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2 INNA ZAKHAREVICH AND LECTURES BY PETER JOHNSTONE

1. DEFINITIONS AND EXAMPLES

Definition 1.1. A category C consists of:

(i) A collection of objects obC denoted by A, B,C, ...
(ii) A collection of morphisms morC denoted by f,g,h,...
(iii) A rule assigning to each f € morC two objects dom f and cod f, its domain and codomain. We

write f : dom f — cod f or dom f —f> cod f.

(iv) For each pair (f, g) of morphisms with cod f = dom f we have a composite morphism gf : dom f —
cod g subject to the axiom h(gf) = (hg)f whenever gf and hg are defined.

(v) For each object A we have an identity morphism 14 : A — A, subject to the axioms 1gf = f = fla
forall f: A— B.

Remark. (i) The definition does not depend on any model of set theory. If obC is a set then the
category is called a small category.
(ii) We could eliminate obC entirely by using the identity morphisms as stand-ins for objects.

Examples 1.2.

(a) The category Set of all sets (objects) and functions (morphisms). (Actually, morphisms are triples
(B, f,A) where f: A — B is a function in the set-theoretic sense (of being a subset of A x B).)

(b) Categories Gp of groups, Rng of rings, Modp of R-modules, etc have sets with algebraic structure
as objects, and homomorphisms as morphisms.

(¢) The category Top of topological spaces and continuous maps, Met of metric spaces and Lipschitz
maps, Diff of differentiable manifolds and smooth maps, etc.

(d) The category Htpy has the same objects as Top, but morphisms X — Y are homotopy classes of
functions, with composition induced by function composition. More generally, given a category C
and an equivalence relation ~ on mor C such that f ~ g implies cod f = cod g, dom f = dom g, and
if f ~ g then fh ~ gh and hf ~ hg whenever these are defined we can form the quotient of C by
the equivalence relation to form a quotient category C/ ~.

(e) Given a category C the opposite category C°P has the domain and codomain operations interchanged
(and thus composition is reversed).

(f) A small category with only one object  is a monoid (as any two morphisms are composable). Thus
any group is a category.

(g) A groupoid is a category in which every morphism in an isomorphism. The fundamental groupoid
7m(X) of a space X has points of X as objects, and morphisms x — y are homotopy classes of paths
T — .

(h) A discrete category is one whose only morphisms are identities. So a small discrete category is
a set. A preorder is a category with at most one morphism A — B for any two objects A, B.
Equivalently, it is a collection of objects with a reflexive transitive relation < on it. So a poset is a
small preorder whose only isomorphisms are identities. An equivalence relation is a category that

is both a preorder and a groupoid.
10/9/06

(i) The category Rel has sets as objects, but morphisms A — B are relations, i.e. arbitrary subsets of
B x A. Composition of R: A — B with S : B — C is defined to be

SoR={(c,a)|3be B s.t. (¢,b) €S, (bya) € R}.

This category contains Set as a subcategory, and also the category Part of sets and partial functions.
(j) Let k be a field. The category Mat(k) has the natural numbers as objects, and morphisms n — m
are m X n matrices with entries in k. Composition is matrix multiplication.
(k) Given a theory T in some formal algebra, the category Derr has forms of the formal language as
objects and morphisms ¢ — 1) are derivations of ¥ from ¢. Composition is concatenation.

Definition 1.3. Let C and D be categories. A functor F : C — D consists of
(i) a mapping A+— FA:0bC — obD
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(ii) a mapping f — Ff : morC — mor D

such that dom F'f = F(dom f), cod Ff = F(cod f), F(14) = 1pa, and F(gf) = (Fg)(Ff) whenever gf is
defined in C.

Examples 1.4.

(a) We have a functor U : Gp — Set sending a group to its underlying set, and a group homomorphism
to itself as a function. Similarly, U : Top — Set, U : Rng — Gp, etc. We call these forgetful
functors.

(b) There is a functor F : Set — Gp (the free functor) sending a set A to the free group F'A generated
by A, and a function f : A — B to the unique homomorphism F'f : FA — FB sending each
generator a € A to f(a) € B € FB.

(¢) We have a functor P : Set — Set sending A to its power set P(A) = {A"|A’C A} and f: A— B
to the mapping PA — PB sending A’ C A to {f(a)|a € A’} C B. But we also have a functor
P* : Set — Set? (or Set®® — Set) defined by P*A = PA and P*f(B') = f~1(B’). A functor
C°? — D or C — D°P is called a contravariant functor C — D.

(d) We have a functor D : Mod}y — Modp sending a module over R to its dual space DV = V* and
a linear map f:V — W to f*: W* —» V*,

(e) We write Cat for the (large) category of all small categories and functions between them. then
C +— C°P defines a functor Cat — Cat with f°P being f. Note that this is a covariant functor.

(f) A functor between monoids is a monoid homomorphism.

(g) A functor f between posets is an order-preserving map. (Since a < b implies a morphism a — b
which maps to a morphism fa — fb, so fa < fb.)

(h) Let G be a group, considered as a category. A functor F' : G — Set is a set A = Fx equipped
with an action of G, i.e. a permutation representation of G. Similarly, for any field £ a functor
G — Modp, is just a k-linear representation of G.

(i) We have functors 7, : Htpy, — Gp, sending a pointed space to its n-th homotopy group. Similarly,
we have functors H,, : Htpy — Gp sending a space to its n-th homology.

Definition 1.5. Let C,D be two categories and F,G : C = D two functors. A natural transformation
a : F' — G consists of a mapping A — a4 obC — mor D such that ay : FA — GA for all A and

FA 24 ga

o

FB 25 GB
commutes for any f: A — BinC.

Note that, given another functor H and another transformation 5 : G — H we can form the composite
Ba defined by (Ba)a = Baca.

The composition is associative and has identities so we have a category [C,D] of functors C — D and
natural transformations between them.

Examples 1.6.

(a) Let k be a field. The double dual operator V' — V** defines a covariant functor Mod;, — Mody.
For every V' we have a canonical mapping ay : V — V** sending @ € V' to the mapping ¢ — o(z).
The ay’s are the components of a natural transformation, and 1noq, — (—1)**.

If we restrict to the subcategory fdMody, of finite dimensional vector spaces then «y an isomor-
phism for all V. This implies that « is an isomorphism in [fdMody, fdModg]. In general if « is
a natural transformation such that a4 is an isomorphism for all A then the (a4)~! are also the
components of a natural transformation.

(b) Let P : Set — Set be the (covariant) power set functor. There is a natural transformation
N : lgset — P such that ng : A — PAsendseacha € Ato {a}. If f: A — Bthen {f(a)} = Pf({a})
holds, so 7 is indeed natural.
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(¢) Let G, H be groups and f,g : G = H two homomorphisms. What is a natural transformation
a: f — g? It defines an elements y = ax of H such that for any € G we have yf(z) = g(x)y. So
it is a conjugate between f and g.

(d) For any pointed space (X, z) and every n > 1 there is a canonical mapping h,, : 7,(X,x) — H,(X)
(the Hurewicz homomorphism). This is a natural transformation from m, : Htpy, — Gp to the
composite

U H,
Htpy, — Htpy — AbGp — Gp

Definition 1.7. Let F : C — D be a functor.
(i) We say F is faithful if given any two objects A, B € C and two morphisms f,g: A — B Ff = Fyg
implies f = g.
(ii) We say F' is full if given any two objects A, B € C every morphisms g : FA — FB n D is of the
form F'f for some f: A — B in C.
(iii) We say a subcategory C’ of C is full if the inclusion ¢’ — C is a full functor.

For example, AbGp is a full subcategory of Gp, which is a full subcategory of the category Mod of
monoids. Diff is a non-full subcategory of Top.

Definition 1.8. Let C and D be two categories. By an equivalence between C and D we mean a pair of
functors F : C — D, G : D — C together with natural isomorphisms a : 1¢c — GF and 3 : FG — 1p. We
write C ~ D if there exists an equivalence between C and D.

Lemma 1.9. (Assuming the aziom of choice.) A functor F : C — D is part of an equivalence iff it is full,
faithful and essentially surjective on objects. (i.e. every B € obD is isomorphic to some FA).

Proof. Suppose we are given G, «, as in 1.8. For any B € obD we have B = FGB so F is essentially
surjective. Suppose that we are given f,g in C with F'f = Fg. Then GFf = GFg so f = agl (GFf)aa =
a5 (GFg)aa = g. Thus F is faithful.

Now consider A, A’ € obC and g: FA— FA'. g: FA— FA' in D. Let f be the composite

a -1
A qra 24 gra 2By

Then GFf = Gg, since both morphisms make the diagram
f

A A
OzAl lOZA/
GFA -~ GFA

commute. But G is faithful since it is part of an equivalence. So F'f = g and therefore F is full.

Conversely, suppose F is full, faithful, and essentially surjective. For each B € ob D pick a pair (4, p)
such that A € obC and g : FA — B is an isomorphism. Define GB = A. Given g : B — B’ we have a
composite

-1
Fep 25 g 9. OB pop
which must be of the form Ff for a unique f: GB — GB’. Define Gg = f. It remains to show that F' and
G form an equivalence of categories.

Given ¢’ : B’ — B” the morphisms (G¢g')(Gg) and G(g’g) have the same image under F, so they must
be equal as F' is faithful. Hence G is a functor and 3 is a natural transformation FG — 1p. We know
Bra: FGFA — FAis an isomorphism, so (8r4) ! is of the form F(a4) for a unique ay : A — GFA (as F
is full) which makes it an isomorphism (as F' is faithful). Given f: A — A’ in C the composites (a4/)f and
(GF f)aa have the same image under F' by the naturality of 37!, so they are equal. Thus « is a natural
transformation 1 — GF and so we have an equivalence of categories.

Examples 1.10.
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Given a category C and a particular object B € C we write C/B for the category whose objects are
morphisms f : A — B whose morphisms are commutative triangles

g A
N A
B

and composition induced from composition in C.
For C = Set we have an equivalence of categories Set/B = Set”. The functor Set/B — Set”
sends f: A — Bto {f~'(b)|be B} and G : Set? — Set/B sends {A;|b € B} to

I1 4 =df u{4, x {b} |b e B}

beB

A

mapping to B by the second projection.

The o-slice category B\C is defined by (C°P/B)°P. In particular 1\Set (where 1 = {x}) is isomorphic
to the category Set, of pointed sets (via the functor sending f : 1 — A to (A4, f(x))). It is also
equivalent (but not isomorphic) to the category Part of sets and partial functions. The functor
F : Set, — Part sends (A,a) to A\{a} and f : (4,a) — (B,b) to the partial f™ which agrees with
fatae€ Awith f(a) # .

In the other direction, G : Part — Set, sends a set A to AT = AU{A} with A as its base point,
and it sends a partial function f : A — B to fT defined by f*(a) = f(a) if f(a) is defined, and
f*(a) = B otherwise. The composite F'G is the identity on Part, but GF isn’t the identity on Set.

Note that in Part there is an object () which is the only member of its isomorphism class, but
in Set, each isomorphism class contains many members. Hence there can’t be an isomorphism of
categories between them.

The categories fdMod), and fdMod;” are equivalent for any field k via the dual-space functor D
and k natural isomorphism ltanmod, — DD (on both sides).

fdMod; is also equivalent to Mat,. To define a functor F' : fdMod; — Mat; choose a basis for
every finite dimensional vector space and define F(V) = dimV, F(g : V. — W) to be the matrix
representing G with respect to the chosen bases.

G : Mat, — fdModj, sends n to k™ and a matrix A to the linear map represented by A with
respect to the standard basis. The composite F'G is the identity on Maty (provided we choose
the standard basis for k™ for all n). GF isn’t the identity but the choice of bases yields a natural
isomorphism GF(V) — V for all V.

Definition 1.11. Given a category C, by a skeleton of C we mean a full subcategory containing exactly one
objects from each isomorphism class of objects of C.

Note that lemma 1.9 implies that for any skeleton C’ of C the inclusion C’ — C is part of an equivalence of

(i)
(if)
(iif)

categories. Also, any equivalence between skeletal categories is bijective on objects, hence is an isomorphism.

