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Abstract 

 

This paper presents an interesting approach to retargeting existing software at the assembly (or 
binary)  level from one instruction set to another instruction set. The approach is based on abstracting 
the instruction set behaviors as symbolic transitions of the machine states. The retargeting process is 
modeled as a planning process, an AI technique, that finds a plan (a sequence of operations) which 
brings the target processor from the same initial state to the same final state as the original software 
does on the source processor. The approach has been successfully applied in a design project of an x86 
compatible microprocessor with an embedded internal RISC core for efficient execution. The proposed 
approach produced optimal x86-to-RISC mapping. In addition, the approach made it easy to keep up 
with microarchitecture revision during the design exploration phase since the mapping table can be 
automatically re-generated and re-evaluated promptly, which is difficult to achieve manually.  

                                                

1 This work is supported by NSC, R. O. C. under contact number 85-2262-E-009-010R. 
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1. Introduction 

 Instruction set retargeting becomes an important problem as the introduction rate of new 
microprocessors/microcontrollers becomes faster and the demand for better performance/cost tradeoffs 
becomes higher than ever before. Besides its applications in software porting such as [1], [16], [20], [26], 
etc., instruction set retargeting also plays an important role during the design phase of 
microprocessors/microcontrollers in which various architectures or microarchitectures are examined [1]. 
Fast adapting the instruction set to the new architecture and microarchitecture is the key to a successful 
design space exploration.  

We participate in a large scale collaborative research project to develop an x86-compatible 
microprocessor. The microprocessor has an embedded  RISC core with a superscalar implementation. To 
pursue performance, the microprocessor adopts a two-layered structure, as shown in Figure 1, which is 
similar to Intel’s Pentium processor [13] or AMD’s K5 processor [12]. The inner layer of the 
microprocessor is a RISC-based execution core for high speed execution. The outer layer of the 
microprocessor accepts the x86 instructions and translates them with hardware decoders into RISC-based 
instructions to be executed by the inner layer. There may be more than one decoder (only one is shown in 
the figure). Each decoder accepts one x86 instruction at a time. The translation is based upon an x86-to-
RISC mapping table, which could be implemented as a ROM,  in the decoder.  

During the design exploration phase, fine tuning of the RISC instruction set and the execution core is 
inevitable, which results in frequent revision and re-evaluation of the x86-to-RISC instruction set 
translation. Due to the CISC nature of the x86 instruction set, the mapping table consists of hundreds of 
pages which are difficult to construct, debug and maintain manually (tedious, time-consuming and error-
prone). Given a hardware modification, identifying which entries in the complicated mapping table and 
determining how to update the entries are by no means an easy task. Therefore, some automatic approach 
to the x86-to-RISC translation becomes crucial to the design process. 

X86 instructions fetched from memory

Internal RISC-

styled instructions

RISC Execution Core

X86-to-RISC mapping table

X86 compatible microprocessor

Decoders
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Figure 1. CISC-to-RISC on-chip translation for a high performance X86 compatible microprocessor 

In this paper we propose an automatic approach to the retargeting problem based on the notion of 
machine state transition (pair). The approach is based on two observations. First, the goal of retargeting 
is actually to look for an instruction sequence of the new instruction set  that produces (emulates) the 
same machine state as the instruction sequence of the original instruction set. As long as the same 
machine state is reached, it does not matter whether the two instruction sequences possess the same 
grammatical expressions (or trees, graphs, etc.) or not.  Second, since the on-chip x86-to-RISC 
translation is done at the instruction level, the information available to us is how each instruction modifies 
the machine state. Therefore, representing the behavior of instructions as the transition of machine states 
is a more intuitive approach than  graph/tree-based approaches in conventional retargeting compilers 
within our design context (i.e., constructing the mapping table for the decoder). Based on these 
observations, we have developed an instruction set retargeting tool, StateMapper, based on the concept 
of machine state transition, and applied this tool successfully to solve the x86-to-RISC decoder problem.  

The rest of the paper is organized as follows. Section 2 reviews related work. Section 3 shows the 
problem modeling based on the machine state notation. Section 4 models the retargeting problem as a 
planning problem and provides the retargeting algorithm. Section 5 presents the application of the state-
based retargeting approach to the x86-to-RISC mapping. Section 6 summarizes this paper and suggests 
future directions.  

2. Related Work 

 Most of retargeting compiler systems are based on the graph or tree matching algorithms. Aho et al. 
[2] propose an optimal tree matching algorithm for retargeting compilers. This dynamic-programming-
based algorithm for optimal code selection has been successfully implemented in the code generators for 
many different machines. Marwedel also presents a tree-based approach for mapping to a predefined 
hardware structure [17]. Corazao [3] proposes a matching method for DSP processors, based on 
templates of the CDFG’s (control/data flow graphs) of instructions. Liem et al. [4][5] use rule-driven 
compilation. It has a shorter compilation time than those of  pattern matching. Extensive reviews on the 
retargetable code generation theories and practices can be found in the book by Marwedel and Goossens 
[16]. These matching algorithms usually need high level source code in order to generate the necessary 
trees or graphs for matching. Therefore, they are not well suited for binary or assembly level retargeting 
because source code is not available. 

Sites et al. [20] develop a binary translator that translate the VAX VMS and MIPS Ultrix binary code 
into DEC Alpha AXP and its execution environment. They build a translator called VEST and a run time 
environment called TIE. The translator maps the VAX code to AXP code according to a mapping table. 
When the translator encounters the portion of the VAX code that the translator is unable to distinguish 
whether it is the program or the data, the portion is embedded in the new AXP code. The VAX code 
embedded in the AXP code is executed by a run-time interpreter. Another similar work is Digital’s FX!32 
[25]. The major difference between these two works and our work is that the binary translation takes 
place at the software level for the two related works, whereas at the hardware level for our work. The 
software-level approach is suitable for platform migration: to support the execution of existing software 
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applications based on some legacy instruction sets, such as VAX, on a faster processor with an 
incompatible instruction set, such as DEC’s Alpha. On the other hand, the hardware approach is not for 
the purpose of platform migration, but for the purpose of efficient execution of  the existing instruction 
set. For example, the instruction set of the Pentium family processors remains the same as their 
predecessors such as the 486 processors. However, for better execution performance, a RISC core is 
embedded in the Pentium processor, and the fetched x86 instructions are internally translated by a 
hardware decoder into corresponding RISC instructions to be executed by the RISC core. The RISC 
instruction set is not observable or accessible by the outside world. 

