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Abstract. Using an intermediate language is a well-known, effective technique 
for constructing interpreters and compilers. This paper describes a retargetable, 
optimizing compilation system centered around the use of two intermediate 
languages (IL): one relatively high level, the other a low level corresponding to 
target machine instructions. The high-level IL (HIL) models a stack-based, 
hypothetical RISC machine. The low-level IL (LIL) models target machines at 
the instruction-set architecture level. All code improvements are applied to the 
LIL representation of a program. This is motivated by the observation that most 
optimizations are machine dependent, and the few that are truly machine 
independent interact with the machine-dependent ones. This paper describes 
several 'machine-independent' code improvements and shows that they are 
actually machine dependent. To illustrate how code improvements can be applied 
to a LIL, an algorithm for induction variable elimination is presented. It is 
demonstrated that this algorithm yields better code than traditional 
implementations that are applied machine-independently to a high-level 
representation. 

1 Introduction 

A retargetable, optimizing compiler must perform a comprehensive set of  code 
improvements in order to produce high-quality code for a wide range of  machines. A 
partial list of  code improvements that must be included in the compiler 's repertoire is: 

�9 register assignment and allocation, 
�9 common subexpression elimination, 
�9 loop-invariant code motion, 
�9 induction variable elimination, 
�9 evaluation order determination, 
�9 constant folding, 
�9 constant propagation, 
�9 dead code elimination, 
�9 loop unrolling, 
�9 instruction scheduling, and 
�9 inline function expansion. 

This list of  code improvements traditionally is divided into two groups: those that 
are considered to be machine-independent and those that are machine-dependent. 
Machine-independent code improvements are those that do not depend on any features 
or characteristics of  the target machine. Examples of  code improvements included in 
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this group are constant folding, dead code elimination, and constant propagation. 
Because of their machine-independence, these code improvements are often applied to 
the high-level intermediate language representation of the program. 

The proper application of machine-dependent code improvements, on the other 
hand, requires having specific information about the target machine. Obviously, code 
improvements such as register allocation and instruction scheduling are machine 
dependent. In the case of register allocation, the types and number of registers available 
affect the promotion of data to registers. Similarly, effective instruction scheduling 
requires information about the operation of the target machine's pipeline. Somewhat 
less obvious, but no less machine dependent are the code improvements inline function 
expansion and loop unrolling. Inline function expansion can be performed most 
effectively when details of the target machine's instruction cache is available. 
Similarly, the amount of loop unrolling performed depends on the number of target 
machine registers available, characteristics of the instruction pipeline as well as the size 
of the instruction cache. 

The belief that some code improvements are machine-independent and some are 
machine-dependent and the use of a single high-level intermediate representation 
results in a compiler with a structure shown in Figure la. Unfortunately, most code 
improvements are not machine-independent, and the few that truly are machine 
independent interact with those that are machine dependent causing phase-ordering 
problems. For example, dead code elimination is machine independent. However, it 
interacts with machine-dependent code improvements such as inline function 
expansion. Expanding functions inline exposes new opportunities for dead code 
elimination by effectively propagating constants across calls. Hence, essentially there 
are no machine-independent code improvements. In Section 2, some code 
improvements that typically are viewed as being machine independent are examined 
and shown to be machine dependent. This section also provides examples of how true 
machine-independent code improvements interact with machine-dependent ones. 
Section 3 describes a compiler structure that uses two intermediate languages: a high 
level intermediate language (HIL) that serves to isolate the language-dependent portion 
of the compiler from target machine details, and a low-level intermediate language 
(LIL) that supports the application of global code improvements. Section 4 contains a 
detailed description of an induction variable elimination algorithm that operates on a 
low-level representation of a program. The algorithm is largely machine independent, 
and requires no modification when the compiler is retargeted, yet it generates superior 
code when compared to a traditional HIL implementation. Section 5 evaluates the 
effectiveness of the LIL implementation of induction variable elimination on a set of 
representative benchmark programs. 

2 The Case for Machine-Dependent Global Optimization 

To illustrate the point that all code improvements are effectively machine dependent, 
consider constant propagation. This deceptively simple code improvement involves 
propagating a constant that has been assigned to a variable (a definition) to points in the 



a) 

107 

!1 I 
i l Syntax & Semantic 

Analyzer 

, I I 
', Intermediate 

Code Generator 
I 

I Intermediate 
ii Language Code 
i l rmprover 

~- - - i ." .":: . - ~ - ~ - - r i s ; . N  e-~_~_; ) 3  u n d m 
i Target Machine Back End 

Code 
Generator 

ii Target Machine 
1 Code 

Improver 
f ~  . . . . . . . . . . . . .  

r ~  ............ 
', Lexical Front End 

Analyzer 

I 

Semantic 
Analyzer 

I 
' I f 

;I ! Intermediate 
Code Generator 

;ili--ilit~_-_~_]LTn~TiiiD.'~ 
I Translator from Middle End 

HIL to LIL 

il Ta~getM~n~ I ,mprover Code Baok En6 

Structure resulting from 
use of a single HIL. 

b) Structure resulting from 
use of a HIL and a LIL. 