Remark. The following statements are each equivalent to the axiom of choice

Any category has a skeleton.
Any category is equivalent to any of its skeletons.
Any two skeletons of a given category are isomorphic.

2. THE YONEDA LEMMA

Definition 2.1. We say a category C is locally small if for any two objects A, B of C the collection of all
morphisms A — B in C is a set. We denote this set by C(A4, B).

If C is locally small then the mapping B — C(A, B) becomes a functor C(A,—) : C — Set. Given

a morphism g : B — C in C, C(A,g) : C(A,B) — C(A,B) sends f € C(A,B) to gf. (Associativity of
composition implies that this is a functor.) Similarly, A — C(A, B) defines a functor C(—, B) : C°? — Set.



6 INNA ZAKHAREVICH AND LECTURES BY PETER JOHNSTONE

Lemma 2.2 (Yoneda Lemma). (i) Let C be a locally small category, A € obC and F : C — Set a
functor. Then there is a bijection between natural transformations C(A,—) — F and elements of
FA.

(ii) Moreover, this bijection is natural in A and F.

Proof of (i). Given a: C(A,—) — F we define ®(a)) = as(1l4) € FA. Conversely, given = € FA we define
U(z) : C(A,—) — F by U(x)p(f) = (Ff)(z) for every B € obC and f : A — B. We need to verify that
U(z) is natural: given g : B — C we need to check

U(x)cC(A,g) = (Fg)¥(z)p.
But by definition for f € C(A, B)

(Fg)¥(x)s(f) = (Fg)(Ff)(x) = (Fgf)(x) = ¥(z)o(9f) = ¥(x)cC(A 9)(f),

where the first and third steps are by definition of ¥(z), the second step is because F is a functor, and the
last step is by definition of C(A4, —).

Now we need to check that U and ® are inverses. Given z € FA we have ®U(z) = U(x)4(1la) =
F(14)(z) =z, so @V is the identity. Given any a : C(A,—) — F any any B € obC and f: A — B we have

ap(f) = ap(C(A, f))(1a) = (Ff)(aa)(1a) = (Ff)(2(a)) = (¥2(a))5(f)
(where the third step follows by naturality of «), so ¥® is also the identity and we are done. O

Corollary 2.3. For a locally small category C there is a full and faithful functor Y : C°P — [C,Set] (the
Yoneda embedding) sending A € obC to C(A, —).

Proof. Put F = C(B,—) in Yoneda (i). Hence we have a bijection between morphisms B — A in C and
morphisms C(A, —) — C(B, —) in [C, Set], which we take to be the effect of Y on morphisms. We need to check

that this is functorial. Given C —2+ B —f> Ain C. Then Y(9)Y(f) : C(A,—) — C(C,—) is determined
by its effect on 14 € C(A, A). But Y(f)a sends 14 to f € C(B,A) and Y (g)p(f) =C(C, f)(g9) = fg, and by
definition Y (fg)a(1a) = fg,s0 Y (fg) =Y (f)Y (g9), as desired. (Note that Y is a contravariant functor.) O

To explain Yoneda (ii), suppose that C is small. Then [C, Set] is locally small, since a natural transfor-
mation F' — G is a set-indexed family of functions s : FA — GA. We have a functor C x [C, Set] — Set
sending (A, F') to F'A, and another functor which is the composite

Y x 1[C7Set] [Cv Set](_7 _)

Set

C x [C, Set] [C, Set]°? x [C, Set)]

(ii) is saying that these two functors are naturally isomorphic in each variable. Notice, however, that since
the existence of a natural isomorphism is a purely “local” condition, we only need to require that the category
be locally small.

Proof of (ii). For naturality in A, suppose that we are given f : A — B, a functor F' and a natural
transformation a : C(A4,—) — F. We need to show that (Ff)®(a) = ®(ao Y (f)). But

(a0 Y (f)) = ap(Y(f)s(1B)) = ap(f) = ap(C(4, )(1a)) = (Ff)(aa(la)) = (F[)@(a),

where the second-to-last step follows by naturality.
For naturality in F', suppose that we are given 6 : F — G and « : C(A,—) — F. We need to verify that
4P () = (0 0 o) as elements of GA. But both of these are 04(ca(14)) by definition, so we are done. [

Definition 2.4. We say that a functor F': C — Set is representable if it is naturally isomorphic to C(A4, —)
for some A. By a representation of F' we mean a pair (A,z) where A € obC and z € FA is such that
U(z) : C(A,—) — F is an isomorphism. We call x a universal element of F. It has the property that any
y € FB is of the form (Ff)(x) for some f € C(A, B).

Corollary 2.5. Given two representations (A,x) and (B,y) of the same functor F there is a unique iso-
morphism f: A — B in C such that F f(x) =y.
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Proof. Consider the composite

)\ U(x)~t
e, ) 2 p 2 o4
By corollary 2.3 there exists a unique f € C(A, B) with Y f = ¥(2)"'¥(y) and a unique g : B — A with
Yg = (Yf)7!, with fg and gf being identities (because Y is faithful). Moreover, the equation Y f =
U(z)~1WU(y) is equivalent to ¥(z)Y (f) = ¥(y), but these are equal iff they have the same effect on 13, i.e.
it (Ff)(z) = y. 0

Examples 2.6.

(a) The forgetful functor U : Gp — Set is representable by (Z,1) since for any group G and z € UG
there is a unique homomorphism Z — G sending 1 to x. Similarly, U : Top — Set is representable
by ({x},%).

(b) The contravariant power set functor P* : Set®® — Set is representable by ({0,1}, 1) since for any
A’ C A there is a unique yas : A — {0,1} such that y /(1) = A".

(c) For a field k the composite functor Mod;” — Mody, ﬂ Set is representable by (k, 1).

(d) Let G be a group. The category [G, Set] is the category of sets with a G-action. The (unique)
representable functor G — Set is the Cayley representation of G, i.e. G itself with action by left
multiplication. In this case the Yoneda Lemma tells us that this is the free G-set on one generator,
i.e. that morphisms G — A in [G, Set] correspond bijectively to elements of A.

(e) Let C be a locally small category, A and B two objects of C. Consider the functor F' : C(—, A) x
C(—, B) : C°®? — Set. What does it mean for this to be representable? A representation consists of
an object P together with an element (p: P — A,q: P — B) of FP, such that for any C and any
f:C— A g:C — B there is a unique h : C — P such that ph = f and gh = g.

We can ask whether this exists in any category C, not necessarily locally small. If it does, we call
(P,p,q) a (categorical) product of A and B (and normally denote it by (A x B, m,m3)).

Note that in Set it is the usual Cartesian product A x B equipped with the two projections.
Give f : C — A and g : C — B we define h by h(c) = (f(c),g(c)). In Gp, Rng, Top, etc. the
products exist and are constructible by taking the Cartesian product of the underlying sets.

A coproduct in C is a product in C°P; usually denote the coproduct of A and B by AIl B. In
Set the coproduct of sets is a disjoint union. This also makes sense in Top. In Gp the coproduct
of two group sis their free product G «x H. In AbGp G II H = G x H and is usually denoted by
G @ H. In any poset (P, <) a product a X b is a greatest lower bound (a A b) and a coproduct is a
least upper bound (a V b).

(f) Assume C is locally small. Suppose we are given a parallel pair f,g : A — B in C; consider the
functor F' defined by F(C) = {h : C — A| fh = gh} (which is a subfunctor of C(—, A)). Is this
representable?

A representation consists of (E,e) where e : E — A satisfies fe = ge and any h : C — A with
fh = gh factors uniquely as ek for k: C — E. Such an e is called an equalizer of f and g.

In Set we take E = {a € A| f(a) = g(a)} and e the inclusion map. This construction also works
in Gp, Rng, Modpg, Top, ... The dual notion is that of a coequalizer; again it exists in all of the
above categories, but the constructions are different.

Definition 2.7. We say a morphism f : A — B is a monomorphism if fg = fh = g=hforallg,h:C — A.
Dually, f is an epimorphism if kf =/0f = k = { for all k,{/ : B — C. We say f is a regular monomorphism
if it arises as the equalizer of some pair of maps, and a regular epimorphism if it arises as the coequalizer of
some pair of maps.

In Set the monomorphisms are all regular, and are exactly the injective maps. To see this suppose f is
injective and consider C = B x {0,1}/ ~ where (b,j) ~ (¢, k) iff either b =c and j =k or b = ¢ = f(a) for
some a € A. Then the two injections B = C' have equalizer {b € B|3a € A s.t. b = f(a)}, which means
that f is a regular monomorphism. If f is not injective then we can find z,y : 1 — A such that = # y but
f(x) = f(y), so f is not a monomorphism.

Similarly we can show that in Set all epimorphisms are regular and are exactly the surjective maps.
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However, these equivalences don’t hold in all familiar categories. They hold in Gp but not in Mon,
since the inclusion N' — Z is an epimorphism in Mon. It’s also a monomorphism, but it is not a regular
monomorphism, since an epic equalizer has to be an isomorphism. Similarly, in Top the monomorphisms are
the injective functions and the epimorphisms are the surjective functions, but the regular monomorphisms
are only the subspace injections, and the regular epimorphisms are only the quotients by a subspace, as
the imposition of a topology makes the regularity condition stronger. Note also that there are bijective
continuous maps which aren’t homeomorphisms.

We say that a category C is balanced if every morphism which is both epic and monic is an isomorphism.
(Thus Set and Gp are balanced, but Mod and Top are not.)

Definition 2.8. Let C be a category, ¢ a class of objects in C.

(i) We say ¢ is a separating family if, given f,g: A — B with f # g thereexists G € Y and h: G — A
with fh # gh.

(ii) We say ¥ is a detecting family if given f : A — B such that every g : G — B with G € ¢ factors
uniquely as fh, then f is an isomorphism.

If a category is locally small then ¢ is a separating family iff {C(G,—) |G € ¢} is “jointly faithful.” ¢ is
a detecting family iff {C(G,—)|G € 4} is “jointly isomorphism-reflecting.”

(i) Suppose C has equalizers for all parallel pairs. Then every detecting family of objects of C is a
separating family.
(ii) Suppose C is balanced. Then every separating family of objects of C is a detecting family.

Proof.

(i) Suppose ¥ is a detecting family, and suppose f,g: A — B is such that every h: G — A with G € 4
satisfies fh = gh. Then every such h factors uniquely through the equalizer e : E — A of (f,g), so
e is an isomorphism. Hence f = g.

(ii) Suppose ¥ is a separating family, and suppose f : A — B is such that any g : G — B with G € ¥
factors uniquely through f. Then f is epic, since if h,k : B — C satisfies hf = kf then any
g : G — B must satisfy hg = kg, so h = k. Similarly, if £,m : D — A satisfies f¢ = fm then for any
n: G — D we have fln = fmn, so fn and mn are both factorizations of f¢n through f, so they’re
equal. Hence £ = m, so f is monic. Since C is balanced, f is an isomorphism.

Lemma 2.9.

O

Examples 2.10.

(a) obC is always both a detecting and separating family for C. For example, if f : A — B is such
that every g : C — B factors uniquely through f, then there exists a unique h : B — A such that
fh=1p. Then hf and 1,4 are both factorizations from f through f, so they’re equal.

(b) For any locally small C, {YA|A € obC} is a separating and detecting family for [C, Set]. For if
«a: ' — G is an arbitrary natural transformation, then if every YA — C' factors uniquely through
«, a4 is bijective, and if this holds for all A then « is an isomorphism.

(¢) {1} is both a separating and a detecting family for Set, since Set(1, —) is isomorphic to an identity
functor. {Z} is both for Gp (or AbGp), since Gp(Z, —) is isomorphic to the forgetful functor. {Z}
is both for Set°?, since Set(—,Z) is isomorphic to P*, which is faithful.

(d) {1} is a generating family for Top, since Top — Set is faithful. However, Top has no detecting
set of objects: for any infinite cardinal K we can find a set X (of cardinality K) and two topologies
To, 71 of X such that 7; 2 75 but the two topologies coincide on any subset of X of cardinality less
than K. Given any set ¢4 of objects of Top, choose K > #(UG) for any G € 4. Then 4 can’t
detect the fact that 1x : (z,77) — (z,72) isn’t an isomorphism.

