
The Advantages of Machine-Dependent Global
Optimization

Manuel E. Benitez and Jack W. Davidson

Department of Computer Science
University of Virginia

Charlottesville, VA 22903 U. S. A.

Abstract. Using an intermediate language is a well-known, effective technique
for constructing interpreters and compilers. This paper describes a retargetable,
optimizing compilation system centered around the use of two intermediate
languages (IL): one relatively high level, the other a low level corresponding to
target machine instructions. The high-level IL (HIL) models a stack-based,
hypothetical RISC machine. The low-level IL (LIL) models target machines at
the instruction-set architecture level. All code improvements are applied to the
LIL representation of a program. This is motivated by the observation that most
optimizations are machine dependent, and the few that are truly machine
independent interact with the machine-dependent ones. This paper describes
several 'machine-independent' code improvements and shows that they are
actually machine dependent. To illustrate how code improvements can be applied
to a LIL, an algorithm for induction variable elimination is presented. It is
demonstrated that this algorithm yields better code than traditional
implementations that are applied machine-independently to a high-level
representation.

1 Introduction

A retargetable, optimizing compiler must perform a comprehensive set of code
improvements in order to produce high-quality code for a wide range of machines. A
partial list of code improvements that must be included in the compiler 's repertoire is:

�9 register assignment and allocation,
�9 common subexpression elimination,
�9 loop-invariant code motion,
�9 induction variable elimination,
�9 evaluation order determination,
�9 constant folding,
�9 constant propagation,
�9 dead code elimination,
�9 loop unrolling,
�9 instruction scheduling, and
�9 inline function expansion.

This list of code improvements traditionally is divided into two groups: those that
are considered to be machine-independent and those that are machine-dependent.
Machine-independent code improvements are those that do not depend on any features
or characteristics of the target machine. Examples of code improvements included in

106

this group are constant folding, dead code elimination, and constant propagation.
Because of their machine-independence, these code improvements are often applied to
the high-level intermediate language representation of the program.

The proper application of machine-dependent code improvements, on the other
hand, requires having specific information about the target machine. Obviously, code
improvements such as register allocation and instruction scheduling are machine
dependent. In the case of register allocation, the types and number of registers available
affect the promotion of data to registers. Similarly, effective instruction scheduling
requires information about the operation of the target machine's pipeline. Somewhat
less obvious, but no less machine dependent are the code improvements inline function
expansion and loop unrolling. Inline function expansion can be performed most
effectively when details of the target machine's instruction cache is available.
Similarly, the amount of loop unrolling performed depends on the number of target
machine registers available, characteristics of the instruction pipeline as well as the size
of the instruction cache.

The belief that some code improvements are machine-independent and some are
machine-dependent and the use of a single high-level intermediate representation
results in a compiler with a structure shown in Figure la. Unfortunately, most code
improvements are not machine-independent, and the few that truly are machine
independent interact with those that are machine dependent causing phase-ordering
problems. For example, dead code elimination is machine independent. However, it
interacts with machine-dependent code improvements such as inline function
expansion. Expanding functions inline exposes new opportunities for dead code
elimination by effectively propagating constants across calls. Hence, essentially there
are no machine-independent code improvements. In Section 2, some code
improvements that typically are viewed as being machine independent are examined
and shown to be machine dependent. This section also provides examples of how true
machine-independent code improvements interact with machine-dependent ones.
Section 3 describes a compiler structure that uses two intermediate languages: a high
level intermediate language (HIL) that serves to isolate the language-dependent portion
of the compiler from target machine details, and a low-level intermediate language
(LIL) that supports the application of global code improvements. Section 4 contains a
detailed description of an induction variable elimination algorithm that operates on a
low-level representation of a program. The algorithm is largely machine independent,
and requires no modification when the compiler is retargeted, yet it generates superior
code when compared to a traditional HIL implementation. Section 5 evaluates the
effectiveness of the LIL implementation of induction variable elimination on a set of
representative benchmark programs.

2 The Case for Machine-Dependent Global Optimization

To illustrate the point that all code improvements are effectively machine dependent,
consider constant propagation. This deceptively simple code improvement involves
propagating a constant that has been assigned to a variable (a definition) to points in the

a)

107

!1 I
i l Syntax & Semantic

Analyzer

, I I
', Intermediate

Code Generator
I

I Intermediate
ii Language Code
i l rmprover

~- - - i ." .":: . - ~ - ~ - - r i s ; . N e-~_~_;) 3 u n d m
i Target Machine Back End

Code
Generator

ii Target Machine
1 Code

Improver
f ~

r ~
', Lexical Front End

Analyzer

I

Semantic
Analyzer

I
' I f

;I ! Intermediate
Code Generator

;ili--ilit~_-_~_]LTn~TiiiD.'~
I Translator from Middle End

HIL to LIL

il Ta~getM~n~ I ,mprover Code Baok En6

Structure resulting from
use of a single HIL.

b) Structure resulting from
use of a HIL and a LIL.

Figure 1. Structure of two compiler organizations.

program where the variable is used and the definition reaches. After constant
propagation is performed often the assignment to the variable becomes useless and can
be eliminated. Additionally, knowing the value of a constant at a particular point in the
program permits other code improvements to be performed. Constant propagation
typically is considered to be a machine-independent code improvement and is
performed in the machine-independent front end portion of the compiler.
Unfortunately, constant propagation is not machine independent. To be done most
effectively, characteristics of the target machine must be known.

