arXiv:1312.3613v1 [stat.ML] 12 Dec 2013

Augur: a Modeling Language for Data-Parallel Probabilistic Inference

Jean-Baptiste Tristan
Oracle Labs

Daniel Huang
Harvard University

Joseph Tassarotti
Carnegie Mellon University

Adam Pocock
Oracle Labs

Stephen J. Green
Oracle Labs

Guy L. Steele, Jr
Oracle Labs

Abstract

It is time-consuming and error-prone to imple-
ment inference procedures for each new prob-
abilistic model. Probabilistic programming ad-
dresses this problem by allowing a user to spec-
ify the model and having a compiler automat-
ically generate an inference procedure for it.
For this approach to be practical, it is impor-
tant to generate inference code that has reason-
able performance. In this paper, we present a
probabilistic programming language and com-
piler for Bayesian networks designed to make ef-
fective use of data-parallel architectures such as
GPUs. Our language is fully integrated within
the Scala programming language and benefits
from tools such as IDE support, type-checking,
and code completion. We show that the compiler
can generate data-parallel inference code scal-
able to thousands of GPU cores by making use
of the conditional independence relationships in
the Bayesian network.

1. Introduction

JEAN.BAPTISTE.TRISTAN@ORACLE.COM

DEHUANG@FAS.HARVARD .EDU

JTASSARO@CS.CMU.EDU

ADAM .POCOCK@ORACLE.COM

STEPHENX.GREEN@ORACLE.COM

GUY.STEELE@ORACLE.COM

plement at scale. Despite the enthusiasm that many engi-
neers who practice data analysis have for machine learning,
this complexity can be a barrier to deployment. Any effort
to simplify the use of machine learning would thus be very
useful.

Probabilistic programmingl (Goodmahn, 2013), as intro-
duced in the BUGS project (Thomas et al., 1992), is a way
to simplify the application of machine learning based on
Bayesian inference. The key feature of probabilistic pro-
gramming is separation of concerns: the user speawified
needs to be learned by describing a probabilistic model,
while the compiler automatically generates ttwsy, that is,

the inference procedure. In probabilistic programming, th
programmer writes a program whose semantics is a prob-
ability distribution. Using a compiler-generated infecen
algorithm, the programmer can then sample from this dis-
tribution.

However, doing inference on probabilistic programs is
computationally intensive and challenging. As a result, de
veloping algorithms to perform inference is an active area
of research. These include deterministic approximations
(such as variational methods) and Monte Carlo approxima-
tions (such as MCMC algorithms). The problem is that
most of these algorithms are conceptually complicated, and

Machine learning, and especially probabilistic modeling,it is not clear, especially for non-experts, which one would
can be difficult to apply. A user needs not just to designwork best for a given model.

the model, but also to implement the right inference proce- .
. : : To address the performance issues, our work has been
dure. There are many different inference algorithms, most

of which are conceptually complicated and difficult to im- driven by two observations. The first observation is that

http://arxiv.org/abs/1312.3613v1

Augur: a Modeling Language for Data-Parallel Probabilistic Inference

good performance starts with the appropriate inference al©Our main result is that not only are some inference algo-
gorithms, and selecting the right inference procedure-is ofrithms highly data-parallel and amenable to GPU execu-
ten the hardest problem. For example, if our compiler emitgion, but a compiler caautomaticallygenerate such GPU
only Metropolis-Hastings inference with generic propesal implementations effectively.

there are models for which our programming language will

be of no use, even given large a_mOl_Jnts of computationaé. Example: Latent Dirichlet Allocation

power. We must design the compiler in such a way that we

can include the latest inference research while reusing préAs an example, we first present the specification of the la-
existing analyses and optimizations, or even mix inferenceent Dirichlet allocation model (Blei et al., 2003) in Augur
techniques. Consequently, we have designed our compilemd show how to use it to learn the topics present in a set
as a modular framework where one can add a new inferenagf documents. The supplementary material contains other
algorithm while reusing already implemented analysis andexamples of probabilistic models in Augur.

optimizations. For that purpose, our compiler uses an in-

termediate representation (IR) for probability distribns 2.1. Specification of LDA

that serves as a target for modeling languages and as a basis o))
for inference algorithms. The specification of the LDA model in Augur is presented

in figure[d. The probability distribution is defined as a Scala
The second observation is if we wish to continue to benppject pbj ect LDA) and is composed of two declara-
efit from advances in hardware weustfocus on pro- tions. First, we declare the support of the probabilityritist
ducing highly parallel inference algorithms. We claim pution as a class that must be narsédy. Here the support
that many MCMC inference algorithms are highly data-is composed of four arrays, with one each for the distribu-
parallel (Hillis & Steele| 19&€; Blelloch, 1996) if we take tion of topics per document et a), the distribution of
advantage of the conditional independence relationstips qvords per topic ghi), the topics assigned to the words
the input model Qg the assumption ofi.d. data makes (Z), and the words in the COpr‘WX The support is used to
the likelihood independent across data points). Moreovesstore the inferred model parameters. These last two arrays
we can automatically generate good data-parallel inferencare flat representations of ragged arrays, and so we do not

with a compiler. Such inference will run very efficiently on require the documents to be of equal length.
highly parallel architectures such as Graphics Processin_c[; , .)
Units (GPUS). It is important to note that parallelism bsng he second declaration specifies the Bayesian network as-

an interesting trade-off for performance since some inferSociated with LDA and makes use of our domain specific
ence techniques (such as collapsing for Gibbs Samp"ndg;mguageforBayeS|an networks. The DSL is marked by the

can result in less parallelism and will not scale as well. ayes keyword and delimited by the following enclosing
brackets. The model first declares the parameters of the

In this paper, we present our compilation framework,model: K for the number of topicsy for the vocabulary

namedAugur. To start (sectiofi]2), we demonstrate how sjze, Mfor the number of documents, amdfor the array
to Specify the latent Dirichlet allocation (LDA) model that associates each document with its size.