(e) Let C be the category of connected pointed CW-complexes and homotopy classes of continuous
maps between them. JHC Whitehead’s theorem asserts that if f: X — Y in this category induces
isomorphisms 7, (X) — m,(Y) for all n > 1 then it is an isomorphism. But U, (where U is the
forgetful functor Gp — Set) is represented by S, so it says that {S™|n > 1} is a detecting set for
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C. However, PJ Freyd showed that there is no faithful functor C — Set, hence there is no separating
set of objects of C. (If 4 were a separating set then  — [[,. C(G, X) would be faithful.)

Definition 2.11. Let C be a category, P € ob(C. We say that P is projective if, given any diagram of the
form

A
b4
g
P Y.p
with f epic there exists h : P — A with fh = g. (If C is locally small, this says that C(P, —) preserves

epimorphisms.) We say that P is injective in C if it is projective in C°P. More generally, if & is a class of
epimorphisms in C we say P is &-projective if the above holds for all f € &.

Lemma 2.12. Let C be locally small. Then for any A € obC Y A is &-projective in [C,Set], where & is
the class of natural transformations o such that ap is surjective for all B. (In fact, these are all of the
epimorphisms in [C, Set].)

F

Proof. Given a f3 corresponds to some y € GA. As a4 is surjective y = aa(x) for some z € FA.
va-L. g

Then a¥(x) = 8 so ¥(x) completes the above diagram. O

3. ADJUNCTIONS

Definition 3.1. Suppose we are given categories C,D and functors F': C — D, G : D — C. We say that F
is left adjoint to G or G is right adjoint to F' we're given, for each A € ob(C and each B € obD a bijection
between morphisms FFA — B in D and morphisms A — G'B in C, which is natural in A and B. (If C and D
are locally small this means that the functors C°P x D — Set sending (A, B) to D(F A, B) and to C(A,GB)
are naturally isomorphic.) We write (F' 4 G) if F is left adjoint to G.

Note that the naturality condition means that

o~

Fa B A" cp
Ff l l g commutes iff f l JGg commutes.
FC -+ D c—L.Gp

10/23/06
Examples 3.2.

(a) The functor F : Set — Gp is left adjoint to the forgetful functor U. For any function A — UG
there is a unique homomorphism 7' : FA — G extending f (and this is natural in both A and G).
Similarly for free rings, R-modules, etc.

(b) The forgetful functor U : Top — Set has as a left adjoint D, sending any set A to A with the
discrete topology (since any function A — UX is continuous as a map DA — X). U has a right
adjoint I, sending A to A with the indiscrete topology {A4, 0}.

(¢) The functor ob : Cat — Set has a left adjoint D sending A to the discrete category whose objects
are the members of A. (since a functor DA — C is uniquely determined by its effect on objects)
and a right adjoint I sending A to the preorder with objects a € A and one morphism a — b for
all (a,b) € A x A. (Again, a functor C — IA is uniquely determined by its effect on objects.) In
this case D also has a left adjoint my sending C to its set of connected components, i.e. equivalences
of objects A with U ~ V if there exists a morphism U — V. (Once again, a functor C — DA
is determined by its effect on objects, but the functor obC — A has to be ordered on connected
components.)
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(d) Let 1 denote the category with one object and one morphism. For any C there’s a unique functor
C — 1. A left adjoint (if it exists) picks out an initial object of C, i.e. an object {) such that there
exists a unique ) — A for all A € obC. Similarly, a right adjoint picks out a terminal object * of C,
i.e. one such that there is a unique morphism A — x for all A.

(e) Let (X,7) be a topological space. If we think of 7 as a poset (ordered by inclusion) then 7 — PX
is a functor. The operation A — A° (the interior of A) is a right adjoint to this functor, since by
definition we have U C A iff U C A° for U € 7. Similarly, closure is a left adjoint to the inclusion
of the poset of closed sets in PX.

(f) The functor P* : Set — Set® is left adjoint to P* : Set°® — Set, since morphisms P*A — B
in Set°? are functions B 4 P*A in Set which correspond to relations B — A and morphisms
A — P*B in Set correspond to relations A / B. These correspond bijectively in a natural way.
This becomes a symmetric relation and we write it as Set(A, P*B) = Set(A, P*B). We say P* is
self-adjoint on the right.

(g) Given two sets A and B and a relation between them R C A x B we have a mapping -" : PA — PB
sending S C Ato 8" = {b € B|Va € S, (a,b) € R}, and mapping sending T C B to T* = {a €
A|¥b € T (a,b) € R}. These are contravariant functors, adjoint on the right since 7' C S™ iff
SxTCRiff SCT"

Theorem 3.3. Suppose we are given G : D — C. For each object A of C consider the category (A | G) whose
objects are pairs (B, f) with B € obD and f : A — GB in C, and whose morphisms (B, f) — (B', f') are
morphisms g : B — B’ such that f' = (Gg)f. The specifying a left adjoint for G is equivalent to specifying
an initial object of (A | G) for each A.

Proof. Suppose G has a left adjoint F'. For any A the morphism 1: FA — F A corresponds to a morphism
na : A — GFA, called the unit of the adjunction. We claim that (F'A,7n4) is an initial object of (A4 | G).
For, given an arbitrary object (B, f) the diagram

A GFA

e

GB

1
commutes iff f is the morphism corresponding to FA — FA I, B

10/25/06
Now suppose that we are given an initial object of (A | G) for each A € obC. Denote this object by

(FA,n4); this defines F on objects. Given f : A — A’ in C, define Ff : FA — FA’ to be the unique
morphism such that

A GFA

1 e

A gra
commutes, i.e. the unique morphism (FA,n4) — (FA ,na f) in (A | G).

If we have f': A" — A” then F(f'f) and (Ff")(Ff) are both morphisms (FA,n4) — (FA”,naf'f) so
they must be equal: hence F is a functor, and 7 is a natural transformation 1o — GF. We have a bijective
correspondence between morphisms f : A — GB and morphisms g : FA — B: take g to be the unique
morphism such that (Gg)na = f. Naturality in B is immediate from the form of the definition; naturality
in A follows from the fact that n is a natural transformation. O

Corollary 3.4. Any two left adjoints F, F' for a given functor G are (canonically) naturally isomorphic.
Proof. For each A there’s a unique isomorphism (FA,n4) — (F'A,ny) in (A | G); it’s easy to verify that
this is natural in A. |

F H
Lemma 3.5. Given functors C T—— D — £ with (FF 41G) and (H 1K), then (HF 41 GK).
G K



CATEGORY THEORY 11

Proof. We have bijections between morphisms HF A — C, morphisms FA — KC and morphisms A — GKC
natural in A and C. Compose these to get bijections between HFA — C and A — GKC natural in A and
C. O

Corollary 3.6. Suppose we are given a commutative square of categories and functors

Ga
and suppose each G; has a left adjoint F;. Then
Fle
F3 l le
D T C

commutes up to natural isomorphism.

Given functors F': C — D : G with (F 4 G) we have a natural transformation 7 : 1c — GF and dually a
natural transformation € : FG — 1p (the counit of the adjunction).

Theorem 3.7. Given functors F : C &= D : G, specifying an adjunction F(4 GQ) is equivalent to specifying
natural transformations n: 1l¢ — GF and € : FG — 1p satisfying the triangular identities:

ja

r = par and a S ara

k leF k IGE
ja G

Proof. Suppose we are given an adjunction (F' - G) with unit 7 and counit e. By definition n4 : A — GFA
corresponds to 1pg : FA — FA and €FA : FGFA — FA corresponds to lgpa : GFA — GFA. So

1
era(Fna) : FA — FA corresponds to A ES GFA =S54 GFA. Hence era(Fna) = 1pa as desired. The

dual argument shows the statement for the other triangle.
Conversely, suppose we are given 7 and € satisfying the identities. For any f : A — GB define ®(f) :

Ff

FA — B to be the composite FA —~ FGB —» B. Given g : FA — B define ¥(g) : A — GB to be
A A, GFA Gg GB. As in the proof of 3.3 we know that ¥ and ® are natural in A and B. To show that
they are inverses to each other,
va(f) = 4 gra 9 B
=AM gra S grop 9% op
— 4 —f> aB "% arop 9% op
- a7t cn

where the third line follows because 7 is natural, and the last one is by the second triangle identity. Similarly,
dU(g)=gforallg: FA— B. O
Lemma 3.8. Suppose that we are given F : C 2 D : G, (F 1 G) with counit € : FG — 1p. Then

(i) G is faithful iff e is an epimorphism for all B.

(ii) G is full and faithful iff € is an isomorphism.

Proof.
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(i)

(i)
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Suppose that e is epic for all B, and suppose g, g’ : B — B’ satisfy Gg = G¢’. Then the morphisms
FGB — B’ corresponding Gg and Gg’ are equal, but these are geg and ¢'ep, respectively. As ep

. )
is epic, g = ¢'.
Conversely, suppose that G is faithful and g,¢’ : B — B’ satisfy geg = ¢’eg. Then Gg = Gg’, so
/
g=g-.

Suppose € is an isomorphism. As any isomorphism is epic we know that G is faithful so we only
need to show that G is full. Suppose that we are given f : GB — GB’. Transposing, we get
f:FGB — B'. Then if we set g = ?egl : B — B’ we have Gg corresponding to f, so Gg = f.

Conversely, suppose that G is full and faithful. Then ngp : GB — GFGB must be of the form
Gh for a unique h : B — FGB; but (Geg)(ngs) = lep, so egh = 1p since G is faithful. hep
corresponds under the adjunction to (Gh)idgp = neps, so heg = lpgp.

O

Definition 3.9. By a reflexion we mean an adjunction satisfying the conclusion of 3.8(ii). We say that C’
is a reflexive subcategory of C if C' is a full subcategory and the inclusion C' — C has a left adjoint.

Examples 3.10.

()

(b)

()

The subcategory AbGp is reflexive in Gp, as given an arbitrary group G we can let G’ be the
subgroup generated by all commutators zyx~'y~!. Then G/G’ is abelian and any homomorphism
G — A where A is abelian factors uniquely through G — G/G’.

The subcategory tfAbGp of torsion-free abelian groups is reflexive in AbGp: the reflector sends
A to A/A. where A, is the torsion subgroup of A (i.e. the subgroup of all elements of finite order).
Also, the subcategory tAbGp of torsion abelian groups is coreflexive in AbGp: the counit of this
adjunction is the inclusion A, — A.

The category kHaus of compact Hausdorff spaces is reflexive in Top: the reflector is the Stone-Cech
compactification X — (BX.

Lemma 3.11. Suppose that we are given an equivalence of categories F : C — D, G : D — C with F
an tsomorphism, o : 1¢ — GF, 3 : FG — 1p. Then there exist natural isomorphisms o' : 1¢c — GF,
B : FG — 1p which satisfy the triangle identities so that (F 4 G) (and also G 4 F).

Proof. First note that

1c GF

o GF,

arF 2S5 GrGF

commutes by naturality of a; but « is (pointwise) epic so GFa = agp. Similarly, FGS = Spg. Now define

—1 1
F
o’ = a and let 3’ be the composite F'G ﬂ—FG» FGFG % FG ﬁ 1p. To verify the triangle identities:
G -1 GFag)™t G
@A) = G 2% gFG (GBra)”, apare (G, qrg 95 o
GB)~! oI G
= ¢ 997, Gpa 26re grarg 2ore gra G5 ¢
1
- ¢—S%¢
where the second line follows by the naturality of a. Similarly,
F e Fagr)™
G (Fa) = F L% par Pren papgr FOr), pop i p
-1 1
FGF FGF
_ r P pap B9 papar (FOFT, pop Pr g
1
= Fr—tF

by naturality of 3. O
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4. LiMITs

Definition 4.1. Let J be a category (almost always small or finite). By a diagram of shape J we mean
a functor D : J — C. The objects D(j) for j € obJ are called vertices of D and the morphisms D(«) for
« € mor J are called edges of D.

For example, if J is the finite category

- —_— .