To explain some of the machine-dependent complications that arise when
performing constant propagation, consider the C code in Figure 2a. Assuming that
variable y is not modified elsewhere in the function, should the value 10.0 be

108

void foo()
{

double y;

y : I0.0;

baz (y);

bar (y);

]

a) Constant propagation
is not worthwhile.

_foo:

load i0.0

sethi %hi(L20),%oO

idd [%oO+%lo(L20)I,%fO

store in y

std %fO,[%fp-8]

call baz with y

call _baz,2

idd [%fp-8],%o0

call bar with y

call bar, 2

idd [%fp-8],%o0

L20: �9 OrlO.O

b)SPARCassemb~ codefor
fragmentin Figure2a.

main()
{

double y;

y = i0.0;

foo(y);

foo(y + 32.56);

o . .

}

c) Constant propagation
is worthwhile�9

--main:

L20:

L21:

sethi %hi(L20),%oO

call foo with i0.0

call _foo,2

idd [%o0+%1o(L20)],%o0

sethi %hi(L21),%oO

call foo with 42.56

call _foo,2

Idd [%o0+%1o(L21)],%o0

�9 double OrlO.O

.double 0r42.56

d) SPARC assembly code for
fragment in Figure 2c.

Figure 2. Code illustrating complications of machine-independent constant propagation.

propagated to each of the uses of the variable? If constant propagation is performed at
a high-level, before details of the target machine are known, the choice is simple;
propagate the constant. However, the correct action depends on the target machine and
how the constant is being used. On the SPARC architecture three factors affect whether
a floating-point constant should be propagated�9 First, there is no direct data path
between the fixed-point registers and the floating-point registers�9 Moving a value from
one register set to another requires going through memory. Second, the SPARC calling
sequence requires that the first 24 bytes of arguments be passed in the fixed-point
registers %00 through %05 regardless of their type. Third, the only way to load a
floating-point constant into a register is by fetching it from global memory (i.e., there
is no load immediate for floating-point values) With the current conventions this
requires two instructions.

109

Figure 2b contains the SPARC assembly code generated for the C code fragment
in Figure 2a using Sun's optimizing compiler with the highest level of optimization.
Recall that call and branch instructions on the SPARC have a single-instruction delay
slot. In this example, the constant was not propagated. Indeed, if it had, inferior code
would have been produced. The load double instructions in the call delay slots would
each be a two instruction sequence to load the constant from global memory. The astute
reader might argue that the compiler, in this case, should not have propagated the
constant, but rather allocated it to a floating-point register, and used the register at each
point in the code where y is referenced. Unfortunately, this would result in even poorer
code. Because the only path from a floating-point register to a fixed-point register is
through memory, this approach would have required storing the contents of the
floating-point register in memory and reloading it in the appropriate output registers.
Because of these complications and because it performs constant propagation at a high-
level, it appears Sun's SPARC compiler is forced to follow the simple rule: never
propagate floating-point constants.

Is it always best not to propagate floating-point constants on the SPARC? To answer
this question, consider tbe C code fragment in Figure 2c. Here it would be beneficial to
propagate the constant. If the constant is propagated, constant folding can be done for
the argument in the second call to f o o and the resulting constant can be loaded directly
into %00 and %ol. The code is shown in Figure 2d. This code is 50% smaller than the
code that would be produced without constant propagation.

As another example, consider the code improvement loop-invariant code motion
(LCM). Again, many compilers perform this transformation at a high-level under the
assumption that machine-specific information is not required. However, this is not the
case. Consider the code fragment in Figure 3a. l i m i t is an external global variable and
update is an external function that can potentially alter the value of limit. Figure
3b shows typical HIL for this code. With this representation, there is no visible loop
invariant code. The code generated for the SPARC is shown in Figure 3c. An inspection
of this code reveals that the computation of 1 imi t ' s address was loop invariant.

It is tempting to say that this problem can be solved by changing the HIL so that
computation of addresses is decoupled from the actual reference. Figure 3d shows a
HIL version of the code using this approach. Now the computation of the address of
l i m i t is visible, and a code improver operating on the HIL would move it out of the
loop. This code is shown in Figure 3e. Unfortunately, this still does not yield the best
possible machine code. On the SPARC, the calculation of the address of a global
requires two instructions. However, it is possible to fold part of the address calculation
into the instruction that does the memory reference. By taking into account the
machine's addressing modes and the costs of instructions, a code improver that operates
on a LIL representation produces the code of Figure 3f. While the loops of Figure 3e
and Figure 3f have the same number of instructions, the overall code in Figure 3f is one
instruction shorter. If this is a function that is called many times, the impact on
execution time will be noticeable.

110

extern int limit;

void find(value)

int value;
{

extern void update();

while (value < limit)

update();

a) Code with loop-invariant
address calculation.

find:

save %sp,-96,%sp

LI6:

sethi %hi(_limit),%o0

id [%o0+%lo(_limit)],%o0

cmp %i0,%o0

bge LI7

call _update

ba LI6

LI7:

ret

restore

c) SPARC code genera~d from b.

find:

save %sp,-96,%sp

sethi %hi(limit),%10

add %10,%lo(_limit),%10

LI6:

Id [%10],%o0

cmp %i0,%o0

bge LI7

call _update

ba LI6

LI7:

ret

restore

e) SPARC code generated
from d with LCM.