(Blei et al.,| 20083) in our language and use it to learn the _ i

topics from a corpus of text. We then review the two con-" the model itself, we define the hyper-parameters (values
tributions of our work, with a focus on our LDA exam- al pha andbet a) for the Dirichlet distributions and draw
ple. First (sectiof]3), we describe how we support dif-K Dirichlet sar_nple; of dimen§i_o\7(for the distributiqn of
ferent modeling languages by embedding them into Scal¥/0rds per topicihi) andMDirichlet samples of dimen-
using Scala’s macro system, which provides type checksSionKfor the dlstrlbut!on of topics per documentiet a). _
ing and IDE support, and we describe the probabilistic IR.T €N, for each word in each document, we draw a tapic
Second, we describe data-parallel versions of Metropolisi™o™ t het a, and finally a word fronphi based on the
Hastings and Gibbs sampling that scale on the GPU aniPPic we drew forz.

speed up sampling (sectibh 4). Next, we present the results

of our preliminary benchmarks, which include compar-2.2- Using the model

isons against other implementations of inference for LDAGL e 5 model is specified, it can be used as any other Scala
but also against our own hand-written data-parallel and OPgbject by writing standard Scala code. For instance, one
t?mized implementation of a Gibbs sampl_er for LDA (sec- may want to use the LDA model with a training corpus
tion[5). The paper uses LDA as a running example, bujg |eam a distribution of words per topic and then use it
many more models can be expressed in Augur, and W, |65 the per-document topic distribution of a test cor-
present e_xamples_ of regression, clustering, and_classmc%us_ An implementation is presented in Figlre 2. First the
tion (sectiorLB). Finally, we compare our work with other ;54 -ammer must allocate the parameter arrays which con-
research in probabilistic programming (secfion 7). tain the inferred values. Then the signature of the model

Augur: a Modeling Language for Data-Parallel Probabilistic Inference

1| obj ect LDA {

2|cl ass sig(var phi Array[Doubl e], var theta : Array[Double], var z : Array[lInt],
var w: Array[Int])

3

4|val nodel = bayes {

5/ (K Int,V: Int,M Int,N Array[Int]) => {

6

7 val al pha = vector (K, .1)

8 val beta = vector(V,.1)

9

10| wval phi = Dirichlet(V, beta).sanpl e(K)

11 val theta = Dirichlet(K, al pha).sanple(M

12 val w=

13 for(i << 1to M {

14 for(j <~ 1to Ni)) {

15 val z: Int = Categorical (K theta(i)).sanple()

16 Cat egori cal (V, phi(z)).sanpl e()

17

18 }

19| observe(w)

20

2111}

Figure 1.Specification of the latent Dirichlet allocation model ingur. The model specifies the probability distributie(@, 6, z | w).
The keywordbayes introduces the modeling language for Bayesian networks.

is constructed which encapsulates the parameters. Thaethod. At that point, the IR is transformed, analyzed, and
LDA. nodel . map command returns the MAP estimate of optimized, and finally, CUDA code is emitted and run.

the parameters given the observed words. Our framework is therefore composed of two distinct com-

To test the model, a new signature is constructed conponents that communicate through the IR: the front end,
taining the test documents, and the previously inferredvhere domain specific languages are converted into the IR,
phi values. TherDA. nodel . map is called again, but and the back end, where the IR can be compiled down
with both the phis and the words observed (by supplyingo various inference algorithms (currently Metropolis-
Set (" phi ")). The inferred thetas for the test documentsHastings, and Gibbs sampling). To define a modeling lan-
are stored irs_t est . t het a, for display or use as fea- guage in the front end, we make use of the Scala macro
tures in another system. system. The macro system allows us to define a set of
functions (called “macros”) that will be executed by the
Scala compiler on the code enclosed by the macro. We
are currently focusing on Bayesian networks (as presented
Before we detail the architecture of our compiler, it is use-in our example for LDA), but other DSL=(g., Markov

ful to understand how our LDA example goes from a spectandom fields) could be added without modifications to the
ification down to CUDA code running on the GPU. There back end. The implementation of the macros to define the
are two distinct compilation phases. The first happen®8ayesian network language is conceptually uninteresting
when the programmer compiles his program with a com-so we will not give further details. Our Bayesian network
mand such as (assuming that the code from Figlre 1 is in anguage is fairly standard, with the notable exception tha

3. A Modular Compilation Framework

file named_DA. scal a)
scal ac -cl asspath augur.jar LDA scala

The fileaugur . j ar is the package containing our com-
piler. The first phase of compilation happens statically; du
ing normalscal ac compilation. In this phase, the block
of code following thebayes keyword is transformed
into our intermediate representation for probability idist

butions. The second compilation phase happens at ru

time, when the programmer calls th®A. nodel . map

it is implicitly parallel.

Separating the compilation into two distinct phases giwes u
many advantages. As our language is implemented using
Scala’s macro system it provides automatic syntax high-
lighting, method name completion and code refactoring in
any IDE which supports Scala. This greatly improves the
usability of the DSL as no special tools need to be devel-
oped to support it. This macro system allows Augur to use

'Scala's parser, semantic analyzery, to check that vari-

ables have been defined), and type checker. Also we bene-

Augur: a Modeling Language for Data-Parallel Probabilistic Inference

1lival phi = new Array[Doubl e] (k * v)

2|val theta_train = new Array[Doubl e] (doc_numtrain * k)

3|val z_train = new Array(num_tokens_train)

4/val s_train = new LDA sig(phi, theta_train, z_train, w_train)

5/ LDA. nodel . map(Set(), (k, v, doc_numtrain, docs_length train), s_train, s_train,
sanpl es_num | nfer.d BBS)

6

7|val z_test = new Array(numtokens_test)

8|val theta_test = new Array[Doubl e] (doc_num test * k)

9|val s_test = new LDA sig(phi, theta_test, z test, w_test)

0| LDA. nodel . map(Set ("phi"), (k, v, doc_numtest, docs_length test), s _test, s_test,
sanpl es_num | nfer. d BBS)

Figure 2.Example use of the LDA specification. Functib@A. nodel . map returns a maximum a posteriori estimation. It takes as
arguments, in order, the set of variables to observe (on fitipecones declared as observed in the model specificatiomhyperpa-
rameters, the initial parameters, the output parametgesaumber of iterations and the inference to use. The paeasate stored in
LDA. si g.

