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Abstract

Contemporary compilers must typically handle sophisticated high-
level source languages, generate efficient code for multiple hard-
ware architectures and operating systems, and support source-level
debugging, profiling, and other program development tools. As a
result, compilers tend to be among the most complex of software
systems. Nanopass frameworks are designed to help manage this
complexity. A nanopass compiler is comprised of many single-
task passes with formally defined intermediate languages. The per-
ceived downside of a nanopass compiler is that the extra passes
will lead to substantially longer compilation times. To determine
whether this is the case, we have created a plug replacement for the
commercial Chez Scheme compiler, implemented using an updated
nanopass framework, and we have compared the speed of the new
compiler and the code it generates against the original compiler for
a large set of benchmark programs. This paper describes the up-
dated nanopass framework, the new compiler, and the results of
our experiments. The compiler produces faster code than the origi-
nal, averaging 15–27% depending on architecture and optimization
level, due to a more sophisticated but slower register allocator and
improvements to several optimizations. Compilation times average
well within a factor of two of the original compiler, despite the
slower register allocator and the replacement of five passes of the
original 10 with over 50 nanopasses.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors—Translator writing systems and compiler
generators

General Terms Languages

Keywords Compiler; Nanopass; Scheme

1. Introduction

A compiler is typically structured as a series of passes, each ana-
lyzing source or intermediate code for an input program and possi-
bly producing new intermediate code, with the final pass producing
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assembly or machine code for a target architecture. Historically,
compilers employed no more than a few passes, because each pass
involved reading source or intermediate code from cards, tape, or
disk.

Contemporary compilers, on the other hand, take advantage of large
physical memories and virtual address spaces to keep intermediate
representations in memory. At the same time, contemporary com-
pilers are substantially more complex, having been called upon to
handle larger, higher-level source languages, to generate efficient
code for multiple hardware architectures and operating systems, to
support automatic storage management, threading, and other run-
time activities, and to support debugging, profiling, and other de-
velopment tools. While it might be possible to support the addi-
tional complexity with the same small number of passes, it is no
longer important or desirable to do so.

An attractive alternative is to separate a compiler into many, per-
haps dozens, of single-task passes. This improves modularity, po-
tentially making the compiler easier to maintain and extend. Con-
structing a compiler with many single-task passes, however, can
require excessive boilerplate code to recur through unchanging
forms, increasing compiler size and thus failing to decrease main-
tenance and extension overhead. If intermediate languages are not
well specified, having many passes also increases the risk of errors
due to inconsistencies among passes.

A nanopass framework is designed to address these challenges with
a domain-specific language (DSL) that supports formally defined
intermediate languages, a convenient pattern matching syntax im-
plemented via inexpensive record dispatch, and automatic genera-
tion of boilerplate code. When a paper on the first nanopass frame-
work was accepted for ICFP 2004 [20], however, the program com-
mittee required the authors to refocus the paper on education be-
cause they did not believe the nanopass methodology was suitable
for commercial compilers. They were principally concerned with
the compile-time overhead of repeated traversals. This concern was
impossible to refute at the time because the prototype infrastructure
and implementation were not mature enough to put to the test.

This paper describes a nanopass infrastructure that is suitable for
developing commercial compilers. To establish the infrastructure’s
suitability for commercial compiler development, we set out to de-
velop a compiler that is 100% compatible with the existing com-
mercial Chez Scheme [5] compiler, produces code that is at least
on par with the original compiler, and does so with compile times
that are within a factor of two of the original compiler, despite our
separate ambition to incorporate a new, slower register allocator.
An extensive test suite, used to test the original compiler, is used
to demonstrate the new compiler is compatible with the original,
while a large set of benchmarks is used to establish its performance.
On the benchmarks, the new compiler produces code that is 15–
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(define-language Lsrc
(terminals
(uvar (x))
(primitive (pr))
(datum (d)))

(Expr (e body)
x
(quote d)
(if e0 e1 e2)
(begin e* . . . e)
(lambda (x* . . .) body)
(let ([x* e*] . . .) body)
(letrec ([x* e*] . . .) body)
(set! x e)
(pr e* . . .)
(call e e* . . .) => (e e* . . .)))