FUNC void find

LABEL 16

LOAD int value

LOAD int limit

JMPGE int 17

CALL void update

GOTO 16

LABEL 17

EFUNC void find

PARAM

EXTERN

EXTERN

b) HIL for a.

FUNC void find

LABEL 16

ADDR int value

DEREF int

ADDR int limit

DEREF int

JMPGE int 17

CALL void update

GOTO 16

LABEL 17

EFUNC void find

PARAM

EXTERN

EXTERN

d)HIL withaddress calcula~ons
exposed,

find:

save %sp,-96,%sp

sethi %hi(_limit),%10

LI6:

Id [%10+%lo(_limit)],%o0

cmp %i0,%o0

bge LI7

call _update

ba LI6

LI7:

ret

restore

39 SPARC code with machine-
dependent LCM.

Figure 3. Example illustrating the machine dependence of loop-invariant code motion (LCM).

As a last example, consider dead code elimination (DCE). This transformation is
truly machine independent. That is, any code that will never be executed should always
be eliminated no matter what the target machine. Unfortunately, machine-dependent
code improvements create opportunities for DCE, and therefore, to be most effective,

111

void daxpy(n, da, dx,

int n, incx, incy;

double da, dx[], dy[]
{

incx, dy, incy)

if (n <= O)
return;

if (da = 0.0)
return;

if (incx != 1 I incy != i) {
/* Code for unequal increments or */

/* equal increments other than one */
]

else

for (i = O; i < n; i++)

dy[i] = dy[i] + da * dx[i];

Figure 4. daxpy routine from linpack.

DCE should also be performed at the machine level. To see this, first consider the
machine-dependent code improvement inline code expansion. This transformation
replaces calls to functions with the body of the called function. It eliminates call/return
overhead, may improve the locality of the program, and perhaps most importantly, can
enable other code improvements which includes, among others, dead code elimination.
Inline code expansion is machine dependent because the decision to inline depends on
the characteristics of the target machine. One important consideration is the size of the
instruction cache [11]. Inlining a function into a loop and possibly causing the loop to
no longer fit in the cache can result in a serious drop in performance. To illustrate how
DCE interacts with inlining, consider the daxpy function from the well-known linpack
benchmark. The code is shown in Figure 4. Generally, all calls to daxpy set i n c x and
i n c y to one. Thus, by first performing inlining and constant propagation (both
machine dependent code improvements), a dead code eliminator that operates on LIL
after inline code expansion and constant propagation will eliminate the code for
handling increments that are not both one.

3 A HIL/LIL Compiler Organization

These observations lead to the conclusion that more effective Code improvement can be
performed if all transformations are done on a low-level representation where target
machine information is available. To accomplish this requires two intermediate
representations: a HIL that isolates, as much as possible, the language-dependent
portions of the compiler from the target machine specific details, and a LIL that
supports applying code improvements. The use of two intermediate languages yields a
compiler with the structure shown in Figure lb. It is significantly different from that of
the traditional, single intermediate language representation shown in Figure la. The
influence of the use of two intermediate languages is pervasive--affecting the design
of the HIL, as well as the code generation algorithms used in the front end. The
following sections discuss these effects.

112

3.1 The High-Level Intermediate Language

In most modern compilers the front end is decoupled from the back end through the use
of an intermediate representation. The goal is to make the front end machine
independent so that it can be used for a variety of target architectures with as little
modification as possible. One popular approach is to generate code for an abstract
machine. Well-known abstract machines include P-code (used in a several Pascal
compilers) [12], U-code (used in the compilers developed by MIPS, Inc. for the R2000/
R3000 family of microprocessors) [3], and EM (used in the Amsterdam compiler kit)
[17, 18]. In the quest for efficiency, the abstract machine often models the operations
and addressing modes found on the target architectures. For a retargetable compiler,
with many intended targets, this can yield a large and complex abstract machine. Such
abstract machines have been termed 'union' machines as they attempt to include the
union of the set of operators supported on the target architectures [6]. The Berkeley
Pascal interpreter, for example, has 232 operations [10].

There is an equally compelling argument for designing a small, simple abstract
machine. Small, simple instruction sets are faster and less error prone to implement than
a large complex instruction set. Abstract machine designers have long recognized this
dilemma. In 1972, Newey, Poole, and Waite [13] observed that

'Most problems will suggest a number of specialized operations which could
possibly be implemented quite efficiently on certain hardware. The designer
must balance the convenience and utility of these operations against the
increased difficulty of implementing an abstract machine with a rich and
varied instruction set.'

Fortunately, applying all code improvements to the LIL removes efficiency
considerations as a HIL design issue. The abstract machine need only contain a set of
features roughly equivalent to the intersection of the operations included in typical
target machines. The result is a small, simple abstract machine. Such abstract machines
are termed 'intersection' machines. The analogy between union/intersection abstract
machines and CISC/RISC architectures is obvious.

There are other reasons for preferring a small abstract machine instruction set. First,
a small instruction set is more amenable to extension. Adding additional operations to
support a new language feature (for example, a new opcodc to support the pragma
feature of ANSI C was recently added to the CVM instruction set) is generally not a
problem. However, for large instruction sets, this may cause problems. For example,
many abstract machines have over 200 operations. Adding more operations may require
changing the instruction format (a byte code may not be sufficient). Second,
intersection machines are more stable. If a machine appears with some new operation,
the operation must be added to the union machine. The intersection machine, on the
other hand, need only be changed if the new operation cannot be synthesized from the
existing operations. Third, if the compiler is to be self-bootstrapping (a lost art), a small
intermediate language can significantly reduce the effort to bootstrap [15, 13]. For
additional justification for preferring a small, simple abstract machine over a large,
complex one see [6].