Cifuentes and  Ramsey develop an integrated reverse engineering environment for binary code which 
is capable of translating binary programs from a given machine to a different machine [26]. The binary 
translation is achieved by three phases: a front-end to translate the binary representation to an 
intermediate representation, a middle-end to perform analysis and optimization and a back-end to map the 
intermediate representation to the binary representation of the target machine. The retargeting tool is built 
upon a syntax specification language SLED [28] and a semantics specification language SSL [27]. Our 
work is different from theirs in two aspects. First, their techniques are targeted at general purpose 
microprocessors, such as SPARC, x86 and PowerPC, while ours is more suitable for application specific 
embedded system. In the case of our work presented in this paper, the embedded RISC core can be 
considered as an application specific system since its sole task is to efficiently emulate x86 instructions. 
Second, we don’t rely on the typical intermediate representation, found in many retargeting research 
work, as the interface between two instruction sets. Instead, we abstract the source instructions into  
machine state transitions and then try to accomplish the same machine state transitions with the target 
machine instructions. 

Focusing on the “state” of a system, instead of its operations, has been a successful approach to a 
wide range of software/hardware problems. The state notation is used as part of the semantics of 
flowchart programming languages, such as C or assembly programs, for the purpose of software program 
verification [29].  In  [30], software program verification is conducted by analyzing the reachable states in 
a finite-state graph. Finite state models are also useful in formal hardware verification, such as the works 
reviewed in [31] for machine equivalence checking. Symbolic execution, based on machine state notation, 
is adopted to solve scheduling and binding problems in high level synthesis [32]. Bashford and Leupers 
[33] also use state-like model to represent data path operations in order to map data flow graph to DSP 
processors with irregular data paths.  Holmer [7] views the instruction set design as a compaction 
problem. An interesting technique that he developed is the state pair notation, which is used to represent 
the benchmarks. We extend his state pair idea for our instruction set retargeting problem.  

3. Problem modeling 

 As opposed to conventional approaches which view the instruction retargeting as 
manipulation/optimization on the expression trees, control/data flow graphs and the data path topology, 
we cast the instruction retargeting problem as searching for a sequence of operations that accomplish the 
same machine state transition as the original code to be retargeted. We first present the machine state 
model and then apply a well-known AI technique, planning, to solve the instruction set retargeting 
problem based on the proposed model. 
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Through the rest of the paper we will assume that the program structure, i.e., program segments, data 
segments and basic block boundaries, of the source code are known before the retargeting taking place. 
Under this assumption, binary  code and assembly code can be considered equivalent and the two terms 
will be used interchangeably whichever is more appropriate within the discussion context.  

In addition, we assume that before the retargeting process can be started, a pre-processing step called 
storage I/O mapping has been conducted for instruction set architectures with different organizations in 
memory, registers and I/O. For example, to translate the MIPS assembly code into Intel x86 assembly 
code, one needs to assign some of the MIPS’s thirty two general -purpose registers to the limited number 
of general-purpose registers (less than eight) of the x86 microprocessor, and assign the rest of the 
general-purpose registers to some x86 memory locations. Currently the mapping is performed manually 
and will be automated in our continuing work. 

3.1 Machine abstraction: machine state 

 A typical first step towards instruction retargeting, as found in some work in Section 2, is to study 
the behaviors of instructions by observing the microarchitecture and the corresponding operations within 
the data path modules in the microarchitecture. However, such study involves a great amount of 
information which are more than necessary to the purpose of instruction retargeting. In addition, such 
approach may also lead to the construction of retargeting tools with less degree of flexibility since the 
model of the underlying microarchitecture may unnecessarily constrain the retargeting power. 

A more effective way to study the behaviors of instructions is to observe their effects on the storage 
elements such as registers, flags, latches and memory, which  together define the characteristics or the 
state of the entire machine. The ultimate objective of instructions is to manipulate the machine state; the 
operations (of the instructions) in the microarchitecture are just the means to accomplish such 
manipulation. Therefore, the machine state can serve as an abstraction for the machine.  This state-based 
abstraction is more suitable to the instruction retargeting problem since observing how the machine state 
is modified by instructions requires less amount of information and efforts than observing the data path 
structure and detailed operations in the microarchitecture. In addition, the view point of machine state 
makes it easy to accommodate variations in the microarchitecture and  the instruction set: two pieces of 
software code, although different in their contents or even in the instruction sets that they are based upon, 
can be regarded as compatible as long as they carry out the same state transition (from the same initial 
state to the same final state). 

Based upon the above concept, we construct the machine state with a list of symbolic values of 
storage locations, called contents. The content of each storage location can be expressed as a binary tuple: 
content(Location, Value) where Value is the symbolic value of the storage element in Location. 
The storage location can be a special or general register, a memory word, a latch, an IO port, etc. The 
symbolic value can be a constant, a value from another location, or an expression comprising constants 
and values from some storage locations. For example, content(reg(a), reg(b)+immed(1)) shows 
that the register location reg(a) gets the value of the register reg(b) plus the immediate value of one. 
Notice that register index may be physical or symbolic. In the latter case, register allocation is necessary 
to couple the retargeting process. Since a machine state may consist of numerous storage locations (e.g., 
a few giga-words of memory), only the locations that are modified or of a particular interest need to be 
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explicitly specified.  

 The above binary tuple needs to be extended to support conditional states. In such case, the machine 
state is represented by the triple content(Condition, TrueStateList,FalseStateList) where 
Condition is a Boolean expression, and TrueStateList and FalseStateList are the machine state 
(i.e., a list of contents as defined previously) under the true and false conditions, respectively.  