fit from the Scala compiler’s optimizations such as constantire generated from the Backus-Naur form grammar below
folding and dead code elimination. N N 1
Then, because the IR is compiled to CUDA code at run- Pr=p(X) ‘ (X ’ X) ‘ br ‘ P

time, we know the values of all the hyper-parameters, and N

the size of the dataset. This enables better optimization ‘ HP ‘ / Pdx ‘ {P}e

strategies, and also gives us key insights into how to extrac i X

parallelism (see sectibn 4.2). For example, when compilingrhe goal of the IR is to make the sources of parallelism in
LDA, we know that the number of topics is much smaller the model more explicit and to support analysis of the prob-
than the number of documents and thus parallelizing oveability distributions present in the model. For examplg[a
documents will produce more parallelism than paralleliz-indicates that each sub-term can be evaluated in parallel.

Ing over topics. In the rest of this section, we explain how the compiler gen-

Finally, we also provide a library which defines standarderates data-parallel samplers that exploit the conditiona
distributions such as Gaussian, Dirichlet, etc. In additio dependence structure of the model. We will use the LDA
to these standard distributions, each model denotes its onexample to explain how the compiler analyzes the model
user-defined distribution. All of these distributions anes and generates the inference.

types of theDi st supertype. Currently, thai st interface

provides two methodsrap, which implements maximum 4.1. Generation of a data-parallel Metropolis sampler

a posteriori estimatiorsanpl e, which returns a sequence

of samples. Inthe case where the user wants to use Metropolis-Hastings

inference on the LDA model, the compiler needs to emit
Note that even though our main interest is in GPU compucode for a functiory that is proportional to the distribution
tation, it is possible to re-target the backend for othehiarc the user wants to sample from. This function is then linked
tectures, such as multiprocessors (using OpenMP) or diswith our library implementation of Metropolis-Hastings.
tributed systems (using MPI). For example, our compilerThe functionf is composed of the product of the prior and
has an option to emit standard sequential C code, thougtme likelihood of the model and is extracted automatically
we mainly use this feature for debugging purposes. from the model specification. In the case of LDAjs de-

fined as

4. Generation of Data-Parallel Inference 10,6, z,w) = p(w|é, 2)p(2|0)p(0)p(¢)

When an inference procedure is invoked on a model (e.gwhich is equal to (and represented in our IR as)
LDA. nodel . nap), the IR is compiled down to CUDA in-

ference code for that model. Informally, our IR expressions l (Z) s
' ’ 1126 T p(wis|¢-., p(2i516:) (HP(¢k)>
4 7 k

In this form, the compiler knows that the distribution fac-
torizes into a large number of terms that can be evaluated in

Augur: a Modeling Language for Data-Parallel Probabilistic Inference

parallel and then efficiently multiplied together, and moreAlgorithm 1 Sampling from Dirichlet¢) M times
specifically, in particular it knows that the data.isd. and Input: arraya of sizen

that it can optimize accordingly. In this case, each docu- for M documents in paralledo

ment contributes to the likelihood independently, and they fori=0ton—1do

can be evaluated in parallel. In practice, we work in log- v[i] ~ Gamma(al[i])

space, so we perform summations. The compiler can then end for

generate the QUDA che for the evalgationfofr_om the 5= "2’:1 ali] in parallel

IR representation. This code generation step is conceptu-

0

ally simple and we will not explain it further. fori=0 tc[}]n — 1in paralleldo
7 = vl

It is interesting to note that despite the simplicity of this enlc}i[i‘]or_ s

parallelization the code scales reasonably well: there is a end for

large amount of parallelism because it is roughly propor-
tional to the number of documents; uncovering the paral-
lelism in the code does not increase the overall quantity of

computation that has to be performed; and the ratio of com-

putation to global memory accesses is high enough to hidg1e produgt and sum rule. Currently, thg rewnte_ system IS
memory latency bottlenecks Just comprised of rules we found useful in practice, and it

easy to extend the system to add more rewrite rules. We
will review properties of this rewrite system toward the end
of this section.

Output: arrayv

4.2. Generation of a data-parallel standard Gibbs
sampler for LDA

. . . Going back to our example, the compiler might rewrite the
Alternatively, the compiler can generate a Gibbs saM-yasired expression into the one below:

pler for LDA. Currently we cannot generate a collapsed

or blocked sampler, but there is interesting work re- N(m)
lated to dynamically collapsing or blocking variables P05 I1 p(2msl07,)
(Venugopal & Gogate, 2013) and we leave it to future work T ;
to extend our compiler with this capability. r o r r
P pabity SO T plzmgl6mtt) 65
To generate a Gibbs sampler, the compiler needs to figure J
out how to sample from each univariate distribution. AS|h this form, it is clear that each of tHs, . . ., 6,, is inde-

an example, to draw,, as part of the(r + 1)th sample, ,onqent of the others after conditioning on the other ran-

the co_mpllt_ar r!ee‘?'s to generate code that samples from the, o \ariaples. As a result, they may all be sampled in
following distribution parallel

+1 +1 +1 +1 +1 . . .
p(07, W™ 2T 0T 0 O s O) At each step, the compiler can test for a conjugacy relation.

To accomplish this, the compiler implements an algebraid? the above form, the compiler recognizes thatihg are
drawn from a categorical distribution afigl is drawn from

rewrite system that attempts to rewrite the above expressio™ <" X .
in terms of expressions it knows (i.e., the joint distrionti & Dirichlet, and can exploit the fact that these are conjigat
of the entire model). We show a few selected rules belowfistributions. The posterior distribution f6y, is:

to give a flavor of the rewrite system. Dirichlet(a +)

@ Lf=1
wherec,, is a vector whoséth entry is the number of
(b) [P(z)Qdr = Q [P(z)dx associated with document that were assigned topic.
Drawing for eachd,,, can be done in parallel with a simple
N N N algorithm (algorithnill) that samples from a Dirichlet by
©) 1:[Pa:) = I;{P(xi)}q“):”“e E[{P(Ii)}q“):f“l“ normalizing Gamma variates (Marsaglia & Tsang, 2000).
P(z,y) Also, we now know that the drawing of eaelmust include
(d) P(z) = J P(z,y) dy a counting phase.

