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1. Definitions and Examples

Definition 1.1. A category C consists of:
(i) A collection of objects ob C denoted by A,B,C, . . .
(ii) A collection of morphisms mor C denoted by f, g, h, . . .

(iii) A rule assigning to each f ∈ mor C two objects dom f and cod f , its domain and codomain. We

write f : dom f → cod f or dom f
f- cod f .

(iv) For each pair (f, g) of morphisms with cod f = dom f we have a composite morphism gf : dom f →
cod g subject to the axiom h(gf) = (hg)f whenever gf and hg are defined.

(v) For each object A we have an identity morphism 1A : A→ A, subject to the axioms 1Bf = f = f1A
for all f : A→ B.

Remark. (i) The definition does not depend on any model of set theory. If ob C is a set then the
category is called a small category.

(ii) We could eliminate ob C entirely by using the identity morphisms as stand-ins for objects.

Examples 1.2.
(a) The category Set of all sets (objects) and functions (morphisms). (Actually, morphisms are triples

(B, f,A) where f : A→ B is a function in the set-theoretic sense (of being a subset of A×B).)
(b) Categories Gp of groups, Rng of rings, ModR of R-modules, etc have sets with algebraic structure

as objects, and homomorphisms as morphisms.
(c) The category Top of topological spaces and continuous maps, Met of metric spaces and Lipschitz

maps, Diff of differentiable manifolds and smooth maps, etc.
(d) The category Htpy has the same objects as Top, but morphisms X → Y are homotopy classes of

functions, with composition induced by function composition. More generally, given a category C
and an equivalence relation ' on mor C such that f ' g implies cod f = cod g, dom f = dom g, and
if f ' g then fh ' gh and hf ' hg whenever these are defined we can form the quotient of C by
the equivalence relation to form a quotient category C/ '.

(e) Given a category C the opposite category Cop has the domain and codomain operations interchanged
(and thus composition is reversed).

(f) A small category with only one object ∗ is a monoid (as any two morphisms are composable). Thus
any group is a category.

(g) A groupoid is a category in which every morphism in an isomorphism. The fundamental groupoid
π(X) of a space X has points of X as objects, and morphisms x→ y are homotopy classes of paths
x→ y.

(h) A discrete category is one whose only morphisms are identities. So a small discrete category is
a set. A preorder is a category with at most one morphism A → B for any two objects A,B.
Equivalently, it is a collection of objects with a reflexive transitive relation ≤ on it. So a poset is a
small preorder whose only isomorphisms are identities. An equivalence relation is a category that
is both a preorder and a groupoid.
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(i) The category Rel has sets as objects, but morphisms A→ B are relations, i.e. arbitrary subsets of

B ×A. Composition of R : A→ B with S : B → C is defined to be

S ◦R = {(c, a) | ∃b ∈ B s.t. (c, b) ∈ S, (b, a) ∈ R}.
This category contains Set as a subcategory, and also the category Part of sets and partial functions.

(j) Let k be a field. The category Mat(k) has the natural numbers as objects, and morphisms n→ m
are m× n matrices with entries in k. Composition is matrix multiplication.

(k) Given a theory T in some formal algebra, the category DerT has forms of the formal language as
objects and morphisms ϕ→ ψ are derivations of ψ from ϕ. Composition is concatenation.

Definition 1.3. Let C and D be categories. A functor F : C → D consists of
(i) a mapping A 7→ FA : ob C → obD
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(ii) a mapping f 7→ Ff : mor C → morD
such that domFf = F (dom f), codFf = F (cod f), F (1A) = 1FA, and F (gf) = (Fg)(Ff) whenever gf is
defined in C.

Examples 1.4.
(a) We have a functor U : Gp→ Set sending a group to its underlying set, and a group homomorphism

to itself as a function. Similarly, U : Top → Set, U : Rng → Gp, etc. We call these forgetful
functors.

(b) There is a functor F : Set→ Gp (the free functor) sending a set A to the free group FA generated
by A, and a function f : A → B to the unique homomorphism Ff : FA → FB sending each
generator a ∈ A to f(a) ∈ B ∈ FB.

(c) We have a functor P : Set→ Set sending A to its power set P (A) = {A′ |A′ ⊂ A} and f : A→ B
to the mapping PA → PB sending A′ ⊂ A to {f(a) | a ∈ A′} ⊂ B. But we also have a functor
P ∗ : Set → Setop (or Setop → Set) defined by P ∗A = PA and P ∗f(B′) = f−1(B′). A functor
Cop → D or C → Dop is called a contravariant functor C → D.

(d) We have a functor D : Modop
R →ModR sending a module over R to its dual space DV = V ∗ and

a linear map f : V →W to f∗ : W ∗ → V ∗.
(e) We write Cat for the (large) category of all small categories and functions between them. then
C 7→ Cop defines a functor Cat→ Cat with fop being f . Note that this is a covariant functor.

(f) A functor between monoids is a monoid homomorphism.
(g) A functor f between posets is an order-preserving map. (Since a ≤ b implies a morphism a → b

which maps to a morphism fa→ fb, so fa ≤ fb.)
(h) Let G be a group, considered as a category. A functor F : G → Set is a set A = F∗ equipped

with an action of G, i.e. a permutation representation of G. Similarly, for any field k a functor
G→ModR is just a k-linear representation of G.

(i) We have functors πn : Htpy∗ → Gp, sending a pointed space to its n-th homotopy group. Similarly,
we have functors Hn : Htpy→ Gp sending a space to its n-th homology.
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Definition 1.5. Let C,D be two categories and F,G : C ⇒ D two functors. A natural transformation
α : F → G consists of a mapping A 7→ αA ob C → morD such that αA : FA→ GA for all A and

FA
αA- GA

FB

Ff
? αB- GB

Gf
?

commutes for any f : A→ B in C.

Note that, given another functor H and another transformation β : G → H we can form the composite
βα defined by (βα)A = βAαA.

The composition is associative and has identities so we have a category [C,D] of functors C → D and
natural transformations between them.

Examples 1.6.
(a) Let k be a field. The double dual operator V 7→ V ∗∗ defines a covariant functor Modk →Modk.

For every V we have a canonical mapping αV : V → V ∗∗ sending x ∈ V to the mapping ϕ 7→ ϕ(x).
The αV ’s are the components of a natural transformation, and 1Modk

→ (−1)∗∗.
If we restrict to the subcategory fdModk of finite dimensional vector spaces then αV an isomor-

phism for all V . This implies that α is an isomorphism in [fdModk, fdModk]. In general if α is
a natural transformation such that αA is an isomorphism for all A then the (αA)−1 are also the
components of a natural transformation.

(b) Let P : Set → Set be the (covariant) power set functor. There is a natural transformation
η : 1Set → P such that ηA : A→ PA sends each a ∈ A to {a}. If f : A→ B then {f(a)} = Pf({a})
holds, so η is indeed natural.
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(c) Let G,H be groups and f, g : G ⇒ H two homomorphisms. What is a natural transformation
α : f → g? It defines an elements y = α∗ of H such that for any x ∈ G we have yf(x) = g(x)y. So
it is a conjugate between f and g.

(d) For any pointed space (X,x) and every n ≥ 1 there is a canonical mapping hn : πn(X,x)→ Hn(X)
(the Hurewicz homomorphism). This is a natural transformation from πn : Htpy∗ → Gp to the
composite

Htpy∗
U- Htpy

Hn- AbGp ⊂- Gp

Definition 1.7. Let F : C → D be a functor.
(i) We say F is faithful if given any two objects A,B ∈ C and two morphisms f, g : A → B Ff = Fg

implies f = g.
(ii) We say F is full if given any two objects A,B ∈ C every morphisms g : FA → FB n D is of the

form Ff for some f : A→ B in C.
(iii) We say a subcategory C′ of C is full if the inclusion C′ → C is a full functor.

For example, AbGp is a full subcategory of Gp, which is a full subcategory of the category Mod of
monoids. Diff is a non-full subcategory of Top.

Definition 1.8. Let C and D be two categories. By an equivalence between C and D we mean a pair of
functors F : C → D, G : D → C together with natural isomorphisms α : 1C → GF and β : FG → 1D. We
write C ' D if there exists an equivalence between C and D.

Lemma 1.9. (Assuming the axiom of choice.) A functor F : C → D is part of an equivalence iff it is full,
faithful and essentially surjective on objects. (i.e. every B ∈ obD is isomorphic to some FA).

Proof. Suppose we are given G,α, β as in 1.8. For any B ∈ obD we have B ∼= FGB so F is essentially
surjective. Suppose that we are given f, g in C with Ff = Fg. Then GFf = GFg so f = α−1

B (GFf)αA =
α−1
B (GFg)αA = g. Thus F is faithful.

Now consider A,A′ ∈ ob C and g : FA→ FA′. g : FA→ FA′ in D. Let f be the composite

A
αA- GFA

Gg- GFA′
α−1
B- A′

Then GFf = Gg, since both morphisms make the diagram

A
f - A′

GFA

αA
?

- GFA′

αA′
?

commute. But G is faithful since it is part of an equivalence. So Ff = g and therefore F is full.
Conversely, suppose F is full, faithful, and essentially surjective. For each B ∈ obD pick a pair (A, βB)

such that A ∈ ob C and βB : FA → B is an isomorphism. Define GB = A. Given g : B → B′ we have a
composite

FGB
βB- B

g- B′
β−1
B′- FGB′

which must be of the form Ff for a unique f : GB → GB′. Define Gg = f . It remains to show that F and
G form an equivalence of categories.

Given g′ : B′ → B′′ the morphisms (Gg′)(Gg) and G(g′g) have the same image under F , so they must
be equal as F is faithful. Hence G is a functor and β is a natural transformation FG → 1D. We know
βFA : FGFA→ FA is an isomorphism, so (βFA)−1 is of the form F (αA) for a unique αA : A→ GFA (as F
is full) which makes it an isomorphism (as F is faithful). Given f : A→ A′ in C the composites (αA′)f and
(GFf)αA have the same image under F by the naturality of β−1, so they are equal. Thus α is a natural
transformation 1C → GF and so we have an equivalence of categories.

10/13/06
�

Examples 1.10.
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(a) Given a category C and a particular object B ∈ C we write C/B for the category whose objects are
morphisms f : A→ B whose morphisms are commutative triangles

A
g - A′

B

f ′
�

f -

and composition induced from composition in C.
For C = Set we have an equivalence of categories Set/B ∼= SetB . The functor Set/B → SetB

sends f : A→ B to {f−1(b) | b ∈ B} and G : SetB → Set/B sends {Ab | b ∈ B} to∐
b∈B

Ab = df ∪ {Ab × {b} | b ∈ B}

mapping to B by the second projection.
(b) The o-slice category B\C is defined by (Cop/B)op. In particular 1\Set (where 1 = {∗}) is isomorphic

to the category Set∗ of pointed sets (via the functor sending f : 1 → A to (A, f(∗))). It is also
equivalent (but not isomorphic) to the category Part of sets and partial functions. The functor
F : Set∗ → Part sends (A, a) to A\{a} and f : (A, a)→ (B, b) to the partial fn which agrees with
f at a ∈ A with f(a) 6= b.

In the other direction, G : Part→ Set∗ sends a set A to A+ = A∪{A} with A as its base point,
and it sends a partial function f : A → B to f+ defined by f+(a) = f(a) if f(a) is defined, and
f+(a) = B otherwise. The composite FG is the identity on Part, but GF isn’t the identity on Set.

Note that in Part there is an object ∅ which is the only member of its isomorphism class, but
in Set∗ each isomorphism class contains many members. Hence there can’t be an isomorphism of
categories between them.

(c) The categories fdModk and fdModop
k are equivalent for any field k via the dual-space functor D

and k natural isomorphism 1fdModk
→ DD (on both sides).

(d) fdModk is also equivalent to Matk. To define a functor F : fdModk →Matk choose a basis for
every finite dimensional vector space and define F (V ) = dimV , F (g : V → W ) to be the matrix
representing G with respect to the chosen bases.
G : Matk → fdModk sends n to kn and a matrix A to the linear map represented by A with

respect to the standard basis. The composite FG is the identity on Matk (provided we choose
the standard basis for kn for all n). GF isn’t the identity but the choice of bases yields a natural
isomorphism GF (V )→ V for all V .

Definition 1.11. Given a category C, by a skeleton of C we mean a full subcategory containing exactly one
objects from each isomorphism class of objects of C.

Note that lemma 1.9 implies that for any skeleton C′ of C the inclusion C′ → C is part of an equivalence of
categories. Also, any equivalence between skeletal categories is bijective on objects, hence is an isomorphism.

Remark. The following statements are each equivalent to the axiom of choice
(i) Any category has a skeleton.
(ii) Any category is equivalent to any of its skeletons.
(iii) Any two skeletons of a given category are isomorphic.

2. The Yoneda Lemma

Definition 2.1. We say a category C is locally small if for any two objects A,B of C the collection of all
morphisms A→ B in C is a set. We denote this set by C(A,B).

If C is locally small then the mapping B → C(A,B) becomes a functor C(A,−) : C → Set. Given
a morphism g : B → C in C, C(A, g) : C(A,B) → C(A,B) sends f ∈ C(A,B) to gf . (Associativity of
composition implies that this is a functor.) Similarly, A 7→ C(A,B) defines a functor C(−, B) : Cop → Set.