Figure 1. Structure of two compiler organizations. 

program where the variable is used and the definition reaches. After constant 
propagation is performed often the assignment to the variable becomes useless and can 
be eliminated. Additionally, knowing the value of a constant at a particular point in the 
program permits other code improvements to be performed. Constant propagation 
typically is considered to be a machine-independent code improvement and is 
performed in the machine-independent front end portion of the compiler. 
Unfortunately, constant propagation is not machine independent. To be done most 
effectively, characteristics of the target machine must be known. 

To explain some of the machine-dependent complications that arise when 
performing constant propagation, consider the C code in Figure 2a. Assuming that 
variable y is not modified elsewhere in the function, should the value 10.0 be 
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void foo() 
{ 

double y; 

y : I0.0; 

baz (y); 

bar (y); 

] 

a) Constant propagation 
is not worthwhile. 

_foo: 

# load i0.0 

sethi %hi(L20),%oO 

idd [%oO+%lo(L20)I,%fO 

# store in y 

std %fO,[%fp-8] 

# call baz with y 

call _baz,2 

idd [%fp-8],%o0 

# call bar with y 

call bar, 2 

idd [%fp-8],%o0 

L20: �9 OrlO.O 

b)SPARCassemb~ codefor 
fragmentin Figure2a. 

main() 
{ 

double y; 

y = i0.0; 

foo(y); 

foo(y + 32.56); 

o . . 

} 

c) Constant propagation 
is worthwhile�9 

--main: 

L20: 

L21: 

sethi %hi(L20),%oO 

# call foo with i0.0 

call _foo,2 

idd [%o0+%1o(L20)],%o0 

sethi %hi(L21),%oO 

# call foo with 42.56 

call _foo,2 

Idd [%o0+%1o(L21)],%o0 

�9 double OrlO.O 

.double 0r42.56 

d) SPARC assembly code for 
fragment in Figure 2c. 

Figure 2. Code illustrating complications of machine-independent constant propagation. 

propagated to each of the uses of the variable? If constant propagation is performed at 
a high-level, before details of the target machine are known, the choice is simple; 
propagate the constant. However, the correct action depends on the target machine and 
how the constant is being used. On the SPARC architecture three factors affect whether 
a floating-point constant should be propagated�9 First, there is no direct data path 
between the fixed-point registers and the floating-point registers�9 Moving a value from 
one register set to another requires going through memory. Second, the SPARC calling 
sequence requires that the first 24 bytes of arguments be passed in the fixed-point 
registers %00 through %05 regardless of their type. Third, the only way to load a 
floating-point constant into a register is by fetching it from global memory (i.e., there 
is no load immediate for floating-point values) With the current conventions this 
requires two instructions. 
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Figure 2b contains the SPARC assembly code generated for the C code fragment 
in Figure 2a using Sun's optimizing compiler with the highest level of optimization. 
Recall that call and branch instructions on the SPARC have a single-instruction delay 
slot. In this example, the constant was not propagated. Indeed, if it had, inferior code 
would have been produced. The load double instructions in the call delay slots would 
each be a two instruction sequence to load the constant from global memory. The astute 
reader might argue that the compiler, in this case, should not have propagated the 
constant, but rather allocated it to a floating-point register, and used the register at each 
point in the code where y is referenced. Unfortunately, this would result in even poorer 
code. Because the only path from a floating-point register to a fixed-point register is 
through memory, this approach would have required storing the contents of the 
floating-point register in memory and reloading it in the appropriate output registers. 
Because of these complications and because it performs constant propagation at a high- 
level, it appears Sun's SPARC compiler is forced to follow the simple rule: never 
propagate floating-point constants. 

Is it always best not to propagate floating-point constants on the SPARC? To answer 
this question, consider tbe C code fragment in Figure 2c. Here it would be beneficial to 
propagate the constant. If the constant is propagated, constant folding can be done for 
the argument in the second call to f o o  and the resulting constant can be loaded directly 
into %00 and %ol. The code is shown in Figure 2d. This code is 50% smaller than the 
code that would be produced without constant propagation. 

As another example, consider the code improvement loop-invariant code motion 
(LCM). Again, many compilers perform this transformation at a high-level under the 
assumption that machine-specific information is not required. However, this is not the 
case. Consider the code fragment in Figure 3a. l i m i t  is an external global variable and 
update is an external function that can potentially alter the value of limit. Figure 
3b shows typical HIL for this code. With this representation, there is no visible loop 
invariant code. The code generated for the SPARC is shown in Figure 3c. An inspection 
of this code reveals that the computation of 1 imi  t ' s  address was loop invariant. 