Rule (a) states that like terms can be canceled. Rule (byhg case of the variables is slightly more interesting. In
says that terms not dependent on the variable of integrayis case. we want to sample from

tion can be pulled out of the integral. Rule (c) says that

we can partition a prodgct ovgr_N-terms int.o two_produgts, p(¢;+1|w7+17 2T g I+1, . ;J_r%, Dty ey D)

one where a predicatgis satisfied on the indexing vari-

able and one where it is not. Rule (d) is a combination ofAfter the application of the rewrite system to this expres-

Augur: a Modeling Language for Data-Parallel Probabilistic Inference

Algorithm 2 Sampling from K Dirichlet This is an instance where the two-stage compilation proce-
Input: matrix a of sizek by n dure described in sectign 3 is useful, because the compiler
for i = 0ton — 1 in paralleldo is able to use information about the relative size&cénd

forj=0tok —1do V to decide that algorithifl 2 may be more efficient.
vli, j] ~ Gamma(ali, j]) Finally, the compiler turns to analyzing thg. In this case,
end for it will again detect that they can be sampled in parallel but
enlt}j :orl it will not be able to detect a conjugacy relationship. Itiwil

then detect that the;; are drawn from discrete distribu-
tions, so that the univariate distribution can be calcdate
exactly and sampled from. In cases where the distributions
are continuous, it can try to use another approximate sam-
pling method as a subroutine for drawing that variable.

Output: matrixv

sion, the compiler discovers that this is equal to

M N () The rules in the rewrite system can be roughly divided into
P(9r) l:[l;[{p(wildzi,)=z, two groups. The first group contains simplification and nor-
M N() malization rules such aB(X) x 1 = P(X). These rules
o) IT TT {p(wild=.,) b ez, don are repeatedly applied until we reach a normal form. The
i second group of rules contains more advanced rules that

The key observation that the compiler takes advantage dfould potentially lead to cycles. Examples include the sum

to reach this conclusion is the fact that there distributed ~ @nd product rules, the partitioning rule presented in this

according to a categorical distribution and are used taindeS€ction, or rules related to integrals. An application of a

into the o array. Therefore, they partition the set of words "Ule from the second group can be followed by applications
w into K disjoint setsw; ¥ ... & wy, one for each topic. of rules from the first group to renormalize the expression.

More concretely, the probability of the words that beIongThe compile_r uses pred(_efineq pipelines of these rewrites to
to topic k can be rewritten in partitioned form using rule Uncover conjugacy relationships.

(c)as . The rewrite system is not specific to LDA. A rule such as
M NV () the partitioning presented above corresponds to a common
H H {P(wij|¢2;) o=z pattern in probabilistic modeling where a categorical ran-
g

dom variable is used to index a vector of random variables
This expresses the intuition that once a word’s topic is(e.g. mixture model). More generally, the rewriting pro-
fixed, the word depends on only one of the distribu- cess always terminates and it is deterministic. In the case
tions. In this form, the compiler recognizes that it shouldwhere a conjugacy relation cannot be found for one of the
draw from univariate conditionals, the compiler can revert to usheg t
Dirichlet(8 + cx) Metropolis-Hastings algorithm. In general, the compiler

wherecy, is the count of words assigned to topicin gen- could also use methods such as Rejection sampling or slice

eral, the compiler detects patterns like the above when £2MPIing. It would be useful to be able to characterize

notices that samples drawn from categorical distributiondn€ class of models for which Augur can be expected to
are being used to index into arrays. discover the intended conjugacy relationships of a model.

It is a difficult problem since in all generality, the model
In the previous case, sampling from a DirichMttimesin could contain complicated arithmetic expressions (for in-
parallel was straightforward and effective. In this casis, i stance, a polynomial regression with order 5 or higher).
not, because parallelizing over the number of topicwill Note that in many simple practical cases, the compiler will
typically not provide sufficient parallelism for a scalable discover conjugacy relationships despite the use of arith-

GPU execution, as we need an order of magnitude morgnetic operations because the optimizer will simplify the
threads to use the GPU effectively. Thus, while the commodel enough.

piler can exploit the conditional independence present in = . , Lo
the model, a smarter compiler can discover other sources ¢S intéresting to note that many of the optimizations used

parallelism as well. Since drawings from tBama dis- Inl the Ilte;aturslto Lr_nprove trllle mixing time ?jf a G'Ebs sam-
tributions are independent from each other, it is possible t P'€"> Such as blocking or collapsing can reduce the amount

implement the sampling as presented in algorhm 2. In thiQf available parallelism by introducing dependencies be-

version, for each vocabulary word in parallel, we draw thetWeen previously independent variables. The use of such

gammas for all of the topics. Then to compute the nOrm(,;u_techniques in a system like Augur introduces interesting

izing constants, we multiply the resulting matrix by a unit fadeoffs: it is not always beneficial to “eliminate” some
vector using CUBLAS. Finally, we normalize the matrix. Yarnables (for example by collapsing) if it results in more

Augur: a Modeling Language for Data-Parallel Probabilistic Inference

dependencies for the remaining variables. The amount of
parallelism in the inference produced by the compiler de- 108 Predictive Probability v. Training Time

|
—
o

pends directly on the amount of conditional independence
in the model. Consequently, in its current state, the com- 13 %7 2:_}.9_?10 %
. . B 11
piler would not produce good parallel code for a model like e 2202
- - > 14| R2R%T
a hidden Markov model because of the dependencies be- £ T g T2 1o i1
. K 33,2° » 2 22222
tween observations. g4 2 2 3 A A
a 2
. 216 4Q 1o, _25""
5. Experimental Study g 2,
£ %
To evaluate the code generated by our compiler, we com- £ 2! e
. . . —~ ., 6" S
pare its performance with that of Factorie (McCallum et al., ~—'8 22 ‘@f‘zm o Agur
2009) on the LDA example (specifically the Factorie 1.0.0- -+ Cuda |
. \ -+- Factorie(Collapsed)
M6 release). Like Augur, Factorie is a Scala library that 21 -~ Factorie(Sparse)
tries to make it easier to use machine learning algorithms. -2 10 102 100 10t 10°
However, in contrast to Augur’s language-based approach, Runtime (seconds)