10/16/06
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Lemma 2.2 (Yoneda Lemma). (i) Let C be a locally small category, A ∈ ob C and F : C → Set a
functor. Then there is a bijection between natural transformations C(A,−) → F and elements of
FA.

(ii) Moreover, this bijection is natural in A and F .

Proof of (i). Given α : C(A,−) → F we define Φ(α) = αA(1A) ∈ FA. Conversely, given x ∈ FA we define
Ψ(x) : C(A,−) → F by Ψ(x)B(f) = (Ff)(x) for every B ∈ ob C and f : A → B. We need to verify that
Ψ(x) is natural: given g : B → C we need to check

Ψ(x)CC(A, g) = (Fg)Ψ(x)B .

But by definition for f ∈ C(A,B)

(Fg)Ψ(x)B(f) = (Fg)(Ff)(x) = (Fgf)(x) = Ψ(x)C(gf) = Ψ(x)CC(A, g)(f),

where the first and third steps are by definition of Ψ(x), the second step is because F is a functor, and the
last step is by definition of C(A,−).

Now we need to check that Ψ and Φ are inverses. Given x ∈ FA we have ΦΨ(x) = Ψ(x)A(1A) =
F (1A)(x) = x, so ΦΨ is the identity. Given any α : C(A,−)→ F any any B ∈ ob C and f : A→ B we have

αB(f) = αB(C(A, f))(1A) = (Ff)(αA)(1A) = (Ff)(Φ(α)) = (ΨΦ(α))B(f)

(where the third step follows by naturality of α), so ΨΦ is also the identity and we are done. �

Corollary 2.3. For a locally small category C there is a full and faithful functor Y : Cop → [C,Set] (the
Yoneda embedding) sending A ∈ ob C to C(A,−).

Proof. Put F = C(B,−) in Yoneda (i). Hence we have a bijection between morphisms B → A in C and
morphisms C(A,−)→ C(B,−) in [C,Set], which we take to be the effect of Y on morphisms. We need to check

that this is functorial. Given C
g- B

f- A in C. Then Y (g)Y (f) : C(A,−) → C(C,−) is determined
by its effect on 1A ∈ C(A,A). But Y (f)A sends 1A to f ∈ C(B,A) and Y (g)B(f) = C(C, f)(g) = fg, and by
definition Y (fg)A(1A) = fg, so Y (fg) = Y (f)Y (g), as desired. (Note that Y is a contravariant functor.) �

To explain Yoneda (ii), suppose that C is small. Then [C,Set] is locally small, since a natural transfor-
mation F → G is a set-indexed family of functions αA : FA → GA. We have a functor C × [C,Set] → Set
sending (A,F ) to FA, and another functor which is the composite

C × [C,Set]
Y × 1[C,Set]- [C,Set]op × [C,Set]

[C,Set](−,−)- Set

(ii) is saying that these two functors are naturally isomorphic in each variable. Notice, however, that since
the existence of a natural isomorphism is a purely “local” condition, we only need to require that the category
be locally small.

Proof of (ii). For naturality in A, suppose that we are given f : A → B, a functor F and a natural
transformation α : C(A,−)→ F . We need to show that (Ff)Φ(α) = Φ(α ◦ Y (f)). But

Φ(α ◦ Y (f)) = αB(Y (f)B(1B)) = αB(f) = αB(C(A, f)(1A)) = (Ff)(αA(1A)) = (Ff)Φ(α),

where the second-to-last step follows by naturality.
For naturality in F , suppose that we are given θ : F → G and α : C(A,−) → F . We need to verify that

θAΦ(α) = Φ(θ ◦ α) as elements of GA. But both of these are θA(αA(1A)) by definition, so we are done. �

Definition 2.4. We say that a functor F : C → Set is representable if it is naturally isomorphic to C(A,−)
for some A. By a representation of F we mean a pair (A, x) where A ∈ ob C and x ∈ FA is such that
Ψ(x) : C(A,−) → F is an isomorphism. We call x a universal element of F . It has the property that any
y ∈ FB is of the form (Ff)(x) for some f ∈ C(A,B).

Corollary 2.5. Given two representations (A, x) and (B, y) of the same functor F there is a unique iso-
morphism f : A→ B in C such that Ff(x) = y.
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Proof. Consider the composite

C(B,−)
Ψ(y)- F

Ψ(x)−1
- C(A,−)

By corollary 2.3 there exists a unique f ∈ C(A,B) with Y f = Ψ(x)−1Ψ(y) and a unique g : B → A with
Y g = (Y f)−1, with fg and gf being identities (because Y is faithful). Moreover, the equation Y f =
Ψ(x)−1Ψ(y) is equivalent to Ψ(x)Y (f) = Ψ(y), but these are equal iff they have the same effect on 1B , i.e.
iff (Ff)(x) = y. �

Examples 2.6.
(a) The forgetful functor U : Gp → Set is representable by (Z, 1) since for any group G and x ∈ UG

there is a unique homomorphism Z→ G sending 1 to x. Similarly, U : Top→ Set is representable
by ({∗}, ∗).

(b) The contravariant power set functor P ∗ : Setop → Set is representable by ({0, 1}, 1) since for any
A′ ⊆ A there is a unique χA′ : A→ {0, 1} such that χ−1

A′ (1) = A′.

(c) For a field k the composite functor Modop
k

−∗- Modk
U- Set is representable by (k, 1k).
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(d) Let G be a group. The category [G,Set] is the category of sets with a G-action. The (unique)

representable functor G → Set is the Cayley representation of G, i.e. G itself with action by left
multiplication. In this case the Yoneda Lemma tells us that this is the free G-set on one generator,
i.e. that morphisms G→ A in [G,Set] correspond bijectively to elements of A.

(e) Let C be a locally small category, A and B two objects of C. Consider the functor F : C(−, A) ×
C(−, B) : Cop → Set. What does it mean for this to be representable? A representation consists of
an object P together with an element (p : P → A, q : P → B) of FP , such that for any C and any
f : C → A, g : C → B there is a unique h : C → P such that ph = f and qh = g.

We can ask whether this exists in any category C, not necessarily locally small. If it does, we call
(P, p, q) a (categorical) product of A and B (and normally denote it by (A×B, π1, π2)).

Note that in Set it is the usual Cartesian product A × B equipped with the two projections.
Give f : C → A and g : C → B we define h by h(c) = (f(c), g(c)). In Gp, Rng, Top, etc. the
products exist and are constructible by taking the Cartesian product of the underlying sets.

A coproduct in C is a product in Cop; usually denote the coproduct of A and B by A q B. In
Set the coproduct of sets is a disjoint union. This also makes sense in Top. In Gp the coproduct
of two group sis their free product G ∗ H. In AbGp G q H = G × H and is usually denoted by
G⊕H. In any poset (P,≤) a product a× b is a greatest lower bound (a ∧ b) and a coproduct is a
least upper bound (a ∨ b).

(f) Assume C is locally small. Suppose we are given a parallel pair f, g : A → B in C; consider the
functor F defined by F (C) = {h : C → A | fh = gh} (which is a subfunctor of C(−, A)). Is this
representable?

A representation consists of (E, e) where e : E → A satisfies fe = ge and any h : C → A with
fh = gh factors uniquely as ek for k : C → E. Such an e is called an equalizer of f and g.

In Set we take E = {a ∈ A | f(a) = g(a)} and e the inclusion map. This construction also works
in Gp, Rng, ModR, Top, . . . The dual notion is that of a coequalizer; again it exists in all of the
above categories, but the constructions are different.

Definition 2.7. We say a morphism f : A→ B is a monomorphism if fg = fh⇒ g = h for all g, h : C → A.
Dually, f is an epimorphism if kf = `f ⇒ k = ` for all k, ` : B → C. We say f is a regular monomorphism
if it arises as the equalizer of some pair of maps, and a regular epimorphism if it arises as the coequalizer of
some pair of maps.

In Set the monomorphisms are all regular, and are exactly the injective maps. To see this suppose f is
injective and consider C = B × {0, 1}/ ∼ where (b, j) ∼ (c, k) iff either b = c and j = k or b = c = f(a) for
some a ∈ A. Then the two injections B ⇒ C have equalizer {b ∈ B | ∃ a ∈ A s.t. b = f(a)}, which means
that f is a regular monomorphism. If f is not injective then we can find x, y : 1 → A such that x 6= y but
f(x) = f(y), so f is not a monomorphism.

Similarly we can show that in Set all epimorphisms are regular and are exactly the surjective maps.
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However, these equivalences don’t hold in all familiar categories. They hold in Gp but not in Mon,
since the inclusion N → Z is an epimorphism in Mon. It’s also a monomorphism, but it is not a regular
monomorphism, since an epic equalizer has to be an isomorphism. Similarly, in Top the monomorphisms are
the injective functions and the epimorphisms are the surjective functions, but the regular monomorphisms
are only the subspace injections, and the regular epimorphisms are only the quotients by a subspace, as
the imposition of a topology makes the regularity condition stronger. Note also that there are bijective
continuous maps which aren’t homeomorphisms.

We say that a category C is balanced if every morphism which is both epic and monic is an isomorphism.
(Thus Set and Gp are balanced, but Mod and Top are not.)

Definition 2.8. Let C be a category, G a class of objects in C.
(i) We say G is a separating family if, given f, g : A→ B with f 6= g there exists G ∈ G and h : G→ A

with fh 6= gh.
(ii) We say G is a detecting family if given f : A → B such that every g : G → B with G ∈ G factors

uniquely as fh, then f is an isomorphism.

If a category is locally small then G is a separating family iff {C(G,−) |G ∈ G } is “jointly faithful.” G is
a detecting family iff {C(G,−) |G ∈ G } is “jointly isomorphism-reflecting.”

10/20/06

Lemma 2.9.
(i) Suppose C has equalizers for all parallel pairs. Then every detecting family of objects of C is a

separating family.
(ii) Suppose C is balanced. Then every separating family of objects of C is a detecting family.

Proof.
(i) Suppose G is a detecting family, and suppose f, g : A→ B is such that every h : G→ A with G ∈ G

satisfies fh = gh. Then every such h factors uniquely through the equalizer e : E → A of (f, g), so
e is an isomorphism. Hence f = g.

(ii) Suppose G is a separating family, and suppose f : A→ B is such that any g : G→ B with G ∈ G
factors uniquely through f . Then f is epic, since if h, k : B → C satisfies hf = kf then any
g : G→ B must satisfy hg = kg, so h = k. Similarly, if `,m : D → A satisfies f` = fm then for any
n : G→ D we have f`n = fmn, so `n and mn are both factorizations of f`n through f , so they’re
equal. Hence ` = m, so f is monic. Since C is balanced, f is an isomorphism.

�

Examples 2.10.
(a) ob C is always both a detecting and separating family for C. For example, if f : A → B is such

that every g : C → B factors uniquely through f , then there exists a unique h : B → A such that
fh = 1B . Then hf and 1A are both factorizations from f through f , so they’re equal.

(b) For any locally small C, {Y A |A ∈ ob C} is a separating and detecting family for [C,Set]. For if
α : F → G is an arbitrary natural transformation, then if every Y A→ C factors uniquely through
α, αA is bijective, and if this holds for all A then α is an isomorphism.

(c) {1} is both a separating and a detecting family for Set, since Set(1,−) is isomorphic to an identity
functor. {Z} is both for Gp (or AbGp), since Gp(Z,−) is isomorphic to the forgetful functor. {Z}
is both for Setop, since Set(−,Z) is isomorphic to P ∗, which is faithful.

(d) {1} is a generating family for Top, since Top → Set is faithful. However, Top has no detecting
set of objects: for any infinite cardinal K we can find a set X (of cardinality K) and two topologies
T0, T1 of X such that T1 ) T2 but the two topologies coincide on any subset of X of cardinality less
than K. Given any set G of objects of Top, choose K > #(UG) for any G ∈ G . Then G can’t
detect the fact that 1X : (x, T1)→ (x, T2) isn’t an isomorphism.

(e) Let C be the category of connected pointed CW-complexes and homotopy classes of continuous
maps between them. JHC Whitehead’s theorem asserts that if f : X → Y in this category induces
isomorphisms πn(X) → πn(Y ) for all n ≥ 1 then it is an isomorphism. But Uπn (where U is the
forgetful functor Gp→ Set) is represented by Sn, so it says that {Sn |n ≥ 1} is a detecting set for
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C. However, PJ Freyd showed that there is no faithful functor C → Set, hence there is no separating
set of objects of C. (If G were a separating set then x 7→

∐
G∈G C(G,X) would be faithful.)

Definition 2.11. Let C be a category, P ∈ ob C. We say that P is projective if, given any diagram of the
form

A

P
g-

h
-

B

f
??

with f epic there exists h : P → A with fh = g. (If C is locally small, this says that C(P,−) preserves
epimorphisms.) We say that P is injective in C if it is projective in Cop. More generally, if E is a class of
epimorphisms in C we say P is E -projective if the above holds for all f ∈ E .

Lemma 2.12. Let C be locally small. Then for any A ∈ ob C Y A is E -projective in [C,Set], where E is
the class of natural transformations α such that αB is surjective for all B. (In fact, these are all of the
epimorphisms in [C,Set].)

Proof. Given

F

Y A
β- G

α
??