It is tempting to say that this problem can be solved by changing the HIL so that 
computation of addresses is decoupled from the actual reference. Figure 3d shows a 
HIL version of the code using this approach. Now the computation of the address of 
l i m i t  is visible, and a code improver operating on the HIL would move it out of the 
loop. This code is shown in Figure 3e. Unfortunately, this still does not yield the best 
possible machine code. On the SPARC, the calculation of the address of a global 
requires two instructions. However, it is possible to fold part of the address calculation 
into the instruction that does the memory reference. By taking into account the 
machine's addressing modes and the costs of instructions, a code improver that operates 
on a LIL representation produces the code of Figure 3f. While the loops of Figure 3e 
and Figure 3f have the same number of instructions, the overall code in Figure 3f is one 
instruction shorter. If this is a function that is called many times, the impact on 
execution time will be noticeable. 
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extern int limit; 

void find(value) 

int value; 
{ 

extern void update(); 

while (value < limit) 

update(); 

a) Code with loop-invariant 
address calculation. 

find: 

save %sp,-96,%sp 

LI6: 

sethi %hi(_limit),%o0 

id [%o0+%lo(_limit)],%o0 

cmp %i0,%o0 

bge LI7 

call _update 

ba LI6 

LI7: 

ret 

restore 

c) SPARC code genera~d from b. 

find: 

save %sp,-96,%sp 

sethi %hi( limit),%10 

add %10,%lo(_limit),%10 

LI6: 

Id [%10],%o0 

cmp %i0,%o0 

bge LI7 

call _update 

ba LI6 

LI7: 

ret 

restore 

e) SPARC code generated 
from d with LCM. 

FUNC void find 

LABEL 16 

LOAD int value 

LOAD int limit 

JMPGE int 17 

CALL void update 

GOTO 16 

LABEL 17 

EFUNC void find 

PARAM 

EXTERN 

EXTERN 

b) HIL for a. 

FUNC void find 

LABEL 16 

ADDR int value 

DEREF int 

ADDR int limit 

DEREF int 

JMPGE int 17 

CALL void update 

GOTO 16 

LABEL 17 

EFUNC void find 

PARAM 

EXTERN 

EXTERN 

d)HIL withaddress calcula~ons 
exposed, 

find: 

save %sp,-96,%sp 

sethi %hi(_limit),%10 

LI6: 

Id [%10+%lo(_limit)],%o0 

cmp %i0,%o0 

bge LI7 

call _update 

ba LI6 

LI7: 

ret 

restore 

39 SPARC code with machine- 
dependent LCM. 

Figure 3. Example illustrating the machine dependence of loop-invariant code motion (LCM). 

As a last example, consider dead code elimination (DCE). This transformation is 
truly machine independent. That is, any code that will never be executed should always 
be eliminated no matter what the target machine. Unfortunately, machine-dependent 
code improvements create opportunities for DCE, and therefore, to be most effective, 
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void daxpy(n, da, dx, 

int n, incx, incy; 

double da, dx[], dy[] 
{ 

incx, dy, incy) 

if (n <= O) 
return; 

if (da = 0.0) 
return; 

if (incx != 1 I incy != i) { 
/* Code for unequal increments or */ 

/* equal increments other than one */ 
] 

else 

for (i = O; i < n; i++) 

dy[i] = dy[i] + da * dx[i]; 

Figure 4. daxpy routine from linpack. 

DCE should also be performed at the machine level. To see this, first consider the 
machine-dependent code improvement inline code expansion. This transformation 
replaces calls to functions with the body of the called function. It eliminates call/return 
overhead, may improve the locality of the program, and perhaps most importantly, can 
enable other code improvements which includes, among others, dead code elimination. 
Inline code expansion is machine dependent because the decision to inline depends on 
the characteristics of the target machine. One important consideration is the size of the 
instruction cache [11]. Inlining a function into a loop and possibly causing the loop to 
no longer fit in the cache can result in a serious drop in performance. To illustrate how 
DCE interacts with inlining, consider the daxpy function from the well-known linpack 
benchmark. The code is shown in Figure 4. Generally, all calls to daxpy set i n c x  and 
i n c y  to one. Thus, by first performing inlining and constant propagation (both 
machine dependent code improvements), a dead code eliminator that operates on LIL 
after inline code expansion and constant propagation will eliminate the code for 
handling increments that are not both one. 

3 A HIL/LIL Compiler Organization 

These observations lead to the conclusion that more effective Code improvement can be 
performed if all transformations are done on a low-level representation where target 
machine information is available. To accomplish this requires two intermediate 
representations: a HIL that isolates, as much as possible, the language-dependent 
portions of the compiler from the target machine specific details, and a LIL that 
supports applying code improvements. The use of two intermediate languages yields a 
compiler with the structure shown in Figure lb. It is significantly different from that of 
the traditional, single intermediate language representation shown in Figure la. The 
influence of the use of two intermediate languages is pervasive--affecting the design 
of the HIL, as well as the code generation algorithms used in the front end. The 
following sections discuss these effects. 
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3.1 The High-Level Intermediate Language 

In most modern compilers the front end is decoupled from the back end through the use 
of an intermediate representation. The goal is to make the front end machine 
independent so that it can be used for a variety of target architectures with as little 
modification as possible. One popular approach is to generate code for an abstract 
machine. Well-known abstract machines include P-code (used in a several Pascal 
compilers) [ 12], U-code (used in the compilers developed by MIPS, Inc. for the R2000/ 
R3000 family of microprocessors) [3], and EM (used in the Amsterdam compiler kit) 
[17, 18]. In the quest for efficiency, the abstract machine often models the operations 
and addressing modes found on the target architectures. For a retargetable compiler, 
with many intended targets, this can yield a large and complex abstract machine. Such 
abstract machines have been termed 'union' machines as they attempt to include the 
union of the set of operators supported on the target architectures [6]. The Berkeley 
Pascal interpreter, for example, has 232 operations [10]. 