Factorie allows users to express graphical models by con- _ o N _
structing and composing Scala objects. These objects ardgure 3.Evolution of the predictive probability over time for up

: : . . t0 2048 samples and for four implementations of LDA infer-
then passed as input to several inference algorithms writte
in chla P 9 ence: Augur, hand-written CUDA, Factorie’s Collapsed Gibb

and SparseLDA.
Factorie features two implementations of LDA. First, it has
a collapsed Gibbs sampler (Griffiths & Steyvers, 2004) de-
fined using its primitives for constructing graphical mod-
els. In addition, it includes an alternate collapsed Gibbs
sampler specific to LDA, known as SparseLDA (Yao et al.,
2009) (not to be confused with Sparse Stochastic LDA);

SparseLDA is a specialized and highly optimized sampler] _
for LDA and is implemented in Scala. The former repre-implementation of a Gibbs sampler for LDA. The hand-

sents what a user of Factorie could write, while the lattefV"itten implementation is optimized for the particular sys
represents what an expert familiar with the recent liteeatu €M We use for these experiments, and carefully manages
on inference algorithms tuned for LDA could do. data locality and data transfers between the different mem-

ories of the GPU. We expect the hand-written implementa-
Like the CO"apsed Gibbs variant in Factorie, AUgUr re-tion to form an upper-bound on inference Speed_

quires only a model specification; the inference is supplied

by the Augur compiler. Our aim is to see if exploiting the g 1 Experimental Setup

parallelism provided by the GPU can lead to runtime per-

formance equivalent to a specialized model-specific inferWWe used a corpus extracted from the simple English vari-

ence method, whilst using general-purpose inference mett@nt of Wikipedia, with standard stopwords removed. This

ods and compile-time optimizations. gives a corpus with 48556 documents, a vocabulary size of
)) ... 37276 words, and approximately 3.3 million tokens. From

We tried t_o compare Augur against other probabilisticy, \ye sampled 1000 documents to use as a test set, re-

programming languages, but some were unable to har]’hoving words which only appear in the test set. To evaluate

dle the experimental data set. For instance, the Stag,q el fit we use the log predictive probability measure
(Hoffman & Gelman,| In press) system has a proh|b|t|ve(|_|0ffman etal.[2013) on the test set

memory requirement (more than 40 GB) for our dat.set

Many other probabilistic programming systems discussed\ll experiments were run on a single workstation with
in Sectior¥ focus on language design and expressivene&8 Intel Core i7 3770 @3.4GHz CPU, 32 GB RAM,
rather than on scalability and performance and we do no2 Samsung 840 SSD, and an NVIDIA Geforce Titan
consider them for this reason. (@837MHz). The Titan runs on the Kepler architecture.

All probability values are calculated in double-precision

We also compare the perform_an_ce of the 009'9 generatefh s cpy performance results using Factorie are calculated
by our compiler against an optimized hand-written CUDA using a single thread, as the multi-threaded samplers are

IStan uses Hamiltonian Monte Carlo as its inference methodn€ither stable or performantin the tested release. The GPU
which does not perform well on LDA and other topic models. results use all 896 double precision ALU cores available in
the Titaf.

Augur: a Modeling Language for Data-Parallel Probabilistic Inference

5.2. Results

Predictive Probability v. Training Time

Our first experiment (figurgl 3) compares the convergence -1.25;

of the predictive probability over time for the four systems ‘ - ey

We compute the predictive probability and record the time | 26 2;2@% ¢ Factorie(Collapsed)
after drawing2’ samples, for ranging from 0 to 11 in- 21.35 i

clusive. The time is reported in natural logarithm of run- g 12, 2;/* e 2

time in milliseconds. It takes Augur 8.1 seconds to draw g“ **{'-3}*' & Fxa

its first sample, whereas it takes less than a second for the £, 53;25 ;e
sparse implementation. The reason Augur starts so slowly g . 2; %---Q--&

is that we need to compile the model to CUDA code, call *~*'° e

nvcc to compile the result, and copy the data to the graph- <, .. 2{

|
—
>
T

ics card. Augur’s predictive probability for 0 samples (not % %3

shown above) is much lower than that of the two Facto- $.2

rie versions because they incorporate the prior when no ‘ ‘ ‘ ‘

samples have been drawn, whereas currently Augur does ' 10 Rubime (seconds)® 10

not. Notice that the sparse implementation and Augur draw

2048 samples in about the same amount of time. Howevekijgure 4.Average over 10 runs of the evolution of the predictive
the predictive probability of the sparse implementation isprobability over time.

much lower and decreasing. It takes 6.7 more hours for

the collapsed LDA implementation to draw 2048 samples _

than it does for the other systems. Finally, even thougteXperiments.

the hand-written CUDA implementation starts much fasterg;r thirg experiment (figurl 5) reports on the natural log-

than Augur’s, they have similar run time characteristics asyrithm of run time in milliseconds to draw 512 samples as

the number of samples increases. Augur's good perforge numper of topics varies. The sparse implementation’s
mance compared to the hand-written CUDA mplementa—running time does not increase as quickly as Augur’s as

tion (that carefully optimize data transfers and locality) the number of topics increases. As a result, it runs faster
due to the_hlgh ratio of computations to global memory ac+yhen the number of topics is large. This is because Au-
cesses in inference code. gur's Gibbs sampler is linear in the number of topics dur-