β corresponds to some y ∈ GA. As αA is surjective y = αA(x) for some x ∈ FA.

Then αΨ(x) = β so Ψ(x) completes the above diagram. �

3. Adjunctions

Definition 3.1. Suppose we are given categories C,D and functors F : C → D, G : D → C. We say that F
is left adjoint to G or G is right adjoint to F we’re given, for each A ∈ ob C and each B ∈ obD a bijection
between morphisms FA→ B in D and morphisms A→ GB in C, which is natural in A and B. (If C and D
are locally small this means that the functors Cop ×D → Set sending (A,B) to D(FA,B) and to C(A,GB)
are naturally isomorphic.) We write (F a G) if F is left adjoint to G.

Note that the naturality condition means that

FA
h- B A

ĥ- GB

commutes iff commutes.

FC

Ff
? j- D

g
?

C

f
? ĵ- GD

Gg
?

10/23/06

Examples 3.2.

(a) The functor F : Set → Gp is left adjoint to the forgetful functor U . For any function A → UG
there is a unique homomorphism T : FA → G extending f (and this is natural in both A and G).
Similarly for free rings, R-modules, etc.

(b) The forgetful functor U : Top → Set has as a left adjoint D, sending any set A to A with the
discrete topology (since any function A → UX is continuous as a map DA → X). U has a right
adjoint I, sending A to A with the indiscrete topology {A, ∅}.

(c) The functor ob : Cat→ Set has a left adjoint D sending A to the discrete category whose objects
are the members of A. (since a functor DA → C is uniquely determined by its effect on objects)
and a right adjoint I sending A to the preorder with objects a ∈ A and one morphism a → b for
all (a, b) ∈ A × A. (Again, a functor C → IA is uniquely determined by its effect on objects.) In
this case D also has a left adjoint π0 sending C to its set of connected components, i.e. equivalences
of objects A with U ∼ V if there exists a morphism U → V . (Once again, a functor C → DA
is determined by its effect on objects, but the functor ob C → A has to be ordered on connected
components.)
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(d) Let 1 denote the category with one object and one morphism. For any C there’s a unique functor
C → 1. A left adjoint (if it exists) picks out an initial object of C, i.e. an object ∅ such that there
exists a unique ∅ → A for all A ∈ ob C. Similarly, a right adjoint picks out a terminal object ∗ of C,
i.e. one such that there is a unique morphism A→ ∗ for all A.

(e) Let (X, T ) be a topological space. If we think of T as a poset (ordered by inclusion) then T → PX
is a functor. The operation A 7→ Ao (the interior of A) is a right adjoint to this functor, since by
definition we have U ⊆ A iff U ⊂ Ao for U ∈ T . Similarly, closure is a left adjoint to the inclusion
of the poset of closed sets in PX.

(f) The functor P ∗ : Set → Setop is left adjoint to P ∗ : Setop → Set, since morphisms P ∗A → B
in Setop are functions B 6→ P ∗A in Set which correspond to relations B → A and morphisms
A → P ∗B in Set correspond to relations A 6→ B. These correspond bijectively in a natural way.
This becomes a symmetric relation and we write it as Set(A,P ∗B) ∼= Set(A,P ∗B). We say P ∗ is
self-adjoint on the right.

(g) Given two sets A and B and a relation between them R ⊆ A×B we have a mapping ·r : PA→ PB
sending S ⊆ A to Sr = {b ∈ B | ∀a ∈ S, (a, b) ∈ R}, and mapping sending T ⊆ B to T ` = {a ∈
A | ∀b ∈ T (a, b) ∈ R}. These are contravariant functors, adjoint on the right since T ⊆ Sr iff
S × T ⊆ R iff S ⊆ T `.

Theorem 3.3. Suppose we are given G : D → C. For each object A of C consider the category (A ↓ G) whose
objects are pairs (B, f) with B ∈ obD and f : A → GB in C, and whose morphisms (B, f) → (B′, f ′) are
morphisms g : B → B′ such that f ′ = (Gg)f . The specifying a left adjoint for G is equivalent to specifying
an initial object of (A ↓ G) for each A.

Proof. Suppose G has a left adjoint F . For any A the morphism 1 : FA→ FA corresponds to a morphism
ηA : A → GFA, called the unit of the adjunction. We claim that (FA, ηA) is an initial object of (A ↓ G).
For, given an arbitrary object (B, f) the diagram

A
ηA- GFA

GB

Gg
?f -

commutes iff f is the morphism corresponding to FA
1- FA

g- B.
10/25/06

Now suppose that we are given an initial object of (A ↓ G) for each A ∈ ob C. Denote this object by
(FA, ηA); this defines F on objects. Given f : A → A′ in C, define Ff : FA → FA′ to be the unique
morphism such that

A
ηA- GFA

A′

f
? η′A- GFA′

GFf
?

commutes, i.e. the unique morphism (FA, ηA)→ (FA′, ηA′f) in (A ↓ G).
If we have f ′ : A′ → A′′ then F (f ′f) and (Ff ′)(Ff) are both morphisms (FA, ηA) → (FA′′, ηAf ′f) so

they must be equal: hence F is a functor, and η is a natural transformation 1C → GF . We have a bijective
correspondence between morphisms f : A → GB and morphisms g : FA → B: take g to be the unique
morphism such that (Gg)ηA = f . Naturality in B is immediate from the form of the definition; naturality
in A follows from the fact that η is a natural transformation. �

Corollary 3.4. Any two left adjoints F, F ′ for a given functor G are (canonically) naturally isomorphic.

Proof. For each A there’s a unique isomorphism (FA, ηA) → (F ′A, η′A) in (A ↓ G); it’s easy to verify that
this is natural in A. �

Lemma 3.5. Given functors C
F-�
G

D
H-�
K

E with (F a G) and (H a K), then (HF a GK).
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Proof. We have bijections between morphismsHFA→ C, morphisms FA→ KC and morphisms A→ GKC
natural in A and C. Compose these to get bijections between HFA→ C and A→ GKC natural in A and
C. �

Corollary 3.6. Suppose we are given a commutative square of categories and functors

C
G1- D

E

G2
?

G4

- F

G3
?

and suppose each Gi has a left adjoint Fi. Then

F
F4- E

D

F3
?

F1

- C

F2
?

commutes up to natural isomorphism.

Given functors F : C → D : G with (F a G) we have a natural transformation η : 1C → GF and dually a
natural transformation ε : FG→ 1D (the counit of the adjunction).

Theorem 3.7. Given functors F : C � D : G, specifying an adjunction F (a G) is equivalent to specifying
natural transformations η : 1C → GF and ε : FG→ 1D satisfying the triangular identities:

F
Fη- FGF and G

ηG- GFG

F

εF
?1F -

G

Gε
?1G -

Proof. Suppose we are given an adjunction (F a G) with unit η and counit ε. By definition ηA : A→ GFA
corresponds to 1FA : FA → FA and εFA : FGFA → FA corresponds to 1GFA : GFA → GFA. So

εFA(FηA) : FA → FA corresponds to A
ηA- GFA

1GFA- GFA. Hence εFA(FηA) = 1FA as desired. The
dual argument shows the statement for the other triangle.

Conversely, suppose we are given η and ε satisfying the identities. For any f : A → GB define Φ(f) :

FA → B to be the composite FA
Ff- FGB

εB- B. Given g : FA → B define Ψ(g) : A → GB to be

A
ηA- GFA

Gg- GB. As in the proof of 3.3 we know that Ψ and Φ are natural in A and B. To show that
they are inverses to each other,

ΨΦ(f) = A
ηA- GFA

GΦf- GB

= A
ηA- GFA

GFf- GFGB
GεB- GB

= A
f- GB

ηGB- GFGB
GεB- GB

= A
f- GB

where the third line follows because η is natural, and the last one is by the second triangle identity. Similarly,
ΦΨ(g) = g for all g : FA→ B. �

Lemma 3.8. Suppose that we are given F : C � D : G, (F a G) with counit ε : FG→ 1D. Then
(i) G is faithful iff εB is an epimorphism for all B.
(ii) G is full and faithful iff ε is an isomorphism.

Proof.
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(i) Suppose that εB is epic for all B, and suppose g, g′ : B → B′ satisfy Gg = Gg′. Then the morphisms
FGB → B′ corresponding Gg and Gg′ are equal, but these are gεB and g′εB , respectively. As εB
is epic, g = g′.

Conversely, suppose that G is faithful and g, g′ : B → B′ satisfy gεB = g′εB . Then Gg = Gg′, so
g = g′.

(ii) Suppose ε is an isomorphism. As any isomorphism is epic we know that G is faithful so we only
need to show that G is full. Suppose that we are given f : GB → GB′. Transposing, we get
f : FGB → B′. Then if we set g = fε−1

B : B → B′ we have Gg corresponding to f , so Gg = f .
Conversely, suppose that G is full and faithful. Then ηGB : GB → GFGB must be of the form

Gh for a unique h : B → FGB; but (GεB)(ηGB) = 1GB , so εBh = 1B since G is faithful. hεB
corresponds under the adjunction to (Gh)idGB = ηGB , so hεB = 1FGB .

�

Definition 3.9. By a reflexion we mean an adjunction satisfying the conclusion of 3.8(ii). We say that C′
is a reflexive subcategory of C if C′ is a full subcategory and the inclusion C′ → C has a left adjoint.

10/27/07

Examples 3.10.
(a) The subcategory AbGp is reflexive in Gp, as given an arbitrary group G we can let G′ be the

subgroup generated by all commutators xyx−1y−1. Then G/G′ is abelian and any homomorphism
G→ A where A is abelian factors uniquely through G→ G/G′.

(b) The subcategory tfAbGp of torsion-free abelian groups is reflexive in AbGp: the reflector sends
A to A/Aε where Aε is the torsion subgroup of A (i.e. the subgroup of all elements of finite order).
Also, the subcategory tAbGp of torsion abelian groups is coreflexive in AbGp: the counit of this
adjunction is the inclusion Aε ↪→ A.

(c) The category kHaus of compact Hausdorff spaces is reflexive in Top: the reflector is the Stone-C̆ech
compactification X 7→ βX.

Lemma 3.11. Suppose that we are given an equivalence of categories F : C → D, G : D → C with F
an isomorphism, α : 1C → GF , β : FG → 1D. Then there exist natural isomorphisms α′ : 1C → GF ,
β′ : FG→ 1D which satisfy the triangle identities so that (F a G) (and also G a F ).

Proof. First note that

1C
α- GF

GF

α
? αGF- GFGF

GFα
?

commutes by naturality of α; but α is (pointwise) epic so GFα = αGF . Similarly, FGβ = βFG. Now define

α′ = α and let β′ be the composite FG
β−1
FG- FGFG

(FαG)−1
- FG

β- 1D. To verify the triangle identities:

(Gβ′)(α′G) = G
αG- GFG

(GβFG)−1
- GFGFG

(GFαG)−1
- GFG

Gβ- G

= G
(Gβ)−1

- GFG
αGFG- GFGFG

α−1
GFG- GFG

Gβ- G

= G
1G- G

where the second line follows by the naturality of α. Similarly,

(β′F )(Fα) = F
Fα- FGF

β−1
FGF- FGFGF

(FαGF )−1
- FGF

βF- F

= F
β−1
F- FGF

FGFα- FGFGF
(FGFα)−1

- FGF
βF- F

= F
1F- F

by naturality of β. �
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4. Limits

Definition 4.1. Let J be a category (almost always small or finite). By a diagram of shape J we mean
a functor D : J → C. The objects D(j) for j ∈ ob J are called vertices of D and the morphisms D(α) for
α ∈ mor J are called edges of D.

For example, if J is the finite category

· - ·

·
?

- ·
?

-

a diagram of shape J is a commutative square. If J is the category

· - ·

·
?

- ·
?

∗
-

(where the starred arrow is meant to represent two parallel arrows) is a not-necessarily commutative square.
For any object A of C and any J we have a constant diagram ∆A of shape J all of whose vertices are A

and all of whose edges are 1A. By a cone over D : J → C with summit A we mean a natural transformation
λ : ∆A → D. Equivalently, this is a family (λj : A → D(j) | j ∈ ob J) of morphisms (the legs of the cone)

such that
A

D(j)
D(α)-

λj
�

D(j′)

λj′- commutes for any α : j → j′ in J . Note that ∆ is a functor C → [J, C] and a cone

over D is an object of the arrow category (∆ ↓ D). We say a cone (λj : L → D(j) | j ∈ ob J) is a limit for
D if it is a terminal object of (∆ ↓ D).

Definition 4.2. We say that C has limits of shape J if ∆ : C → [J, C] has a right adjoint. By 3.3 this is
equivalent to saying that every diagram D : J → C has a limit.

Examples 4.3.

(a) If J = ∅ then [J, C] has a unique object and the category of cones over it is isomorphic to C. So a
limit for this diagram is a terminal object of C (and a colimit for it is an initial object).

(b) If J is a discrete category, a diagram of shape J is just a family of objects of C, and a cone over it
is a family of morphisms (λj : A → D(j) | j ∈ ob J). So a limit for it is a product

∏
j∈ob J D(j).

Similarly a colimit for this diagram is a coproduct
∑
j∈ob J D(j).

