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This paper shows how thorough object code optimization has simplified a compiler and made it easy 
to retarget. The code generator forgoes case analysis and emits naive code that is improved by a 
retargetable object code optimizer. With this technique, cross-compilers have been built for seven 
machines, some in as few as three person days. These cross-compilers emit code comparable to host- 
specific compilers. 
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1. INTRODUCTION 

Most compilers perform lexical, syntactic, and semantic analysis, code optimi- 
zation, and code generation, in this order [1]. Code optimization includes common 
subexpression elimination, constant folding, code motion, and strength reduction 
[1, 37]. Code generation includes register allocation, code selection, and perhaps 
some peephole optimization [1]. Most optimizers treat a high-level intermediate 
code to avoid machine dependencies. Most peephole optimizers are machine 
specific and ad hoc, so they are normally confined to correcting a handful of 
patterns that cannot be more easily corrected before code generation [4, 23, 
24, 37]. 

This paper describes a compiler that optimizes after code generation [8]. A 
naive code generator emits "worst case" code that is subsequently improved by 
an object code optimizer. The object code optimizer is machine independent and 
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general. It extracts its machine specifics from a machine description, and it 
implements only two general optimizations: eliminating common subexpressions 
and replacing adjacent instructions with equivalent singletons. The optimizer 
allows the use of simple code generators and makes the compiler easy to retarget. 
Cross-compilers for seven machines have been built, some in as few as three 
days. They emit code comparable to that from typical machine-specific compilers. 

The compiler, called "YC", translates the Y programming language [18], though 
its techniques apply to other Algol-like languages as well. Indeed, its optimizer 
and code generation strategy have been used to build compilers for subsets of 
Modula II [36] and a guarded command language [28]. Section 2 describes YC's 
organization, Section 3 describes its performance, and Section 4 compares this 
work with similar work. 

2. ORGANIZATION 

Figure I shows YC's five phases. Like many retargetable compilers [22, 26], YC's 
front end compiles source code into an abstract machine code. The next phase 
expands this into register transfers [5], a representation roughly equivalent to 
assembly code. The Cacher phase eliminates common subexpressions in register 
transfers, the Combiner phase replaces sequences of register transfer instructions 
with equivalent singletons, and the Assigner phase translates them into assembly 
code. Cacher, Combiner, and Assigner extend an earlier optimizer called PO [7]. 

YC uses abstract machine code to keep the front end machine independent, 
and it uses register transfers as a machine-independent representation for ma- 
chine-specific instructions. Register transfers describe the effect of machine 
instructions. They have the form of conventional expressions and assignments 
over the hardware's storage cells. 1 For example, if the instruction represented by 
the assembly code 

load x 

loads the accumulator with the memory cell labeled x, then it might be repre- 
sented with the register transfer 

a c  = r e [ x ]  

Any particular register transfer is machine specific, but the form of register 
transfers is machine independent. YC uses register transfers because their 
machine-independent form permits it to optimize machine-specific code in a 
machine-independent way. For example, a machine-independent algorithm can 
identify even machine-specific common subexpressions in register transfers. Such 
machine-independent optimizations take the place of classical machine-specific 
case analysis and thus improve retargetability. 

Given a machine description like that in Section 2.4, it is simple to perform 
syntax-directed translation between register transfers and assembly code [7, 
10]. Thus YC could substitute assembly code for register transfers in interphase 
communication. However, register transfers are not appreciably harder to emit 
than assembly code, so this extra step is omitted in the interest of efficiency. 

1 Thus  YC's  register t ransfers  are not  suited to describe instruct ions so complex as to have internal  
loops (like block moves). Such instruct ions require separate t r ea tmen t  [25]. 
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The five subsections below elaborate on YC's five phases. Other documents 
focus more closely on Cacher [9] and on early versions of Combiner [7, 10]. The 
following subsections summarize the operation of these phases and show how 
they collaborate to simplify code generation. 

2.1 Front End 

Like many compilers, YC's scanner and parser are completely machine inde- 
pendent, and the only machine dependencies in its semantic analyzer are three 
arguments that define the relative widths of the basic integer, character, and 
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floating-point data types. Like many portable compilers [22, 26], YC's semantic 
analyzer emits abstract machine code. However, thorough object code optimiza- 
tion makes it practical to use an abstract machine that  is particularly simple. 