Figure 1. The Lsrc language

27% faster than the original compiler, depending on architecture
and optimization level, with compile times that are well within the
factor of two budget.

This paper is organized as follows. Section 2 describes the new
nanopass framework and compares it with the original framework.
Section 3 describes the differences between the new and origi-
nal Chez Scheme compiler. Section 4 evaluates the run-time and
compile-time performance of the new compiler against the original
compiler. Section 5 presents related work, and Section 6 concludes.

2. The nanopass framework

A nanopass framework is a domain-specific language (DSL)
for writing compilers. It provides two main syntactic forms:
define-language for formally defining the intermediate-language
grammars and define-pass for specifying passes that operate
over these intermediate languages. Formally defining the interme-
diate languages allows the framework to fill in boilerplate code in
passes, permits passes to check that output-language terms are well
formed, and allows the framework to represent language terms
as records internally while maintaining an S-expression pattern-
matching and template-construction syntax.

The new nanopass framework builds on the prototype described by
Sarkar et al. [20]. This section briefly describes the new framework
and differences between this framework and the prototype. More
information can be found in the first author’s dissertation [14].
Examples are extracted from a student compiler used in a course
on compiler implementation, since the Chez Scheme compiler is
not open-source.

2.1 Defining languages

Languages definitions are similar to context-free grammars, in that
they are composed of a set of terminals, a set of nonterminal
symbols, a set of productions for each nonterminal, and a start
symbol. An intermediate language definition for a simple variant of
the Scheme programming language, post macro expansion, might
look like Lsrc in Figure 1.

The Lsrc language consists of three terminals (listed in the
terminals form) and a single nonterminal.

For each terminal, the compiler writer must supply a correspond-
ing predicate. The framework adds a ? to the terminal name to de-
termine the predicate name. In this case, the nanopass framework
expects uvar?, primitive?, and datum? to be lexically visible

(define-language L1
(extends Lsrc)
(terminals

(- (datum (d)))
(+ (constant (c))))

(Expr (e body)
(- (quote d))
(+ (quote c))))

Figure 2. The L1 language

where Lsrc is defined. Each terminal clause lists one or more meta-
variables, used to refer to the terminal in nonterminal productions.
For instance, x refers to a uvar.

The Lsrc language declares the nonterminal Expr. Nonterminals
specify a name, a set of meta-variables, and a set of grammar
productions. The Expr nonterminal has two meta-variables, e and
body. These meta-variables, like the terminal meta-variables, are
used to represent the nonterminal in a production.

Productions follow one of three forms: a single meta-variable, an S-
expression that starts with a keyword, or an S-expression that does
not start with a keyword (referred to as an implicit production).
Productions cannot include keywords past the initial keyword.

The x production is the only single-meta-variable production and
indicates that a uvar is an Expr. The only implicit S-expression
production is (pr e* . . .), which specifies a primitive call with
zero or more arguments. (The . . . following e* indicates that
e* contains a list of Expr, the * suffix is used by convention to
indicate plurality.) The (call e e* . . .) production indicates
a procedure call, and the call keyword differentiates it from a
primitive call production. The => (e e* . . .) syntax indicates
a pretty form for the production. The define-language form
defines an unparser, and the unparser uses the pretty form when
unparsing this production. The remaining productions correspond
to the Scheme syntax that they represent.

2.2 Extending languages

The first pass of our student compiler is a simple expander that
produces Lsrc language forms from S-expressions. The next pass
expands complex quoted datum constants into code to construct
these constants at load time.

The compiler writer could fully specify the output language, as we
did with Lsrc. Fully specifying each language, however, results in
verbose source code, particularly in a compiler with many inter-
mediate languages. To avoid this, the framework supports a lan-
guage extension form that succinctly describes only changes from
one language to another. Figure 2 shows the output language.