10/30/06

(c) Let J be the finite category · -- · (so a diagram of shape J is a parallel pair A
f-

g
- B). A

cone over such a digram is of the form A �
h

C
k- B such that fh = k = gh, or equivalently a

morphism h : C → A satisfying fh = gh. Thus a limit for the diagram is an equalizer for (f, g)
(and a colimit for it is a coequalizer for (f, g)).

(d) Let J be the finite category · - · � ·. Then a diagram of shape J is a pair of morphisms

B
g- C �

f
A with common codomain. A cone over this has the form

D
i- A

B

k
?

C

`
-

satisfying fh = ` = gk or equivalently a completion of the diagram to a commutative square. A
terminal such completion is called a pullback for the pair (f, g). If C has products and equalizers
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then it has pullbacks: form the product A×B and then the equalizer E
e- A×B

fπ1-

gπ2

- C. Then

E
π1e- A

B

π2e
?

is a limit for

A

B
g- C

f
?
.

A colimit of shape Jop (i.e. of a diagram C �
g

A
f- B) is called a pushout of (f, g).

Theorem 4.4.

(i) If C has equalizers and all small (resp. all finite) products, then C has all small (resp. all finite)
limits.

(ii) If C has pullbacks and a terminal object, then C has all finite limits.

Proof.

(i) Let J be the small (resp. finite) and D : J → C a diagram. Form the products P =
∏
j∈ob J D(j)

and Q =
∏
α∈mor J D(codα). Now form P

f-

g
- Q defined by παf = πcodα and παg = D(α)πdomα,

and the equalizer e : E → P of (f, g). We claim that (πje : E → D(j) | j ∈ ob J) is a limit cone
for J . It’s a cone since for any edge α : j → j′ we have D(α)πje = παge = παfe = πje. If we are
given any cone (λi : A → D(j) | j ∈ ob J) we get a unique λ : A → P such that πjλ = λj for all
j, but then παfλ = παgλ for all α, so fλ = gλ. So λ factors uniquely as µe, so µ is the unique
factorization of (λj | j ∈ ob J) through (πje | j ∈ ob J).

(ii) It suffices to construct finite products and equalizers in C. We can construct the product A × B
as the pullback of B - ∗ � ∗A where ∗ is the terminal object, and then construct

∏n
i=1Ai as

(· · · ((A1 ×A2)×A3) · · · ×An−1)×An. We can form the equalizer of f, g : A→ B as the pullback

of A
(f, g)- B ×B �

(1B , 1B)
B, since a cone over this diagram consists of A �

h
C

k- B satisfying
fh = 1Bk and gh = 1Bk.

�

Definition 4.5. Let F : C → D be a functor, J a (small) category.

• We say F preserves limits of shape J if, given D : J → C and a limit cone (λj : L→ D(j) | j ∈ ob J)
the cone (Fλj : FL→ FD(j) | j ∈ ob J) is a limit cone for FD in D.

• We say F reflects limits of shape J if given D : J → C and a cone (λj : L → D(j) | j ∈ ob J) such
that (Fλj : FL→ FD(j) | j ∈ ob C) is a limit for FD, then the original cone was a limit for D.
• We say that F creates limits of shape J if, given D : J → C and a limit (µj : M → FD(j) | j ∈ ob J)

for FD, there exists a cone (λj : L → D(j) | j ∈ ob J) over D mapping to a limit for FD, and
any such cone is a limit in C. (Note that if we require M to be in the image of F then category
equivalences might not create limits, as M may not be in the image of the equivalence. This
definition says that if there is a limit for FD in D then there is a limit for D in C that maps to a
limit of FD in D.)

Corollary 4.6. Let F : C → D be a functor. In any version of the above theorem 4.4 we may replace “C
has” by either “C has and F preserves” or “D has and F creates.”

Examples 4.7.

(a) U : Gp→ Set creates all small limits, but doesn’t preserve or create colimits.
(b) U : Top→ Set preserves all limits and colimits, but doesn’t reflect them.
(c) U : C/B → C creates colimits, since a digram D : J → C/B is the same thing as a diagram UD :

J → C together with a cone (UD(g)→ B | j ∈ ob J). So, given a colimit (λj : UD(j)→ L | j ∈ ob J)
in C we get a unique h : L → B; if the λj are all morphisms D(j) → h in C/B, they form a cone
under D and it’s a colimit cone. But U : C/B → C doesn’t preserve or reflect products: the product
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of f : A → B and g : C → B in C/B is the diagonal of the pullback square
P - A

C
? g- B

f? in C, which

is not necessarily a product of A and B in C, (consider, for example, Set with B 6= {1}).
11/1/06

(d) Let C and D be categories. The forgetful functor [C,D]→ Dop creates all limits and colimits which
exist in D.

To prove this, let D : J → [C,D] be a diagram; we consider it as a functor J × C → D. For each
A ∈ ob C we can form a limit cone (λj,A : LA→ D(j, A) | j ∈ ob J) for D(−, A) : J → D. For each
f : A→ B in C the composites

LA
λj,A- D(j, A)

D(j, f)- D(j, B) j ∈ ob J

form a cone over D(−, B) and induce a unique Lf : LA→ LB such that λj,BLf = D(j, f)λj,A for
all j.

Given g : B → C, L(gf) and (Lg)(Lf) are factorizations of the same cone through a limit so
they are equal; hence L is a functor C → D and each λj,− is a natural transformation L→ D(j,−).
The (λj,− | j ∈ ob J) also form a cone over D (regarded as a diagram of shape J in [C,D]) with
summit L.

In order to finish this proof we need to check that this is a limit cone. To do this we take any
other cone over D and consider its image for a given element A ∈ C and construct the natural
transformation to the above limit.

(e) The inclusion functor AbGp→ Gp reflects coproducts but doesn’t preserve them. A free product
(which is a free product in Gp) G ∗H is never abelian unless one of G and H is the trivial group,
but in that event it is also a coproduct in AbGp.

Remark. A morphism f : A→ B in any category is a monomorphism iff

A
1A- A

A

1A
?

f
- B

f
?

is a pullback. Hence a functor which preserves/reflects pullbacks will also preserve/reflect monomorphisms.

To see this, note that if the above diagram is a pullback then any cone A �
k

C
h- A satisfyling fh = fk

must satisfy h = k. Conversely if f is a monomorphism then any cone over A
f- B �

f
A has both legs

equal and so factors (necessarily uniquely) through A �
1A

A
1A- A.

Theorem 4.8. Suppose G : D → C has a left adjoint F : C → D. Then G preserves all limits which exist in
D.

Proof 1. Suppose that C and D both have limits of some shape J . Then the diagram

C
F - D

[J, C]

∆
? [J, F ]- [J,D]

∆
?

commutes and all the functors in it have right adjoints. So by corollary 3.6

C �
G

D

[J, C]

limJ

6

�[J,G]
[J,D]

limJ

6

commutes up to natural isomorphism. But this means exactly that G preserves limits of shape J . �
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Proof 2. Let D : J → D and let (λj : L → D(j) | j ∈ ob J) be a limit for it. Given a cone (µj : A →
GD(j) | j ∈ ob J) over GD in C we get a family of morphisms (µj : FA→ D(j) | j ∈ ob J) which form a cone
over D by naturality of µ 7→ µ. So we get a unique µ : FA→ L such that λjµ = µj for each j, i.e. a unique
µ : A→ GL such that (Gλj)µ = µj . Thus the Gλj are a limit cone. �

Our aim now is to show that if D has and G : D → C preserves “all” limits then G has a left adjoint.

Lemma 4.9. Suppose D has and G : D → C preserves limits of shape J . Then (A ↓ G) has limits of shape
J for each A ∈ ob C and U : (A ↓ G)→ D creates them.

Proof. Suppose that we are given D : J → (A ↓ G). We can consider D as a cone (fi : A → GUD(j)) over
GUD : J → C. So if (λj : L → UD(j) | j ∈ ob J) is a limit for UD then we get a unique f : A → GL such
that (Gλj)f = fj for each j, i.e. such that each λj is a morphism (L, f)→ (UD(j), fj) in (A ↓ G).

The λj form a cone over D with summit (L, f), since they form a cone over UD and U is faithful. Given
any cone (µj : (B, g)→ (UD(j), fj)) over D in (A ↓ G) the µj also form a cone over UD with summit B so
they induce a unique µ : B → L such that λjµ = µj for al j. We need to show that (Gµ)g = f , but these are
factorizations of the same cone over GUD through GL so they are equal. So µ : (B, g)→ (L, f) in (A ↓ G)
and it is the unique factorization of (Uj , 1j) through (λj , 1j) in this category. Thus (A ↓ G) has limits of
shape J . �

11/3/06

Lemma 4.10. Specifying an initial object for a category C is equivalent to specifying a limit for 1C : C → C.

Proof. If I is an initial object the unique morphisms (I → A |A ∈ ob C) form a cone over 1C . Given any
cone (λA : S → A |A ∈ ob C) over 1C λI : S → I is a factorization through the one with summit I, so the
cone with summit I is a limit cone over 1C .

Suppose that we are given a limit cone (λA : L → A |A ∈ ob C) for 1C . We need to show that, for each
A, λA is the unique morphism L → A. Given f : L → A we have fλL = λA. In particular, λAλL = λA
for all A, so λL is a factorization of the limit cone through itself. So λL = 1L and λA is the unique map
L→ A. �

Theorem 4.11 (Primitive adjoint functor theorem). If D has and G : D → C preserves all limits then G
has a left adjoint.

Proof. By lemma 4.9, each (A ↓ G) has all limits. Therefore, by lemma 4.10, each (A ↓ G) has an initial
object. By theorem 3.3 we then see that G has a left adjoint. �

We call a category C complete if it has all small limits.

Theorem 4.12 (General adjoint functor theorem). Let D be locally small and complete, and let G : D → C be
a functor. Then G has a left adjoint iff G preserves all small limits and satisfies the “solution set condition”:
for every A ∈ ob C there exists a set of morphisms {fi : A → GBi | i ∈ I} such that every f : A → GB

factors as A
fi- GBi

Gh- GB for some i ∈ I and some h : Bi → B in D.

The set {fi : A→ GBi | i ∈ I} is called the solution set.

Proof. For the forward direction, note that G preserves limits by theorem 4.8, and {qA : A → GFA} is a
solution set for A by theorem 3.3.

For the backwards direction, note that each (A ↓ G) is complete by lemma 4.9 and it inherits local
smallness from D. So it suffices to show that if a category A is locally small, complete and has a solution
set of objects then it has an initial object. Let {Ci | i ∈ I} be a solution set of objects. Form P =

∏
i∈I Ci

and let e : E → P be the limit of the diagram with one object (P ) and whose edges are all of the morphisms
P → P in A. For every object D we have a morphism P → Ci → D for some i ∈ I, and hence a morphism
E → P → D. Suppose we have f, g : E → D. Form their equalizer h : F → E. There exists some
k : P → F and the composite ehk is an endomoprhism of P . So by definition of E ehke = 1P e, and as e is
a monomorphism hke = 1E . In particular h is epic, so f = g. Thus E is an initial object of A and we are
done. �
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Lemma 4.13. Suppose that we are given a pullback square
A

f- B

C
g ?

k
- D

h? with h monic. Then g is monic.

Proof. Suppose that `,m : E → A satisfies g` = gm. Then hf` = kg` = kgm = hfm. As h is monic we see
that f` = fm. So ` and m are factorizations of the same cone through a limit, hence ` = m. �

Definition 4.14. A subobject of A in a category is a monomorphism A′ ↪→ A. We say a category C is
well-powered if for every A ∈ ob C there exists a set of suboebjects {Ai ↪→ A | i ∈ I} such that every A′ ↪→ A
is isomorphic (in C/A) to some Ai ↪→ A.

For example, Set, Gp, Top are all well powered.

Theorem 4.15 (Special adjoint functor theorem). Suppose that C is locally small and that D is locally small,
complete, and well-powered, and that D has a coseparating set of objects. Then a functor G : D → C has a
left adjoint iff G preserves all small limits.

Proof. The forward direction follows from 4.12. For the backward direction we first show that each (A ↓ G)
is complete, locally small and well powered and has a coseparating set. Completeness and local smallness
are proven as before. For well-poweredness, note that a morphism h : (B′, f ′)→ (B, f) in (A ↓ G) is monic
iff it is monic in D, so subobjects of (B, f) in (A ↓ G) correspond to subobjects m : B′ ↪→ B such that f
factors (uniquely) through Gm : GB′ ↪→ GB. So, up to isomorphism, these form a set. For the coseparating
set, let {Si | i ∈ I} be a coseparating set for D. Then the set {(Si, f) | i ∈ I, f ∈ C(A,GSi)} is a coseparating
set for (A ↓ G), since if we have

A

B
Gh-

Gk
-

f

�
B′

f ′
?

G`
- GSi

(G`)f
-

with h 6= k there exists some ` : B′ → Si with `h 6= `k and ` is a morphism (B′, f ′) → (Si, (G`)f ′) in
(A ↓ G).
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It remains to show that if A is complete, locally small and well powered and has a corresponding set

{Si | i ∈ I} of objects then it has an initial object. Form P =
∏
i∈I Si. Let {Pj → P | j ∈ J} be a

representative set of subobjects of P and form the limit of the diagram
Pj · · · Pj′ · · · Pj′′

P
?

