observe(x, y)
18 }
19 }
20 }

Figure 7.Specification of a multivariate linear regression
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1 object CategoricalMixture {
2 class sig(var z: Array[Int], var x: Array[Int], var theta: Array[Double], var

phi: Array[Double])
3 val model = bayes {
4 (N: Int, K: Int, V: Int) => {
5
6 val alpha = vector(V,0.5)
7 val beta = vector(K,0.5)
8
9 val theta = Dirichlet(V,alpha).sample(K)

10 val phi = Dirichlet(K,beta).sample()
11
12 val x = for(i <- 1 to N) {
13 val z = Categorical(K, phi).sample()
14 Categorical(N,theta(z)).sample()
15 }
16 observe(x)
17 }
18 }
19 }

Figure 8.Specification of a categorical mixture model

1 object GaussianMixture {
2
3 class sig(var z: Array[Int], var x: Array[Double], var mu: Array[Double], var

sigma: Array[Double], var phi: Array[Double])
4
5 val model = bayes {
6 (N: Int, K: Int, V: Int) => {
7
8 val alpha = vector(V,0.1)
9

10 val phi = Dirichlet(V,alpha).sample()
11 val mu = Gaussian(0,1).sample(K)
12 val sigma = InverseGamma(1,1).sample(K)
13
14 val x = for(i <- 1 to N) {
15 val z = Categorical(K, phi).sample()
16 Gaussian(mu(z), sigma(z)).sample()
17 }
18
19 observe(x)
20 }
21 }
22 }

Figure 9.Specification of a Gaussian mixture model
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1 object NaiveBayesClassifier {
2
3 class sig(var c: Array[Int], var f: Array[Int], var pC: Double, var pFgivenC:

Array[Double])
4
5 val model = bayes {
6 (N: Int, K: Int) => {
7
8 val pC = Beta(0.5,0.5).sample()
9 val c = Bernoulli(pC).sample(N)

10
11 val pFgivenC = Beta(0.5,0.5).sample(K*2)
12
13 val f = for(i <- 0 until N) {
14 for(j <- 0 until K) {
15 Bernoulli(pFgivenC(j * 2 + c(i))).sample()
16 }
17 }
18
19 observe(f, c)
20 }
21 }
22 }

Figure 10.Specification of a naive Bayes classifier

f for each event.

7. Related Work

If we define probabilistic programming as the use of pro-
gramming languages to specify probability distributions
along with a compiler to automatically produce an infer-
ence implementation from this specification, it is likely that
BUGS (Lunn et al., 2009) was the first probabilistic pro-
gramming language. Interestingly, most of the key con-
cepts of probabilistic programming already appeared in the
first paper to introduce BUGS (Thomas et al., 1992). Since
then, research in probabilistic programming languages has
been focused in two directions: improving performance
and scalability through better inference generation; and,in-
creasing expressiveness and building the foundations of a
universal probabilistic programming language. These two
directions are useful criteria to compare probabilistic pro-
gramming languages.

In terms of language expressiveness, Augur is currently
limited to the specification of Bayesian networks. It is pos-
sible to extend this language (e.g.,non-parametric models)
or to add new modeling languages (e.g.,Markov random
field), but our current focus is on improving the inference
generation. That is in contrast with languages like Han-
sei (Kiselyov & Shan, 2009), Odds (Stucki et al., 2013),
Stochastic Lisp (Koller et al., 1997) and Ibal (Pfeffer,
2007) which focus on increasing expressiveness, at the
expense of performance. However, as Augur is embed-

ded in the Scala programming language, we have ac-
cess to the wide variety of libraries on the JVM plat-
form and benefit from Scala tools. Augur, like Stan
(Hoffman & Gelman, In press) and BUGS (Thomas et al.,
1992; Lunn et al., 2009) is a domain specific probabilis-
tic language for Bayesian networks, but it is embedded in
such a way that it has a very good integration with the rest
of Scala, which is crucial to software projects where data
analysis is only one component of a larger artifact.

Augur is not the only system designed for scalabil-
ity and performance. It is also the case of Dimple
(Hershey et al., 2012), Factorie (McCallum et al., 2009),
Infer.net (Minka et al., 2012) and Figaro (Pfeffer, 2012;
2009), and the latest versions of Church (Goodman et al.,
2008). Dimple focuses on performance using specialized
inference hardware, though it does provide an interface for
CPU code. Factorie mainly focuses on undirected net-
works, and is a Scala library rather than a DSL (unlike
all the other systems mentioned). It has multiple infer-
ence backends, and aims to be a general purpose machine
learning package. Infer.net is the system most similar to
Augur, in that it has a two phase compilation approach,
though it is based around variational methods. A block
Gibbs sampler exists but is only functional on a subset of
the models. Figaro focuses on a different set of inference
techniques, including techniques which use exact inference
in discrete spaces (they do have a Metropolis-Hastings in-
ference). Church provides the ability to mix different in-
ference algorithms and has some parallel capability, but it
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focused on task-parallelism for multicores rather than on
data-parallelism for parallel architectures. The key dif-
ference between Augur and these other languages is the
systematic generation of data-parallel algorithms for large
numbers of cores (i.e., thousands) on generally available
GPU hardware.

8. Conclusion

We find that it is possible toautomaticallygenerate paral-
lel MCMC-based inference algorithms, and it is also pos-
sible to extract sufficient parallelism to saturate a modern
GPU with thousands of cores. Our compiler achieves this
with no extra information beyond that which is normally
encoded in a graphical model description. This automat-
ically generated parallel inference is competitive with a
hand-tuned inference algorithm specific to a single model,
both in terms of runtime and performance. By exploiting
the parallelism inherent in inference it produces code which
runs many times faster than the equivalent model written
to use general purpose inference on off-the-shelf multicore
CPUs. Of course, it is useless to attempt to speed up infer-
ence if one is not using the appropriate algorithm, but as it
is possible to test multiple inference algorithms by varying
a single parameter it becomes much easier to explore the
space of inference techniques. Traditionally this would re-
quire rewriting the model in another probabilistic program-
ming system, or hand-coding a new inference method. As
the system provides multiple inference engines it is possi-
ble to allow an expert in the field of inference to mix and
match inference methods, using Gibbs for some variables
and Metropolis-Hastings steps for others, though precisely
how to expose this in a probabilistic programming language
is still an area of active research.
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