AN

- —_— .

a diagram of shape J is a commutative square. If J is the category

- —_— .

AN

- —_— .

*

(where the starred arrow is meant to represent two parallel arrows) is a not-necessarily commutative square.

For any object A of C and any J we have a constant diagram A A of shape J all of whose vertices are A

and all of whose edges are 14. By a cone over D : J — C with summit A we mean a natural transformation

X : AA — D. Equivalently, this is a family (\; : A — D(j)|j € obJ) of morphisms (the legs of the cone)

A

such that )\%)(a)\).\]l commutes for any a : j — j’ in J. Note that A is a functor C — [J,C] and a cone

D(j) 2% p(j')

over D is an object of the arrow category (A | D). We say a cone (\; : L — D(j)|j € obJ) is a limit for

D if it is a terminal object of (A | D).

Definition 4.2. We say that C has limits of shape J if A : C — [J,C] has a right adjoint. By 3.3 this is
equivalent to saying that every diagram D : J — C has a limit.

Examples 4.3.

(a) If J = 0 then [J,C] has a unique object and the category of cones over it is isomorphic to C. So a
limit for this diagram is a terminal object of C (and a colimit for it is an initial object).

(b) If J is a discrete category, a diagram of shape J is just a family of objects of C, and a cone over it
is a family of morphisms (A; : A — D(j)|j € obJ). So a limit for it is a product [[;c, ; D(J)-
Similarly a colimit for this diagram is a coproduct Zje ob g P)-

f
(c) Let J be the finite category - ——J - (so a diagram of shape J is a parallel pair A = B). A
g

cone over such a digram is of the form A <h— C —k> B such that fh = k = gh, or equivalently a
morphism h : C — A satisfying fh = gh. Thus a limit for the diagram is an equalizer for (f,g)
(and a colimit for it is a coequalizer for (f,g)).

(d) Let J be the finite category - — - <— -. Then a diagram of shape J is a pair of morphisms

B A C <f— A with common codomain. A cone over this has the form
D —Z> A
N
B C

satisfying fh = £ = gk or equivalently a completion of the diagram to a commutative square. A
terminal such completion is called a pullback for the pair (f,g). If C has products and equalizers
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Jfm

then it has pullbacks: form the product A x B and then the equalizer £ S Ax B —; C. Then
gm2
E - 4 A
Toe is a limit for f-
B B-2.¢

A colimit of shape J°P (i.e. of a diagram C I 4 —f> B) is called a pushout of (f,g).

Theorem 4.4.

(i) If C has equalizers and all small (resp. all finite) products, then C has all small (resp. all finite)
limits.
(ii) If C has pullbacks and a terminal object, then C has all finite limits.

Proof.
(i) Let J be the small (resp. finite) and D : J — C a diagram. Form the products P = ;.. ; D(J)

f
and Q = [],cmor s P(cod ). Now form P = @Q defined by 7o f = Teod o and mag = D(a)Tdom a;

g
and the equalizer e : E — P of (f,g). We claim that (m;e : E — D(j)|j € obJ) is a limit cone
for J. It’s a cone since for any edge a : j — j' we have D(a)mje = moge = mo fe = mje. If we are
given any cone (A\; : A — D(j)|j € obJ) we get a unique A : A — P such that m;\ = A; for all
j, but then 7o fA = magA for all a, so fA = g\. So A factors uniquely as pe, so p is the unique
factorization of (A;|j € obJ) through (m;e|j € ob J).

(ii) Tt suffices to construct finite products and equalizers in C. We can construct the product A x B
as the pullback of B — * <— % A where * is the terminal object, and then construct H?:l A; as
(- ((A1 x A3) x Ag) - x Ap—1) X A,. We can form the equalizer of f,g: A — B as the pullback
of A (f.9) BxB (1g,1p)

fh=1gk and gh = 15k.

h k
B, since a cone over this diagram consists of A <— C' — B satisfying

O

Definition 4.5. Let ' : C — D be a functor, J a (small) category.

e We say F preserves limits of shape J if, given D : J — C and a limit cone (\; : L — D(j)|j € obJ)
the cone (F'A\;: FL — FD(j)|j € obJ) is a limit cone for FD in D.

o We say F reflects limits of shape J if given D : J — C and a cone (A; : L — D(j)|j € obJ) such
that (F'Aj : FL — FD(j)|j € obC) is a limit for F'D, then the original cone was a limit for D.

o We say that F' creates limits of shape J if, given D : J — C and a limit (u; : M — FD(j)|j € obJ)
for FD, there exists a cone (\; : L — D(j)|j € obJ) over D mapping to a limit for FD, and
any such cone is a limit in C. (Note that if we require M to be in the image of F' then category
equivalences might not create limits, as M may not be in the image of the equivalence. This
definition says that if there is a limit for F'D in D then there is a limit for D in C that maps to a
limit of F'D in D.)

Corollary 4.6. Let F': C — D be a functor. In any version of the above theorem 4.4 we may replace ‘C
has” by either “‘C has and F preserves” or “D has and F' creates.”

Examples 4.7.

(a) U : Gp — Set creates all small limits, but doesn’t preserve or create colimits.

(b) U : Top — Set preserves all limits and colimits, but doesn’t reflect them.

(¢) U :C/B — C creates colimits, since a digram D : J — C/B is the same thing as a diagram UD :
J — C together with a cone (UD(g) — B|j € obJ). So, given a colimit (\; : UD(j) — L|j € obJ)
in C we get a unique h : L — B; if the \; are all morphisms D(j) — h in C/B, they form a cone
under D and it’s a colimit cone. But U : C/B — C doesn’t preserve or reflect products: the product
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P— A
of f: A— Band g:C — B in C/B is the diagonal of the pullback square } g +/ in €, which

C =B
is not necessarily a product of A and B in C, (consider, for example, Set with B # {1}).
11/1/06
(d) Let C and D be categories. The forgetful functor [C, D] — D°P creates all limits and colimits which
exist in D.

To prove this, let D : J — [C, D] be a diagram; we consider it as a functor J x C — D. For each
A € ob(C we can form a limit cone (Aj 4 : LA — D(j,A)|j € obJ) for D(—, A): J — D. For each
f:+A— Bin C the composites

Aj D(j
a2 iy 29 gy jeobs
form a cone over D(—, B) and induce a unique Lf : LA — LB such that A; pLf = D(j, f)\; 4 for
all j.

Given g : B — C, L(gf) and (Lg)(Lf) are factorizations of the same cone through a limit so
they are equal; hence L is a functor C'— D and each \; _ is a natural transformation L — D(j, —).
The (Aj,—|j € obJ) also form a cone over D (regarded as a diagram of shape J in [C,D]) with
summit L.

In order to finish this proof we need to check that this is a limit cone. To do this we take any
other cone over D and consider its image for a given element A € C and construct the natural
transformation to the above limit.

(e) The inclusion functor AbGp — Gp reflects coproducts but doesn’t preserve them. A free product
(which is a free product in Gp) G * H is never abelian unless one of G and H is the trivial group,
but in that event it is also a coproduct in AbGp.

Remark. A morphism f: A — B in any category is a monomorphism iff

1
A4, 2

ul )
A—— B
f
is a pullback. Hence a functor which preserves/reflects pullbacks will also preserve/reflect monomorphisms.
k h
To see this, note that if the above diagram is a pullback then any cone A «— C — A satisfyling fh = fk
must satisfy h = k. Conversely if f is a monomorphism then any cone over A — B <— A has both legs
equal and so factors (necessarily uniquely) through A A a2 A

Theorem 4.8. Suppose G : D — C has a left adjoint F': C — D. Then G preserves all limits which exist in
D.

Proof 1. Suppose that C and D both have limits of some shape J. Then the diagram
F

ﬂ o 221 [JLA]

commutes and all the functors in it have right adjoints. So by corollary 3.6

c— Y% p
limJI Ilim{;
) 9

commutes up to natural isomorphism. But this means exactly that G preserves limits of shape J. |
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Proof 2. Let D : J — D and let (A\; : L — D(j)|j € obJ) be a limit for it. Given a cone (u; : A —
GD(j)|j € obJ) over GD in C we get a family of morphisms (zi; : FA — D(j)|j € obJ) which form a cone
over D by naturality of y +— 71. So we get a unique 7z : FA — L such that \;7i = 7; for each j, i.e. a unique
p: A — GL such that (GX;)p = p;. Thus the GA; are a limit cone. O

Our aim now is to show that if D has and G : D — C preserves “all” limits then G has a left adjoint.

Lemma 4.9. Suppose D has and G : D — C preserves limits of shape J. Then (A | G) has limits of shape
J for each A € obC and U : (A | G) — D creates them.

Proof. Suppose that we are given D : J — (A | G). We can consider D as a cone (f; : A — GUD(j)) over
GUD :J —C. Soif (\j : L = UD(j)|j € obJ) is a limit for UD then we get a unique f : A — GL such
that (GA;)f = f; for each j, i.e. such that each \; is a morphism (L, f) — (UD(j), f;) in (A | G).

The A; form a cone over D with summit (L, f), since they form a cone over UD and U is faithful. Given
any cone (u; : (B,g) — (UD(j), f;)) over D in (A | G) the p; also form a cone over UD with summit B so
they induce a unique p : B — L such that A\;u = p; for al j. We need to show that (Gu)g = f, but these are
factorizations of the same cone over GUD through GL so they are equal. So p: (B,g) — (L, f) in (A | G)
and it is the unique factorization of (U;,1;) through (A;,1;) in this category. Thus (A | G) has limits of
shape J. O

Lemma 4.10. Specifying an initial object for a category C is equivalent to specifying a limit for 1¢ : C — C.

Proof. If I is an initial object the unique morphisms (I — A|A € ob(C) form a cone over 1¢. Given any
cone (Ag: S — A|A € obC) over 1¢ A; : S — I is a factorization through the one with summit I, so the
cone with summit I is a limit cone over 1.

Suppose that we are given a limit cone (Ag : L — A| A € obC) for 1c. We need to show that, for each
A, A4 is the unique morphism L — A. Given f : L — A we have fAp, = As. In particular, AgAp = Aa
for all A, so Ay is a factorization of the limit cone through itself. So A\ = 15 and A4 is the unique map
L— A O

Theorem 4.11 (Primitive adjoint functor theorem). If D has and G : D — C preserves all limits then G
has a left adjoint.

Proof. By lemma 4.9, each (A | G) has all limits. Therefore, by lemma 4.10, each (A | G) has an initial
object. By theorem 3.3 we then see that G has a left adjoint. (]

We call a category C complete if it has all small limits.

Theorem 4.12 (General adjoint functor theorem). Let D be locally small and complete, and let G : D — C be
a functor. Then G has a left adjoint iff G preserves all small limits and satisfies the “solution set condition”:
for every A € ob(C there exists a set of morphisms {f; : A — GB;|i € I} such that every f : A — GB

i Gh
factors as A l» GB; — GB for somei € I and some h: B; — B in D.

The set {f; : A — GB;|i € I} is called the solution set.

Proof. For the forward direction, note that G preserves limits by theorem 4.8, and {g4 : A — GFA} is a
solution set for A by theorem 3.3.

For the backwards direction, note that each (A | G) is complete by lemma 4.9 and it inherits local
smallness from D. So it suffices to show that if a category A is locally small, complete and has a solution
set of objects then it has an initial object. Let {C;|i € I} be a solution set of objects. Form P = [];.; C;
and let e : E — P be the limit of the diagram with one object (P) and whose edges are all of the morphisms
P — P in A. For every object D we have a morphism P — C; — D for some i € I, and hence a morphism
E — P — D. Suppose we have f,g : E — D. Form their equalizer h : F — FE. There exists some
k: P — F and the composite ehk is an endomoprhism of P. So by definition of F ehke = 1pe, and as e is
a monomorphism hke = 1g. In particular h is epic, so f = ¢g. Thus E is an initial object of A and we are
done. |
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1B

Lemma 4.13. Suppose that we are given a pullback square g¥ Yh with h monic. Then g is momnic.
C — D
k
Proof. Suppose that ¢,m : E — A satisfies g¢ = gm. Then hfl = kgl = kgm = hfm. As h is monic we see
that f¢ = fm. So £ and m are factorizations of the same cone through a limit, hence ¢ = m. O

Definition 4.14. A subobject of A in a category is a monomorphism A’ — A. We say a category C is
well-powered if for every A € obC there exists a set of suboebjects {A; — A|i € I'} such that every A’ — A
is isomorphic (in C/A) to some A; — A.