There is an equally compelling argument for designing a small, simple abstract 
machine. Small, simple instruction sets are faster and less error prone to implement than 
a large complex instruction set. Abstract machine designers have long recognized this 
dilemma. In 1972, Newey, Poole, and Waite [13] observed that 

'Most problems will suggest a number of specialized operations which could 
possibly be implemented quite efficiently on certain hardware. The designer 
must balance the convenience and utility of these operations against the 
increased difficulty of implementing an abstract machine with a rich and 
varied instruction set.' 

Fortunately, applying all code improvements to the LIL removes efficiency 
considerations as a HIL design issue. The abstract machine need only contain a set of 
features roughly equivalent to the intersection of the operations included in typical 
target machines. The result is a small, simple abstract machine. Such abstract machines 
are termed 'intersection' machines. The analogy between union/intersection abstract 
machines and CISC/RISC architectures is obvious. 

There are other reasons for preferring a small abstract machine instruction set. First, 
a small instruction set is more amenable to extension. Adding additional operations to 
support a new language feature (for example, a new opcodc to support the pragma 
feature of ANSI C was recently added to the CVM instruction set) is generally not a 
problem. However, for large instruction sets, this may cause problems. For example, 
many abstract machines have over 200 operations. Adding more operations may require 
changing the instruction format (a byte code may not be sufficient). Second, 
intersection machines are more stable. If a machine appears with some new operation, 
the operation must be added to the union machine. The intersection machine, on the 
other hand, need only be changed if the new operation cannot be synthesized from the 
existing operations. Third, if the compiler is to be self-bootstrapping (a lost art), a small 
intermediate language can significantly reduce the effort to bootstrap [15, 13]. For 
additional justification for preferring a small, simple abstract machine over a large, 
complex one see [6]. 
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The HIL described here is called CVM (C Virtual Machine), and it supports most 
imperative languages, although it was motivated mainly by the desire to support 
variants of the C language (K&R C, ANSI C, and C++). The CVM instruction set 
contains 51 executable instructions and 17 pseudo operations. Similar to the abstract 
machines mentioned above, CVM is a stack architecture as opposed to a register 
architecture. CVM is stack-oriented for a couple of reasons. First, algorithms for 
generating code for a stack machine are well understood and easy to implement. 
Second, it was important to be able to specify the semantics of operation of CVM. This 
is done operationally through an interpreter. Implementing an interpreter for a stack- 
based machine is quite simple, easy to understand, and reasonably efficient [8]. 

3.2 The Low-Level Intermediate Language 

The LIL representation of a program is what will be manipulated by all code 
improvement algorithms. Thus, while it is necessary that the LIL encode machine- 
specific details so that the code improvement algorithms can produce better code, it 
must be done in such a way that the implementation of the algorithms does not become 
machine-dependent. 

The LIL representation described here is based on register transfer lists (RTLs), 
which are derived from the Instruction Set Processor (ISP) notation developed by Bell 
and Newell. Essentially, RTLs describe the effects of machine instructions and have the 
form of conventional expressions and assignment's over the hardware's storage cells. 
Each RTL corresponds to a single target machine instruction in the same way that each 
traditional assembly code line corresponds to a single instruction. Unlike assembly 
language syntax, which varies from machine to machine, the RTL specification of an 
operation is identical across machines. For example, the following list shows register- 
to-register add instructions on various machines using their assembly language syntax: 

a rl=rl,r2 

ar 1,2 

add 1,2 

ixl xl+x2 

add %o2,%oi,%oi 

add.l d2,dl 

addl2 r2,rl 

addu $1,$1,$2 

-- IBM RS/6000 
-- IBM 370 
-- DecSystem 10 
-- CDC 6600 
-- Sun SPARC 
-- Motorola 68020 
-- VAX- 11 
-- MIPS R3000 

Using the RTL notation, each of these instructions is represented by the following RTL: 

r[l] = r[l] + r[2]; 

In contrast to the assembly language specification of the instruction, the RTL 
unambiguously describes the action of the instruction. Thus, the above RTL clearly 
indicates which register receives the result of the addition operation. Assembly 
language instructions, on the other hand, use conventions to designate source and 
destination operands. 
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Most machines have instructions that perform several actions. These are specified 
using lists of transfers (hence the name register transfer lists). A common occurrence in 
some machines are instructions that perform an arithmetic operation and set bits in a 
condition code register to indicate some information about the result (e.g. equal to zero, 
negative, overflow, etc.). Such multi-effect instructions are specified using RTLs as: 

r[l] = r[l] + r[2]; Z = (r[l] + r[2]) == O; 

Each register transfer in the list is performed concurrently. Thus, the above RTL 
specifies the same addition operation as the previous RTL and also sets the zero bit in 
the condition code register (specified by Z) if the result of the operation is zero or clears 
it, otherwise. 

RTLs have been used successfully to automate machine-specific portions of a 
compiler such as instruction selection, common subexpression elimination, and 
evaluation order determination [5, 6, 7] These are all local transformations that do not 
require information beyond that contained in a basic block. To better support global 
code improvements such as loop-invariant code motion, induction variable elimination, 
constant propagation, loop unrolling, and inline function expansion, we represent RTLs 
using a binary tree structure that allows each component of a register transfer (e.g. a 
register, a memory reference, an operation, a constant, etc.) to contain information that 
is specific to that component. For example, tree node representing operators include a 
type specifier and register nodes contain a pair of pointers linking them to the next and 
.previous reference of the register. This LIL is more than a language, it is a 
representation that allows global code improvements algorithms to take into account the 
characteristics of the target machine in a machine-independent fashion. 