The L1 language removes the datum terminal and replaces it with
the constant terminal. It also replaces the (quote d) production
with a (quote c) production to indicate that only constants are
allowed in the quote form.1 The extends clause indicates a lan-
guage extension form. Terminals are removed using the - clause
and added using the + clause. Productions in a nonterminal are also
removed using the - clause and added using the + clause.

2.3 Defining passes

The pass in Figure 3 converts an input program from the Lsrc
intermediate language to the L1 intermediate language. This pass

1 If we failed to replace the (quote d) form, it would result in an error,
since the d meta-variable is not bound in the new language.
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(define-pass convert-complex-datum : Lsrc (x) -> L1 ()
(definitions
(define const-x* ’())
(define const-e* ’())
(define datum->expr

(with-output-language (L1 Expr)
(lambda (d)

(cond
[(pair? d) ‘(cons ,(datum->expr (car d))

,(datum->expr (cdr d)))]
[(vector? d)
(let ([n (vector-length d)])
(if (fxzero? n)

‘(make-vector (quote 0))
(let ([t (unique-name ’t)])

‘(let ([,t (make-vector
(quote ,n))])

(begin
,(map (lambda (i v)

‘(vector-set! ,t
(quote ,i)
,(datum->expr v)))

(iota n)
(vector->list d)) . . .

,t)))))]
[else ‘(quote ,d)])))))

(Expr : Expr (ir) -> Expr ()
[(quote ,d) (guard (not (constant? d)))
(let ([t (unique-name ’t)])

(set! const-x* (cons t const-x*))
(set! const-e* (cons (datum->expr d) const-e*))
t)])

(let ([x (Expr x)])
(if (null? const-x*)

x
‘(let ([,const-x* ,const-e*] . . .) ,x))))

Figure 3. The convert-complex-datum pass

removes the structured quoted datum by making the construction of
the data explicit. To avoid constructing these constants more than
once at run time, the pass also lifts datum creation to the start of the
program.

A pass definition starts with a name and a signature. The signature
specifies the input language (in this case, Lsrc) and list of formals
(x) followed by the output language (L1) and a list of extra return
expressions (()).

Following the name and signature, this pass specifies definitions
for const-x*, const-e*, and datum->expr in the definitions
clause. These definitions are scoped at the same level as the trans-
formers in the pass. The const-x* and const-e* variables are
initialized to null. The const-x* is extended with a new uvar and
const-e* is extended with a new Expr each time a structured
quoted datum is encountered. The datum->expr procedure recur-
sively processes a structured quoted datum and produces the L1
Expr needed to construct it. Recursion terminates when a quoted
constant is found.

Next, a transformer from the input nonterminal Expr to the output
nonterminal Expr is defined. The transformer is named Expr and
has a signature similar to that of the pass, with an input-language
nonterminal and list of formals followed by the output-language
nonterminal and list of extra-return-value expressions.

The transformer has a single clause that matches a quoted datum
and uses a guard to ensure it is a pair or a vector. The define-pass
macro autogenerates clauses matching the other input-language
forms and producing equivalent output-language forms.

Each user-supplied clause consists of an input pattern, an optional
guard clause, and one or more expressions that specify zero or
more return values. The input pattern is derived from the pro-
ductions specified in the input language. Pattern variables are un-
quoted, i.e., preceded by ,. For instance, the clause for the quote
production matches the pattern (quote ,d) and binds d to the
datum specified by the quote form.

The output-language expression is constructed using a quasiquoted
template. In the example, the quoted output-language expression
is in the datum->expr procedure. Here, quasiquote, (‘), is re-
bound to a form that constructs language forms based on the tem-
plate, and unquote (,), is used to escape back into Scheme. The
,(datum->expr (car d)) thus puts the result of the recursive
call to datum->expr into the output-language (cons ,e0, e1)
form.