3.2 Representation of instructions (operations): state pair 

 Based on the machine state notation, the operation of an instruction can then be represented with a 
pair of an initial state and a final state, called the state pair, with the notation pair(InitialState, 
FinalState) where InitialState is the necessary machine state (pre-condition) for the instruction to 
operate, and FinalState is the machine state after the execution of the instruction (post-condition). 
Both InitialState and FinalState are represented as lists of the content data structure defined in 
the previous section. For example, the operation of the x86 instruction PUSH ax can be represented as 
the following state pair: 

 pair([], [content(mem(reg(ss):reg(esp)),reg(ax)), 
     content(reg(esp),reg(esp)-immed(2))]). 

 The above representation specifies that the PUSH instruction  does not require any pre-condition, as 
specified by the empty list, and the effects of the instruction  are that the memory location specified by the 
registers reg(ss) and reg(esp) gets the value of the register reg(ax), and the register location 
reg(esp) gets the value of its initial value minus two.  

 As an another example, the x86 instruction JZ label is a conditional branching instruction. It 
jumps to the location label if the flag ZF is set. The content of the program counter eip is 
conditionally set. If ZF is 1, eip is set to label, otherwise it is sequentially incremented to the address 
of the next instruction. Since incrementing the program counter sequentially to the address of the next 
instruction is considered as a default behavior of a basic microprocessor, the increment operation is 
implicitly implied and does not appear in our state pair notation. With the above analysis, the 
representation of the x86 conditional branching instruction is as the following: 

 pair([], content(reg(zf)=immed(1)), [content(reg(eip),immed(label1))], []). 

Note that in most cases, InitialState is an empty list since most instructions do not require any 
special initial condition for the instruction to operate. 

The state pair notation can be applied to a larger scope such as a basic block in the assembly 
program. Each basic block of the program can be represented by a pair of machine states as well. The 
final state is the machine state after executing the basic block on the initial state. Figure 2 gives an 
example of the state pair notation for a basic block from a Prolog benchmark. The basic block, called 
sequence I, computes data, store them to the registers, and pushes them to the heap in the memory, 
using r(h) as the heap pointer.  
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Final StateInitial State

0

move(r(h)+0,r(0)) % r(0)<-r(h)+0
push(r(0),r(h)) % m(r(h)<-r(0);

% r(h)<-r(h)+1
move(r(h)+0,r(1)) % r(1)<-r(h)+0
push(r(1),r(h)) % m(r(h))<-r(1);

% r(h)<-r(h)+1 r(h)
r(h)+1
r(h)+2

0
1
2
3

0
1
2
3

r(0)
r(1)
r(h)

r(0)
r(1)
r(h)

r(h)
r(h)

Assembly sequence I

State pair transition

environment

registers

heap
(memory)

 

Figure 2. State pair notation for a basic block (Prolog assembly sequence I) 

The state pairs of basic blocks can further connected together according to the control flow of the 
basic blocks. The connected state pairs become a compact representation of an assembly program: a state 
transition graph. With such insight, a software program can be thought as a sequence of operations that 
modifies the machine states of an instruction set processor in a well-controlled way. Therefore, 
programming can be viewed as finding a sequence of instructions (operations) that brings the machine 
state from the given initial state to the desired final state. 

By representing the assembly program as state transitions, we are able to eliminate possible 
inefficiencies embedded in the original operations in the program. For example, the piece of code in 
Figure 2 is generated by the Aquarius Prolog compiler for a high performance RISC microprocessor [6]. 
Although the code has been optimal for uni-processor architectures, it is not well-suited for superscalar or 
superpipelined architectures for the following reasons. First, the compiler creates spurious data 
dependencies for the operations on the heap pointer r(h): the creation of the heap is serialized by 
incrementing the heap pointer from zero to two by two steps. Second, the serialization of the heap 
operations causes extra ALU operations, which dissipates more power than necessary. Fortunately, the 
inefficiencies are automatically removed in the final state representation, as shown in Figure 2.  The 
inefficiencies are not unavoidable; they are just the consequence of an inefficient solution (implementation) 
to accomplish the desired computation specified by the final state.  

The state transition notation focuses on what the programmer really wants to accomplish, instead of 
how the programmer accomplishes the desired computation. Therefore, the programmer will not be 
biased or limited by the possible inefficiencies embedded in the original program. For example, by 
abstracting the assembly sequence I into its state notation and then observing the state transition, it is easy 
to come up with better assembly sequences to achieve the same computation, such as the sequences II 
and III in Figure 3. These sequences use other instructions that accomplish the same state transition as 
does the sequence I in Figure 2 but require less number of instructions.  
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3.3 Instruction set retargeting as a planning problem 

Figure 4 illustrates the state transition view of assembly programs on different instruction set 
processors. Machine I executes three instructions Op_X1, Op_X2, and Op_X3 to bring the initial state Si 
to the final state Sj with Si1 and Si2 being the intermediate states. On the other hand, machine II executes 
two  instructions Op_Y1 and Op_Y2 to bring the machine from the same initial state Si to the same final 
state Sj with Sj1 being the intermediate state. Although with different intermediate states, the instruction 
sequences {Op_X1, Op_X2, Op_X3} and {Op_Y1, Op_Y2 } bring machine I and machine II, 
respectively, to the same final state, as long as they start from the same initial state. Therefore, the latter 
sequence can be regarded as the result of retargeting the former sequence from machine I to machine II, 
and vice versa. 