113

The HIL described here is called CVM (C Virtual Machine), and it supports most
imperative languages, although it was motivated mainly by the desire to support
variants of the C language (K&R C, ANSI C, and C++). The CVM instruction set
contains 51 executable instructions and 17 pseudo operations. Similar to the abstract
machines mentioned above, CVM is a stack architecture as opposed to a register
architecture. CVM is stack-oriented for a couple of reasons. First, algorithms for
generating code for a stack machine are well understood and easy to implement.
Second, it was important to be able to specify the semantics of operation of CVM. This
is done operationally through an interpreter. Implementing an interpreter for a stack-
based machine is quite simple, easy to understand, and reasonably efficient [8].

3.2 The Low-Level Intermediate Language

The LIL representation of a program is what will be manipulated by all code
improvement algorithms. Thus, while it is necessary that the LIL encode machine-
specific details so that the code improvement algorithms can produce better code, it
must be done in such a way that the implementation of the algorithms does not become
machine-dependent.

The LIL representation described here is based on register transfer lists (RTLs),
which are derived from the Instruction Set Processor (ISP) notation developed by Bell
and Newell. Essentially, RTLs describe the effects of machine instructions and have the
form of conventional expressions and assignment's over the hardware's storage cells.
Each RTL corresponds to a single target machine instruction in the same way that each
traditional assembly code line corresponds to a single instruction. Unlike assembly
language syntax, which varies from machine to machine, the RTL specification of an
operation is identical across machines. For example, the following list shows register-
to-register add instructions on various machines using their assembly language syntax:

a rl=rl,r2

ar 1,2

add 1,2

ixl xl+x2

add %o2,%oi,%oi

add.l d2,dl

addl2 r2,rl

addu $1,$1,$2

-- IBM RS/6000
-- IBM 370
-- DecSystem 10
-- CDC 6600
-- Sun SPARC
-- Motorola 68020
-- VAX- 11
-- MIPS R3000

Using the RTL notation, each of these instructions is represented by the following RTL:

r[l] = r[l] + r[2];

In contrast to the assembly language specification of the instruction, the RTL
unambiguously describes the action of the instruction. Thus, the above RTL clearly
indicates which register receives the result of the addition operation. Assembly
language instructions, on the other hand, use conventions to designate source and
destination operands.

114

Most machines have instructions that perform several actions. These are specified
using lists of transfers (hence the name register transfer lists). A common occurrence in
some machines are instructions that perform an arithmetic operation and set bits in a
condition code register to indicate some information about the result (e.g. equal to zero,
negative, overflow, etc.). Such multi-effect instructions are specified using RTLs as:

r[l] = r[l] + r[2]; Z = (r[l] + r[2]) == O;

Each register transfer in the list is performed concurrently. Thus, the above RTL
specifies the same addition operation as the previous RTL and also sets the zero bit in
the condition code register (specified by Z) if the result of the operation is zero or clears
it, otherwise.

RTLs have been used successfully to automate machine-specific portions of a
compiler such as instruction selection, common subexpression elimination, and
evaluation order determination [5, 6, 7] These are all local transformations that do not
require information beyond that contained in a basic block. To better support global
code improvements such as loop-invariant code motion, induction variable elimination,
constant propagation, loop unrolling, and inline function expansion, we represent RTLs
using a binary tree structure that allows each component of a register transfer (e.g. a
register, a memory reference, an operation, a constant, etc.) to contain information that
is specific to that component. For example, tree node representing operators include a
type specifier and register nodes contain a pair of pointers linking them to the next and
.previous reference of the register. This LIL is more than a language, it is a
representation that allows global code improvements algorithms to take into account the
characteristics of the target machine in a machine-independent fashion.

A simplified diagram of a program fragment represented using this LIL is shown in
Figure 5a. Details are shown only for basic block C and references to registers r [8] and
r [91. The representation consists of a control-flow graph of basic blocks. Associated
with each basic block is a list of RTLs that represent the machine instructions that will
be executed when flow of control passes through this basic block. The corresponding
RTLs in string form and in SPARC assembly language for the code in this basic block
are shown in Figure 5b and Figure 5c, respectively. Also associated with each basic
block is information about which loops the basic block is a member of. This information
includes the location of the preheader block of the loop (if one exists), dominance
relations, induction variable information, and loop-invariant values.

For each reference to a register or a memory location, a def-use chain is maintained.
Thus, from any reference the code improver can find either the previous reference or
the next reference. Previous reference involving merging flow can be found through
functions [4]. These functions and the def-use links form the SSA form for the code.
This form is used to determine a canonical value for each component of the code. These
are similar to value numbers [1] and are used to perform common-subexpression
elimination as well as code motion.