We have two unanswered questions about this experimenifld the step of sampling each of thg. In contrast, the
First, we do not understand why the predictive probabilitySParseLDA sampler was found to be sublinear in the num-
of Factorie’s collapsed Gibbs sampler is lower than that ofoer of topicsi(Yao et al., 2009). This is due to the way the
the hand-written CUDA code or Augur. We tried different topics are represented, where each word can appear in
random number generators, but that did not significantlyfopics wheren is the number of occurrences of that word.
change the performance. Second, we do not understarid€ collapsed Gibbs sampler’s performance blows up when
why SparseLDA performance decreases over time. Howthe number of topics is increased, as seen in our results and
ever, the resulting topics are reasonable so it could be thdf the experiments in_(Yao etlal.. 2009). Again, Augur’s
predictive probability applies poorly to SparseLDA. In any generated code is on par with the hand-written CUDA im-
case, we hope this still demonstrates the time per sampllementation.

performance. In general, the reason Augur is much faster than the

In an attempt to confirm this result, our second experimen€ollapsed Gibbs sampler is the sheer number of parallel
(figure[2) reports again on the predictive probability overthreads, even though Augur requires more FLOPS to draw
time for the collapsed LDA implementation and Augur. €ach sample (as it is not a collapsed sampler). This high-
In this experiment, we have made 10 runs with differentlights the importance of good parallelization strategs f
train/test splits and present the timings with error bars. W the inference code, as the performance benefit of GPUs
also made an additional 10 runs while changing the randora@n be extracted only by generating large amounts of par-
seed for the random number generators and the results addelism, in our case at least 896 simultaneous threads.
similar. We reduced the maximum number of samples to

512 as generating results for the Collapsed Gibbs sampleg, Other Examples

was proving prohibitive in terms of runtime for repeated

—
=2}
(o3l

. _ _ . ~ We present a few examples of model specifications in Au-
The Titan has 2688 single precision ALU cores, but singlegyr, covering three important topics in machine learning:
precision resulted in poor quality inference results, giothe regression{6]1.6.2), clustering (6[3.16.4), and classific
speed was greatly improved. . !
tion (6.3). Our goal is to show how a few popular models

Augur: a Modeling Language for Data-Parallel Probabilistic Inference

tened into an array.

Effect of Topic Number on Performance

10° The generative process is: We draw the weights ~
RSN : N(0,1) for each of theK dimensions, a bias, and /&-
i dimensionalx ~ Uniform(xLower ,xUpper), and fi-
" T nally y:
gl R K
g < e Y~ N(Z wjzj, 1). (3)
.‘é’ om ST j
£ 10°)
* _;: 6.3. Categorical mixture
10 + Augur The third example is a categorical mixture model (Figure
-+ Factorie(Collapsed) [8). The model's support is composed of an azdpr the
R L cluster selectionx for the data points that we drathet a
O mber of Tooms) 100 450500 for the priors of the categorical that represents the dath, a

phi for the prior of the indicator variable. The parameters
Figure 5.Comparison of scalability of Augur, hand-written Of the model areN d.ata sizeK number of clusters, and
CUDA, Factorie’s collapsed Gibbs and SparseL®Atthe num- for the vocabulary size.

ber of topics. The generative process is: For each of bhdata points

can be programmed in Augur. For each of these example¥/€ want to draw, we select a clusteraccording to their
we first describe the support of the model, and then sketcHiStributionphi and then draw from the categorical with
the generative process, relating the most complex parts ¢fistribution given byt het a(z) .

the program to their usual mathematical notation.
6.4. Gaussian mixture

6.1. Univariate polynomial regression The fourth example is a univariate Gaussian mixture model
Our first example model is for univariate polynomial re- (Figurel9). The model's support is composed of an array
gression (Figurgl6). The model’'s support is composed ofor the cluster selectiorx, for the data points that we draw,
the arrayw for the weights of each mononomial for the ~ MU for the priors of the mean of the Gaussian gnma for

domain data points ang for their image. The parameters the priors of the variance of the Gaussian, ahd for the
of the model areN, the dataset size arM the order of the ~ Prior of the indicator variable. The parameters of the model

polynomial. For simplicity, this example assumes that theare:N data sizeK number of clusters.
domain ofx ranges from O to 2. The generative process is: For each of Mdata points

The generative process is: We first independently draWve want to draw, we select a clusteraccording to their
each of theMweights,w; ~ N(0,1), then draw(z,y) as distributionpi and then draw from the Gaussian centered

follows: atmu(z) and of deviatiorsi gma(z) .
zj ~ Uniform(0, 2) (1) 6.5. Naive bayes classifier
M
.y i The fifth example is a binary naive Bayes classifier (Figure
Yi N(Xi: iz, 1) 2) [I0). The support is composed of an ar@jor the class

S _ _ and an array for the featurespCthe prior on the positive
For simplicity, the model is presented with many “hard-class, angFgi venCan array for the probability of each
wired” parameters, but it is possible to parameterize thainary feature given the class. The hyperparameters of the

model to control the noise level, or the domairxof model are:N the number of data point& the number of
features and. The features form a 2-dimensional matrix but
6.2. Multivariate linear regression again the user has to “flatten” the matrix into an array.

The second example is a multivariate linear regressiohe generative process is: First we draw the probability of
(Figure[T). The support is composed of an amépr the an event being in one class or the othep&s We usepC
weights, a variabldi as, and the arrays for the andy has the parameter to decide for each event in which class it
data points. The parameters of the model &edimen- falls (c). Then, for each feature, we draw the probability of
sion, N data sizexLower andxUpper which define the the feature occurringgFgi venC, depending on whether
domain ofx. The input data fok is aK x N matrix flat- the eventis in the class or not. Finally, we draw the features

Augur: a Modeling Language for Data-Parallel Probabilistic Inference

obj ect Uni vari at ePol ynom al Regressi on {
i mport scala.math. _
class sig(var w. Array[Doubl e], var x: Array[Double], var y: Array[Double])
val nodel = bayes {
(N Int, M Int) = {
val w = Gussi an(0, 1).sanpl e(M
val x = Uniform(O0, 2).sanple(N)
val bias = Gaussian(0,1).sanple
val y = for(i <- 1to N) {
val monomials = for (j <- 1 to M yield { Wj) » pow(x(i),j) }
Gaussi an((nonomi al s. sun) + bias, 1).sanple()
observe(x, YY)
}
}
Figure 6.Specification of a univariate polynomial regression
object MultivariatelLi near Regressi on {
class sig(var w. Array[Doubl e], var bias: Double, var x: Array[Double], var y:
Array[Doubl e])
val nodel = bayes {
(K: Int, N Int, xLower: Double, xUpper: Double) => {
val w = Gussian(0, 1).sanpl e(K)
val bias = Gaussian(0, 1).sanple()
val x = for(i <- 1 to N) yield { Uniform xLower, xUpper).sanple(K) }
val y = for(i <~ 1to N {
val basisFunctions = for(j <- 1 to K) yield {| w(j) » x(i)(j) }
Gaussi an((basi sFuncti ons. sum) + bias, 1).sanple()
}
observe(x, YY)
}
}