Initial State Si

Intermediate
Stae I1

Intermediate
State I2

Final State Sj

OP_X1

OP_X2

OP_X3

Retargeting

OP_Y1

Intermediate
Stae J1

OP_Y2

Machine I Machine II

 

Figure 4. Retargeting process 

 Figure 5 shows the intermediate states of the assembly sequence I in Figure 2. Each state transition 
is caused by the execution of one instruction. There are four instructions in assembly sequence I and three 
intermediate (sub figures b, c, and d) are created during the transition. 

add_st(r(h),0,r(0)) %r(0)<-r(h)+0;
%m(r(h)+0)<-r(h)+0;

add_st(r(h),1,r(1)) %r(1)<-r(h)+1;
%m(r(h)+1)<-r(h)+1;

add(r(h),2,r(h)) %r(h)<-r(h)+2

mv_st(r(h),r(0)) %r(0)<-r(h);
%m(r(h))<-r(h);

add_st(r(h),1,r(1)) %r(1)<-r(h)+1;
%m(r(h)+1)<-r(h)+1;

add(r(h),2,r(h)) %r(h)<-r(h)+2

Assembly sequence II Assembly sequence III

 

Figure 3. Alternative sequences that perform the same computation as the sequence I 
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Initial State
Intermediate

State 1
Intermediate

State 2
Intermediate

State 3 Final State

(a) (b) (c) (d) (e)

add r(h),0,r(0) push r(0), r(h) add r(h),0,r(1) push r(1), r(h)

r(h)+1
r(h)+1

r(h)

r(h)

r(h)

r(1)
r(0)

r(h)

r(h)+1

r(h)

r(h)

r(h)

r(1)
r(0)

r(h)

0

r(h)

r(h)
r(1)
r(0)

r(h)

0

environment

register r(h)
r(1)
r(0)

heap
memory

r(h)

r(h)+2
r(h)+1

r(h)

r(h)

r(h) +1
r(h)

r(1)
r(0)

r(h)

 

Figure 5. Intermediate states of the assembly sequence I in Figure 2 

Based on the model described in the previous section, the instruction set retargeting can be casted  as 
a planning problem [8][10], which is an important problem solving technique in artificial intelligence. A 
planning system composes of  a problem world and a set of operators which change the problem world. 
The problem world, represented as states,  is an abstraction of the problem to be solved with appropriate 
level of details. Since the description of the complete state may be tedious, it is a usual practice to 
explicitly describe only the portion of the complete state which is of interest. The problem is then given as 
a state pair: the initial state and the final (goal) state. The problem world is manipulated by operators. 
The operators change the states. A plan is sequence of operators that brings the world from the initial 
state to the specified final state. Planning means to search for a plan that accomplishes the desired state 
transition and also satisfies given constraints. 

Casting the instruction set retargeting problem as a planning problem is straightforward: the state pair 
of a  desired computation on the source platform, which could be either an instruction or a basic block, is 
the problem world, while the instructions of the target platform serve as the candidate operators, among 
which the planning engine searches for a best plan under given constraints. The constraints are modeled in 
the cost function that guides the search process. 

Table 1 lists the state pair representations for some instructions (operators) for the examples in Figure 
2 and Figure 3. The initial states for the operators in the table are “don’t case”, since there is no pre -
condition for these operators. The final states explicitly specify the storage locations of which the values 
are modified by the operators. The capitalized terms in both the specifications of the operators and the 
final states denote operand templates that will be bound to specific (grounded) values such as physical or 
symbolic address locations, register index or constants. The binding is performed by the match procedure 
of the retargeting engine, to be presented in Section 4.2. For example, if the templates R1 and R2 for the 
move operator are bound to ax and bx respectively, then the move operator is instantiated to be a mov 
r(ax),r(bx) operation.  

In addition, operators are associated with costs. The table lists two costs: the cycle count and power 
consumption. The cost information is useful in selecting operators to apply to the world. 
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Operator Initial State 

(location, value) 

Final State 

(location, value) 

Cost1 

cycle 
count 

Cost2 

Power 

move r(R1),r(R2) don’t care (r(R2),r(R1)) 1 1 

push r(R1),r(R2) don’t care (m(r(R2)),r(R1), 

(r(R2),r(R2)+1) 

2 3 

add r(R1),Imm,r(R2) don’t care (r(R2),r(R1)+Imm) 1 1 

add_st r(R1),Imm,r(R2) don’t care (r(R2),r(R1)+Imm) 

(m(r(R1)+Imm),r(R1)+Imm) 

2 1.5 

mv_st r(R1),r(R2) don’t care (r(R2),r(R1)) 

(m(r(R1)),r(R1)) 

2 1.5 

Table 1. Example of the state pair notation and costs for instruction operators 

4. The retargeting (planning) engine 

Given the state pair of the desired computation (the problem world) and the state pairs of the 
instructions of the target processor (operators), the retargeting (planning) engine searches for the best 
instruction sequence (plan) that satisfies the given constraints (cost function). In this section we describe 
the search method and the actual algorithm of the retargeting engine. 

4.1 The search method: backward chaining 

 We adopt the backward-chaining algorithm to solve the retargeting problem. A plan can be 
constructed backwards in the following way: first, select an operator whose post-condition best match the 
given final state; second, an intermediate state (a state closer to the initial state than the original final state) 
can be constructed by deleting the post-condition from and adding the pre-condition to the original final 
state; third, if the intermediate state is not equal to the initial state, then it serves as the new final (goal) 
state, and the plan construction is repeated. Figure 6 illustrates the idea of backward-chaining. State Sz is 
the result of applying operator op4 backwards. In other words, applying op4 to the state Sz can make a 
state transition to the final state. State Sy is the result of applying operator op3 backwards, and so on. 
Once the initial state is reached, the search process is terminated. The operator sequence op1, op2, op3 
and op4 is a plan that brings the problem world from the given initial state to the desired final state. As an 
example, the sub figures in Figure 5,  viewed from right to left, reveal the backward chaining process and 
the resulted plan is the assembly sequence I in Figure 2. 
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Initial
State

Final
State

Sx Sy Sz
op1 op2 op3 op4

plan: op1-> op2 -> op3 -> op4

Sx, Sy and Sz are intermediate states

 