Following the Expr transformer is the body of the pass, which calls
Expr to transform the Lsrc Expr term into an L1 Expr term and
wraps the result in a let expression if any structured quoted datums
are found in the program that is being compiled.

2.4 Comparison with the prototype nanopass framework

The prototype nanopass framework demonstrated that a nanopass
framework is a viable approach to writing compilers, but only the
first half of the student compiler was ever implemented using the
framework. As such, the prototype framework has some rough
edges that needed to be smoothed out in order to implement a
replacement for the Chez Scheme compiler. The new nanopass
framework focused on improvements in two areas, usability and
performance.

On the usability side, the new nanopass framework introduces
new features and improves error reporting. In the new framework,
language definitions are no longer restricted to the top-level and
can appear anywhere a Scheme definition can appear. Passes can
be defined without an input language or output language, allow-
ing a pass to take a non-language term as input or generate a
non-language term as output. This allows passes to create gen-
eral parsers, predicates, and code generators. Passes can also take
additional arguments and return additional values, allowing infor-
mation to flow through a pass without being encoded in the lan-
guage term. Language terms can be constructed outside of a pass
using the with-output-language form, as shown in Figure 3 and
matched outside a pass using the nanopass-case form. The cata-
morphisms [17] syntax, used to recur on a sub-form of a language
term in a pattern, supports passing extra arguments to transformers
expecting more than one argument.

Error reporting has been improved, both to make messages eas-
ier to understand and to include source information for where
the error occurred. Language definitions perform better checking,
e.g., ensuring meta-variables are not repeated, removed produc-
tions existed in the base language, and the fields of a production
are uniquely named.

On the performance side, the new nanopass framework uses an
integer tag to perform pattern matching, which is slightly faster
than the record dispatch previously used. In transformers, the order
of clauses is respected, so that programmers can place clauses that
are more likely to match first. The new framework also generates
less code, so compiling a compiler generated with the nanopass
framework is faster.
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3. The new Chez Scheme compiler

Chez Scheme is a commercial Scheme compiler for R6RS Scheme
with extensions, first released in 1985 [5] and under continuous
development and improvement since. The compiler is written in
Scheme and is comprised of 10 large, multipurpose passes. The
compiler is almost absurdly fast, able to compile its own source
code in roughly three seconds on contemporary hardware. The
compiler is also designed to generate efficient code.

3.1 Workings of the existing Chez Scheme compiler

The compiler begins with a syntax-case expander, extended with
a module system and R6RS libraries [6, 8, 12, 23]. The expander
produces a simplified core language with letrec, letrec*, and
case-lambda as binding forms, quoted constants, primitive refer-
ences, procedure calls, variable references, and a handful of other
forms. The first pass records source information used for debug-
ging and profiling. The next pass places validity checks for vari-
able references bound by letrec and letrec* [13, 24]. The next
pass is the source optimizer [22] and can be run one or more times
or not at all, depending on the options set in the compiler. A pass
for handling letrec and letrec* [13, 24] is run at least once
and is run after each run of the source optimizer. After this, either
the interpreter is invoked to interpret the program or the back-end
compiler is invoked to finish compilation and either execute the re-
sulting code or write the machine code to the file system.

When the back-end compiler is invoked, the code is still in roughly
the same form as the input language, although letrec* has been
eliminated and letrec bindings bind only unassigned variables
to case-lambda expressions. The compiler performs assignment
conversion, closure conversion, various optimizations, and further
code simplifications and replaces primitives in the source language
with an internal set of simpler, although still higher level than as-
sembly language, primitives. It also performs register allocation us-
ing a linear-scan style register allocator with a lazy register save and
restore strategy [3], and generates code using destination-driven
code generation [7].