For example, Set, Gp, Top are all well powered.

Theorem 4.15 (Special adjoint functor theorem). Suppose that C is locally small and that D is locally small,
complete, and well-powered, and that D has a coseparating set of objects. Then a functor G : D — C has a
left adjoint iff G preserves all small limits.

Proof. The forward direction follows from 4.12. For the backward direction we first show that each (A | G)
is complete, locally small and well powered and has a coseparating set. Completeness and local smallness
are proven as before. For well-poweredness, note that a morphism h: (B, f') — (B, f) in (A | G) is monic
iff it is monic in D, so subobjects of (B, f) in (A | G) correspond to subobjects m : B’ < B such that f
factors (uniquely) through Gm : GB’ — GB. So, up to isomorphism, these form a set. For the coseparating
set, let {S; |4 € I} be a coseparating set for D. Then the set {(S;, f)|i € I, f € C(A,GS;)} is a coseparating

Se‘ fOl“ (A \L G), Since if we ha\/e
/ \
Gh

B"B’—»GS

with h # k there exists some ¢ : B’ — S; with ¢h # ¢k and ¢ is a morphism (B', f') — (S;, (G€)f') in
(A41G).

It remains to show that if A is complete, locally small and well powered and has a corresponding set
{Si|i € I} of objects then it has an initial object. Form P = [[,.;S;. Let {P; — P|j € J} be a
representative set of subobjects of P and form the limit of the diagram
Pj --- Py -+ P

P

whose objects are all the P; — P for j € J. If L is the summit of the limit cone then L — P is monic (by
the same argument as above) and it is the smallest subobject of P since it factors through every P; — P.
We claim that L is an initial object of .A. Suppose we had two maps f,g: L — A. Then we could form their
equalizer E — L, but £ «— L — P is monic, so L — P factors through it and hence J, factor through
E — L, so E — L is epic and f = g. Thus we have at most one map L — A for each A. In order to
show existence, suppose that we are given A € ob. A. Consider K = {(i, f)|i € I, f: A — S;} and form
Q= H(i,f)eK S;. We have a canonical h : A — @ defined by h = H(z}f) f, and h is monic. Since the .S; form
a separating family we similarly have k : P — ). Form the pullback

B, p

d
h
A——Q
Then m is monic, so L — P factors through it and we have a morphism L — B — A. |

Examples 4.16.
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(a) If we didn’t know how to construct free groups we could use GAFT to construct a left adjoint
for U : Gp — Set. We already know that Gp has an U preserves all small limits. So we need
only to verify the solution set conclusion. Given a set A any function A : A — UG factors as
A — UG — UG where G’ is the subgroup generated by {f(a)|a € A}. We take a set of |G'| and
equip all subsets of it with all possible group structures, plus all possible maps from A to obtain a
solution set.

(b) Consider the category cLat of complete lattices and the forgetful functor U : cLat — Set. Just
as for groups, cLat has and U preserves all small limits, and cLat is locally small. However, AW
Hales showed that there does not exist a free complete lattice on three generators, so the solution
set condition fails for A = {1,2,3} and U doesn’t have a left adjoint.

(c) Consider the inclusion functor I : kHaus — Top. kHaus has small products and A preserves them.
It has equalizers because, given f,g: X — Y with Y Hausdorff, their equalizer is a closed subspace
of X and hence compact if X is. kHaus and Top are locally small. kHaus is well-powered since
subobjects of X are all isomorphic to closed subspaces of X. By Uruson’s lemma the closed interval
[0, 1] is a coseparator for kHaus. So by 4.15 I has a left adjoint 3. The Stone-Cech compactification
functor. Cech’s original (1937) construction of 83X was as follows: form P = I;.x—p01[0,1] and
then form the closure of the image of the canonical map X — P. (Note: this is precisely what the
SAFT tells you to do.)

5. MONADS

Suppose that we are given an adjunction F': C 2 D : G, with (F 4 G). What properties does the “trace”
of the adjunction have as a functor on the category C? We have the functor T'= GF : C — C and the unit
n:1le — T. We also have a natural transformation y = Gep : I = GFGF — GF. From the triangular
identities for n and € we get the identities

T
T 1 T M 1
NN
T T
and from the naturality of € we get the commutativity of
Tp
Trr — 1T
#Tl lu
T —— T
I

Definition 5.1. By a monad I = (T, 7, 1) on a category C we mean a functor T : C — C equipped with a
natural transformation 7 : 1¢ — T and pu : TT — T satisfying the above three diagrams. Any adjuncation
F:C27D:G induces a monad (GF,7n,Ger) on C and a comonad (G, ¢, Fng) on D

Example 5.2. Given a monoid M, the functor M ® — : Set — Set has a monad structure with unit
na : A — M x A sending a to (e,a) and multiplication pg : M x M x A — M x A sending (m,n,a) to
(mn,a). This monad is induced by an adjunction F' : Set = M x Set where M x Set is the category of sets
with an M-action, G is the forgetful functor and FA = M x A (with M action by multiplication on the left
factor).

Definition 5.3. Let II = (7,7, 1) be a monad on a category C. By a II-algebra we mean a pair (A, a) where
A€obC and a: TA — A satisfying

T
A, A TTA =S TA

N

A TA — A
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A homomorphism of II-algebras is a morphism f : A — B such that

T
TA—]iTB

|l

A——B
f

commutes. We write CI! for the category of Il-algebras and homomorphisms between them (and call it the
FEilenberg-Moore category of IT). There’s an obvious forgetful functor G : C™! — C sending (A, ) to A and
ftof.

Lemma 5.4. G has a left adjoint FY' and the monad induced by (F' - G™) is II.

Proof. We define F''A = (T'A, 14). This is a IT-algebra by two of the commutative diagrams in the definition
of TI. And we define F''(A — B) = T'f : (TA, ua) — (T B, ug), which is a homomorphism by the naturality
of u. To verify that (F™ 4 G') we construct the unit and counit of the adjunction. GF! = T so we
take  : 1 — T as the unit. We define €(4,,) = a: the associativity condition for « says that this is a
homomorphism FIGY(A,a) — (A, ) and naturality follows from the definition of homomorphism. The
identity(G™a)na = 1gn(a,q) is the unit condition on . The identity (epa)(Fna) = 1pa is the condition
that pana = 174 which is included in the definition of a monad. O

Note that if F : C 2 D : G with (F - G) is an adjunction inducing IT we could replace D by the full
subcategory of D of objects of the form FA. So in trying to construct D we may assume F' is surjective on
objects. Also, morphisms FFA — F'B in D correspond to morphisms A — GFB =TB in C.

Definition 5.5. Let II = (7,n,u) be a monad on C. The Kleisli category Cry is defined by obCp =

obC. Morphisms A — B in Cy are morphisms A — TB in C. The composite of A —f> B A C is
T

A i TB 'l TrC kg TC and the identity morphism A — A is 4.

To verify associativity suppose we are given A —f> B A C — D. Then

f Tg 2ed Th I

higf) = A-->TB—=TTC 7C — TTD TD

— 4L rre T prrp BTR prp P2 1p

= ALTBETTCE]ZTTTDT—MQTTD&TD

— Ao g T0) ppp 12 pp

= (hg)f

where the second line follows by naturality of x4 and the third by the associativity of p. For the unit law
foa = A oa Il ppp P2 pp

— 4L ™E ppp M7 pp
~ alorp

by one of the unit laws for II. The other unit law is analogous.
Lemma 5.6. There is an adjunction Fy : C = Cry : G inducing the monad I1.

Proof. We define FtA = A and F(f) = npf for f : A — B, and we define G(A) = TA and Gn(f) =
(uB)(Tf) for f: A — B. We will construct the unit and counit of this adjunction to see that this does, in
fact, induce II.
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To verify that Fyy is a functor suppose that we are given A i B R C in C. Then

T T
Fug)(Fuf) = A1 2470 1 e P e
- al 9" e
= Fu(gf)
To verify that Gy is a functor note that Gr(na) = paTna = 1TA For f:A— Bandg:B—C
T
Gulof) = 1AL 1B J rrre T4 rre S e

— 14 L e T rrre 1S e P e

- TAJTTBHTBHTTCKC»TC

= (Gng)(Guf).

As GrFr(f) = Tf we can take the unit of the adjunction to be 1. Since F;GrnA = T' A we take the counit

to be 174.

We need to check that the counit is natural; in particular, we need to check that
FnGnf

FnGnA FnGnB
lTAl llTB
A ! B
commutes. As T
FHGH(f) —ra L rrp HE g EB» TTB
Tf lrrs

the top composite is TA — TTB a2 TBnrgTTB —— TTB TB note that the composition of the
last three functions is 175 so this is simply pp(Tf), which is the bottom composite by definition.
It remains to show that n and € satisfy ery (Frin) = 1g, and (Gne)ngn = 1gy- The first of these is

1
A A A L TS A PA 1A
which is simply 74, exactly the image of the identity under Fy;. The second of these is just one of the triangle
conditions on n and . ([l

Given a monad IT on C, let Adj(IT) denote the category whose objects are adjuctions C = D inducing II
and whose morphisms (F 4 G) — (F' 4 G’) are functors k : D — D’ such that kF = F' and G’k = G.

Theorem 5.7. The Kleisli adjunction (Fr 4 Gn) is initial in Adj(II) and the Eilenberg-Moore adjunction
(F 4 G is terminal.

Proof. Let F': C &2 D : G be an arbitrary object of Adj(II); let € be the counit of the adjunction. We define
k:D — C" by kB = (GB,Gep): note that (Gep)ngs = lgp and (Gep)(Gerap) = (Gep)(GFGep) by
naturality of e. And k(g : B — B’) = Gg (which is an algebra homomorphism since ¢ is natural). clearly
Gk = G and kFA = (GFA,Gepa) = (TA,pa) = FUA and kF(f : A — A') = GFf = Tf = FUf. If
k: D — CU satisfies G'k' = G and k'F = F™ then necessarily ¥'B = (GB,8g) and k'g = Gg for some
B : FGB — B in D yielding Srep = uep = Gergp and fp(GFGep) = (Gep)(Gepgp). But this would
still hold with Sp replaced by Gep and GFGep is split epic (a.k.a has a right inverse) so fp = Gep.

Now define L :Cy — Dby LA=FAand Lf =epa Ff for f: A— A’. To check that L is a functor
Lhu(f:A— A= FA LL par T4 papa FAL _ gy
GLA=GFA=TA=GnA. GL(f) = (Gerpa )(GFf) =T fus = Guf. We need to also check uniqueness.

O

Theorem 5.8. Let II be a monad on C. Then
(i) GM:C"M — C creates limits of all shapes which exist in C
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(ii) G creates colimits of shape J iff T preserves them.

Proof.

(i) Suppose we are given D : J — C" and suppose G'D has a limit (A; : L — G"D(j)|j € obJ)
in C. Write D(j) as (GD(j),6;). Then the T'A; form a cone over TG D and the §; form a natural
transformation TGD — GD, so the composites (§;)(T'A;) form a cone over GD. Hence we get a
unique 0 : TL — L such that X\;6 = 0,;(T\;) for each j. We claim that (L,6) is a IT-algebra. To
verify (e.g.) the associativity axiom we have to show euqality of two morphisms TTL =2 L; but

TT), f
their composites with each A; can be factored as TTL 3 TTGD(j) == GD(j) where f = g

g
since D(j) is an algebra. If we're given any cone (u; : M — D(j)|j € obJ) in C! we get a
unique factorization p; = A;j¢ for a unique ¢ : GM — L in C and ¢ is an algebra homomorphism
M — (L,0) by the same argument as before.
(ii) To see the forward direction, note that if G' creates colimits of shape J then T'= G F! preserves
them since F'! preserves all colimits that exist. For the backwards direction copy the argument of
(i) but use the fact that if L is the summit of a colimit cone then so are TL and TTL.