∩

�

⊃
⊂

-

whose objects are all the Pj ↪→ P for j ∈ J . If L is the summit of the limit cone then L → P is monic (by
the same argument as above) and it is the smallest subobject of P since it factors through every Pj ↪→ P .
We claim that L is an initial object of A. Suppose we had two maps f, g : L→ A. Then we could form their
equalizer E ↪→ L, but E ↪→ L ↪→ P is monic, so L ↪→ P factors through it and hence JL factor through
E ↪→ L, so E ↪→ L is epic and f = g. Thus we have at most one map L → A for each A. In order to
show existence, suppose that we are given A ∈ obA. Consider K = {(i, f) | i ∈ I, f : A → Si} and form
Q =

∏
(i,f)∈K Si. We have a canonical h : A→ Q defined by h =

∏
(i,f) f , and h is monic. Since the Si form

a separating family we similarly have k : P → Q. Form the pullback

B
m- P

A

`
? h- Q

k
?

Then m is monic, so L ↪→ P factors through it and we have a morphism L→ B → A. �

Examples 4.16.
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(a) If we didn’t know how to construct free groups we could use GAFT to construct a left adjoint
for U : Gp → Set. We already know that Gp has an U preserves all small limits. So we need
only to verify the solution set conclusion. Given a set A any function λ : A → UG factors as
A → UG′ → UG where G′ is the subgroup generated by {f(a) | a ∈ A}. We take a set of |G′| and
equip all subsets of it with all possible group structures, plus all possible maps from A to obtain a
solution set.

(b) Consider the category cLat of complete lattices and the forgetful functor U : cLat → Set. Just
as for groups, cLat has and U preserves all small limits, and cLat is locally small. However, AW
Hales showed that there does not exist a free complete lattice on three generators, so the solution
set condition fails for A = {1, 2, 3} and U doesn’t have a left adjoint.

(c) Consider the inclusion functor I : kHaus→ Top. kHaus has small products and A preserves them.
It has equalizers because, given f, g : X → Y with Y Hausdorff, their equalizer is a closed subspace
of X and hence compact if X is. kHaus and Top are locally small. kHaus is well-powered since
subobjects of X are all isomorphic to closed subspaces of X. By Uruson’s lemma the closed interval
[0, 1] is a coseparator for kHaus. So by 4.15 I has a left adjoint β. The Stone-C̆ech compactification
functor. C̆ech’s original (1937) construction of βX was as follows: form P =

∏
f :X→[0,1][0, 1] and

then form the closure of the image of the canonical map X → P . (Note: this is precisely what the
SAFT tells you to do.)

5. Monads

Suppose that we are given an adjunction F : C � D : G, with (F a G). What properties does the “trace”
of the adjunction have as a functor on the category C? We have the functor T = GF : C → C and the unit
η : 1C → T . We also have a natural transformation µ = GεF : Π = GFGF → GF . From the triangular
identities for η and ε we get the identities

T
Tη- TT T

ηT- TT

T

µ
?1T -

T

µ
?1T -

and from the naturality of ε we get the commutativity of

TTT
Tµ- TT

TT

µT
?

µ
- T

µ
?

Definition 5.1. By a monad Π = (T, η, µ) on a category C we mean a functor T : C → C equipped with a
natural transformation η : 1C → T and µ : TT → T satisfying the above three diagrams. Any adjuncation
F : C � D : G induces a monad (GF, η,GεF ) on C and a comonad (G, ε, FηG) on D

11/8/06

Example 5.2. Given a monoid M , the functor M ⊗ − : Set → Set has a monad structure with unit
ηA : A → M × A sending a to (e, a) and multiplication µA : M ×M × A → M × A sending (m,n, a) to
(mn, a). This monad is induced by an adjunction F : Set � M ×Set where M ×Set is the category of sets
with an M -action, G is the forgetful functor and FA = M ×A (with M action by multiplication on the left
factor).

Definition 5.3. Let Π = (T, η, µ) be a monad on a category C. By a Π-algebra we mean a pair (A,α) where
A ∈ ob C and α : TA→ A satisfying

A
ηA- TA

A

α
?1A -

and

TTA
Tα- TA

TA

µA
? α- A

α
?
.
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A homomorphism of Π-algebras is a morphism f : A→ B such that

TA
Tf- TB

A

α
?

f
- B

β
?

commutes. We write CΠ for the category of Π-algebras and homomorphisms between them (and call it the
Eilenberg-Moore category of Π). There’s an obvious forgetful functor GΠ : CΠ → C sending (A,α) to A and
f to f .

Lemma 5.4. GΠ has a left adjoint FΠ and the monad induced by (FΠ a GΠ) is Π.

Proof. We define FΠA = (TA, µA). This is a Π-algebra by two of the commutative diagrams in the definition
of Π. And we define FΠ(A→ B) = Tf : (TA, µA)→ (TB, µB), which is a homomorphism by the naturality
of µ. To verify that (FΠ a GΠ) we construct the unit and counit of the adjunction. GΠFΠ = T so we
take η : 1 → T as the unit. We define ε(A,α) = α: the associativity condition for α says that this is a
homomorphism FΠGΠ(A,α) → (A,α) and naturality follows from the definition of homomorphism. The
identity(GΠα)ηA = 1GΠ(A,α) is the unit condition on α. The identity (εFA)(FηA) = 1FA is the condition
that µAηA = 1TA which is included in the definition of a monad. �

Note that if F : C � D : G with (F a G) is an adjunction inducing Π we could replace D by the full
subcategory of D of objects of the form FA. So in trying to construct D we may assume F is surjective on
objects. Also, morphisms FA→ FB in D correspond to morphisms A→ GFB = TB in C.

Definition 5.5. Let Π = (T, η, µ) be a monad on C. The Kleisli category CΠ is defined by ob CΠ =

ob C. Morphisms A → B in CΠ are morphisms A → TB in C. The composite of A
f- B

g- C is

A
f- TB

Tg- TTC
µC- TC and the identity morphism A→ A is ηA.

To verify associativity suppose we are given A
f- B

g- C
h- D. Then

h(gf) = A
f- TB

Tg- TTC
µC- TC

Th- TTD
µD- TD

= A
f- TB

Tg- TTC
TTh- TTTD

µTD- TTD
µD- TD

= A
f- TB

Tg- TTC
TTh- TTTD

TµD- TTD
µD- TD

= A
f- TB

T (hg)- TTD
µD- TD

= (hg)f

where the second line follows by naturality of µ and the third by the associativity of µ. For the unit law

fηA = A
ηA- TA

Tf- TTB
µB- TB

= A
f- TB

ηTB- TTB
µB- TB

= A
f- TB

by one of the unit laws for Π. The other unit law is analogous.

Lemma 5.6. There is an adjunction FΠ : C � CΠ : GΠ inducing the monad Π.

Proof. We define FΠA = A and FΠ(f) = ηBf for f : A → B, and we define GΠ(A) = TA and GΠ(f) =
(µB)(Tf) for f : A → B. We will construct the unit and counit of this adjunction to see that this does, in
fact, induce Π.
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To verify that FΠ is a functor suppose that we are given A
f- B

g- C in C. Then

(FΠg)(FΠf) = A
f- TB

Tg- TC
TηC- TTC

µC- TC

= A
f- B

g- C
ηC- TC

= FΠ(gf)

To verify that GΠ is a functor note that GΠ(ηA) = µATηA = 1TA. For f : A→ B and g : B → C

GΠ(gf) = TA
Tf- TTB

TTg- TTTC
TµC- TTC

µC- TC

= TA
Tf- TTB

TTg- TTTC
µTC- TTC

µC- TC

= TA
Tf- TTB

µB- TB
Tg- TTC

µC- TC

= (GΠg)(GΠf).

As GΠFΠ(f) = Tf we can take the unit of the adjunction to be η. Since FΠGΠA = TA we take the counit
εA to be 1TA.
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We need to check that the counit is natural; in particular, we need to check that

FΠGΠA
FΠGΠf- FΠGΠB

A

1TA
? f - B

1TB
?

commutes. As

FΠGΠ(f) = TA
Tf- TTB

µB- TB
ηB- TTB

the top composite is TA
Tf- TTB

µB- TBηTBTTB
1TTB- TTB

µB- TB; note that the composition of the
last three functions is 1TB so this is simply µB(Tf), which is the bottom composite by definition.

It remains to show that η and ε satisfy εFΠ(FΠη) = 1FΠ and (GΠε)ηGΠ = 1GΠ . The first of these is

A
ηA- TA

ηTA- TTA
1TTA- TTA

µA- TA

which is simply ηA, exactly the image of the identity under FΠ. The second of these is just one of the triangle
conditions on η and µ. �

Given a monad Π on C, let Adj(Π) denote the category whose objects are adjuctions C � D inducing Π
and whose morphisms (F a G)→ (F ′ a G′) are functors k : D → D′ such that kF = F ′ and G′k = G.

Theorem 5.7. The Kleisli adjunction (FΠ a GΠ) is initial in Adj(Π) and the Eilenberg-Moore adjunction
(FΠ a GΠ) is terminal.

Proof. Let F : C � D : G be an arbitrary object of Adj(Π); let ε be the counit of the adjunction. We define
k : D → CΠ by kB = (GB,GεB): note that (GεB)ηGB = 1GB and (GεB)(GεFGB) = (GεB)(GFGεB) by
naturality of ε. And k(g : B → B′) = Gg (which is an algebra homomorphism since ε is natural). clearly
GΠk = G and kFA = (GFA,GεFA) = (TA, µA) = FΠA, and kF (f : A → A′) = GFf = Tf = FΠf . If
k : D → CΠ satisfies GΠk′ = G and k′F = FΠ then necessarily k′B = (GB, βB) and k′g = Gg for some
β : FGB → B in D yielding βFGB = µGB = GεFGB and βB(GFGεB) = (GεB)(GεFGB). But this would
still hold with βB replaced by GεB and GFGεB is split epic (a.k.a has a right inverse) so βB = GεB .

Now define L : CΠ → D by LA = FA and Lf = εFA′Ff for f : A→ A′. To check that L is a functor

LFΠ(f : A→ A′) = FA
Ff- FA′

FηA′- FGFA′
εFA′- = Ff.

GLA = GFA = TA = GΠA. GL(f) = (GεFA′)(GFf) = TfµA′ = GΠf . We need to also check uniqueness.
�

Theorem 5.8. Let Π be a monad on C. Then
(i) GΠ : CΠ → C creates limits of all shapes which exist in C
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(ii) GΠ creates colimits of shape J iff T preserves them.

Proof.
(i) Suppose we are given D : J → CΠ and suppose GΠD has a limit (λj : L → GΠD(j) | j ∈ ob J)

in C. Write D(j) as (GD(j), δj). Then the Tλj form a cone over TGD and the δj form a natural
transformation TGD → GD, so the composites (δj)(Tλj) form a cone over GD. Hence we get a
unique θ : TL → L such that λjθ = δj(Tλj) for each j. We claim that (L, θ) is a Π-algebra. To
verify (e.g.) the associativity axiom we have to show euqality of two morphisms TTL ⇒ Lj but

their composites with each λj can be factored as TTL
TTλj- TTGD(j)

f-

g
- GD(j) where f = g

since D(j) is an algebra. If we’re given any cone (µj : M → D(j) | j ∈ ob J) in CΠ we get a
unique factorization µj = λjϕ for a unique ϕ : GM → L in C and ϕ is an algebra homomorphism
M → (L, θ) by the same argument as before.

(ii) To see the forward direction, note that if GΠ creates colimits of shape J then T = GΠFΠ preserves
them since FΠ preserves all colimits that exist. For the backwards direction copy the argument of
(i) but use the fact that if L is the summit of a colimit cone then so are TL and TTL.

�
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Definition 5.9. We say an adjunction F : C � D : G (with induced monad Π) is monadic if the comparison
functor K : D → CΠ is part of an equivalence. We also say G : D → C is monadic if it has a left adjoint and
the adjunction is monadic.

Given an adjunction (F a G), for any object B of D we have a diagram

FGFGB
FGεB-

εFGB
- FGB

εB- B

(called the standard free presentation of B); the monacity theorems all use the idea that CΠ is characterized
in Adj(Π) by the fact that this diagram is a coequalizer for any B.

Definition 5.10.
(i) We say a parallel pair f, g : A → B is reflexive if there exists r : B → A such that fr = gr = 1B .

By a reflexive coequalizer we mean a coequalizer of a reflexive pair.
(ii) We say a diagram

A

f-
g-�
t

B
h-
�
s

C

is a split coequalizer diagram if it satisfies hf = hg, hs = 1C , gt = 1B and ft = sh. If these hold
then h is indeed a coequalizer of f and g: if k : B → D satisfies kf = kg then k = kgt = kft = ksh
so k factors through h and this factorization is unique since h is a split epic.

(iii) Given G : D → C we say a parallel pair f, g : A→ B is G-split if Gf,Gg are part of a split coequalizer
diagram in C. Note that the standard free presentation FGεB , εFGB : FGFGB → FGB is reflexive
with common splitting FηGB , and also G-split since

GFGFGB

GFGεB-
GεFGB-�
ηGFGB

GFGB
GεB-
�
GB

GB

is a split coequalizer diagram.