Figure 6. Backward Chaining 

4.2 The algorithm 

We now present the algorithm of the retargeting engine, as listed in Listing 1. The algorithm takes in 
as inputs the InitialStateList and GoalStateList,  which are the lists of contents (the data 
structure described in Section 3.1) of the initial and goal (final) machine states, respectively. When 
finished, the algorithm returns the plan (instruction sequence) in Solution. The main actions of the steps 
in the algorithm are described as the following: 

1. The algorithm first checks in line 3 if the goal state list is equal to the initial state list. If yes, 
terminates planning, reverses the operator order in the solution and returns it; otherwise, continue;  

2. Some contents in the goal state may have dependency relationships, which prevent certain 
contents from being processed before others. Therefore, the algorithm constructs a dependency 
graph for the contents in line 8; 

3. In line 10, select a ready content from the goal state list, according to the dependency 
relationships. Since the retargeting engine works backwards, the ready content actually is a sink 
node in the dependency graph (i.e., without any outward arc). The subroutine match is then 
invoked to choose an operator whose state best matches the selected content. The chosen 
operator is added into the solution. 

4. If the chosen operators require a pre-condition that does not exist in the machine state, new 
contents are created for the pre-condition and appended to the rest of the goal state list, as in line 
11. We will explain this issue later in this section. 

5. Recursively apply the planning engine to the updated goal state list, as in line 12. 

The procedure match is listed in lines 15 through 25. It picks up a viable operator and matches the 
state pair of the operator to the target content. During this step the operand templates of the operator are 
bound to the specific physical or symbolic values in the target content. If the cost of the operator is 
favorable by the cost function, the operator is accepted; otherwise, other operators are tried.  A tree-
based matching mechanism is adopted in our current implementation. The tree-based approach is easy to 
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be implemented and is sufficient to our x86 problem (described in Section 5) since the mapping targets is 
individual x86 instructions. As the mapping targets become more complicated, such as entire binary 
programs, more sophisticated approaches such as graph covering would have to be implemented. 

Note that new contents may be created, if the pre-conditions of the chosen operator requires them. 
The pre-conditions include explicit ones and implicit ones. The explicit pre-conditions are the conditions 
that are explicitly stated in the pre-condition field of the content data structure. On the other hand, the 
implicit conditions are generated by the retargeting engine while performing retargeting between 
architectures with different memory or register organizations, which will be explained shortly with the 
example in Figure 8.  

The optimal solution can be found with two approaches. First, as shown in Listing 1, we can 
exhaustively search all possible solutions with a depth-first search, and use the current best solution to 
prune inferior partial solutions during the search process (as in line 20). This approach has been effective 
enough for our x86 mapping problem. Second, not shown in the listing, we can conduct a successive-

deepening search in which we first try to find all solutions with i (initially i starts from one) operators; if 
no solution can be found, then try to find solutions with i+1 operators, and so on. 

1: planning(InitialStateList, GoalStateList, Solution) 

2: begin 

3: if GoalStateList=InitialStateList 

4: then 

5:     reverse the Solution list and return 

6: else 

7: begin 

8:     construct the dependency graph for the contents in GoalStateList 

9:   select a ready content from the state list 

10:     call match to select an operator to solve the content,  

       append the selected operator to the solution; 

11:    append any new contents produced by match to the rest of GoalStateList 

12:    planning(UpdatedGoalStateList,InitialStateList,UpdatedSolution) 

13:end 

14:end 

15:match(content(Loc,Val),NewGoals,Operator)  

16:begin 

17:    pick an operator from the target operators   

18:                                                            

19:    match the state pair of the operator with content(Loc,Val) 

20:    if current_cost+operator’s cost > cost limit 

21:   then 

22:     pick next operator 

23:    else 

24:       produce necessary new contents (demanded by some operators) 

25:end 

Listing 1. The planning algorithm 
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To further speed up the search process, we rank the operators with the following order when picking 
a candidate operators in line 17: 

1. operators of which both the location and the value can be matched to the given content; 

2. operators of which the location can be matched and the value is similar to the value of the given 
content. 

3. operators of which the value is matched and the location is similar; 

4. operators of which the location is matched and the value is similar and is an expression; 

5. the rest of the candidate operators. 

We illustrate the retargeting engine with the example in Figure 5. The engine starts from the sub 
figure (e), which is the goal state. The candidate operators are defined in Table 1. To simplify the 
illustration, we don’ t consider the cost in this example. The engine finds the push operator, with the 
operand templates R1 and R2 being bound to 1 and h, respectively. After the operator is matched to the 
goal state, the intermediate state 3 in the sub figure (d) is obtained, which serves as the new goal state for 
the next iteration of the algorithm. The intermediate state 3 is closer to the initial state than the original 
goal state in sub figure (e): the intermediate state 3 has one less memory content defined (i.e., m[r(h)+1] 
is removed) and the value of the register r(h) is closer to that of the initial state. Recursively, the engine 
works on the intermediate state 3 and finds the add operator, with the bindings of R1=h, Imm=0, and 
R2=1, which produces the updated goal state in sub figure (c). The same process repeats until the updated 
goal state is equivalent to the initial goal state. Finally, by reverse the order of the chosen operators we 
obtain a plan that is exactly the assembly sequence I in Figure 2. By applying different selection strategies 
(cost functions), the assembly sequences II and III in Figure 3 can be found as well. 