The back end consists of five passes. The first pass, cp1, begins the
process of closure conversion, recognizes loops, recognizes direct
application of λ-expressions, begins handling multiple return value
calls, sets up the foreign and foreign callable expressions, and con-
verts primitive calls into a set of slightly lower-level inline calls.
The next pass, cpr0, begins the register allocation process, deter-
mines the actual free variables of closures after performing closure
optimization, performs assignment conversion, makes explicit all
arguments to inlined primitives, and flags tail calls and loops. The
register allocator reserves the architectural stack register, a Scheme
frame pointer register, a thread context register pointer, and at least
two temporary registers, depending on the target machine architec-
ture, for use by the assembler. After this, the pass cpr1 assigns
variables to their initial register homes. The cpr2 pass finishes reg-
ister allocation, generating register saves and restores across non-
tail calls and removing redundant register bindings. Finally, the cp2
pass finishes compilation, converting the higher-level inlined prim-
itives into a set of high-level instruction inlines that the assembler
can convert into machine instructions for the target platform. Each
of these back-end passes performs several optimizations in addition
to those mentioned above, and some optimizations span multiple
passes.

3.2 Workings of the new compiler

The new compiler starts with the same set of front-end passes,
updated to use the nanopass framework.

The back end of the new compiler diverges significantly from that
of the original compiler. Where the original compiler is structured
as a set of multipurpose passes that each performs several tasks,
the new compiler is organized as approximately 50 passes, with
each pass completing primarily one task, using approximately 35
nanopass languages.

These passes implement most of the optimizations from the orig-
inal compiler and improve on some, including support for im-
plicit cross-library optimization, improvements to closure opti-
mization [15], and improved handling of procedures that return
multiple values.

The other big difference between the original compiler and the
new compiler is the use of a graph-coloring register allocator.
This change necessitated several other changes in the compiler,
including the expansion of code into a near-assembly language
form much earlier in the compiler, so that all of the temporaries
that might be needed for the final code to conform to the operand
requirements of the machine can be met. It also means that a full
live analysis must be performed to compute the conflict graph
needed by the register allocator. In the original compiler, the cost
of the live analysis is largely avoided by tracking the liveness
of registers, rather than the liveness of variables. Additionally, in
the original compiler, primitive expansion is delayed until code
generation at the cost of reserving two or more registers, depending
on the target architecture.

The benefit of using a graph-coloring register allocator is that it
packs spilled variables tighter on the frame, makes better use of
registers, and generally produces more compact code. The new
register allocator also uses move biasing to avoid frame-to-frame
moves. This contributes to the generated code’s faster run time,
at the cost of substantially more compile-time overhead. Both the
original and new compilers try to make good use of variable saves
and restores around non-tail calls, allowing call-live variables to be
accessed from a register, rather than from the frame. The original
compiler follows a lazy-save strategy [3], while the new compiler
attempts to get similar results by using a heuristic that estimates the
cost of saving and restoring versus the cost of spilling to a frame
location permanently. This is one place where the new compiler
sometimes underperforms the original compiler.

Not all of the optimizations provided by the original compiler
are provided by the new compiler. The most significant missing
optimization is block allocation of closures. When several closures
are created at the same time, a single allocation is performed to
allocate the space for the entire group of closures. A more general
block allocation optimization is planned for the new compiler but
has not yet been implemented.

3.3 Ensuring compatibility

Over the course of Chez Scheme’s development, an extensive suite
of unit, functional, and regression tests has been developed to
ensure that the compiler conforms to the relevant Scheme standards
and documentation for Chez Scheme extensions. Chez Scheme is
also bootstrapped, and the first test of the compiler is to compile
itself and verify that code generated for the compiler is consistent
with each run of the compiler. The new compiler passes all of these
tests.

4. Evaluation of the new Chez Scheme compiler

4.1 Comparing the speed of generated code

We compare the performance of the original and new compilers
on a set of benchmarks that includes the R6RS benchmarks [4]; a
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set of benchmarks, including some larger benchmarks, used to test
the source optimizer; and a set of additional benchmarks used for
performance regression testing.