A simplified diagram of a program fragment represented using this LIL is shown in 
Figure 5a. Details are shown only for basic block C and references to registers r [ 8 ] and 
r [ 91. The representation consists of a control-flow graph of basic blocks. Associated 
with each basic block is a list of RTLs that represent the machine instructions that will 
be executed when flow of control passes through this basic block. The corresponding 
RTLs in string form and in SPARC assembly language for the code in this basic block 
are shown in Figure 5b and Figure 5c, respectively. Also associated with each basic 
block is information about which loops the basic block is a member of. This information 
includes the location of the preheader block of the loop (if one exists), dominance 
relations, induction variable information, and loop-invariant values. 

For each reference to a register or a memory location, a def-use chain is maintained. 
Thus, from any reference the code improver can find either the previous reference or 
the next reference. Previous reference involving merging flow can be found through 
functions [4]. These functions and the def-use links form the SSA form for the code. 
This form is used to determine a canonical value for each component of the code. These 
are similar to value numbers [1] and are used to perform common-subexpression 
elimination as well as code motion. 

For each memory reference, information about the memory partition affected by the 
reference is maintained [2]. This structure is used to hold information that is vital for 
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Basic block A 

/ 
3 

Basic block B 

r [8] =HI [_a] ; 

r [8] =r [8] +LO[_a] ; 

r[9]=M[r[8]+i] ; 

r[9]=r[9]<<2; 

r[8]=M[r[9]+r[8] ] ; 

b) RTL code for basic block C 

sethi %hi(_a),%o0 

add %o0,%1o(_a),%o0 

id [%i6 + i],%oi 

sll %ol,2,%ol 

id [%ol + %00],%00 

SPARCassemb~ codefor 
bas& b~ck C 

a) Internal LIL representation 

Figure 5. Schematic of the internal LIL representation. 

performing induction variable elimination (IVE). For instance, if the memory reference 
is via an induction variable, information about the induction variable such as the scale 
(sometimes called the cee value) and displacement (sometimes called the dee value) is 
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int cmp(a, b) 
int a[], b[]; 
{ 

int i; 

for (i = O; i < i00; 

if (a[i] != b[i]) 
return(l); 

return(O); 
} 

a) C code wi~two mductionexpress~ns 

_cmp: 

I. add %o0,400,%o2 

LI6: 
2. id [%o0],%o3 
3. id [%ol],%o4 
4. cmp %o3,%o4 

5. bne LI7 
6. add %00,4,%00 

7. add %oi,4,%ol 

8. cmp %o0,%o2 

9. bl LI6 

10. mov 0,%o0 

l l .  retl 

LI7: 
12. mov i,%o0 

13. retl 

b) SPARC code produced by a 
high-level code improver 

_cmp: 

i++) 

I. sub %oi,o0,%oi 

2. add %o0,400,%o2 

LI6: 

3. id [%o0],%o3 
4. Id [%00 + %ol],%o4 

5. cmp %o3,%o4 

6. bne LI7 

7. add %00,4,%o0 

8. cmp %o0,%o2 

9. bl LI6 
10. mov 0,%o0 

11. retl 

LI7: 

12. mov i,%o0 

13. retl 

c) SPARC code produced by a 
low-level code improver 

Figure 6. High-level versus low-level code improvement. 

maintained. This structure also contains information that allows the code improver to 
resolve potential aliasing problems. 

The above structure is very flexible and supports the implementation of all common, 
and some not so common, code improvements. The following section describes one of 
these code improvements in detail with emphasis on how it is accomplished in a 
machine-independent way, yet takes into account machine-dependent information. 

4 Machine-Dependent Induction Variable Elimination 

An induction variable is a variable that is used to induce a sequence of values. In the 
code of Figure 6a, the variable 2 is an induction variable because it is being used to 
induce a series of addresses (those of the array elements). If this is the only use of the 
variable, it can be beneficial to eliminate the induction variable altogether and just 
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compute the sequence of addresses. The sequence of values being computed from the 
induction variable is called the induced sequence. 

Simple induction variables are used to compute induced sequences of the form 

scale x i + displacement ,  where i is the basic induction variable. In the example in 
Figure 6a, the sequences being computed are 4 x i + a and 4 • i + b, where a and b are 
the starting addresses of the arrays. Using well-known algorithms [1], the induction 
variable i can be eliminated and be replaced by the computation of the induced 
sequence of the addresses. The SPARC code produced by a code improver operating on 
a HIL is shown in Figure 6b. Notice that the sequences of addresses are being computed 
using two registers. The sequence for referencing a is being computed in %00, and the 
sequence for b is being computed in register %ol. As argued in Section 2, no code 
improvement is really machine independent. Better IVE can be performed if it is done 
on a LIL where target machine information is available. The loop in Figure 6c is one 
instruction shorter than the loop in Figure 6b. On the SPARC, machine-dependent IVE 
results in one instruction being saved for every induction expression that can be 
computed via a difference from the basic induction variable. A systematic inspection of 
source code shows that approximately 22 percent of loops with induction variables 
contain multiple references using the same basic induction variable. Figure 7 contains 
a high-level description of the algorithm that is used to perform IVE on RTLs. 