For each memory reference, information about the memory partition affected by the
reference is maintained [2]. This structure is used to hold information that is vital for

115

Basic block A

/
3

Basic block B

r [8] =HI [_a] ;

r [8] =r [8] +LO[_a] ;

r[9]=M[r[8]+i] ;

r[9]=r[9]<<2;

r[8]=M[r[9]+r[8]] ;

b) RTL code for basic block C

sethi %hi(_a),%o0

add %o0,%1o(_a),%o0

id [%i6 + i],%oi

sll %ol,2,%ol

id [%ol + %00],%00

SPARCassemb~ codefor
bas& b~ck C

a) Internal LIL representation

Figure 5. Schematic of the internal LIL representation.

performing induction variable elimination (IVE). For instance, if the memory reference
is via an induction variable, information about the induction variable such as the scale
(sometimes called the cee value) and displacement (sometimes called the dee value) is

116

int cmp(a, b)
int a[], b[];
{

int i;

for (i = O; i < i00;

if (a[i] != b[i])
return(l);

return(O);
}

a) C code wi~two mductionexpress~ns

_cmp:

I. add %o0,400,%o2

LI6:
2. id [%o0],%o3
3. id [%ol],%o4
4. cmp %o3,%o4

5. bne LI7
6. add %00,4,%00

7. add %oi,4,%ol

8. cmp %o0,%o2

9. bl LI6

10. mov 0,%o0

l l . retl

LI7:
12. mov i,%o0

13. retl

b) SPARC code produced by a
high-level code improver

_cmp:

i++)

I. sub %oi,o0,%oi

2. add %o0,400,%o2

LI6:

3. id [%o0],%o3
4. Id [%00 + %ol],%o4

5. cmp %o3,%o4

6. bne LI7

7. add %00,4,%o0

8. cmp %o0,%o2

9. bl LI6
10. mov 0,%o0

11. retl

LI7:

12. mov i,%o0

13. retl

c) SPARC code produced by a
low-level code improver

Figure 6. High-level versus low-level code improvement.

maintained. This structure also contains information that allows the code improver to
resolve potential aliasing problems.

The above structure is very flexible and supports the implementation of all common,
and some not so common, code improvements. The following section describes one of
these code improvements in detail with emphasis on how it is accomplished in a
machine-independent way, yet takes into account machine-dependent information.

4 Machine-Dependent Induction Variable Elimination

An induction variable is a variable that is used to induce a sequence of values. In the
code of Figure 6a, the variable 2 is an induction variable because it is being used to
induce a series of addresses (those of the array elements). If this is the only use of the
variable, it can be beneficial to eliminate the induction variable altogether and just

117

compute the sequence of addresses. The sequence of values being computed from the
induction variable is called the induced sequence.

Simple induction variables are used to compute induced sequences of the form

scale x i + displacement , where i is the basic induction variable. In the example in
Figure 6a, the sequences being computed are 4 x i + a and 4 • i + b, where a and b are
the starting addresses of the arrays. Using well-known algorithms [1], the induction
variable i can be eliminated and be replaced by the computation of the induced
sequence of the addresses. The SPARC code produced by a code improver operating on
a HIL is shown in Figure 6b. Notice that the sequences of addresses are being computed
using two registers. The sequence for referencing a is being computed in %00, and the
sequence for b is being computed in register %ol. As argued in Section 2, no code
improvement is really machine independent. Better IVE can be performed if it is done
on a LIL where target machine information is available. The loop in Figure 6c is one
instruction shorter than the loop in Figure 6b. On the SPARC, machine-dependent IVE
results in one instruction being saved for every induction expression that can be
computed via a difference from the basic induction variable. A systematic inspection of
source code shows that approximately 22 percent of loops with induction variables
contain multiple references using the same basic induction variable. Figure 7 contains
a high-level description of the algorithm that is used to perform IVE on RTLs.

As the algorithm is explained, one key point should be kept in mind: the algorithm
is machine-independent! That is, no changes are necessary to it when a new machine is
accommodated. The algorithm obtains needed machine-dependent information via calls
to a small set of machine-dependent routines that are constructed automatically from a
description of the target architecture. These calls are underlined. This is a subtle point,
but very important. It is possible to implement code improvements in a machine-
independent way, yet take into account machine-dependent information.

Basic information needed to perform IVE is collected (lines 2-4). This includes the
loop invariant values, the basic induction variables, and the induction expressions. The
induction expressions are expressions that involve the use of the same basic induction
variable. The list of induction expressions include the basic induction variables. This
information is stored with the loop information that is accessible from each block in the
loop.

The while loop starting at line 5 processes each of the induction expressions. For a
particular induction expression, all induction expressions that depend on that one are
collected into a list at lines 8 and 9. This list is sorted by the machine-dependent routine,
OrderlnductionExprs according to the capabilities of the target machine. For example,
if the target machine allows only positive offsets in the displacement addressing mode,
it is best to have the expression in order of increasing value. On the other hand, if the
machine has a limited range of offset, yet supports both negative and positive offsets,
the list should be ordered so that expressions in the middle of the range are first so
smaller offsets can be employed.