Theorem 5.11 (Precise Monadicity Theorem). Let G : D → C be a functor. Then G is monadic iff
(i) G has a left adjoint
(ii) G creates coequalizers of G-split pairs.
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Theorem 5.12 (Crude Monadicity Theorem). Let G : D → C be a functor and suppose
(i) G has a left adjoint,
(ii) G reflects isomorphisms

(iii) D has and G preserves coequlizers of reflexive pairs.
Then G is monadic.

Proof of both theorems. The forward direction of 5.11 follows from theorem 5.8 part (ii) since T must preserve
split coequalizers and so GΠ : CΠ → C creates GΠ-split coequalizers.

Now we will show 5.12 and the backwards direction of 5.11. We have K : D → CΠ where Π is the monad
induced by (F a G). Define L : CΠ → D by setting L(A,α) to be the coequalizer of Fα, εFA : FGFA→ FA
(note that this is reflexive since FηA is a common splittling, and G-split since

GFGFA

GFα-
GεFA-�
ηGFA

GFA
α-
�
hα

A

is a split coequealizer diagram). On morphisms L is defined so that

FGFA
-
- FA - L(A,α)

FGFB

FGFf
?

-- FB

Ff
?
- L(B, β)

Lf
?

commutes; this is clearly functorial. Note that

KFGFA
GFα-

µA
- KFA

α- (A,α)

KL(A,α)
?-

is a G-split coequalizer so we get a unique factorization (A,α) → KL(A,α) which is natural in A. KB =
(GB,GεB) so we have a coequalizer diagram

FGFGB
FGεB-

εFGB
- FGB - LKB

B
?εB -

so we get a unique factorization LKB → B which is natural in B. The unit (A,α) → KL(A,α) maps
to an isomorphism A → GL(A,α) in C provided G preserves the coequalizer defining L, but GΠ reflects
isomorphisms so it must be an isomorphism in CΠ. Similarly, LKB → B maps to an isomorphism in C, so
if G reflects isomorphisms or if G creates the coequalizer of FGFGB ⇒ FGB then KB → B must be an
isomorphism. �

Examples 5.13.
(a) For any category of algebras (in the universal algebra sense) e.g. Gp, Rng, ModR, the forgetful

functor to Set is monadic. The left adjoint exists and the functor reflects isomorphisms. We note

that if A1

f1-

g1

- B1
h1- C1 and A2

f2-

g2

- B2
h2- C2 are reflexive coequalizers in Set then

A1 ×A2

f1 × f2-

g1 × g2

- B1 ×B2
h1 × h2- C1 × C2

is a coequalizer: note that two elements b1, b2 ∈ Bi are identified in Ci iff we can link them by
a chain b1c1c2 · · · cnb2 where each adjascent pair is the image of either (f, g) : Ai → Bi × Bi or
(g, f) : Ai → Bi×Bi. If we have strings linking b1,1 to b1,2 and b2,1 to b2,2 we can link (b1,1, b2,1) to
(b1,2, b2,1) to (b1,2, b2,2) since both pairs are reflexive. Hence if A ⇒ B → C is a reflexive coequalizer
in Set so is An ⇒ Bn → Cn for any finite n. So if A and B have an n-ary operation and f, g are
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homomorphisms for i = 1, 2 we get a unique Cn → C making h a homomorphism. This shows that
U : A → Set creates reflexive coequalizers.

11/15/06
(b) Any reflection is monadic. The direct proof is on exercise sheet 3, but it can also be proved using

theorem 5.11. Suppose F : C � D : G is a reflection: identify D with a full cubcategory of C. If
f, g : A→ B is a G-split pair in D we have a split coequalizer diagram

A

f-
g-�
t

B
h-�
s

C

in C and we need only show that C ∈ obD. We know that sh : B → B is in D but s : C → B is an
equalizer of sh and 1B and D is closed under limits since its reflective in C so we see that C must
be in D also.

(c) Consider the composite adjunction Set
F-
�
U

AbGp
L-
�
I

tfAbGp where tfAbGp is the category of

torsion-free abelian groups. Each factor is monadic by the previous two examples, but the composite
isn’t since free abelian groups are torsion free and so the monat on Set induced by (LF a UI) is
isomorphic to that induced by (F a U). In general, given an adjunction F : C � D : G where D
has reflexive coequalizers we can form the “monadic tower”

(CΠ)S

D �============
K

L

-�=============-

CΠ

?
6
wwww

C
?

6
wwwwwG

F

�==============-

where Π is the monad induced by (F a G), L is left adjoint to the comparison functor K, S is the
monad induced by (L a K) and so on. We say (F a G) has monadic length n if this produces an
equivalence after n steps. So Set � TfAbGp has monadic length 2.

(d) Consider the adjunction D : Set � Top : U . The monad induced by this adjunction is (1Set, 1, 1)
so its category of algebras is isomorphic to Set and hence the adjunction has monadic length ∞.

(e) Consider the composite adjunction Set �==
D

U

- Top �==
β

I

- kHaus. This is monadic. E. Moves gave a

direct proof but we will use 5.11. We need to show that UI creates coequalizers of UI-split pairs.
So suppose f, g : X → Y is a parallel pair in kHaus and

X

f-
g-�
t

Y
h-�
s

Z

is a slit coequalizer diagram in Set. We need to show there’s a unique compact Hausdorff topology
on Z which makes h continuous and that it’s a coequalizer in kHaus. We can think of Z as
a quotient Y/R so if we equip it with the quotient topology we get a coequalizer in Top. The
quotient topology is certainly compact, so it’s the only topology making h continuous which could
possibly be Hausdorff. Fact: If Y is compact Hausdorff and R ⊆ Y × Y is an equivalence relation
then Y/R is Hausdorff iff R is closed in Y × Y . Claim: the equivalence relation R generated by
{(f(x), g(x)) |x ∈ X} is the set {(g(x1), g(x2)) |x1, x2 ∈ X s.t. f(x1) = f(x2)}. For if (y1, y2) ∈ R
then h(y1) = h(y2) so ft(y1) = sh(y1) = sh(y2) = ft(y2) so y1 = g(x1), y2 = g(x2) where xi = t(yi)
and f(x1) = f(x2). The set above is closed in X ×X since Y is Hausdorff. Thus Y/R is compact,
and its image under g × g is compact and hence closed in Y × Y .
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6. Abelian Categories

Definition 6.1. Let A be a category equipped with a forgetful functor U : A → Set. We say a locally
small category C is enriched over A if we’re given a factorization of C(−,−) : Cop × C → Set through U . If
A = Set∗ we say C is a pointed category. If A = CMon we say C is semi-additive. If A = AbGp then we
say C is additive.

Lemma 6.2.

(i) If C is pointed and I ∈ ob C the following are equivalent:
(a) I is initial
(b) I is terminal
(c) 1I = 0 : I → I.

(ii) If C is semi-additive and A,B,C ∈ ob C the following are equivalent:
(a) There exist π1 : C → A and π2 : C → B making C a product A×B.
(b) There exist ν1 : A→ C and ν2 : B → C making C a coproduct AqB.
(c) There exist morphisms π1, π2, ν1, ν2 (as above) satisfying π1ν1 = 1A, π2ν2 = 1B, π2ν1 = 0,

π1ν2 = 0 and ν1π2 + ν2π2 = 1C .

The proof is left as an exercise.

Lemma 6.3. Suppose C is a locally small category with finite products and coproducts such that 0 : ∅ → ∗
is an isomorphism and the morphism AqB → A×B (induced by 1A and 1B), is an isomorphism. Then C
has a unique semi-additive structure where 0 : A→ B is the unique morphism factoring through 0.

Proof. The 0 of the semi-additive structure has to be as defined as in the statement, since we need 0f = g0 = 0

for all f and g. Given f, g : A→ B we define f +` g to be A
f × g- B ×B

∼- B qB
1B q 1B- B and f +r g

to be A
1A × 1A- A×A

∼- AqA
f q g- B. We claim that 0 is a unit for both +` and +r. Consider f+` 0,

and consider the following diagram which shows the desired statement:

A
f × 0- B ×B

∼ - B qB
1B q 1B- B

B × I
∼-

�

-

B q I

-

-

B

1B

-

f

-

-

�

Given four morphisms f, g, h, k : A→ B consider

(f +` g) +r (h+` k) =

= A
1× 1- A×A

∼- AqA
(f × h)q (g × k)- B ×B

∼- B qB
1q 1- B

= A
1× 1- A×A

∼- AqA
(f +` h)q (g +` k)- B

= (f +r g) +` (h+r k)

so +` = +r and it is an associative and commutative operation.
11/17/07

For the uniqueness, recall from the previous lemma that if we have any semi-additive structure then the
identity map A×A→ A×A is equal to ν1π1 + ν2π2. So given f, g : A→ B the composite

A
1× 1- A×A

∼- AqA
f q g- B =

= A
1× 1- A×A

ν1π1 + ν2π2- A×A
∼- AqA

f q g- B

= A
ν1 + ν2- AqA

f q g- B = A
f + g- B

Thus f + g = f +r g and the structure is unique. �
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Definition 6.4. An object which is both inital and terminal is called a zero object. An object which is
both a product A×B and a coproduct AqB is called a biproduct and denoted A⊕B. We will use product
notation for maps between biproducts.

Corollary 6.5. Let C and D be semi-additive categories with finite products. The functor F : C → D
preserves finite products iff it preserves addition, i.e. iff F (0) = 0 and F (f + g) = Ff + Fg.

Proof. If F preserves addition then it preserves biproducts by lemma 6.2. The converse follows from lemma
6.3. �

Definition 6.6. Let C be a pointed category. By a kernel (dually, a cokernel) of a morphism f : A → B
we mean an equalizer (dually, a coequalizer) of f and 0 We say a monomorphism (dually, an epimorphism)
is normal if it occurs as a kernel (cokernel). We say f : A → B is a pseudo-epimorphism if fg = 0 implies
g = 0 (equivalently, the kernel of f is 0→ A).

If C is additive then every regular monomorphism is normal, since the equalizer of f, g : A → B has
the same univeral property as the kernel of f − g. And every pseudo-morphism is monic since fg = fh iff
f(g − h) = 0.

In Gp every monomorphism is regular, but a monomorphism H → G is normal iff H is a normal subgroup
of G. But every epimorphism f : G→ K is normal, since if f is surjective then K ∼= G/ ker f .

In Set every monomorphism is normal, since if f : A→ B is injective it’s the kernel of B → B/ ∼ where
b1 ∼ b2 iff b1 = b2 or {b1, b2} ⊂ imf . But not every epimorphism in Set∗ is normal.

Lemma 6.7. Let C be a pointed category with cokernels. Then f : A → B is a normal monomorphism iff
f = ker coker f .

Proof. The backwards direction is trivial. For the forwards direction, suppose f = ker(g : B → C). Let
q = coker f . Then g factors as hq since gf = 0. Now given any k : E → B with qk = 0 we have
gk = hqk = 0 so there’s a unique factorization k = f`. Thus any k such that qk = 0 factors through f and
so f = ker q = ker coker f .

E

A

`
?

f
- B

g -

k
-

C

D

h

-
q
-

�

Lemma 6.8. Suppose C is pointed with kernels and cokernels and every monomorphism in C is normal. Then
every morphism of C factors as a pseudo-epimorphism followed by a monomorphism, and the factorization
is unique up to isomorphism.

Proof. Given f : A→ B, let q : B → C be the cokernel of f and let k : D → B be the kernel of q. We get a
factorization f = kg; we claim g is pseudo-epic. Supose h : D → E satisfies hg = 0 and let ` = kerh. Then
k` is monic so k` = kerm for some m. We can factor g as `n so f = kg = k`n, so mf = 0, so m = pq for
some p. Now qk = 0 since k = ker q so mk = 0 so k factors through k`. But k and ` are monic so this forces
` to be an isomorphism and hence h = 0.

A
f - B

q - C

F

n
? `- D

h-

k
-

g
-

E G

p

�

m
-

For uniqueness, suppose f factors as kg where g is pseudo-epic. Then coker f = coker k. So if k is also a
monomorphism then g = ker coker k = ker coker f by 6.7. �
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Definition 6.9. An abelian category is an additive category with finite limits and colimits (equivalently
finite coproducts and products, kernels and cokernels) in which every monomorphism and every epimorphism
is regular (equivalently, normal).

Example 6.10. AbGp, ModR, [C,A] where A is abelian. If C is additive and A is abelian then the
subcategory Add(C,A) ⊆ [C,A] of additive functors C → A is abelian. Note that ModR = Add(R,AbGp)
where we consider a ring R as an additive category with one object.

11/20/06
In a pointed category with kernels and cokernels we write im f for ker coker f and coim f for coker ker f .

In an abelian category, any f factors as (im f)g with g epic, and as h(coim f) with h monic (by 6.8) and
these factorizations must be isomorphic. In general, we get a comparison map

A
f - B

E

coim f
? f - D

im f
6

and in an abelian category f is always an isomorphism.
Note that A is abelian iff A is additive with finite limits and colimits and every f factors as (im f)(coim f).

Lemma 6.11. Suppose we are given a pullback square

A
f- B

C

g
? k- D

h
?

in an abelian category with h epic. Then the square is also a pushout and g is epic.