Definition 5.9. We say an adjunction F : C 2 D : G (with induced monad II) is monadic if the comparison
functor K : D — C' is part of an equivalence. We also say G : D — C is monadic if it has a left adjoint and
the adjunction is monadic.

O

Given an adjunction (F' - G), for any object B of D we have a diagram

FGEB €RB
FGFGB —; FGB —+ B
€FGB
(called the standard free presentation of B); the monacity theorems all use the idea that C! is characterized
in Adj(IT) by the fact that this diagram is a coequalizer for any B.

Definition 5.10.

(i) We say a parallel pair f,g : A — B is reflexive if there exists r : B — A such that fr = gr = 1p.
By a reflexive coequalizer we mean a coequalizer of a reflexive pair.
(ii) We say a diagram

B
A_gsBT——C
t S

is a split coequalizer diagram if it satisfies hf = hg, hs = 1¢, gt = 15 and ft = sh. If these hold
then h is indeed a coequalizer of f and g: if k : B — D satisfies kf = kg then k = kgt = kft = ksh
so k factors through h and this factorization is unique since h is a split epic.

(iii) Given G : D — C we say a parallel pair f,g : A — B is G-split if Gf, Gg are part of a split coequalizer
diagram in C. Note that the standard free presentation FGep, epgp : FGFGB — FGB is reflexive
with common splitting F'ngp, and also G-split since

GFGEB GGB
GFGFGB -Gepgp GFGB — GB
NGFGB GB

is a split coequalizer diagram.

Theorem 5.11 (Precise Monadicity Theorem). Let G : D — C be a functor. Then G is monadic iff
(i) G has a left adjoint
(ii) G creates coequalizers of G-split pairs.
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Theorem 5.12 (Crude Monadicity Theorem). Let G : D — C be a functor and suppose
(i) G has a left adjoint,
(ii) G reflects isomorphisms
(iii) D has and G preserves coequlizers of reflexive pairs.
Then G is monadic.

Proof of both theorems. The forward direction of 5.11 follows from theorem 5.8 part (ii) since T' must preserve
split coequalizers and so G : C™' — C creates G'-split coequalizers.

Now we will show 5.12 and the backwards direction of 5.11. We have K : D — C' where II is the monad
induced by (F 4 G). Define L : C'' — D by setting L(A, ) to be the coequalizer of Fa,epq: FGFA — FA
(note that this is reflexive since F'n4 is a common splittling, and G-split since

GFuo o
GFGFA Gepx GFA— A
NGFA ha

is a split coequealizer diagram). On morphisms L is defined so that
FGFA — FA— L(A«)

FGFfl lFf lLf

FGFB — FB — L(B,f)
commutes; this is clearly functorial. Note that

GFa o
KFGFA —= KFA ——~ (4,a)

A \l

KL(A )
is a G-split coequalizer so we get a unique factorization (A, «) — KL(A, «) which is natural in A. KB =
(GB, Gep) so we have a coequalizer diagram

FGeB
FGFGB —; FGB — LKB

€FGB
€B

B
so we get a unique factorization LK B — B which is natural in B. The unit (A,a) — KL(A,«) maps
to an isomorphism A — GL(A,«) in C provided G preserves the coequalizer defining L, but G reflects
isomorphisms so it must be an isomorphism in C™. Similarly, LK B — B maps to an isomorphism in C, so
if G reflects isomorphisms or if G creates the coequalizer of FGFGB = FGB then KB — B must be an
isomorphism. ([l

Examples 5.13.

(a) For any category of algebras (in the universal algebra sense) e.g. Gp, Rng, Modg, the forgetful
functor to Set is monadic. The left adjoint exists and the functor reflects isomorphisms. We note

1 h 2 h
that if Ay — B, = Cq and Ay — By = Cs5 are reflexive coequalizers in Set then
9 g2

Jix fa hy x hy

A1 x Ag By x By

01XCE

g1 X g2
is a coequalizer: note that two elements by,by € B; are identified in C; iff we can link them by
a chain bycica - - - ¢,ba where each adjascent pair is the image of either (f,g) : A; — B; X B; or
(9, f) : A; — B; x B;. If we have strings linking by 1 to b1 2 and by 1 to ba o we can link (b1, b2.1) to
(b1,2,b2.1) to (b1,2,b22) since both pairs are reflexive. Hence if A = B — C' is a reflexive coequalizer
in Set so is A" = B™ — C" for any finite n. So if A and B have an n-ary operation and f, g are
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homomorphisms for i = 1,2 we get a unique C™ — C making h a homomorphism. This shows that
U : A — Set creates reflexive coequalizers.

Any reflection is monadic. The direct proof is on exercise sheet 3, but it can also be proved using
theorem 5.11. Suppose F' : C &2 D : G is a reflection: identify D with a full cubcategory of C. If
f,g9: A — Bis a G-split pair in D we have a split coequalizer diagram

4f, h
A_4g+sBT—C
t S

in C and we need only show that C € obD. We know that sh: B — Bisin D but s : C' — B is an
equalizer of sh and 1p and D is closed under limits since its reflective in C so we see that C' must
be in D also.

F L
Consider the composite adjunction Set === AbGp == tfAbGp where tfAbGp is the category of
U 1

torsion-free abelian groups. Each factor is monadic by the previous two examples, but the composite
isn’t since free abelian groups are torsion free and so the monat on Set induced by (LF - UI) is
isomorphic to that induced by (F - U). In general, given an adjunction F : C & D : G where D
has reflexive coequalizers we can form the “monadic tower”

(ch?

.

CH

A

C

where II is the monad induced by (F' 4 G), L is left adjoint to the comparison functor K, S is the
monad induced by (L - K) and so on. We say (F 4 G) has monadic length n if this produces an
equivalence after n steps. So Set = TfAbGp has monadic length 2.

Consider the adjunction D : Set = Top : U. The monad induced by this adjunction is (1get, 1, 1)
so its category of algebras is isomorphic to Set and hence the adjunction has monadic length co.

p

Consider the composite adjunction Set &< Top +— kHaus. This is monadic. E. Moves gave a
1

direct proof but we will use 5.11. We need to show that UI creates coequalizers of UI-split pairs.

So suppose f,g: X — Y is a parallel pair in kHaus and

S
X—g»y4><Z
t S

is a slit coequalizer diagram in Set. We need to show there’s a unique compact Hausdorff topology
on Z which makes h continuous and that it’s a coequalizer in kHaus. We can think of Z as
a quotient Y/R so if we equip it with the quotient topology we get a coequalizer in Top. The
quotient topology is certainly compact, so it’s the only topology making h continuous which could
possibly be Hausdorff. Fact: If Y is compact Hausdorff and R C Y x Y is an equivalence relation
then Y/R is Hausdorfl iff R is closed in Y x Y. Claim: the equivalence relation R generated by
{(f(x),g9(x)) |z € X} is the set {(g(z1),g(x2)) | 21,22 € X s.t. f(z1) = f(x2)}. Forif (y1,942) € R
then h(y1) = h(y2) so ft(y1) = sh(y1) = sh(y2) = ft(y2) so y1 = g(x1), y2 = g(x2) where x; = t(y;)
and f(x1) = f(z2). The set above is closed in X x X since Y is Hausdorff. Thus Y/R is compact,
and its image under g X g is compact and hence closed in Y x Y.
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6. ABELIAN CATEGORIES

Definition 6.1. Let A be a category equipped with a forgetful functor U : A — Set. We say a locally
small category C is enriched over A if we're given a factorization of C(—, —) : C°P x C — Set through U. If

A = Set, we say C is a pointed category. If A = CMon we say C is semi-additive. If A = AbGp then we
say C is additive.

Lemma 6.2.

(i) If C is pointed and I € obC the following are equivalent:
(a) I is initial
(b) I is terminal
(¢) 11=0:1—1.
(ii) If C is semi-additive and A, B,C € obC the following are equivalent:
(a) There exist T : C — A and w5 : C — B making C a product A x B.
(b) There exist vy : A — C and vy : B — C making C' a coproduct A1l B.
(¢) There exist morphisms 1, T, v1,ve (as above) satisfying mivy = la, move = lg, muv; = 0,
TV = 0 and V1T + VaTp = 10.

The proof is left as an exercise.

Lemma 6.3. Suppose C is a locally small category with finite products and coproducts such that 0 : ) — *
is an isomorphism and the morphism AIl B — A X B (induced by 14 and 15), is an isomorphism. Then C
has a unique semi-additive structure where 0 : A — B is the unique morphism factoring through 0.

Proof. The 0 of the semi-additive structure has to be as defined as in the statement, since we need 0f = g0 =0

~ 1pII1
for all f and g. Givenf,g'A—>Bwedeﬁnef+pgtobeAf—x‘zB><BHBHBuBandfh«g

1 1 ITg
to be A SAXA Ax A— A A —— B. Weclaim that 0 is a unit for both +, and +,.. Consider f+,0,

and consider the following diagram which shows the desired statement:

% 0 15111
119 5.8 BuUB-2—%

KT

BxI > BIT
f \\// ’
B

Given four morphisms f, g, h,k : A — B consider

(f4eg)+r (h+ek) =

1x1 11 1111
A A ana WX xE) ooy S g taL g

Al aca s ana UM Igtek) o

- (.f +r g) +¢ (h +r k)
so +¢ = +, and it is an associative and commutative operation.
11/17/07
For the uniqueness, recall from the previous lemma that if we have any semi-additive structure then the
identity map A x A — A x A is equal to v17 + vems. So given f,g: A — B the composite

B

A A ana Y 5o
1x1 11
Al gm0 anma I
R R DAL S i

Thus f + g = f 4+, ¢ and the structure is unique. O
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Definition 6.4. An object which is both inital and terminal is called a zero object. An object which is
both a product A x B and a coproduct AII B is called a biproduct and denoted A ® B. We will use product
notation for maps between biproducts.

Corollary 6.5. Let C and D be semi-additive categories with finite products. The functor F' : C — D
preserves finite products iff it preserves addition, i.e. iff F(0) =0 and F(f+g)=Ff+ Fg.

Proof. If F preserves addition then it preserves biproducts by lemma 6.2. The converse follows from lemma
6.3. |

Definition 6.6. Let C be a pointed category. By a kernel (dually, a cokernel) of a morphism f: A — B
we mean an equalizer (dually, a coequalizer) of f and 0 We say a monomorphism (dually, an epimorphism)
is normal if it occurs as a kernel (cokernel). We say f : A — B is a pseudo-epimorphism if fg = 0 implies
g = 0 (equivalently, the kernel of f is 0 — A).

If C is additive then every regular monomorphism is normal, since the equalizer of f,g : A — B has
the same univeral property as the kernel of f — g. And every pseudo-morphism is monic since fg = fh iff
flg—"h)=0.

In Gp every monomorphism is regular, but a monomorphism H — G is normal iff H is a normal subgroup
of G. But every epimorphism f : G — K is normal, since if f is surjective then K = G/ ker f.

In Set every monomorphism is normal, since if f : A — B is injective it’s the kernel of B — B/ ~ where
by ~ bo iff by = bo or {b1,bo} C imf. But not every epimorphism in Set, is normal.

Lemma 6.7. Let C be a pointed category with cokernels. Then f : A — B is a normal monomorphism iff
f = ker coker f.

Proof. The backwards direction is trivial. For the forwards direction, suppose f = ker(g : B — C). Let
q = coker f. Then g factors as hq since gf = 0. Now given any k£ : £ — B with ¢k = 0 we have
gk = hqgk = 0 so there’s a unique factorization k = f£. Thus any k such that gk = 0 factors through f and
so f = ker g = ker coker f.

]

Lemma 6.8. Suppose C is pointed with kernels and cokernels and every monomorphism in C is normal. Then
every morphism of C factors as a pseudo-epimorphism followed by a monomorphism, and the factorization
is unique up to isomorphism.