118

1 proc lmprovelnductionExprs(LOOP) is
2 LOOP.InvariantVals = FindLooplnvariantVals(LOOP)
3 LOOP.InductionVars = FindlnductionVars(LOOP, LOOPlnvariantVals)
4 LOOPlnductionExprs = FindlnductionExprs(LOOP, LOOP.lnductionVars, LOOP.lnvarianWals)
5 while LOOP, InductionExprs ~ (~ do
6 IND = Firstltem(LOORlnductionExprs)
7 EXPR = 0
8 for each E where E ~ LOOPlnductionExprs A E.Family = 1ND.Family ^ E.Scale = IND.Scale do
9 EXPR = EXPR u E
10 endfor
11 OrderlnductionExors(EXPR)
12 IND = Firstltem(EXPR)
13 R = NewRegister(ADDRESS_TYPE)
14 i f LOOP.Preheader = 0 then
15 BuildPreheader(LOOP)
16 endi f
17 lnsertCa_hl :~lation(LOOP.Preheader, "R = IND.Family • lND.Scale + IND.Displacement")
18 for eaeh E where E ~ EXPR do
19 DIFF = CalculateDifferenceExpression(E.Displacement, lND.Displacement)
20 UPDATED = FALSE
21 i f DIFF = 0 then
22 NEW = ReplaceExpression(E.lnst, E, "R")
23 i f lsValidlnstruction(NEW) then
24 UPDATED = TRUE
25 endif
26 endif
27 i f ~UPDATED ^ lsLiteraIConstant(DIFF) then
28 NEW = ReplaceExpression(E.lnst, E, "R + DIFF")
29 i f Is Validlnstruction(NEW) then
30 UPDATED = TRUE
31 endif
32 endif
33 i f ~UPDATED ^ IsLooplnvariant(D1FE LOOP.lnvariantVals) then
34 DR = NewRegister(ADDRESS_TYPE)
35 NEW = ReplaceExpression(E.Inst, E, "R + DR")
36 i f lsValidlnstructio~(NEW) then
37 UPDATED = TRUE
38]ns~rtCalcu[ation(LOOPPreheader, "DR = E.Displacement - IND.Displacement")
39 endif
40 endif
41 i f UPDATED then
42 Replacelnstruction(E.lnstruction, NEW)
43 endif
44 i f UPDATED v (DIFF = O) then
45 LOOP.lnductionExprs = LOOPlnductionExprs - E
46 endi f
47 endfor
48 endwhile
49 endproc

Figure 7. High-level description of machine-dependent induction variable elimination algorithm.

To accommodate computing the induced sequences, a preheader is added to the loop
at line 14 if one does not exist, and the machine instructions needed to generate the first

119

value of the sequence are inserted in the preheader. This routine is machine-dependent
because it must generate the LIL code that represents the target machine instructions
needed to compute the value. The for loop at line 18 processes the induction expressions
(including the first one selected outside the loop). Lines 21 through 40 of this loop
determine, for each induction expression, the best way to compute the expression for
the target machine. The difference between the displacement value of first induction
expression selected and the current one is determined at line 19. If the difference is zero,
then the register holding the induction value can be used. The routine,
ReplaceExpression, replaces the reference to the expression with the reference to the
register containing the induction value. This new instruction is checked to see whether
it is valid on the target machine by the call to IsValidlnstruction at line 23.

If the difference was not zero, the difference is checked at line 27 to see if it is a
literal constant. If it is, then this expression can potentially be computed using a
displacement address mode. An RTL expression is constructed at line 28 and is
substituted for the expression. This new instruction is checked to see whether it is a
valid machine operation. Whether it is a target machine instruction depends on the
addressing modes supported by the target machine and the size of the displacement.

If the previous two alternatives do not succeed, the difference is checked to
determine if it is loop invariant. If it is, then the induction expression potentially can be
computed by adding the difference to the basic induction variable. If the target machine
supports this addressing mode, a calculation is placed in the loop preheader to compute
the difference. In the example in Figure 6c, the difference between the starting
addresses of a and b is calculated by the instruction at line 1 of Figure 6c. The induction
expression is replaced with this register plus register computation.

If one of the alternatives succeeds, then UPDATED will be true, and the instruction
that used the induction expression will be replaced by the new instruction at line 41. If
this induction expression can be calculated from the induction expression selected at
line 12, it is removed from the list of induction expressions. If not, it will be handled by
a subsequent iteration of the while loop. That is, a single register will be allocated to be
used to induce the sequence. After the algorithm completes, a pass is made over the loop
and instruction selection is repeated on all changed instructions. This ensures that the
most efficient target machine instructions are used. Again, this is an advantage of
applying code improvements to a LIL. This pass also updates use-def chain
information.

The algorithm is guaranteed to terminate because the initial set of induced
expressions in LOOP.InductionExprs is finite and because line 45 removes at least one
item from this set each time through the while loop. Note that IND represents one of the
elements in the set EXPR upon entry to the for loop at line 18. Consequently, there will
be at least one case where the difference value calculated at line 19 will be zero. Thus,
even if UPDATED is not set for any of the items in the EXPR set, the condition in line
44 will be true for at least the item with the zero difference.

120

Name
cache
compact
aiff
eqntott
espresso
gcc
li
linpack
mincost
nroff
sort
tsp

Description Source Type
Cache simulation
Huffman file compression
Text file comparison
PLA optimizer
Boolean expression translator
Optimizing compiler
LISP interpreter
Floating-point benchmark
VLSI circuit partitioning
Text formatting
File sorting and merging
Traveling salesperson problem

User code
UNIX utility
UNIX utility
SPEC benchmark
SPEC benchmark
SPEC benchmark
SPEC benchmark
Synthetic benchmark
User code
UNIX utility
UNIX utility
User code

Lines
I/O, Integer 820
I/O, Integer 490
I/O, Integer 1,800
CPU, Integer 2,830
CPU Integer 14,830
CPU, Integer 92,630
CPU, Integer 7,750
CPU, FP 930
CPU, FP 500
I/O, Integer 6,900
I/O, Integer 930
CPU, Integer 450

Table I. Benchmark programs.