The benchmark data was generated on an Intel Core i7-3960X with
two CPUs, six cores per CPU, and 64 GB of RAM. The tests
were conducted at both optimize level 2 (run-time type-checking
enabled) and optimize level 3 (run-time type-checking disabled),
using both the 32-bit and 64-bit instruction sets. Table 1 shows the
average improvement in run time for benchmarks compiled with
the new compiler over the original compiler. In the worst case,
optimize level 3 with the 64-bit instruction set, the benchmarks still
run 15.0% faster on average.

x86 machine x86 64 machine

Optimize Level 2 26.6% 22.0%
Optimize Level 3 22.3% 15.0%

Table 1. Average improvement in benchmark run times

Two of the benchmarks, similix, a self-applicable partial eval-
uator, and softscheme, a benchmark that performs soft typing,
make use of the compiler during the run of the benchmark. This
negatively affects the run time of these benchmarks and the overall
average. Table 2 shows the normalized run time of these bench-
marks on both the 32-bit and 64-bit versions of the compiler and at
both optimization levels.

Opt. level Machine type Similix Soft Scheme

2 x86 1.54 1.27
2 x86 64 1.41 1.32
3 x86 1.29 1.22
3 x86 64 1.39 1.24

Table 2. Normalized run times of similix and softscheme

Outside of these two outliers, the performance ranges on the 32-bit
version between 0.417 and 1.05 at optimize level 2 and between
0.457 and 1.05 at optimize level 3. It ranges on the 64-bit version
between 0.519 and 1.03 at optimize level 2 and between 0.489 and
1.14 at optimize level 3.

As discussed in Section 3.2, the new compiler contains several
improvements over the original compiler, and each of these con-
tributes to the better performance of the benchmarks. The biggest
contributing factor, and the one that is consistent in all of the bench-
marks, is the graph-coloring register allocator. The graph-coloring
register allocator makes more efficient use of available registers,
which is particularly helpful on the 32-bit Intel target, where only
eight registers are available.

4.2 Comparing compilation speed

We set out with the goal of implementing a new compiler that
ran within a factor of two of the original compiler. The extra
compile-time budget was intended to allow the more expensive
graph-coloring register allocator to be incorporated into the new
compiler. Ideally, we would have created a nanopass compiler as
near in function to old compiler as possible for apples-to-apples
compile-time comparisons, but we did not have the resources to
create two new compilers.

The two compilers were tested by compiling each benchmark five
times and averaging compile times. The compile times are normal-
ized, using the original compiler as a base. Table 3 presents the
normalized numbers by machine type and optimization level. In
the worst case (the 64-bit version at optimize level 2) the average

compile time is a factor of 1.75 longer on the new compiler than
on the original compiler. This time is well within our factor of two
goal. Nevertheless, further tuning is still possible and will make
the compile times for the new compiler even closer to those of the
original compiler.

x86 machine x86 64 machine

Optimize Level 2 1.71 1.75
Optimize Level 3 1.64 1.71

Table 3. Normalized compile times of benchmarks

The compile time varies from one benchmark to another. On the
32-bit version, the normalized time ranges from a factor of 1.00 to
4.44 at optimize level 2 and 0.968 to 3.13 at optimize level 3. On
the 64-bit version, normalized time ranges from a factor of 1.00 to
4.73 at optimize level 2 and 1.00 to 3.80 at optimize level 3.

It is natural to assume that the variance in compile times is related
to the increased computational complexity of the graph-coloring
register allocator; however, this does not seem to be the case.
Figure 4 shows the normalized times versus the lines of expanded
source code. The number of lines of expanded source code is
determined by pretty printing the results of the expander run on
each benchmark and then counting the number of line breaks.
Overall, there does not seem to be a direct relationship between
the number of lines of expanded code and the normalized compile
time. An understanding of why this occurs might lead to overall
improvements in compile time.
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5. Related work

Stratego/XT [2] is a DSL for writing source-to-source transforma-
tions. It provides a set of combinators for matching and rebuilding
abstract syntax tree (AST) forms as well as strategies for perform-
ing different traversals of the AST. Pattern matching and AST con-
struction in Stratego is different from that in the nanopass frame-
work, because if construction of an AST fails, the next pattern
will be tried, whereas the nanopass framework makes a committed
(deterministic) choice with explicit guards for extra-grammatical
checks, which simplifies debugging and improves compiler speed.