Proof. Given f: A — B, let ¢: B — C be the cokernel of f and let k: D — B be the kernel of q. We get a
factorization f = kg; we claim g is pseudo-epic. Supose h : D — FE satisfies hg = 0 and let ¢ = ker h. Then
k¢ is monic so k¢ = ker m for some m. We can factor g as fn so f = kg = kén, so mf = 0, so m = pq for
some p. Now gk = 0 since k = ker ¢ so mk = 0 so k factors through k¢. But k£ and ¢ are monic so this forces
¢ to be an isomorphism and hence h = 0.

\/\/

F—»D—»E

For uniqueness, suppose f factors as kg where g is pseudo—eplc. Then coker f = coker k. So if k is also a
monomorphism then g = ker coker k = ker coker f by 6.7. |
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Definition 6.9. An abelian category is an additive category with finite limits and colimits (equivalently
finite coproducts and products, kernels and cokernels) in which every monomorphism and every epimorphism
is regular (equivalently, normal).

Example 6.10. AbGp, Modg, [C, A] where A is abelian. If C is additive and A is abelian then the
subcategory Add(C, A) C [C, A] of additive functors C — A is abelian. Note that Modp = Add(R, AbGp)
where we consider a ring R as an additive category with one object.

11/20/06
In a pointed category with kernels and cokernels we write im f for ker coker f and coim f for coker ker f.

In an abelian category, any f factors as (im f)g with ¢ epic, and as h(coim f) with A monic (by 6.8) and
these factorizations must be isomorphic. In general, we get a comparison map

A ! B
Coimfl B Iimf
E ! D

and in an abelian category f is always an isomorphism.
Note that A is abelian iff A is additive with finite limits and colimits and every f factors as (im f)(coim f).

Lemma 6.11. Suppose we are given a pullback square

4t p

gjkjh

C—D

in an abelian category with h epic. Then the square is also a pushout and g is epic.

- h1lk
Proof. Consider the diagram A fx—yg B®C —— D. We have (hl1k)(fx—g) = hf —kg = 0 and the fact
that (f, g) has the universal property of a pullback implies that f x —g = ker(h11k). But (RIIk)(1x0) =h
is epic so h IT k is epic and therefore by 6.7 h IT k = coker (f x —g), so the original square is a pushout.

f

Now consider the cokernel € : C' — E of g. Then € and 0 : B — FE form a cone under C' Jalp
so they factor uniquely through D, say by r : D — E. Then rh = 0 but h is epic so 7 = 0 and therefore
qg = rk = 0. Hence g is an epimorphism. |

f

Definition 6.12. We say a sequence of morphisms --- — A R B — C — ---is exact at B if ker f =
img (or, equivalently, coker g = coim f). Note that f : A — B is monic iff 0 — A i B is exact, and

f:A— Bisepiciff A —f> B — 0 is exact. A functor F' : A — B between abelian categories is called
exact if it preserves exactness of sequences. We say F' is left exact if it preserves exactness of sequences
of the form 0 — A — B — C, and F' is right exact if it preserves exactness of sequences of the form
A— B—C —0.

By considering the exact sequences

1x0 001 1110
0—+A—>A®pB— B —0 and OAB—>A B——A—0
we see that any left exact functor must preserve biproducts, i.e. it must be additive. Hence F' is left exact
iff " preserves all finite limits. Also, F' is exact iff F' preserves kernels and cokernels iff F' preserves all finite
limits and colimits.

Lemma 6.13 (Five Lemma). Suppose we are given a diagram

A1&A2£A34>A44>A5

s oal A |l

U1 V2 U3 V4
By — By —+ B3 — B, — B;
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i an abelian category where the rows are exact. Suppose also that f1 is epic, fo and fy are isomorphisms
and fs is monic. Then f3 is an isomorphism.

Proof. First we show that f3 is monic. Let k : K — A3 be the kernel of f3. Now fjusk = v3f3k =0 and fy
is monic so uc.k = 0, so k factors through ker us = im us. Hence if L is the pullback of k and us in

L \e‘
I—K
E \j
%
% |s
A2 —— A3
Uz

it is isomorphic to the pullback of Ay — I <— K, so e: L — K is epic (as g is epic). Now v fol = faugl =
fske =0 so fyl factors through ker v, = imwv;. Consider the pullbacks

vt N-—So M
ml lgfg and nl lm.
B, L B, A, 1. B,

Then d is epic (by the same argument as above) and ¢ is epic (as f is epic). folde = vime = vy fin = fourn;
f2 is monic so ¢dc = uin. Now kedc = uglde = usuin = 0. But edc is epic so k = 0, i.e. f3 is monic. Dually,
f3 is epic, so it is an isomorphism. O
Lemma 6.14 (Snake Lemma). Suppose we are given a diagram as below, in which the columns are exact,
the two middle rows are exact, and all of the squares commute. Then there exists a morphism A3 — Dy
such that Ay — Ag — A3 — D{ — Dy — D3 is exact.

0 0 0

]

A14>A24>A3

e

By —> By #— By —— 0

N

0 C—5C—

7

Dy — Dy — D3

I

0 0 0

Definition 6.15. By a complex in an abelian category A we mean a sequence
dni1 d

n
e n+14'cn4’0n—14""

The proof is omitted.

of objects and morphisms such that d, d,,+1 = 0 for all n. Note that this is just an additive functor Z — A
where ob Z = Z, Z(n,n) = Z (with 1 as the identity morphism), Z(n,n — 1) = Z, and Z(n,m) = {0} if
m # n,n — 1 (with the obvious definition of composition). Hence the complexes of A are the objects of an
abelian category cA = Add(Z, A). Given a complex C we define Z,, — C,, to be the kernel of C,, — C,_1,
B, — C, :im(dny1), Zn — H, = coker (B,, — Z,). Equivalently, we could form C,, — A,, = coker (d,+1)
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and then Z, — H, — A, is the image factorization of Z,, — C,, — A,. Each of (C. — Z,), (Cx — A,),
(Cy — By) and (Cy — H,,) defines an additive functor cA — A. Note that H, = 0 iff C, is exact at C,,.

Theorem 6.16 (Mayer-Vietoris). Suppose that we are given an exact sequence 0 — Cl, — C, — CJ — 0 in
cA. Then there is an exact sequence

.—H —H, —~H' —H | — Hy_ — -
of homology objects in A.
Proof. First consider the diagram
0 0 0

.

Z;—»ZnHZ;{

|

c, ——C,—Cl —— 0

/
d/ l d ldl/

! i
00— Cnfl g n—1 —* n—1

L

A/ . An—l _ AII

n—1 n—1

L

0 0 0
By lemma 6.14 the top and bottom rows are exact. Moreover Z/, — Z,, is monic since

Zl—Z,—C,=27,—Cl —C,

is monic and similarly A,,_1 — A!/_; is epic. Now consider

dy,
Cn+ 1 4+1’ Cn

I

Zn+1 - An+l I Zn - An

Note that Hy41 — Apy1 =im (Zpp1 — Apt1) = ker(Any1 — Z),). Now we can consider

0 0 0
H, —> Hp41 — Hvlz/+1

n+1

b

I "
AnJrl - An+1 - An+1 —0

ld; ldn ld;{

0— 2, — > Z, —— 7"

L

H ——~ H, — H/

o

0 0 0
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By 6.14 we get a morphism H,/,; — H,, making the sequence H,,,, — H,41 — H, | — H, — H,, — H]
exact. 0

7. MONOIDAL AND CLOSED CATEGORIES

We frequently encounter instances of a category C equipped with a functor ® : C x C — C and an object
I € obC which makes C into a monoid up to isomorphism in Cat.

Examples 7.1.

(a) Any category with finite products, with ® = x and I = . We know that Ax (BxC) = (Ax B)xC
and * X A 2 A = A X x since they are limits of the same diagrams. Similarly, any any category
with finite coproducts with ® = II and I = §).

(b) In AbGp we have the usual tensor product ® with unit Z. In Modpg (for R commutative) we have
®pr with unit R.

(¢) For any C we have a monoidal structure on [C,C] where ® is composition of functors and I is the
identity functor.

(d) Consider the category A with obA = A and morphisms n — m are order preserving maps
{0,...,n — 1} — {0,...,m — 1}. This has a monoidal structure given on objects by + and on

. .. . +
morphisms combining maps in parallel (?) e.g. n+m — n’ +m' by

Note that although n +m = m + n this isn’t a natural isomorphism.

Definition 7.2. By a monoidal structure on a category C we mean a functor ® : C x C — C and an
object I equipped with natural isomorphisms s pc: AQ(B®C) - (AQB)QC, Ay : I® A — A and
pa: A® I — A such that all diagrams constructed from instances of a, A\, p commute. In particular, we ask
that the diagrams

6%
A® (B® (C® D)) 4,8,08D

+ (A® B)® (C ® D)
l]«A ® aB,c,p laA®B,C,D

A® ((B®C)® D) (A®(B®C))®DM((A®B)®C)®D

QA,BRC,D
and

©(eB) “ALE AsDe

1a ®>« »4813

commute. Note that for (AbGp, ®,Z) the usual « sends a generator a ® (b ® ¢) to (a ® b) ® ¢, but we also
have an isomorphism @ sending a ® (b ® ¢) to —(a ® b) ® ¢, but this doesn’t satisfy the pentagon condition.

Theorem 7.3 (Coherence Theorem for Monoidal Categories). If these two diagrams commute then every-
thing does. More formally, we define a set of words in ® and I as follows: we have a stack of variables
A,B,C,D,... which are words, I is a word, if u and v are words then (u®v) is a word. If u,v,w are words
then aypw U ® (VO w) — (u®v) @ w is an instance of o (similarly an instance of X\ and p). Also, if
0 :v— v is an instance of a, X or p so are 1, 0 : (uv) > (U V) and 6 R 1, : (VO w) — (VV @ w).
The body of a word is the sequence of variables that appears in it. The theorem says: given two words w,w’
with the same body there is a unique isomorphism w — w’ obtainable by composing instsances of a, A, p and

their inverses.
11/24/06
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Proof. Note that a word involving n variables defines a functor C* — C and each instance of a, A, or p
defines a natural isomorphism between two such functors. We define a reduction step to be an instance of
a, A or p (as opposed to their inverses). We define the height h(w) of a word to be a(w) + i(w), where i(w)
is the number of occurrences of I in w and a(w) is the number instances of a ® occurring before a (. Note
that if 6 : w — w' is an instance of « then i(w) = i(w’) and a(w) > a(w’), and if @ is an instance of A or p
then i(w) > i(w’) and a(w) > a(w’). Hence any sequence of reduction steps starting from w must terminate
at a reduced word from which no further reductions are possible. Reduced words are those of height 0:
(- (AL ® A)) ® A3) ® - -+ ) ® A,, and the word T of height 1. These are the only reduced words, since if
i(w) > 0 and w # I then w has a subword (y ® I) or (I ® v) to which we can apply p or A. If a(w) > 0 then
there is a substring - -+ ® (- in w and hence a subword (u ® (v ® z)) to which we can apply «. For any w any
reduction path from w must lead to a reduced word wy with the same body.

Note that in order to prove the theorem it suffices to show that any sequence of reduction steps can be
put into a commutative diagram. In particular, if we can show that there is a unique morphism 6,, : w — wy
then any morphism w — w’ which is a composition of «, p, \’s (and their inverses) must be a composite
Gw, 0., so any two of these can be put into a commutative diagram.

To prove that any pair of reduction steps 6, ¢ can be embedded in a commutative polygon we consider
the following cases.

Case 1: 6 and ¢ operate on disjoint subwords. So w = ---(v@w)--- and § = --- (¢’ ® 1)--- and ¢ =
-+ (1®¢')---. Then we have the following diagram
1® ¢
(o w) ~ 2% W)
®1 l@' ®1
/
(@) L2% W o)

by functoriality of ®.
Case 2: ¢ operates within one argument of 0, e.g. 0 = a0 U (V) — (UQV)®z and ¢ = (1® (¢’ ®1))
where ¢’ : v — v’. Then we have

Mu®(v’®x)

|

(u@v)®z

u® (v x)

.