An astute reader will note that this algorithm does not necessarily produce the best
code sequences tbr all possible architectures. For example, on a machine with an
indexed displacement mode [base_reg + index_reg + displacement], the algorithm
would not realize that only one index register needs to be incremented and that the
difference between the base address of two arrays is not needed. This deficiency,
however, can be easily overcome by adding a test for this addressing mode similar to
those at lines 27 and 33. This additional test does not prevent the algorithm from
working on architectures that do not have an indexed displacement mode, but produces
better code for the machines that do. This extensibility greatly simplifies the task of
retargeting the compiler and often allows the effort invested in improving the code for
one architecture to be amortized across many machines.

5 Results

A retargetable optimizing C compiler has been constructed with the structure shown in
Figure lb that operates on the LIL described in Section 3.2. The compiler is fully

operational for six architectures, t These are:

�9 VAX-11 �9 Motorola 68020
�9 Intel 80386 �9 Sun SPARC
�9 MIPS R2000/R3000 �9 Motorola 88100

To determine the effectiveness of machine-dependent IVE, the SPARC architecture
was chosen as the platform to run experiments. A set of experiments were performed
using the benchmark programs described Table I. This set of programs includes the four
C programs in the SPEC suite [16] along with some common Unix utilities and user
code. Together the programs comprise approximately 130,000 lines of source code.

fActually over ten different architectures have been accommodated, but only these six are
maintained.

121

Program
Name

Percent Speedup with Percent Speedup with Column b - Column a
Machine-Independent IVE Machine-Dependent IVE

(Column A) (Column B) (Column C)
cache -2.39
compact 0.58
dtff -3.26
eqntott -4.05
espresso -0.78
gcc -1.39
iir 25.30
li -5.20
linpack -7.43
mincost -1.97
nroff -3.46
sort 0.37
tsp 3.98

-0.08
3.74
0.56
3.68

-8.51
-0.88
40.00
-0.80
1.34
3.49
0.80
4.02
4.27

2.31
3.16
3.82
7.53

-7.73
0.51

14.70
4.40
8.86
5.46
4.26
3.65
0.29

Table II. Comparison of the effectiveness of machine-independent and
machine-dependent induction variable elimination on the SPARC2.

The first experiment determined the overall effectiveness of IVE. The programs in
Table I were compiled with and without IVE enabled. For the runs with IVE enabled
the machine-dependent aspects of the algorithm were disabled effectively making it
mimic a high-level machine-independent implementation of 1VE. The resulting
executables were run five times on a lightly loaded SPARC2 and an average execution
time was computed. From this average, the speedup due to machine-independent IVE
was computed (see the Column A of Table II). Surprisingly, most programs slowed
down with machine-independent IVE enabled. Because the effect was most pronounced
for linpack, the code for this program was examined to determine what was happening.
Most of linpack's execution time is spent in daxpy. Comparison of the two versions of
this loop revealed why machine-independent IVE ran slower. Without IVE, the loop
was 9 instructions long. With machine-independent IVE, the loop was also 9
instructions, but the preheader contained instructions that copied the addresses of the
arrays to temporaries, and computed the value needed to test against for loop

termination (dx + 400 • n). Because the routine is called tens of thousands of times
during the course of a run, the extra overhead lowered performance. For one program,
iir, machine-independent IVE showed a large benefit. Inspection of this code revealed
that this was because IVE produced an opportunity for recurrence detection and
optimization [2] to take effect, and a large percent of the benefit was from this
improvement. These results confirm that it is difficult to apply code improving
transformations to a HIL because the cost/benefit analysis is so dependent on the target
machine.

To determine the effectiveness of machine-dependent IVE, the same programs were
compiled and run, but this time the machine-dependent aspects of the IVE algorithm
were enabled. Column B of Table II shows the speedup when machine-dependent IVE
was performed compared to when no IVE was performed. The improvement due to

122

machine-dependent IVE is similar to that reported elsewhere in the literature averaging
two or three percent [14].

The one anomaly in Column B is the serious loss of performance for espresso. Using
a measurement tool called ease [9], the execution behavior of the three versions of this
program was examined. First, it was observed that several of the routines that were
called frequently had loops with very low iteration counts (50% of the loops in these
routines had iteration counts of less than two). This explained why IVE was producing
poor results. The preheader overhead was not being offset by savings in the loops.
However, this did not explain why machine-dependent IVE, with smaller preheader
loop overhead, ran slower than machine-independent IVE. The measurement tool
revealed that the version of the program produced by compiling the program with
machine-dependent IVE performed fewer instructions (less preheader overhead), but
more memory references than the version produced by compiling it with machine-
independent IVE. Inspection of the optimized loops showed that because the loop was
tighter (i.e. fewer instructions), the scheduler had, in order to fill the delay slot of the
branch at the end of the loop, resorted to using an annulled branch and had placed a load
in the delay slot and replicated it in the preheader. Apparently, these extra (useless)
loads caused performance to suffer.

Column C shows the performance difference in machine-independent IVE and
machine-dependent IVE. For all but the anomalous espresso, performing IVE at a low
level where machine-specific information is available appears to be worthwhile, and
performs better than machine-independent IVE. Experience with the compiler indicates
that other code improvements yield similar benefits when applied at a low-level.

These experiments show, in general, that any single code improvement will affect
only a subset of the programs to which it is applied. For some programs the effect will
be small and for others it will be large. Thus, a good optimizing compiler uses a
collection of code improvements where each transformation produces a small benefit
most of the time and a large benefit occasionally. The results also show how difficult it
is to measure the effects of a code improvement. Each code improvement can affect
what another does and it sometimes difficult to isolate the effect of a single
transformation.