Proof. Consider the diagram A
f ×−g- B ⊕ C

hq k- D. We have (hqk)(f×−g) = hf−kg = 0 and the fact
that (f, g) has the universal property of a pullback implies that f ×−g = ker(hq k). But (hq k)(1× 0) = h
is epic so hq k is epic and therefore by 6.7 hq k = coker (f ×−g), so the original square is a pushout.

Now consider the cokernel ε : C → E of g. Then ε and 0 : B → E form a cone under C �
g

A
f- B

so they factor uniquely through D, say by r : D → E. Then rh = 0 but h is epic so r = 0 and therefore
q = rk = 0. Hence g is an epimorphism. �

Definition 6.12. We say a sequence of morphisms · · · - A
g- B

f- C - · · · is exact at B if ker f =

im g (or, equivalently, coker g = coim f). Note that f : A → B is monic iff 0 - A
f- B is exact, and

f : A → B is epic iff A
f- B - 0 is exact. A functor F : A → B between abelian categories is called

exact if it preserves exactness of sequences. We say F is left exact if it preserves exactness of sequences
of the form 0 - A - B - C, and F is right exact if it preserves exactness of sequences of the form
A - B - C - 0.

By considering the exact sequences

0 - A
1× 0- A⊕B

0q 1- B - 0 and 0 - B
0× 1- A⊕B

1q 0- A - 0

we see that any left exact functor must preserve biproducts, i.e. it must be additive. Hence F is left exact
iff F preserves all finite limits. Also, F is exact iff F preserves kernels and cokernels iff F preserves all finite
limits and colimits.

Lemma 6.13 (Five Lemma). Suppose we are given a diagram

A1
u1- A2

u2- A3
u3- A4

u4- A5

B1

f1
? v1- B2

f2
? v2- B3

f3
? v3- B4

f4
? v4- B5

f5
?
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in an abelian category where the rows are exact. Suppose also that f1 is epic, f2 and f4 are isomorphisms
and f5 is monic. Then f3 is an isomorphism.

Proof. First we show that f3 is monic. Let k : K → A3 be the kernel of f3. Now f4u3k = v3f3k = 0 and f4

is monic so uek = 0, so k factors through keru3 = imu2. Hence if L is the pullback of k and u2 in
L

I � K

e
-

A2

g
6

u2

-

`

-

A3

k
?

im
u
2-

it is isomorphic to the pullback of A2
- I � K, so e : L→ K is epic (as g is epic). Now v2f2` = f3u2` =

f3ke = 0 so f2` factors through ker v2 = im v1. Consider the pullbacks

M
d- L

B1

m
? v1- B2

`f2
?

and

N
c- M

A1

n
? f1- B1

m
?
.

Then d is epic (by the same argument as above) and c is epic (as f1 is epic). f2`dc = v1mc = v1f1n = f2u1n;
f2 is monic so `dc = u1n. Now kedc = u2`dc = u2u1n = 0. But edc is epic so k = 0, i.e. f3 is monic. Dually,
f3 is epic, so it is an isomorphism. �

Lemma 6.14 (Snake Lemma). Suppose we are given a diagram as below, in which the columns are exact,
the two middle rows are exact, and all of the squares commute. Then there exists a morphism A3 → D1

such that A1
- A2

- A3
- D1

- D2
- D3 is exact.

0 0 0

A1

?
- A2

?
- A3

?

B1

?
- B2

?
- B3

?
- 0

0 - C1

?
- C2

?
- C3

?

D1

?
-

�..
....

....
....

....
....

....
....

....
....

....
....

....
....

....
.

D2

?
- D3

?

0
?

0
?

0
?

The proof is omitted.
11/22/06

Definition 6.15. By a complex in an abelian category A we mean a sequence

· · · - Cn+1
dn+1- Cn

dn- Cn−1
- · · ·

of objects and morphisms such that dndn+1 = 0 for all n. Note that this is just an additive functor Z → A
where obZ = Z, Z(n, n) = Z (with 1 as the identity morphism), Z(n, n − 1) = Z, and Z(n,m) = {0} if
m 6= n, n− 1 (with the obvious definition of composition). Hence the complexes of A are the objects of an
abelian category cA = Add(Z,A). Given a complex C we define Zn → Cn to be the kernel of Cn → Cn−1,
Bn → Cn : im (dn+1), Zn → Hn = coker (Bn → Zn). Equivalently, we could form Cn → An = coker (dn+1)
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and then Zn → Hn → An is the image factorization of Zn → Cn → An. Each of (C∗ 7→ Zn), (C∗ 7→ An),
(C∗ 7→ Bn) and (C∗ 7→ Hn) defines an additive functor cA → A. Note that Hn = 0 iff C∗ is exact at Cn.

Theorem 6.16 (Mayer-Vietoris). Suppose that we are given an exact sequence 0→ C ′∗ → C∗ → C ′′∗ → 0 in
cA. Then there is an exact sequence

· · · - H ′n - Hn
- H ′′n - H ′n−1

- Hn−1
- · · ·

of homology objects in A.

Proof. First consider the diagram
0 0 0

Z ′n

?
- Zn

?
- Z ′′n

?

C ′n

?
- Cn

?
- C ′′n

?
- 0

0 - C ′n−1

d′n
?
- Cn−1

dn
?
- C ′′n−1

d′′n
?

A′n−1

?
- An−1

?
- A′′n−1

?

0
?

0
?

0
?

By lemma 6.14 the top and bottom rows are exact. Moreover Z ′n → Zn is monic since

Z ′n → Zn → Cn = Z ′n → C ′n → Cn

is monic and similarly An−1 → A′′n−1 is epic. Now consider

Cn+1
dn+1- Cn

Zn+1
-

-

An+1

?
- Zn

6

-

-

An

-

Note that Hn+1 → An+1 = im (Zn+1 → An+1) = ker(An+1 → Z ′n). Now we can consider
0 0 0

H ′n+1

?
- Hn+1

?
- H ′′n+1

?

A′n+1

?
- An+1

?
- A′′n+1

?
- 0

0 - Z ′n

d′n
?

- Zn

dn
?

- Z ′′n

d′′n
?

H ′n

?
- Hn

?
- H ′′n

?

0
?

0
?

0
?



CATEGORY THEORY 29

By 6.14 we get a morphism H ′′n+1 → H ′n making the sequence H ′n+1 → Hn+1 → H ′′n+1 → H ′n → Hn → H ′′n
exact. �

7. Monoidal and Closed Categories

We frequently encounter instances of a category C equipped with a functor ⊗ : C × C → C and an object
I ∈ ob C which makes C into a monoid up to isomorphism in Cat.

Examples 7.1.

(a) Any category with finite products, with ⊗ = × and I = ∗. We know that A×(B×C) ∼= (A×B)×C
and ∗ × A ∼= A ∼= A × ∗ since they are limits of the same diagrams. Similarly, any any category
with finite coproducts with ⊗ = q and I = ∅.

(b) In AbGp we have the usual tensor product ⊗ with unit Z. In ModR (for R commutative) we have
⊗R with unit R.

(c) For any C we have a monoidal structure on [C, C] where ⊗ is composition of functors and I is the
identity functor.

(d) Consider the category ∆ with ob ∆ = N and morphisms n → m are order preserving maps
{0, . . . , n − 1} → {0, . . . ,m − 1}. This has a monoidal structure given on objects by + and on

morphisms combining maps in parallel (?) e.g. n+m
+- n′ +m′ by

n m

n′
?
· · ·
?

m′
?
· · ·
?

Note that although n+m = m+ n this isn’t a natural isomorphism.

Definition 7.2. By a monoidal structure on a category C we mean a functor ⊗ : C × C → C and an
object I equipped with natural isomorphisms αA,B,C : A ⊗ (B ⊗ C) → (A ⊗ B) ⊗ C, λA : I ⊗ A → A and
ρA : A⊗ I → A such that all diagrams constructed from instances of α, λ, ρ commute. In particular, we ask
that the diagrams

A⊗ (B ⊗ (C ⊗D))
αA,B,C⊗D - (A⊗B)⊗ (C ⊗D)

A⊗ ((B ⊗ C)⊗D)

1A ⊗ αB,C,D
?

αA,B⊗C,D
- (A⊗ (B ⊗ C))⊗D

αA,B,C ⊗ 1D- ((A⊗B)⊗ C)⊗D

αA⊗B,C,D
?

and

A⊗ (I ⊗B)
αA,I,B- (A⊗ I)⊗B

A⊗B
ρA ⊗ 1B�1A ⊗ λB

-

commute. Note that for (AbGp,⊗,Z) the usual α sends a generator a⊗ (b⊗ c) to (a⊗ b)⊗ c, but we also
have an isomorphism α sending a⊗ (b⊗ c) to −(a⊗ b)⊗ c, but this doesn’t satisfy the pentagon condition.

Theorem 7.3 (Coherence Theorem for Monoidal Categories). If these two diagrams commute then every-
thing does. More formally, we define a set of words in ⊗ and I as follows: we have a stack of variables
A,B,C,D, . . . which are words, I is a word, if u and v are words then (u⊗ v) is a word. If u, v, w are words
then αu,v,w : u ⊗ (v ⊗ w) → (u ⊗ v) ⊗ w is an instance of α (similarly an instance of λ and ρ). Also, if
θ : v → v′ is an instance of α, λ or ρ so are 1u ⊗ θ : (u ⊗ v) → (u ⊗ v′) and θ ⊗ 1w : (v ⊗ w) → (v′ ⊗ w).
The body of a word is the sequence of variables that appears in it. The theorem says: given two words w,w′

with the same body there is a unique isomorphism w → w′ obtainable by composing instsances of α, λ, ρ and
their inverses.

11/24/06
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Proof. Note that a word involving n variables defines a functor Cn → C and each instance of α, λ, or ρ
defines a natural isomorphism between two such functors. We define a reduction step to be an instance of
α, λ or ρ (as opposed to their inverses). We define the height h(w) of a word to be a(w) + i(w), where i(w)
is the number of occurrences of I in w and a(w) is the number instances of a ⊗ occurring before a (. Note
that if θ : w → w′ is an instance of α then i(w) = i(w′) and a(w) > a(w′), and if θ is an instance of λ or ρ
then i(w) > i(w′) and a(w) ≥ a(w′). Hence any sequence of reduction steps starting from w must terminate
at a reduced word from which no further reductions are possible. Reduced words are those of height 0:
(· · · ((A1 ⊗ A2) ⊗ A3) ⊗ · · · ) ⊗ An and the word I of height 1. These are the only reduced words, since if
i(w) > 0 and w 6= I then w has a subword (y⊗ I) or (I ⊗ v) to which we can apply ρ or λ. If a(w) > 0 then
there is a substring · · · ⊗ (· in w and hence a subword (u⊗ (v⊗ x)) to which we can apply α. For any w any
reduction path from w must lead to a reduced word w0 with the same body.

Note that in order to prove the theorem it suffices to show that any sequence of reduction steps can be
put into a commutative diagram. In particular, if we can show that there is a unique morphism θw : w → w0

then any morphism w → w′ which is a composition of α, ρ, λ’s (and their inverses) must be a composite
θ−1
w′ θw, so any two of these can be put into a commutative diagram.

To prove that any pair of reduction steps θ, φ can be embedded in a commutative polygon we consider
the following cases.

Case 1: θ and φ operate on disjoint subwords. So w = · · · (v ⊗ w) · · · and θ = · · · (θ′ ⊗ 1) · · · and φ =
· · · (1⊗ φ′) · · · . Then we have the following diagram

(u⊗ v)
1⊗ φ′- (u⊗ v′)

(u′ ⊗ v)

θ′ ⊗ 1
? 1⊗ φ′- (u′ ⊗ v′)

θ′ ⊗ 1
?

by functoriality of ⊗.
Case 2: φ operates within one argument of θ, e.g. θ = αu,v,x : u⊗(v⊗x)→ (u⊗v)⊗x and φ = (1⊗(φ′⊗1))

where φ′ : v → v′. Then we have

u⊗ (v ⊗ x)
1⊗ (φ′ ⊗ 1)- u⊗ (v′ ⊗ x)

(u⊗ v)⊗ x

α
? (1⊗ φ′)⊗ 1- (u⊗ v′)⊗ x

α
?

by naturality of α.
Case 3: θ and φ interfere with each other.

If θ, φ are both α’s w must contain a subword u⊗(v⊗(x⊗y)) and θ, φ are αu,v,x⊗y and 1⊗αv,x,y
in some order. Then we simply use the pentagon identity. If θ is a λ and φ is a ρ then w contains
· · · I ⊗ I · · · and θ = λI , φ = ρI so we need to know that λI = ρI . To see this note that

I ⊗ I

I ⊗ (I ⊗ I)
αI,I,I-

λI⊗I -

(I ⊗ I)⊗ I

λI ⊗ 1I
�

I ⊗ I
ρI ⊗ 1I�1I ⊗ λI

-

commutes. But 1I⊗λI = λI⊗I as λI(1I⊗λI) = λIλI⊗I by naturality of λ and λI is an isomorphism.
Since αI,I,I is also an isomorphism it follows that ρI⊗1I = λI⊗1I . But ·⊗I is naturally isomorphic
to the identity so ρI = λI .