Next we demonstrate a retargeting case with implicit pre-conditions, using the example in Figure 7, 
which is a state transition of an x86 code. This code is retargeted to RISC instruction set, as shown in 
Figure 8. The final state of the code indicates that the top of the stack, which is also in the memory, gets 
the value of the memory location 1234. However, there is no instruction in the RISC instruction set that 
can perform a direct memory to memory copy. The closest one is the store instruction that copies a 
register value to memory. However, in order to select this instruction, the retargeting engine has to 
assume that the value of the memory location 1234 resides in some register tmp. With this assumption, 
the operator st tmp,m[ss:es] can be applied, as shown between sub figures (c) and (d). In addition, 
the engine has to create a new content for such assumption (an implicit pre-condition), shown as the new 
register tmp in the intermediate state 2 in the sub figure (c). The engine continues to work on the 
intermeidate state 2 and finds the operator ld tmp,m[1234] to load the data in the memory location 
1234 to the register tmp, resulting in the new intermediate state 1. Finally, the engine finds the subtraction 
operator subi esp,2 to bring the intermediate state 1 to the initial state and finishes the retargeting. By 
reversing the order of the chosen operators, the following RISC instruction sequence is obtained. 

subi esp,2   % reg(esp) <- reg(esp) - 2 
ld tmp,m[1234]  % reg(tmp) <- m[1234] 
st tmp,m[ss:esp]  % m[reg(ss):reg(esp)] <- reg(tmp) 
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Note that allocation and optimization of the temporary registers, required for the pre-conditions, has 
been an important research topic on its own. We adopt a simple heuristics to solve this problem in our 
current implementation: reuse the temporary registers as much as possible. Fortunately, our experiments 
show that at most two temporary registers are needed for the specific x86-to-RISC mapping problem 
discussed in this paper. There are plenty of available registers in the register file of the RISC core to serve 
such purpose. More comprehensive approaches will be adopted in our future work. 
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Registers
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Figure 7. Another example of the retargeting process 
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Figure 8. Creation of temporary storage locations (retargeting for Figure 7) 
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5. Application: x86-to-RISC mapping 

 With the models and algorithms in previous sections, the retargeting tool StateMapper has been 
successfully constructed and applied to construct the x86-to-RISC mapping table for the x86 instruction 
decoders in our x86 compatible microprocessor. Remember that the decoder accepts one x86 instruction 
at a time, and maps it into internal RISC instruction sequences. 

5.1 The mapping of general x86 instructionss 

 The behavior of each x86 instruction, except some complex instructions to be discussed in Section 
5.2, is expressed as a state pair: the initial and the final states. The state pair is given to the algorithm in 
Section 4.2 as the problem to be solved. The RISC instructions are considered as the candidate operators 
for the algorithm. A table similar to Table 1 is built for the RISC instruction set. 

 Here we show an example of translating an x86 instruction MOV ax,[1234] into internal 
instructions. The x86 instruction moves the content of memory location of 1234 to register ax Its state 
representation is as follows: 

pair([],[content(reg(ax),mem(immed(1234)))]). 

 Figure 9 (a) depicts the state for the x86 instruction; Figure 9 (b) depicts the states of two RISC 
instructions (ri and rm) of a RISC core. In the RISC core, we can’t find any single instr uction that has 
the same state pair as the x86 instruction. However, we find an instruction rm that moves the value of the 
register R1 to the assigned memory location indexed by the register R2 can match part of the first content 
element in the goal state list. The state pair of the instruction is 

pair([],[content(reg(R1),mem(reg(R2)))]). 

 So we bind R1 to ax and R2 to an temporary register, say tmp1. It means if we can find another 
operation can move the immediate value 1234 to R2 then we can use this operation to achieve the goal. 
So we record it into the solution list and insert the following new content into the goal list. 

content(reg(tmp1),immed(1234)). 

 Taking the updated goal, we find an operation register-immediate move operation ri, moving an 
immediate value Immed to a register R1, can match perfectly the goal. So R1 is bound to tmp1 and Immed 
is bound to 1234. This instruction does not produce any new content, and therefore the translation is 
finished.  

Figure 9 (c) depicts the backward chaining of the translation process. Finally, by reversing the 
instruction order, we obtain the following translation for the x86 instruction. 

ri tmp1, 1234    % reg(tmp1) <- immed(1234) 
rm ax, tmp1     % reg(ax) <- m[reg(tmp1)] 
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 In a later revision to the RISC instruction set, new load and store instructions are introduced. The 
instruction ld loads a memory location, specified by the immediate value Immed, to a register R1. The 
state pair representation of the load instruction is 

 pair([],[content(reg(R1),mem(immed(Immed)))]). 

 By running StateMapper for the same x86 instruction with the new RISC instruction set, we find a 
perfect match that the final state of ld is identical to the goal state. Therefore, we obtain the new 
translation as the following. 

 ld ax, 1234     % reg(ax) <- m[immed(1234)] 

don't care
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Figure 9. The retargeting example for an x86 instruction 
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5.2 The mapping of complex x86 instructions 

 There are several complex instructions in the x86 instruction set that are difficult to be model with 
simple state pairs, including  ENTER, PUSHA, CMPS, REP, etc. For example, the instruction ENTER pushes 
the run-time stack in the external memory and copies multiple items of the calling procedure’s stack to 
the called procedure’s stack. It has two forms: if the second operand is greater than zero, the operation 
includes a while loop.  

To model this instruction, we have to divide it into many simpler operations. Table 2 lists the RTL 
(register transfer level) description of ENTER. The RTL is divided into 7 basic blocks. Following the 
discussion in Section 3.2, we can derive the state pair notation for each basic block. The state pairs of the 
first four basic blocks are shown in Figure 10. The left side of this figure is the identifiers of the basic 
blocks and their corresponding RTL’s. The right side of the figure are their sta te pairs. Note that basic 
blocks b1, b2 and b4 have conditional state pairs.  

 

 

Basic Block RTL Description of ENTER 
b1 nesting ß max(nesting,31) 
b2 PUSH EBP 

temp ß ESP 
if(nesting>0) then 

b3  nesting ß nesting - 1 
b4  while (nesting>0) 
b5  EBP ß EBP - 4 

 PUSH SS:[EBP] 
 nesting ß nesting - 1 

b6  end while 
 PUSH temp 

b7 endif 
EBP ß temp 

ESP ß ESP - locals 

Table 2. RTL description of ENTER 
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nesting <- max(nesting,31)

PUSH EBP
temp <- ESP
if (nesting>0) then

nesting <- nesting -1

eip+c1=(b2)

sf¡Úof
1

immnestingnesting

nesting-31tmp

eip

while (nesting > 0)

31

esp-4

memory

esp

ss:[esp] ebp

esptemp

nesting-0tmp

eip+c2=(b7)

sf¡Úof

eip

nesting-31

1

nesting nesting-1

sf=of

esp-4

esp
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tmp nesting-0
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eip

ebpsf=of
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Figure 10. State pairs of the first four basic blocks of  the x86 instruction ENTER. 