As the algorithm is explained, one key point should be kept in mind: the algorithm 
is machine-independent! That is, no changes are necessary to it when a new machine is 
accommodated. The algorithm obtains needed machine-dependent information via calls 
to a small set of machine-dependent routines that are constructed automatically from a 
description of the target architecture. These calls are underlined. This is a subtle point, 
but very important. It is possible to implement code improvements in a machine- 
independent way, yet take into account machine-dependent information. 

Basic information needed to perform IVE is collected (lines 2-4). This includes the 
loop invariant values, the basic induction variables, and the induction expressions. The 
induction expressions are expressions that involve the use of the same basic induction 
variable. The list of induction expressions include the basic induction variables. This 
information is stored with the loop information that is accessible from each block in the 
loop. 

The while loop starting at line 5 processes each of the induction expressions. For a 
particular induction expression, all induction expressions that depend on that one are 
collected into a list at lines 8 and 9. This list is sorted by the machine-dependent routine, 
OrderlnductionExprs according to the capabilities of the target machine. For example, 
if the target machine allows only positive offsets in the displacement addressing mode, 
it is best to have the expression in order of increasing value. On the other hand, if the 
machine has a limited range of offset, yet supports both negative and positive offsets, 
the list should be ordered so that expressions in the middle of the range are first so 
smaller offsets can be employed. 
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1 proc lmprovelnductionExprs(LOOP) is 
2 LOOP.InvariantVals = FindLooplnvariantVals(LOOP) 
3 LOOP.InductionVars = FindlnductionVars(LOOP, LOOPlnvariantVals) 
4 LOOPlnductionExprs = FindlnductionExprs(LOOP, LOOP.lnductionVars, LOOP.lnvarianWals) 
5 while LOOP, InductionExprs ~ (~ do 
6 IND = Firstltem(LOORlnductionExprs) 
7 EXPR = 0 
8 for  each E where E ~ LOOPlnductionExprs A E.Family = 1ND.Family ^ E.Scale = IND.Scale do 
9 EXPR = EXPR u E 
10 endfor 
11 OrderlnductionExors(EXPR) 
12 IND = Firstltem(EXPR) 
13 R = NewRegister(ADDRESS_TYPE) 
14 i f  LOOP.Preheader = 0 then 
15 BuildPreheader(LOOP) 
16 endi f  
17 lnsertCa_hl :~lation(LOOP.Preheader, "R = IND.Family • lND.Scale + IND.Displacement") 
18 for  eaeh E where E ~ EXPR do 
19 DIFF = CalculateDifferenceExpression(E.Displacement, lND.Displacement) 
20 UPDATED = FALSE 
21 i f  DIFF = 0 then 
22 NEW = ReplaceExpression(E.lnst, E, "R") 
23 i f  lsValidlnstruction(NEW) then 
24 UPDATED = TRUE 
25 endif  
26 endif  
27 i f  ~UPDATED ^ lsLiteraIConstant(DIFF) then 
28 NEW = ReplaceExpression(E.lnst, E, "R + DIFF") 
29 i f  Is Validlnstruction( NEW) then 
30 UPDATED = TRUE 
31 endif  
32 endif  
33 i f  ~UPDATED ^ IsLooplnvariant(D1FE LOOP.lnvariantVals) then 
34 DR = NewRegister(ADDRESS_TYPE) 
35 NEW = ReplaceExpression(E.Inst, E, "R + DR") 
36 i f  lsValidlnstructio~(NEW) then 
37 UPDATED = TRUE 
38 ]ns~rtCalcu[ation(LOOPPreheader, "DR = E.Displacement - IND.Displacement") 
39 endif  
40 endif  
41 i f  UPDATED then 
42 Replacelnstruction(E.lnstruction, NEW) 
43 endif  
44 i f  UPDATED v (DIFF = O) then 
45 LOOP.lnductionExprs = LOOPlnductionExprs - E 
46 endi f  
47 endfor 
48 endwhile 
49 endproc 

Figure 7. High-level description of machine-dependent induction variable elimination algorithm. 

To accommodate computing the induced sequences, a preheader is added to the loop 
at line 14 if one does not exist, and the machine instructions needed to generate the first 
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value of the sequence are inserted in the preheader. This routine is machine-dependent 
because it must generate the LIL code that represents the target machine instructions 
needed to compute the value. The for loop at line 18 processes the induction expressions 
(including the first one selected outside the loop). Lines 21 through 40 of this loop 
determine, for each induction expression, the best way to compute the expression for 
the target machine. The difference between the displacement value of first induction 
expression selected and the current one is determined at line 19. If the difference is zero, 
then the register holding the induction value can be used. The routine, 
ReplaceExpression, replaces the reference to the expression with the reference to the 
register containing the induction value. This new instruction is checked to see whether 
it is valid on the target machine by the call to IsValidlnstruction at line 23. 