Figure 7.Specification of a multivariate linear regression

Augur: a Modeling Language for Data-Parallel Probabilistic Inference

obj ect Categorical M xture {
class sig(var z: Array[Int], var x: Array[Int], var theta: Array[Double], var
phi: Array[Doubl e])
val nodel = bayes {
(N Int, K Int, V. Int) => {
val al pha = vector(V,0.5)
val beta = vector (K, 0.5)
val theta = Dirichlet(V,al pha).sanpl e(K)
val phi = Dirichlet(K, beta).sanmpl e()
val x =for(i <- 1to N {
val z = Categorical (K, phi).sanple()
Cat egorical (N, theta(z)).sanpl e()
observe(x)
}
}
}
Figure 8.Specification of a categorical mixture model
obj ect Gaussi anM xture {
class sig(var z: Array[Int], var x: Array[Double], var nu: Array[Double], var
sigma: Array[Doubl e], var phi: Array[Doubl e])
val nodel = bayes {
(N Int, K Int, V. Int) = {
val al pha = vector(V,0.1)
val phi = Dirichlet(V, al pha).sanple()
val mu = Gaussi an(0, 1). sanpl e(K)
val sigma = I nverseGamma(1, 1). sanpl e(K)
val x = for(i <- 1 to N)
val z = Categorical (K, phi).sanmple()
Gaussi an(mu(z), sigma(z)).sanple()
}
observe(x)
}
}

Figure 9.Specification of a Gaussian mixture model

Augur: a Modeling Language for Data-Parallel Probabilistic Inference

obj ect Nai veBayesd assifier {

class sig(var c: Array[Int], var f: Array[Int], var pC Double, var pFgivenC
Array[Doubl e])

4
5/ val nodel = bayes {

6 (N Int, K Int) = {
7

8

val pC = Beta(0.5,0.5).sanmpl e()
9 val ¢ = Bernoulli(pCQ.sanple(N)

11 val pFgivenC = Beta(0.5,0.5). sanpl e(K*2)

13 val f = for(i <- 0O until N {

14 for(j <- O until K) {

15 Bernoul I'i (pFgivenC(j * 2 + c(i))).sanple()
16 }

17 }

19 observe(f, c)
20 }

Figure 10.Specification of a naive Bayes classifier

f for each event. ded in the Scala programming language, we have ac-
cess to the wide variety of libraries on the JVM plat-
7. Related Work form and benefit from Scala tools. Augur, like Stan
' (Hoffman & Gelman| In press) and BUGS (Thomas et al.,
If we define probabilistic programming as the use of pro11992;/Lunn et gl., 2009) is a domain specific probabilis-
gramming languages to specify probability distributionstic language for Bayesian networks, but it is embedded in
along with a compiler to automatically produce an infer- such a way that it has a very good integration with the rest
ence implementation from this specification, it is likelpth of Scala, which is crucial to software projects where data
BUGS (Lunn et al., 2009) was the first probabilistic pro- analysis is only one component of a larger artifact.
gramming Iangl_J_ag_e. Interesur_\gly, most of the key .Con'Augur is not the only system designed for scalabil-
cepts of probabilistic programming already appeared in the ; .
. . S . ity and performance. It is also the case of Dimple
first paper to introduce BUGS (Thomas etlal., 1992). Sinc . y . o
. . . Hershey et al., 2012), Factorie (McCallum et al., 2009),
then, research in probabilistic programming languages h

. oo TS . nfer.net (Minka et al.| 2012) and Figarp_(Pfeffer, 2012;
been focused in two directions: improving performance .
I . o 2009), and the latest versions of Church (Goodmanet al.,
and scalability through better inference generation; and,)

.) - . 2008). Dimple focuses on performance using specialized
creasing expressiveness and building the foundations of a . : .

i e : iference hardware, though it does provide an interface for
universal probabilistic programming language. These twg

directions are useful criteria to compare probabilistic-pr CPU code. Factorie mainly focuses on undirected net-
: pare p P works, and is a Scala library rather than a DSL (unlike
gramming languages.

all the other systems mentioned). It has multiple infer-
In terms of language expressiveness, Augur is currentlgnce backends, and aims to be a general purpose machine
limited to the specification of Bayesian networks. Itis pos-learning package. Infer.net is the system most similar to
sible to extend this language..,non-parametric models) Augur, in that it has a two phase compilation approach,
or to add new modeling languagesd.,Markov random though it is based around variational methods. A block
field), but our current focus is on improving the inference Gibbs sampler exists but is only functional on a subset of
generation. That is in contrast with languages like Hanthe models. Figaro focuses on a different set of inference
sei (Kiselyov & Shan| 2009), Odds (Stucki et al., 2013),techniques, including techniques which use exact inferenc
Stochastic Lisp L(Koller et al., _1997) and Ibal (Pfeffer, in discrete spaces (they do have a Metropolis-Hastings in-
2007) which focus on increasing expressiveness, at thference). Church provides the ability to mix different in-
expense of performance. However, as Augur is embedference algorithms and has some parallel capability, but it