The state pair of each basic block is then given as a problem to be solved by the retargeting algorithm. 
Figure 11 shows the mapping results for these basic blocks. The left side of the figure are the state pairs 
of the basic blocks. The right side are the mapped RISC instruction sequences.  The figure shows that the 
four basic blocks are mapped into 4, 5, 1 and 2 RISC instructions, respectively. Table 3 shows the 
complete RISC translation for the ENTER instruction by merging the mapping for individual basic blocks. 
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Other complex x86 instructions such as the string manipulation instructions can be processed with the 
same approach. 

tmp sf¡Úof

eip

sf=of

movi nesting,immnesting
cmpi nesting,31
ji16 c1
mov nesting,31

c1: st ebp,ss:[esp]
      subi esp,4
      mov temp,esp
      cmpi nesting,0
      jing16 c2

dec nesting

w1: cmpi nesting,0
       jing16 e1

nesting nesting-1

State Pair RISC  instruction sequence
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Figure 11. Mapping the state pairs in Figure 10 into RISC instruction sequences 
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 Note that there are some x86 instructions that do not allow the decomposition of their behaviors, as 
we did in the previous cases, into basic blocks in order to map them into RISC instruction sequences. 
Most of them are system related instructions that require atomic operations. In these cases, a single 
complex RISC instruction is constructed for each of these x86 instructions. Therefore, automatic 
mapping is not necessary for these instructions. Examples of these instructions include the instruction HLT 
that halts the CPU until reset or interrupt and the instruction INVD that invalidates internal cache. A 
limited number of non-system instructions also have the same property and are dealt with similarily, such 
as the REP instruction. These instructions, in many RISC-cored x86 compatible microprocessors, are 
treated as extremely difficult instructions and are not map to RISC-like internal instructions. They are 
often implemented as hardwired controls or microcode and do not take advantage of the superscalar 
execution (i.e., the processor enters the sequential mode when executing these instructions). 

5.3 Statistics of the mapping results 

5.3.1 Instruction classification 

 

Basic Block RISC Translation 

b1 
 movi nesting,immnesting 
 cmpi nesting,31 
 ji16 c1 
 mov nesting,31 

b2 
c1: st ebp,ss:[esp] 
 subi esp,4 
 mov temp,esp 
 cmpi nesting,0 
 jing16 c2 

b3 
 dec nesting 

b4 
w1: cmpi nesting,0 
 jing16 e1 

b5 
 subi ebp,4 
 st ss:[ebp],ss:[esp] 
 subi esp,4 
 dec nesting 
 addi eip,w1 

b6 
e1: st temp,ss:[esp] 
 subi esp,4 

b7 
c2: mov ebp,temp 
 subi esp,locals 

Table 3. Complete RISC translation for ENTER 
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We have mapped all x86 instructions, a total of 204 according to their opcode [27]. Since some x86 
instructions have up to five addressing modes, these 204 instructions are actually equivalent  to more than 
340 differentiated instructions (i.e., each differentiated instruction is an opcode associated with a 
specialized addressing mode). If data bit width is considered, the number would further multiplies. Table 
4 classifies the x86 instructions into five categories,  lists numbers of instructions for the corresponding 
categories, and shows the mapping methods for the corresponding categories. The table shows that 85% 
(174/204) of the x86 instructions can be directly mapped with our StateMapper tool, and another 5% of 
the instructions, which are complex instructions, can be mapped with our tool after they are broken into 
smaller pieces (similar to basic blocks). Only about 10% of the x86 instructions are directly implemented 
as single complex instructions of the RISC core (due to the performance or cost reason) and thus do not 
require the automatic mapping. These complex instructions are executed by a micro sequencer or some 
finite state machines. In summary, our method has successfully mapped more than 90% of the x86 
instructions. 

 

5.3.2 Mapping alternatives and quality 

 In order to fully explore the mapping space, we configured our algorithm to search for all 
meaningful solutions for each x86 instruction.  Table 5 shows the alternative mappings for some x86 
instructions. The first column lists the x86 instructions. The second column lists the binding examples of 
the operands, used for the automatic mapping. The third column shows the alternatives solutions for each 
x86 instructions. To save space, we only show the shortest and longest mapping for each instruction. The 
shortest mappings are highlighted with bold faces. The mapping space exploration has revealed many 
interesting characteristics of the x86 compatible microprocessor, as described in the following. 

Category Number (in terms of 
different opcodes) 

Mapping Method 

General Case 174 StateMapper 

Complex Instructions 10 Divide into basic blocks and use 
StateMapper 

System Instructions 17 one-to-one mapping 

(single complex RISC instruction) 

Miscellaneous Instructions 3 one-to-one mapping 

(single complex RISC instruction) 

Total 204  

Table 4. Mapping Methods of the complete x86 instruction set 
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l The shortest mappings (for all x86 instructions) found by the StateMapper tool are equivalent to 
the optimal results by manual mapping. This observation ensures that the quality of the 
automatic mapping is as good as the quality of human experts. Therefore, the automatic 
mapping approach is a viable solution to our design project. 

l On the average, there are 8.68 ways to map an x86 instruction. Some of the ways involves the 
use of different operations, such as the INC case. Some involve the use of temporary registers, 
such as the PUSH case. Some involve the permutation of RISC instruction order.  

l On the average, there are 2.09 RISC instructions per x86 instruction. This average is obtained 
by summing up the total number of RISC instructions of the shortest solutions and then dividing 
the number with the number of x86 instructions.  

l The average ways of mapping and the average RISC instructions per x86 instruction drop 
significantly from 8.68 to 3.85 and from 2.09 to 1.84, respectively, when considering only the 
top 25 x86 opcode which cover more than 90% of execution in typical DOS/Windows 
applications [14]. When the importance of the x86 instructions is weighted according to their 
frequencies in typical applications, the average RISC instructions per x86 instruction further 
drop to 1.5. These observations confirm that powerful x86 instructions are rarely used, and 
therefore, designers should concentrate on optimizing the implementation of the simpler x86 
instructions. 
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5.3.3 Keeping tracks of the microarchitecture revision 

The tool StateMapper not only helps us in exploring the mapping space of the x86 instructions, but 
also helps us in keeping tracks of the design revision quickly. As shown in Figure 12, by giving the 
state pair representation of revised versions of the RISC instruction set, we can use StateMapper to 
automatically re-construct the mapping table accurately and consistently. An example is presented here.  