If θ is an α and φ is a λ then either w contains u ⊗ (I ⊗ v), θ = αu,I,v and φ = 1u ⊗ λv (so we
can use the triangle) or w contains I ⊗ (u⊗ v), θ = αI,u,v and φ = λu⊗v. For this case we need to
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know that

I ⊗ (u⊗ v)
αI,u,v- (I ⊗ u)⊗ v

u⊗ v
λu ⊗ 1v�λu⊗v

-

commutes. Note that it suffices to prove this for this triangle with a leading I⊗ added, since I⊗· is
naturally isomorphic to the identity. Thus what we want to show is that triangle ? in the following
diagram commutes:

I ⊗ (I ⊗ (A⊗B))
αI,I,A⊗B - (I ⊗ I)⊗ (A⊗B)

? I ⊗ (A⊗B)

ρI ⊗ 1A⊗B
�

1I ⊗ λA⊗B

-

I ⊗ ((I ⊗A)⊗B)

1I ⊗ αI,A,B

?

1I ⊗ (λA ⊗ 1B)
-

(I ⊗A)⊗B

αI,A,B

?
�(ρI ⊗ 1A)⊗ 1B ((I ⊗ I)⊗A)⊗B

αI⊗I,A,B

?

(I ⊗ (I ⊗A)⊗B)

(1I ⊗ λA)⊗ 1B

6

αI,I,A ⊗ 1B

-

αI,I⊗A,B
-

Note that the outside of this diagram is an instance of the α-pentagon. The two unlabelled triangles
are instances of the α-λ-ρ identity, and the two quadrilateral cells commute by naturality of α. But
from this we see that

αI,A,B(1I ⊗ λA⊗B) = αI,A,B(1I ⊗ (λA ⊗ 1B))(1I ⊗ αI,A,B)

and as αI,A,B is an isomorphism triangle ? also commutes.
If θ is an α and φ is a ρ then w contains u⊗ (v ⊗ I), θ = αu,v,I φ = I ⊗ ρv so we need to know

that

u⊗ (v ⊗ I)
αu,v,I- (u⊗ v)⊗ I

u⊗ v
ρu⊗v�1⊗ ρv -

commutes. This is shown analogously to the proof above using the pentagon between A⊗(B⊗(I⊗I))
and ((A⊗B)⊗ I)⊗ I and the fact that all of the maps in the pentagon are isomorphisms.

�

Definition 7.4. Let (C,⊗, I, α, λ, ρ) be a monoidal category. By a symmetry for ⊗ we mean a natural
transformation γA,B : A⊗B → B ⊗A satisfying

A⊗ (B ⊗ C)
αA,B,C- (A⊗B)⊗ C

A⊗ (C ⊗B)

1⊗ γB,C

�
C ⊗ (A⊗B)

γA⊗B,C

-

(A⊗ C)⊗B
γA,C ⊗ 1-

αA,C,B

-

(C ⊗A)⊗B
αC,A,B�
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and

I ⊗A
γI,A - A⊗ I A⊗B

γA,B - B ⊗A

A

ρA�
λA -

A⊗B
γB,A�1A⊗B -

There is a coherence theorem for symmetric monoidal categories similar to 7.3 (but more delicate: note that
γA,A 6= 1A⊗A in general).

Warning: a given monoidal category may have more than one symmetry. For example, take C = AbGpZ

with (A∗ ⊗B∗)n =
⊗

p+q=nAp ⊗Bq and In = Z for n = 0 and 0 otherwise. We could define γA,B to be the
map a⊗ b 7→ b⊗ a or we could take a⊗ b 7→ (−1)pqb⊗ a where a ∈ Ap and b ∈ Bq. Both of these satisfy the
above conditions.
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Definition 7.5. Let C and D be monoidal categories, and F : C → D a functor. By a (lax) monoidal
structure on F we mean a natural transformation θA,B : FA⊗FB → F (A⊗B) and a morphism c : I → FI
such that the diagrams

FA⊗ (FB ⊗ FC)
1⊗ θB,C- FA⊗ F (B ⊗ C)

θA,B⊗C- F (A⊗ (B ⊗ C))

(FA⊗ FB)⊗ FC

αFA,FB,FC
? θA,B ⊗ 1- F (A⊗B)⊗ FC

θA⊗B,C- F ((A⊗B)⊗ C)

FαA,B,C
?

and

I ⊗ FA
c⊗ 1- FI ⊗ FA

FA

λFA
? FλA- F (I ⊗A)

θI,A
?

and the analogous diagram for ρ commute. If the monoidal structures on C and D are symmetric we say
that (θ, c) is a symmetric monoidal structure if

FA⊗ FB
θA,B- F (A⊗B)

FB ⊗ FA

γFA,FB
? θB,A- F (B ⊗A)

FγA,B
?

commutes. We say that (θ, c) is a strong monoidal structure if θ and c are isomorphisms. Given monoidal
functors (F, θ, c) and (G, γ, k) we say a natural transformation β : F → G is monoidal if

FA⊗ FB
θ- F (A⊗B) I

c- FI

and

GA⊗GB

βA ⊗ βB
? γ- G(A⊗B)

βA⊗B
?

GI

βI
?k -

commute.

Examples 7.6.

(a) Let R be a commutative ring. The forgetful functor (ModR,⊗R, R) → (AbGp,⊗,Z) is lax
monoidal: if A and B are R-modules we have a quotient map A ⊗ B → A ⊗R B and i : Z → R
sending n to n · 1R.

(b) The forgetful functor (AbGp,⊗,Z) → (Set,×, 1) is lax monoidal: we take the universal bilinear
map A×B → A⊗B where (a, b) 7→ a⊗ b for ⊗ and i : 1→ Z picks out the generator 1 ∈ Z.
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(c) The functor AbGp → ModR which sends A to R ⊗ A is strong monoidal: we have canonical
isomorphisms R⊗Z ∼= R and (R⊗A)⊗R (R⊗B) ∼= R⊗ (A⊗R R)⊗B ∼= R⊗ (A⊗B). In general
given a monoidal adjunction (F a G) (i.e. one for which the unit and counit are monoidal natural
transformations) between lax monoidal functors the left adjoint is always strong: we get an inverse
for FA⊗ FB → F (A⊗B) from the composite

F (A⊗B)
F (ηA ⊗ ηB)- F (GFA⊗GFB) - FG(FA⊗ FB)

εFA⊗FB- FA⊗ FB
(d) If (C,×, 1) and (D,×, 1) are cartesian monoidal categories then F : C → D is strong monoidal iff F

preserves finite products.

FA× FB
θA,B- F (A×B)

FA× F1
?

- F (A× 1)
?

FA× 1

6

- FA

6

shows that θ commutes with the projections.
(e) Any functor F between cocartesian monoidal categories has a unique lax monoidal structure and

this structure is strong iff F preserves finite coproducts.

Definition 7.7. Let (C,⊗, I) be a monoidal category. By a monoid in C we mean an object A equipped
with morphisms m : A⊗A→ A and e : I → A such that

A⊗ (A⊗A)
1⊗m - A⊗A

(A⊗A)⊗A

αA,A,A
? m⊗ 1- A⊗A

m- A

m
?

and

I ⊗A
e⊗ 1- A⊗A �

1⊗ e
A⊗ I

A

m
? ρA�

λA -

commute. If ⊗ is symmetric we say that (A,m, e) is a commutative monoid if

A⊗A
γA,A- A⊗A

A

m
�

m -

also commutes.

Examples 7.8.
(a) In (Set,×, 1) monoids are just monoids in the usual sense. Similarly we can consider monoids in

any category with finite products, e.g. Top. A monoid in Cat is a strict monoidal category.
(b) In a cocartesian monoidal category (C,q, 0) every object has a unique (commutative) monoidal

structure, given by the unique morphism 0→ A and hte codiagonal map (1A, 1A) : AqA→ A.
(c) In (AbGp,⊗,Z) (commutative) monoids are (commutative) rings.
(d) In [C, C] monoids are monads on C.
(e) In ∆ the object 1 has a monoid structure given by the unique maps 0 → 1 and 2 → 1. This

is the “universal monoid”: given any monoidal category (C,⊗, I) the category of strong monoidal
functors ∆ → C is equivalent to the category of monoids in C by the functor sending F : ∆ → C
to F (1). (Note that given a monoid (A,m, e) in B and a (lax) monoidal functor F : B → C, FA
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has a monoid structure given by FA⊗ FA
θ- F (A⊗A)

Fm- FA and I
k- FI

Fe- FA.) Given
a monoid (A,m, e) in C the morphisms

(· · · (A⊗A) · · · )⊗A︸ ︷︷ ︸
n factors

→ (· · · (A⊗A) · · · )⊗A︸ ︷︷ ︸
m factors

obtainable by composing instances of m and e correspond to morphisms n→ m in ∆.
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There is also a universal commutative monoid, living in the category Setf of finite sets and functors be-

tween them (with the cartesian monoidal structure): it is the terminal object ∗. Given a commutative monoid
(A,m, e) in an arbitrary symmetric monoidal category (C,⊗, I) the assignment n 7→ (· · · (A⊗A) · · · )⊗A︸ ︷︷ ︸

n factors

can be made into a strong symmetric monoidal functor Setf → C.

Definition 7.9. Let (C,⊗, I) be a monoidal category. We say the monoidal structure is left closed if, for
each A ∈ ob C A ⊗ · : C → C has a right adjoint. Similarly ⊗ is right closed if · ⊗ A has a right adjoint.
If both hold we say ⊗ is biclosed. For a symmetric monoidal structure ⊗ we simply say ⊗ is closed if it’s
left (equivalently right) closed. We write [A,−] for the right adjoint of · ⊗A. So we have natural bijections
A→[B,C]
A⊗B→C (natural in A and C).

Examples 7.10.
(a) (Set,×, 1) is closed. (We say C is cartesian closed if (C,×, 1) is closed.) We know that functions

A× B → C correspond naturally to functions A→ CB (where CB is the set of functions B → C)
so we set [B,C] = CB .

(b) Cat is cartesian closed. Here we take [C,D] to be the category of all functors C → D and it’s easy
to see that functors B → [C,D] correspond to functors B × C → D.

(c) For any small category C [C,Set] is cartesian closed.

Proof 1. Use the Special Adjoint Functor Theorem: · × F : [C,Set] → [C,Set] preserves all small
colimits, since limits and colimits are constructed pointwise. We know [C,Set] is cocomplete and
locally small, has a separating set {C(A,−) |A ∈ ob C} and it’s well-copowered (since epimorphisms
are pointwise surjective). �

Proof 2. Use the Yoneda Lemma. Whatever [F,G] is, elements of [F,G](A) must correspond to
natural transformations C(A, ·)→ [F,G] and hence to natural transformations C(A, ·)×F → G. So
we define [F,G](A) = [C,Set](C(A, ·)×F → G). Given f : A→ B we have C(f, ·) : C(B, ·)→ C(A, ·)
and composition with C(f, ·) × 1r yields a mapping [F,G](A) → [F,G](B). This makes [F,G] a
functor. �

Exercise: verify that, for any H, natural transformations H → [F,G] corespond bijectively to
natural transformations H × F → G.

(d) (AbGp,⊗,Z) is closed: homomorphisms A⊗B → C correspond to bilinear maps A×B → C which
in turn correspond to homomorphisms A→ AbGp(B,C) where AbGp(B,C) is equipped with the
pointwise abelian group structure, i.e. (f + g)(b) = f(b) + g(b). Similarly for (ModR,⊗R, R) if R
is commutative, or more generally for any finitely generated abelian category A which is enriched
over itself in “the obvious way”.

(e) Let A be a fixed set and consider the poset P (A × A) of binary relations on A. Composition of
relations defines a non-symmetric strict monoidal structure on P (A×A). This structure is biclosed:
if we have a morphism S ◦ T → R then T ⊆ R/S where R/S = {(a, c) | ∀ b (b, c) ∈ S ⇒ (a, b) ∈ R}.
R/S is the largest relation such that S ◦R/S ⊆ R i.e. ·/S is right adjoint to S ◦ ·.

Lemma 7.11. In any closed monoidal category C the assignment (B,C)→ [B,C] is a functor Cop ×C → C
and the bijection A→[B,C]

A⊗B→C is natural in all three variables.

Proof. Given g : B′ → B and h : C → C ′ we define [g, h] : [B,C] → [B′, C ′] to be the morphism corre-

sponding to [B,C]⊗B′
1⊗ g- [B,C]⊗B

er- C
h- C ′ where er is the counit of (· ⊗B a [B, ·]). The rest is

straightforward verification. �
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We can now construct natural isomorphisms such as [A, [B,C]] ∼= [A ⊗ B,C]. We also have natural
transformations [B,C]⊗ [A,B]→ [A,C] corresponding to

[B,C]⊗ [A,B]⊗A
1⊗ er- [B,C]⊗B

er- C

and I → [A,A] corresponding to λA : I ⊗ A → A. This defines an enrichment of C over itself, where we
regard C(I, ·) : C → Set as a “forgetful functor” sinces morphisms I → [A,B] correspond to morphisms
A→ B.

8. Important things to remember

(i) The meaning of the Yoneda lemma.
(ii) What it means for (A, x) to be the representation of a functor. (Take the representation of U :

Gp→ Set as the usual example.)
(iii) Theorem 3.3 says that the naturality conditions in the definition of an adjunction mean that the

image of A needs to be the limit of the morphisms leading out of it.
(iv) Special/General adjoint functor theorems.
(v) The domain and codomain of im f and coim f and what these actually mean.

Zi i