(u®v)®xM

by naturality of «.
Case 3: 0 and ¢ interfere with each other.
If 0, ¢ are both o’s w must contain a subword u® (v® (x®y)) and 0, ¢ are ay y zgy and 1@ Ay 4y
in some order. Then we simply use the pentagon identity. If 6 is a A and ¢ is a p then w contains
- I®I--- and 8 = A\;, = pr so we need to know that \; = p;. To see this note that

I®lI
A1 Ar®1r

©I) L (1
commutes. But 1;®@A; = A\jgr as A\;(1;®A1) = ArArgr by naturality of A and A; is an isomorphism.
Since ay ;1 is also an isomorphism it follows that p;®1; = A;®1;. But -®1[ is naturally isomorphic
to the identity so pr = A;.

If 6 is an o and ¢ is a A then either w contains u ® (I @ v), 6 = v, 1, and ¢ = 1, @ A, (s0 we
can use the triangle) or w contains I ® (u ® v), @ = a4, and ¢ = A\yg,. For this case we need to
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know that

QT u,v

I®(u®wv) (I®u)®wv

)\’IJ,@’U )\u ® 11}
uURu
commutes. Note that it suffices to prove this for this triangle with a leading /® added, since I ® - is
naturally isomorphic to the identity. Thus what we want to show is that triangle % in the following
diagram commutes:

a
19 (I®(A® B)) L1ASE »(I® 1)@ (A® B)
1r ® Aagn
pr @ lags
11 ®@araB * I®(A® B) QIQI,A,B
1[@(/\A®13)
Q1,A,B
! (pr®1a)®1p '
I®(I®A) ®B) (I®A) @B < (Iel)®A)®B

(1 ®X4) @15
QI I®A,B ‘ arraA®lp
(I®(®A)®B)

Note that the outside of this diagram is an instance of the a-pentagon. The two unlabelled triangles
are instances of the a-A-p identity, and the two quadrilateral cells commute by naturality of o. But
from this we see that

arae(li®Aags) =arap(li®(Aa®1p))(l; @ araB)

and as ag, 4,p is an isomorphism triangle * also commutes.
If 6 is an « and ¢ is a p then w contains u ® (v I), 0 = vy 1 ¢ = I & p, so we need to know
that

Qo v, T

u® (vel) (uv)®Il

1 ® py Pu®v
U QU

commutes. This is shown analogously to the proof above using the pentagon between AQ(B®(I®I))
and ((A® B) ® I) ® I and the fact that all of the maps in the pentagon are isomorphisms.

]

Definition 7.4. Let (C,®,I,a, )\, p) be a monoidal category. By a symmetry for ® we mean a natural
transformation y4, 5 : A® B — B ® A satisfying

QA,B,C
—_—

A® (B®C) (A B)eC
1®V wj\ic
A® (C® B) C®(A® B)

&’C\’B /
Ya,c ®1 aC,A.B

(AC)® B (CoA) @B
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and
ToA— 4 | Al AeB VA5 B® A
s\ ,4 &\ »/B,A
A A®B

There is a coherence theorem for symmetric monoidal categories similar to 7.3 (but more delicate: note that
va,.4 # laga in general).

Warning: a given monoidal category may have more than one symmetry. For example, take C = AbGrpZ
with (Ax @ By)p = ®p+q:n A, ® By and I, = Z for n = 0 and 0 otherwise. We could define y4 g to be the
map a®@b — b® a or we could take a ® b — (—1)P?b ® a where a € A, and b € B,. Both of these satisfy the

above conditions.
11/27/06

Definition 7.5. Let C and D be monoidal categories, and F' : C — D a functor. By a (lax) monoidal
structure on F we mean a natural transformation 64 5 : FA® FB — F(A® B) and a morphism ¢: I — FI
such that the diagrams

120 0
FA® (FB® FC) ~—2 2% pAe F(Bo C) “22%% FAs (Be C)
OZFA,FB,FCl lFOlA,B,C
0ap®1

0
(FA® FB)® FC F(A® B)® FC 2225 p((Ae B)® 0)

and

1
10FA %S FroFA
)\FAJ leI,A
FA
FA—224 F(I®A)

and the analogous diagram for p commute. If the monoidal structures on C and D are symmetric we say
that (6, c) is a symmetric monoidal structure if

0
FA® FB 2% F(A® B)
YFA,FB Frvya B

0
FB® FA 24 F(B® A)

commutes. We say that (6, c) is a strong monoidal structure if § and ¢ are isomorphisms. Given monoidal
functors (F,0,¢) and (G,~, k) we say a natural transformation 5 : F' — G is monoidal if

FA©FB - FA® B) R
Ba ® BB l lﬂA@B and k\ lﬁl
GA®GB > G(A® B) GI

commute.

Examples 7.6.

(a) Let R be a commutative ring. The forgetful functor (Modg,®gr,R) — (AbGp,®,Z) is lax
monoidal: if A and B are R-modules we have a quotient map A® B - A®g B andi:Z — R
sending n to n - 1g.

(b) The forgetful functor (AbGp, ®,Z) — (Set, x,1) is lax monoidal: we take the universal bilinear
map A X B — A® B where (a,b) — a®b for ® and 7 : 1 — Z picks out the generator 1 € Z.
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(¢) The functor AbGp — Modpr which sends A to R ® A is strong monoidal: we have canonical
isomorphisms R®Z =~ Rand (R® A)@r (R®B) X R®(A®r R)®@ B~ R® (A® B). In general
given a monoidal adjunction (F' 4 G) (i.e. one for which the unit and counit are monoidal natural
transformations) between lax monoidal functors the left adjoint is always strong: we get an inverse
for FA FB — F(A® B) from the composite

(na ®nB) F €FAQFB

F
F(A® B) GFA® GFB) — FG(FA® FB) FA® FB

(d) If (C, x,1) and (D, x,1) are cartesian monoidal categories then F : C — D is strong monoidal iff F’
preserves finite products.

0
FAx FB 2% F(A x B)

| |

FAXxF1—— F(Ax1)

| |

FAXx1 FA
shows that 6§ commutes with the projections.
(e) Any functor F' between cocartesian monoidal categories has a unique lax monoidal structure and
this structure is strong iff ' preserves finite coproducts.

Definition 7.7. Let (C,®,I) be a monoidal category. By a monoid in C we mean an object A equipped
with morphisms m: A® A — A and e : I — A such that

1
AR (A A) 2 L AeA
OCA,A,Al lm
1
Ao oA lE25 4g4 "0 4
e®1 1®e

IQA— AR A <

N

A

commute. If ® is symmetric we say that (4, m,e) is a commutative monoid if

A A — 144 L Ag A

A

also commutes.

Examples 7.8.

(a) In (Set, x, 1) monoids are just monoids in the usual sense. Similarly we can consider monoids in
any category with finite products, e.g. Top. A monoid in Cat is a strict monoidal category.

(b) In a cocartesian monoidal category (C,II,0) every object has a unique (commutative) monoidal
structure, given by the unique morphism 0 — A and hte codiagonal map (14,14) : AITA — A.

(¢) In (AbGp, ®,Z) (commutative) monoids are (commutative) rings.

(d) In [C,C] monoids are monads on C.

(e) In A the object 1 has a monoid structure given by the unique maps 0 — 1 and 2 — 1. This
is the “universal monoid”: given any monoidal category (C,®,I) the category of strong monoidal
functors A — C is equivalent to the category of monoids in C by the functor sending F' : A — C
to F(1). (Note that given a monoid (A, m,e) in B and a (lax) monoidal functor F': B — C, FA
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0 F k F
has a monoid structure given by FA® FA — F(A® A) T FAand I > FI S FA.) Given
a monoid (A4, m,e) in C the morphisms

(- (AQA) - )RA—= (- (AR A)---)® A

n factors m factors

obtainable by composing instances of m and e correspond to morphisms n — m in A.

There is also a universal commutative monoid, living in the category Set of finite sets and functors be-
tween them (with the cartesian monoidal structure): it is the terminal object . Given a commutative monoid
(A,m,e) in an arbitrary symmetric monoidal category (C,®,I) the assignment n — (---(A® A)---)® A

n factors
can be made into a strong symmetric monoidal functor Set; — C.

Definition 7.9. Let (C,®,I) be a monoidal category. We say the monoidal structure is left closed if, for
each A € obC A® - : C — C has a right adjoint. Similarly ® is right closed if - ® A has a right adjoint.
If both hold we say ® is biclosed. For a symmetric monoidal structure ® we simply say ® is closed if it’s
left (equivalently right) closed. We write [A, —] for the right adjoint of - ® A. So we have natural bijections

ﬁgg}_’% (natural in A and C).

Examples 7.10.

(a) (Set, x,1) is closed. (We say C is cartesian closed if (C, x,1) is closed.) We know that functions
A x B — C correspond naturally to functions A — C® (where C® is the set of functions B — C)
so we set [B,C] = CB.

(b) Cat is cartesian closed. Here we take [C,D] to be the category of all functors C — D and it’s easy
to see that functors B — [C, D] correspond to functors B x C — D.

(¢) For any small category C [C, Set] is cartesian closed.

Proof 1. Use the Special Adjoint Functor Theorem: - x F : [C,Set] — [C, Set] preserves all small
colimits, since limits and colimits are constructed pointwise. We know [C, Set] is cocomplete and
locally small, has a separating set {C(A, —) | A € obC} and it’s well-copowered (since epimorphisms
are pointwise surjective). O

Proof 2. Use the Yoneda Lemma. Whatever [F,G] is, elements of [F,G](A) must correspond to
natural transformations C(4,-) — [F, G] and hence to natural transformations C(4,-) x F — G. So
we define [F, G]|(A) = [C,Set](C(A,-)x F — G). Given f : A — B we have C(f,-) : C(B,-) — C(4,")
and composition with C(f,-) x 1, yields a mapping [F,G|(A) — [F,G](B). This makes [F,G] a
functor. O

Exercise: verify that, for any H, natural transformations H — [F,G] corespond bijectively to
natural transformations H x F — G.

(d) (AbGp, ®,Z) is closed: homomorphisms A® B — C correspond to bilinear maps A x B — C which
in turn correspond to homomorphisms A — AbGp(B, C') where AbGp(B, C) is equipped with the
pointwise abelian group structure, i.e. (f + ¢)(b) = f(b) + g(b). Similarly for (Modgr, ®r,R) if R
is commutative, or more generally for any finitely generated abelian category A which is enriched
over itself in “the obvious way”.

(e) Let A be a fixed set and consider the poset P(A x A) of binary relations on A. Composition of
relations defines a non-symmetric strict monoidal structure on P(A x A). This structure is biclosed:
if we have a morphism S o7 — R then T'C R/S where R/S = {(a,c)|¥b (b,c) € S = (a,b) € R}.
R/S is the largest relation such that So R/S C R i.e. -/S is right adjoint to S o -.

Lemma 7.11. In any closed monoidal category C the assignment (B,C) — [B,C] is a functor C°? x C — C
A—[B,C]

and the bijection F=p== is natural in all three variables.
Proof. Given g : B — B and h : C — C’ we define [g,h] : [B,C] — [B’,C’] to be the morphism corre-

1 h
sponding to [B,C] ® B’ %9 [B,C]® B ¢ % ¢ where er is the counit of (-® B 4 [B,"]). The rest is

straightforward verification. |
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Il

We can now construct natural isomorphisms such as [A, [B, C]]
transformations [B, C| ® [A, B] — [A, C] corresponding to

l1®er

[A® B,C]. We also have natural

[B,C]®[A,B] @ A [B,C]® B —» C

and I — [A, A] corresponding to Ay : I ® A — A. This defines an enrichment of C over itself, where we

regard C(I,-) : C — Set as a “forgetful functor” sinces morphisms I — [A, B] correspond to morphisms
A— B.

8. IMPORTANT THINGS TO REMEMBER

(i) The meaning of the Yoneda lemma.
(ii) What it means for (A4, z) to be the representation of a functor. (Take the representation of U :
Gp — Set as the usual example.)
(iii) Theorem 3.3 says that the naturality conditions in the definition of an adjunction mean that the
image of A needs to be the limit of the morphisms leading out of it.
(iv) Special/General adjoint functor theorems.
(v) The domain and codomain of im f and coim f and what these actually mean.

Z