In the original microarchitecture of our microprocessor, there is an address generation unit (AGU) 
which generates an effective address and store it in the register. The load/store unit then uses the register 
to access memory. In such implementation an x86 load instruction is mapped into two RISC instructions: 
AGU and LOAD. The later version of the microarchitecture merges the AGU into the load/store unit. 
Therefore, the x86 load instruction is mapped into a single RISC instruction: LOAD.  

Such simple revision requires the modification of  874 lines in the mapping table, which consists of 
3721 lines and is printed on more than 140 pages (in its condensed version). We conducted the 

X86 
Instruction 

Binding Automatic Mapping 
 
Shortest reg(sp)=reg(sp)-immed(2) 

mem(ss:[esp])=reg(ax) PUSH R16 
R16=AX 

Longest reg(tmp1)=immed(2) 
reg(esp)=reg(esp)-reg(tmp2) 
mem(ss:[esp])=reg(ax) 

Shortest reg(ax)=reg(ax)+immed(1) 

Shortest reg(ax)=inc reg(ax) INC R16 
R16=AX 

Longest reg(tmp1)=ax 
reg(tmp2)=immed(1) 
reg(tmp1)=reg(tmp1)+reg(tmp2) 
reg(ax)=reg(tmp1) 

Shortest reg(esp)=reg(esp)-immed(4) 
mem(ss:[esp])=reg_pc(eip) 
reg_pc(eip)=immed(1234) 

CALL I16 
I16=1234 

Longest reg(tmp1)=reg(esp) 
reg(tmp2)=immed(4) 
reg(tmp1)=reg(tmp1)-reg(tmp2) 
mem(ss:[esp])=reg_pc(eip) 
reg_pc(eip)=immed(1234) 

CMP R16 I8 
R16 = AX 
I8 = 7 

Shortest 
/ 

Longest 

reg(tmp2)=immed(7) 
reg(tmp1)=reg(ax) 
reg(tmp1 )=reg(ax)-reg(tmp1) 

Shortest reg(ax)=reg(ax)-reg(cx) 

SUB R16 R16 
R16 = AX 
R16 = CX Longest reg(tmp1)=reg(ax) 

reg(tmp2)=reg(cx) 
reg(tmp1)=reg(tmp1)-reg(tmp2) 
reg(ax)=reg(tmp1) 

Table 5. Some x86-to-RISC translation 



Accepted to Journal of Design Automation for Embedded Systems, 1999. 

 -24-

modification with both manual and automatic approaches. In the manual approach, it took the designer 
more than a week to scan through the mapping table to manually modify the entries. The time does not 
include the debugging time nor the mapping exploration. On the other hand, in the automatic approach 
that uses StateMapper, it only took a few minutes to edit the state pair notations of the LOAD/STORE 
instructions of the RISC core and delete the state pair of the AGU instruction of the RISC core, and then it 
took StateMapper 30 minutes on a UltraSparcII workstation to regenerate the mapping table. In the 30 
minutes, the tool not only re-built the entries but also explored all the mapping space and found the 
optimal solutions. 

With the above example, the contribution of the automatic instruction set retargeting can be 
immediately appreciated for architecture exploration. Both human resources and information management 
complexity can be greatly reduced. 

X86 Instruction State
Pair Representation

StateMapper

RISC-III

RISC-II

State Pair
Representation for

RISC-I
Microarchitecture

x86-to-RISC-III
X86-to-RISC-II

X86-to-RISC-I
Mapping

 

Figure 12. Keeping tracks of design revisions 

6. Conclusions 

 We have presented a new approach to retarget existing software at the assembly level from one 
instruction set to other instruction sets. The approach is based on abstracting the instruction set behaviors 
as the symbolic transitions of the machine states. The retargeting process is then modeled as a planning 
process that finds a plan with the lowest cost, consisting of a chain of state transitions, which brings the 
processor from the same initial state to the same final state as the original software. The unique feature of 
the approach is that the assembly-to-assembly retargeting capability helps renovating the existing 
software investment while upgrading to processors with newer instruction sets, at the absence of source 
code or intermediate code, which is commonly encountered in industrial embedded system applications. 
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 We have demonstrated the application of the proposed approach by translating Intel’s x86 
instruction set to a RISC-based instruction set in a microprocessor which maps x86 instruction set into an 
internal RISC-based instruction set for efficient execution. The automatic mapped results are as optimal 
as the manually mapped results. In addition, the proposed approach has made it possible to keep up with 
the architecture/microarchitecture revision during the design exploration by automatically re-generating 
and re-evaluating the x86-to-RISC mapping table promptly, which is difficult to achieve manually.  

Future work can be extended in several directions. First, in addition to the instruction-by-instruction 
style reported in this paper, our proposed approach can be applied to translate entire assembly programs 
for software migration between embedded microcontrollers. In such case a state pair may denote the 
aggregate effect of a basic block or even a longer trace of instructions, which would make the matching 
process more challenging. Therefore, graph-based matching algorithms, instead of the tree-based one in 
this paper, could become necessary to provide better matching quality. Second, a mechanism to measure, 
match and adjust the timing behaviors between the original and translated assembly programs is also an 
important task for embedded applications since what matters in such applications is not only the 
computation behavior but also the temporal behavior. Third, a formal approach to ensure the correctness 
of the state-based translation is also highly desired. 
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