To determine the compilation times between a production compiler structured as
shown in Figure la and one using the structure in Figure lb, the amount of time spent
in the middle end was measured and compared against the amount of time required to
perform the entire compilation process. Obtaining these measurements for the
benchmark suite shown in Table I revealed that the extra translation step from HIL to
LIL increases the compilation time of the compiler by an average of 3.1%. This value
ranged from a low of 1.9% for the linpack program to a high of 5.5% for li. This slight
increase in compilation time is the primary disadvantage of using a structure that
utilizes both an HIL and a LIL.

123

6 Summary

To be applied most effectively, most global optimizations require information about the
target machine. For those few transformations where this is not true, it is likely that they
interact with those that do and thus, effectively, they are also machine dependent. This
paper has described the structure of a compiler that is designed so that code
improvements can be applied when machine-specific information is available. The
compiler has two intermediate representations: one that is a target for intermediate code
generation, and a second one that is designed to support the machine-specific
application of global code improvements such as code motion, induction variable
elimination, and constant propagation.

Using one transformation as an example, this paper showed that it is possible to
implement global code improvements that operate on a LIL representation of the
program and that it is beneficial to do so. The implementation of the algorithm is itself
kept machine-independent by carefully isolating the access to target-specific
information via a few routines that can be generated automatically from a specification
of the target architecture. The results presented show that the benefits of such a structure
are worth the effort in spite the modest compilation time penalty that it incurs.

Acknowledgments

This work was supported in part by National Science Foundation grant CCR-9214904.

References
1. Aho, A. V., Sethi, R., and Ullman, J. D., Compilers Principles, Techniques and

Tools, Addison-Wesley, Reading, MA, 1986.

2. Benitez, M. E., and Davidson, J. W., "Code Generation for Streaming: an Access/
Execute Mechanism", Proceedings of the Fourth International Symposium on
Architectural Support for Programming Languages and Operating Systems,
Santa Clara, CA, April 1991, pp. 132--141.

3. Chow, F. C., A Portable Machine-Independent Global Optimizer--Design and
Measurements, Ph.D. Dissertation, Stanford University, 1983.

4. Cytron, R., Ferrante, J., Rosen, B. K., Wegman, M. N., and Zadeck, F. K.,
"Efficiently Computing Static Single Assignment Form and the Control
Dependence Graph", ACM Transactions on Programming Languages and
Systems, 13(4), October 1991, pp. 451--490.

5. Davidson, J. W. and Fraser, C. W., "Register Allocation and Exhaustive
Peephole Optimization", Software--Practice and Experience, 14(9), September
1984, pp. 857--866.

6. Davidson, J. W. and Fraser, C. W., "Code Selection Through Peephole
Optimization", Transactions on Programming Languages and Systems, 6(4),
October 1984, pp. 7--32.

124

7. Davidson, J. W., "A Retargetable Instruction Reorganizer", Proceedings of the
'86 Symposium on Compiler Construction, Palo Alto, CA, June 1986, pp. 234--
241.

8. Davidson, J. W. and Gresh, J. V., "Cint: A RISC Interpreter for the C
Programming Language", Proceedings of the ACM SIGPLAN '87 Symposium on
Interpreters and Interpretive Techniques, St~ Paul, MN, June 1987, pp. 189--
198.

9. Davidson, J. W. and Whalley, D. B., "A Design Environment for Addressing
Architecture and Compiler Interactions", Microprocessors and Microsystems,
15(9), November 1991, pp. 459---472.

10. Joy, William N. and McKusick, M. Kirk, "Berkeley Pascal PX Implementation
Notes Version 2.0--January, 1979", Department of Engineering and Computer
Science, University of California, Berkeley, January 1979.

11. McFarling, S., "Procedure Merging with Instruction Caches", Proceedings of the
ACM SIGPLAN '91 Symposium on Programming Language Design and
Implementation, Toronto, Ontario, June 1991, pp. 71--79.

12. Nelson, P. A., "A Comparison of PASCAL Intermediate Languages",
Proceedings of the SIGPLAN Symposium on Compiler Construction, Denver,
CO, August 1979, pp. 208--213.

13. Newey, M. C, Poole, P. C., and Waite, W. M., "Abstract Machine Modelling to
Produce Portable Software---A Review and Evaluation", Software--Practice
and Experience, 2, 1972, pp. 107--136.

14. Powell, M. L., "A Portable Optimizing Compiler for Modula-2", Proceedings of
the SIGPLAN '84 Symposium on Compiler Construction, Montreal, Canada, June
1984, pp. 310--318,

15. Richards, M., "The Portability of the BCPL Compiler", Software--Practice and
Experience, 1(2), April 1971, pp. 135--146.

16. Systems Performance Evaluation Cooperative, Waterside Associates, Fremont,
CA, 1989.

17. Tanenbaum, A. S., Staveren, H. V., and Stevenson, J. W., "Using Peephole
Optimization on Intermediate Code", Transactions on Programming Languages
and Systems, 4(1), January 1982, pp. 21--36.

18. Tanenbaum, A. S., Staveren, H. V., Keizer, E. G., and Stevenson, J. W., "A
Practical Tool Kit for Making Portable Compilers", Communications of the
ACM, 26(9), September 1983, pp. 654 660.