Augur: a Modeling Language for Data-Parallel Probabilistic Inference

focused on task-parallelism for multicores rather than orGriffiths, T. L. and Steyvers, M. Finding scientific topics.
data-parallelism for parallel architectures. The key dif- In Proceedings of the National Academy of Sciences of
ference between Augur and these other languages is the the United States of Americaeolume 101, 2004.
systematic generation of data-parallel algorithms fogédar

numbers of coresi.e., thousands) on generally available H€rshey, S., Bernstein, J., Bradley, B., Schweitzer, A.,
GPU hardware. Stein, N., Weber, T., and Vigoda, B. Accelerating in-

ference: towards a full language, compiler and hardware

. stack.CoRR abs/1212.2991, 2012.
8. Conclusion

] o] . Hillis, W. D. and Steele, Jr., G. L. Data parallel algorithms
We find that it is possible tautomaticallygenerate paral- Commun. ACM29(12):1170-1183, 1986.
lel MCMC-based inference algorithms, and it is also pos-

sible to extract sufficient parallelism to saturate a moderrHoffman, M., Blei, D., Wang, C., and Paisley, J. Stochas-
GPU with thousands of cores. Our compiler achieves this tic variational inference Journal of Machine Learning
with no extra information beyond that which is normally ~ Research14:1303-1347, 2013.

encoded in a graphical model description. This automat-)
ically generated parallel inference is competitive with aHoffman_, M. D. a_nd Gelman, A, The ”O'U_'“”T‘ sampler:
hand-tuned inference algorithm specific to a single model, Adaptively setting path Iengths_ln Hamiltonian Monte
both in terms of runtime and performance. By exploiting Carlo. Journal of Machine Learning Reseaydh press.

the parallelism inherentin inference it produces code Whic Kjselyov, O. and Shan, C.-C. Embedded probabilistic pro-
runs many times faster than the equivalent model written gramming. InProceedings of the IFIP TC 2 Working

to use general purpose inference on off-the-shelf mukicor Conference on Domain-Specific LanguagBSL '09,
CPUs. Of course, it is useless to attempt to speed up infer- pp 360-384. Springer-Verlag, 2009.

ence if one is not using the appropriate algorithm, but as it

is possible to test multiple inference algorithms by vagyin Koller, D., McAllester, D., and Pfeffer, A. Effective
a single parameter it becomes much easier to explore the bayesian inference for stochastic programsPioceed-
space of inference techniques. Traditionally this would re ings of the 14th National Conference on Atrtificial Intel-
quire rewriting the model in another probabilistic program ligence (AAAI) pp. 740-747,1997.

ming system, or hand-coding a new inference method. Aiunn D., Spiegelhalter, D., Thomas, A., and Best, N. The

the system provides m_ult|ple !nferen_ce engines it IS POSSI g)Gs project: Evolution, critique and future directions.
ble to allow an expert in the field of inference to mix and L -
Statistic in Medicine2009.

match inference methods, using Gibbs for some variables
and Metropolis-Hastings steps for others, though pregiselMarsaglia, G. and Tsang, W. W. A simple method for gen-

how to expose this in a probabilistic programming language erating gamma variable ACM Trans. Math. Softw26
is still an area of active research. (3):363-372, 2000.

McCallum, A., Schultz, K., and Singh, S. Factorie: Prob-

References abilistic programming via imperatively defined factor

Blei, David M., Ng, Andrew Y., and Jordan, Michael I. graphs. InAdvances in Neural Information Processing
Latent dirichlet allocationJournal of Machine Learning Systems 2p. 1249-1257, 2009.

Research3:993-1022, 2003. Minka, T., Winn, JM., Guiver, J.P., and

Blelloch, G. E. Programming parallel algorithn@ommu- Knowles, D.A. Infer.NET 2.5, 2012. URL

nications of the ACM39:85-97, 1996. http://research.mcrosoft.coniinfernet.
Microsoft Research Cambridge.

Goodman, N. D. The principles and practice of proba-
bilistic programming. InProceedings of the 40th an-
nual ACM SIGPLAN-SIGACT symposium on Principles
of programming languagesPOPL '13, pp. 399-402.
ACM, 2013. Pfeffer, A. Figaro: An object-oriented probabilistic pro-

_ _ gramming language. Technical report, Charles River An-
Goodman, N. D., Mansinghka, V. K., Roy, D., Bonawitz, alytics, 2009.

K., and Tenenbaum, J. B. Church: A language for gen-

erative models. IProceedings of the 24th Conference Pfeffer, A. Creating and manipulating probabilistic pro-
on Uncertainty in Artificial Intelligence, UAI 200&p. grams with figaro. In2nd International Workshop on
220-229, 2008. Statistical Relational Al2012.

Pfeffer, A. The Design and Implementation of IBAL: A
General-Purpose Probabilistic Languag@troduction
to statistical relational learningpp. 399—-433, 2007.

http://research.microsoft.com/infernet

Augur: a Modeling Language for Data-Parallel Probabilistic Inference

Stucki, S., Amin, N., Jonnalageda, M., and Rompf, T. What
are the Odds? Probabilistic Programmingin Scala. Scala
'13, pp. 360—-384. Springer-Verlag, 2013.

Thomas, A., Spiegelhalter, D. J., and Gilks, W. R. BUGS:
a Program to Perform Bayesian Inference using Gibbs
Sampling.Bayesian statistic1:837 — 842, 1992.

Venugopal, D. and Gogate, V. Dynamic blocking and col-
lapsing for gibbs sampling. 189th Conference on Un-
certainty in Artificial IntelligenceUAI'13, 2013.

Yao, L., Mimno, D., and McCallum, A. Efficient methods
for topic model inference on streaming document collec-
tions. InProceedings of the 15th ACM SIGKDD inter-
national conference on Knowledge discovery and data
mining, KDD '09, pp. 937-946. ACM, 2009.

	1 Introduction
	2 Example: Latent Dirichlet Allocation
	2.1 Specification of LDA
	2.2 Using the model

	3 A Modular Compilation Framework
	4 Generation of Data-Parallel Inference
	4.1 Generation of a data-parallel Metropolis sampler
	4.2 Generation of a data-parallel standard Gibbs sampler for LDA

	5 Experimental Study
	5.1 Experimental Setup
	5.2 Results

	6 Other Examples
	6.1 Univariate polynomial regression
	6.2 Multivariate linear regression
	6.3 Categorical mixture
	6.4 Gaussian mixture
	6.5 Naive bayes classifier

	7 Related Work
	8 Conclusion