The JastAdd [9] system allows for the construction of modular and
extensible compilers using Java’s object-oriented class hierarchy,
along with an external DSL to specify the AST and analysis and
transformations on the AST. Each type of node in the AST has an
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associated class that encapsulates the transformations on the node
type. Method dispatch and aspects are used with the visitor pattern
to implement passes instead of pattern matching.

SableCC [11] is a system for building compilers and interpreters
in Java. It provides a set of tools for writing the lexer and parser
for the language and a method for defining multiple passes. Similar
to JastAdd, it works on an AST represented by Java classes. Also
similar to JastAdd, it uses the visitor pattern to implement the
language transformations.

POET combines a transformation language and an empirical testing
system to allow transformation to be tuned [26]. Although POET
allows for some generic manipulation of an AST, it is largely
focused on targeting specific regions of source code to be tuned.
It can parse fragments of source code and operate on the AST
fragment, preserving unparsed code across the transformation.

The ROSE [18] compiler infrastructure provides a C++ library for
source-to-source transformation, along with front-ends and back-
ends for both C/C++ and Fortran. Internally, ROSE represents
source code using the ROSE Object-Oriented IR, with transforma-
tions written in C++. Although there is nothing specific that ties the
ROSE transformation framework to C/C++ or Fortran, there are no
tools to easily add new front-ends and back-ends, limiting the use-
fulness of ROSE for other languages.

The Rhodium framework takes a different approach from the other
tools described here. Instead of using term rewriting, Rhodium
bases transformations on data-flow equations and provides a frame-
work for proving the soundness of transformations [16, 21]. The
framework has also been extended to support inferring optimiza-
tions from the data-flow semantics defined by the compiler writer.
The data-flow facts are defined over a C-like intermediate represen-
tation. This might be a good complement to the nanopass frame-
work.

CodeBoost [1] is a more targeted tool. Although it was originally
developed to support the Sophus numerical library, CodeBoost
provides a simple way to write compiler transformations within
C++ code. It is implemented using Stratego but provides an array
of tools to make writing C++ code transformations easier.

The template-based metacompiler (Tm) [19] provides a macro lan-
guage, similar to M4, for generating data structures and transforma-
tions that can be expanded in a language agnostic way. Tm provides
tree-walker and analyzer templates and an existing C back-end for
easier use.

Pavilion [25] is a DSL for writing analysis and optimization passes
to improve the efficiency of generic programming in C++. The
declarative language extends regular expressions with intersection
and complement operators, variable quantification, path quantifica-
tion, function definition, and native language access to Scheme to
provide powerful matching during analysis and transformation.

Yoko [10] is a Haskell module for writing functions that transform
an input type to a similar output type that requires only the inter-
esting cases be specified, similar to how the nanopass framework
operates over languages. The module builds on generic program-
ming techniques to provide the hcompos function. The hcompos
function takes the user-specified cases and autogenerates the nec-
essary clauses to handle constructors from the input type not spec-
ified by the programmer, matching them with constructors of the
output type with the same name.

6. Conclusion

The new Chez Scheme compiler demonstrates that a nanopass com-
piler can perform on par with a more traditionally structured com-

piler. Despite a more expensive register allocator and the replace-
ment of the five back-end passes of the original 10 passes in the
compiler with around 50 nanopasses, the new compiler still av-
erages compile times that are within a factor of two of the origi-
nal compiler. The new compiler also generates more efficient code,
showing between a 15% and 26.6% improvement on a set of bench-
marks, depending on the optimize level and the target architecture.
The new nanopass framework made it easier to implement the new
compiler and will make it easier to maintain and extend in the fu-
ture.
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