If the difference was not zero, the difference is checked at line 27 to see if it is a 
literal constant. If it is, then this expression can potentially be computed using a 
displacement address mode. An RTL expression is constructed at line 28 and is 
substituted for the expression. This new instruction is checked to see whether it is a 
valid machine operation. Whether it is a target machine instruction depends on the 
addressing modes supported by the target machine and the size of the displacement. 

If the previous two alternatives do not succeed, the difference is checked to 
determine if it is loop invariant. If it is, then the induction expression potentially can be 
computed by adding the difference to the basic induction variable. If the target machine 
supports this addressing mode, a calculation is placed in the loop preheader to compute 
the difference. In the example in Figure 6c, the difference between the starting 
addresses of a and b is calculated by the instruction at line 1 of Figure 6c. The induction 
expression is replaced with this register plus register computation. 

If one of the alternatives succeeds, then UPDATED will be true, and the instruction 
that used the induction expression will be replaced by the new instruction at line 41. If 
this induction expression can be calculated from the induction expression selected at 
line 12, it is removed from the list of induction expressions. If not, it will be handled by 
a subsequent iteration of the while loop. That is, a single register will be allocated to be 
used to induce the sequence. After the algorithm completes, a pass is made over the loop 
and instruction selection is repeated on all changed instructions. This ensures that the 
most efficient target machine instructions are used. Again, this is an advantage of 
applying code improvements to a LIL. This pass also updates use-def chain 
information. 

The algorithm is guaranteed to terminate because the initial set of induced 
expressions in LOOP.InductionExprs is finite and because line 45 removes at least one 
item from this set each time through the while loop. Note that IND represents one of the 
elements in the set EXPR upon entry to the for loop at line 18. Consequently, there will 
be at least one case where the difference value calculated at line 19 will be zero. Thus, 
even if UPDATED is not set for any of the items in the EXPR set, the condition in line 
44 will be true for at least the item with the zero difference. 
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Name 
cache 
compact 
aiff 
eqntott 
espresso 
gcc 
li 
linpack 
mincost 
nroff 
sort 
tsp 

Description Source Type 
Cache simulation 
Huffman file compression 
Text file comparison 
PLA optimizer 
Boolean expression translator 
Optimizing compiler 
LISP interpreter 
Floating-point benchmark 
VLSI circuit partitioning 
Text formatting 
File sorting and merging 
Traveling salesperson problem 

User code 
UNIX utility 
UNIX utility 
SPEC benchmark 
SPEC benchmark 
SPEC benchmark 
SPEC benchmark 
Synthetic benchmark 
User code 
UNIX utility 
UNIX utility 
User code 

Lines 
I/O, Integer 820 
I/O, Integer 490 
I/O, Integer 1,800 
CPU, Integer 2,830 
CPU Integer 14,830 
CPU, Integer 92,630 
CPU, Integer 7,750 
CPU, FP 930 
CPU, FP 500 
I/O, Integer 6,900 
I/O, Integer 930 
CPU, Integer 450 

Table I. Benchmark programs. 

An astute reader will note that this algorithm does not necessarily produce the best 
code sequences tbr all possible architectures. For example, on a machine with an 
indexed displacement mode [base_reg + index_reg + displacement], the algorithm 
would not realize that only one index register needs to be incremented and that the 
difference between the base address of two arrays is not needed. This deficiency, 
however, can be easily overcome by adding a test for this addressing mode similar to 
those at lines 27 and 33. This additional test does not prevent the algorithm from 
working on architectures that do not have an indexed displacement mode, but produces 
better code for the machines that do. This extensibility greatly simplifies the task of 
retargeting the compiler and often allows the effort invested in improving the code for 
one architecture to be amortized across many machines. 

5 Results 

A retargetable optimizing C compiler has been constructed with the structure shown in 
Figure lb that operates on the LIL described in Section 3.2. The compiler is fully 

operational for six architectures, t These are: 

�9 VAX-11 �9 Motorola 68020 
�9 Intel 80386 �9 Sun SPARC 
�9 MIPS R2000/R3000 �9 Motorola 88100 

To determine the effectiveness of machine-dependent IVE, the SPARC architecture 
was chosen as the platform to run experiments. A set of experiments were performed 
using the benchmark programs described Table I. This set of programs includes the four 
C programs in the SPEC suite [16] along with some common Unix utilities and user 
code. Together the programs comprise approximately 130,000 lines of source code. 

fActually over ten different architectures have been accommodated, but only these six are 
maintained. 
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Program 
Name 

Percent Speedup with Percent Speedup with Column b - Column a 
Machine-Independent IVE Machine-Dependent IVE 

(Column A) (Column B) (Column C) 
cache -2.39 
compact 0.58 
dtff -3.26 
eqntott -4.05 
espresso -0.78 
gcc -1.39 
iir 25.30 
li -5.20 
linpack -7.43 
mincost -1.97 
nroff -3.46 
sort 0.37 
tsp 3.98 

-0.08 
3.74 
0.56 
3.68 

-8.51 
-0.88 
40.00 
-0.80 
1.34 
3.49 
0.80 
4.02 
4.27 

2.31 
3.16 
3.82 
7.53 

-7.73 
0.51 

14.70 
4.40 
8.86 
5.46 
4.26 
3.65 
0.29 

Table II. Comparison of the effectiveness of machine-independent and 
machine-dependent induction variable elimination on the SPARC2. 

The first experiment determined the overall effectiveness of IVE. The programs in 
Table I were compiled with and without IVE enabled. For the runs with IVE enabled 
the machine-dependent aspects of the algorithm were disabled effectively making it 
mimic a high-level machine-independent implementation of 1VE. The resulting 
executables were run five times on a lightly loaded SPARC2 and an average execution 
time was computed. From this average, the speedup due to machine-independent IVE 
was computed (see the Column A of Table II). Surprisingly, most programs slowed 
down with machine-independent IVE enabled. Because the effect was most pronounced 
for linpack, the code for this program was examined to determine what was happening. 
Most of linpack's execution time is spent in daxpy. Comparison of the two versions of 
this loop revealed why machine-independent IVE ran slower. Without IVE, the loop 
was 9 instructions long. With machine-independent IVE, the loop was also 9 
instructions, but the preheader contained instructions that copied the addresses of the 
arrays to temporaries, and computed the value needed to test against for loop 

termination (dx  + 400 • n). Because the routine is called tens of thousands of times 
during the course of a run, the extra overhead lowered performance. For one program, 
iir, machine-independent IVE showed a large benefit. Inspection of this code revealed 
that this was because IVE produced an opportunity for recurrence detection and 
optimization [2] to take effect, and a large percent of the benefit was from this 
improvement. These results confirm that it is difficult to apply code improving 
transformations to a HIL because the cost/benefit analysis is so dependent on the target 
machine. 

To determine the effectiveness of machine-dependent IVE, the same programs were 
compiled and run, but this time the machine-dependent aspects of the IVE algorithm 
were enabled. Column B of Table II shows the speedup when machine-dependent IVE 
was performed compared to when no IVE was performed. The improvement due to 
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machine-dependent IVE is similar to that reported elsewhere in the literature averaging 
two or three percent [14]. 

The one anomaly in Column B is the serious loss of performance for espresso. Using 
a measurement tool called ease [9], the execution behavior of the three versions of this 
program was examined. First, it was observed that several of the routines that were 
called frequently had loops with very low iteration counts (50% of the loops in these 
routines had iteration counts of less than two). This explained why IVE was producing 
poor results. The preheader overhead was not being offset by savings in the loops. 
However, this did not explain why machine-dependent IVE, with smaller preheader 
loop overhead, ran slower than machine-independent IVE. The measurement tool 
revealed that the version of the program produced by compiling the program with 
machine-dependent IVE performed fewer instructions (less preheader overhead), but 
more memory references than the version produced by compiling it with machine- 
independent IVE. Inspection of the optimized loops showed that because the loop was 
tighter (i.e. fewer instructions), the scheduler had, in order to fill the delay slot of the 
branch at the end of the loop, resorted to using an annulled branch and had placed a load 
in the delay slot and replicated it in the preheader. Apparently, these extra (useless) 
loads caused performance to suffer. 

Column C shows the performance difference in machine-independent IVE and 
machine-dependent IVE. For all but the anomalous espresso, performing IVE at a low 
level where machine-specific information is available appears to be worthwhile, and 
performs better than machine-independent IVE. Experience with the compiler indicates 
that other code improvements yield similar benefits when applied at a low-level. 

These experiments show, in general, that any single code improvement will affect 
only a subset of the programs to which it is applied. For some programs the effect will 
be small and for others it will be large. Thus, a good optimizing compiler uses a 
collection of code improvements where each transformation produces a small benefit 
most of the time and a large benefit occasionally. The results also show how difficult it 
is to measure the effects of a code improvement. Each code improvement can affect 
what another does and it sometimes difficult to isolate the effect of a single 
transformation. 

To determine the compilation times between a production compiler structured as 
shown in Figure la and one using the structure in Figure lb, the amount of time spent 
in the middle end was measured and compared against the amount of time required to 
perform the entire compilation process. Obtaining these measurements for the 
benchmark suite shown in Table I revealed that the extra translation step from HIL to 
LIL increases the compilation time of the compiler by an average of 3.1%. This value 
ranged from a low of 1.9% for the linpack program to a high of 5.5% for li. This slight 
increase in compilation time is the primary disadvantage of using a structure that 
utilizes both an HIL and a LIL. 
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6 Summary 

To be applied most effectively, most global optimizations require information about the 
target machine. For those few transformations where this is not true, it is likely that they 
interact with those that do and thus, effectively, they are also machine dependent. This 
paper has described the structure of a compiler that is designed so that code 
improvements can be applied when machine-specific information is available. The 
compiler has two intermediate representations: one that is a target for intermediate code 
generation, and a second one that is designed to support the machine-specific 
application of global code improvements such as code motion, induction variable 
elimination, and constant propagation. 

Using one transformation as an example, this paper showed that it is possible to 
implement global code improvements that operate on a LIL representation of the 
program and that it is beneficial to do so. The implementation of the algorithm is itself 
kept machine-independent by carefully isolating the access to target-specific 
information via a few routines that can be generated automatically from a specification 
of the target architecture. The results presented show that the benefits of such a structure 
are worth the effort in spite the modest compilation time penalty that it incurs. 
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