Abstract machines are usually implemented through a process logically equiv- 
alent to macro expansion. These code expanders may track register contents to 
avoid redundant loads, and they may try to avoid a few inefficient juxtapositions 
in the object code, but the final code expansion process is typically quite local. 
This encourages abstract machine instructions that  are "large" enough to collect 
features from many intended target machines. Consider the following examples: 

(1) Some machines have special-case instructions like clear instructions that  are 
cheaper than stores, increment and decrement instructions that are cheaper 
than adds and subtracts, and tests against zero that are cheaper than arbitrary 
comparisons. If some intended target machine has such special-case instruc- 
tions, then it is common to include similar instructions in the abstract 
machine, so that  the code generators can generate the target instructions 
without checking operands. 

(2) If some intended target machine has three-address adds, then the abstract 
machine may be given three-address adds, so that  the code generators need 
not examine more than one abstract machine instruction to select the proper 
add. 

(3) If some intended target machine has an autoincrement (which dereferences 
a pointer and automatically advances it to the next item), the abstract 
machine may be given a similar or "larger" feature (e.g., built-in vector 
operations). The code generators would otherwise need to examine two or 
more abstract machine instructions to use autoincrements. 

Such abstract machines might be termed union machines because they offer a 
set of features roughly equivalent to the union of the sets of features offered by 
typical machines. This definition is elaborated below. 

YC achieves local code quality through optimization instead of case checking, 
so its abstract machine need not be a union machine. The abstract machine uses 
a simple postfix code, has no registers, and supports about the smallest set of 
operators, types, addressing modes, and structures required by the source lan- 
guage. For example, the translation of 

a[i] = b[i] 

is little more than a translation into postfix: 

pushga i load i's address 
pushi load i's value 
pushga a load a's base address 
index 2 form a[i]'s address, given that elements have width 2 

(i.e., add 2.i to a's base address) 
repeat this process for b[i] . . .  pushga i 

pushi 
pushga b 
index 2 
pushi 
popi 

load b[i]'s value 
store it into a[i] 
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YC's abstract machine has only one significant union machine feature. Most of 
its abstract machine instructions that treat addresses have two variants, one for 
conventional addresses and another for addresses of elements of a character 
array. This is necessary to allow packed character arrays on word-addressed 
machines, where conventional addresses are not enough to address a packed 
element. Thus YC's abstract machine does not have union machine operations, 
but it does have a union machine data type. It needs one because its optimizer 
can improve code but not storage formats. Appendix A summarizes the abstract 
machine's instructions. 

In contrast with union machines, an abstract machine like YC's might be 
termed an intersection machine because it offers a set of features roughly 
equivalent to the intersection of the sets of features offered by typical machines. 
That is, an intersection machine is that subset of machine functions that can be 
expected of all target machines. 2 This makes intersection machines similar to 
reduced-instruction-set computers (RISCS) [29, 30], which have been shown to 
simplify compilers. Intersection machines need not use postfix, though, like 
RISCs, they should use a small, regular instruction set. 

Absolute minimality is not necessary in intersection machines. For example, 
an abstract machine could force the front end to compile all conditionals into 
combinations of branch-if-zero and branch-if-positive instructions. However, this 
would complicate the front end without significantly simplifying the implemen- 
tation of the abstract machine. Thus a practical intersection machine includes 
all the usual arithmetic, logical, and conditional operations, but it includes only 
one form of each and allows the front end to emit simple code without case 
analysis. 

Indeed, absolute minimality is not even useful. Technically, any effective 
procedure can be computed by a machine with only one instruction (e.g., to 
subtract two cells and branch if the result is positive). Thus the ultimate 
intersection machine has just one instruction, and, conversely, the ultimate union 
machine interprets source code directly. All practical abstract machines are on a 
continuum between these extremes. Just  as practical RISCs are "impure" for 
they can always be further reduced, so few practical union or intersection 
machines are "pure." They are defined as the union and intersection of typical 
machines, not abstract contrivances. 

Intersection machines are easy to implement. For example, YC's abstract 
machine has 99 opcodes, whereas P-code [27], a union machine for Pascal 
compilers, has 219 opcodes and tends to emit more object code per abstract 
machine instruction. Wulf notes that, to simplify compilers, computer architec- 
tures should offer "precisely one way to do something, or all ways should be 
possible" [38]. Intersection machines normally have exactly one obvious imple- 
mentation for each source language construct, so they effectively meet this 
requirement. Simplifying the abstract machine simplifies semantic analyzers that 
emit its code and code expanders that implement it. This helps make a compiler 
reliable, easy to understand, and easy to modify. 

2 This  definition is due to an anonymous referee. 
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Intersection machines are stable. For example, few union machines exploit the 
VAX-ll's new queue-manipulation operations. Queuing extensions might be 
added, but the need for such changes makes union machines unstable. In contrast, 
intersection machines are less sensitive to target machine changes. YC's abstract 
machine may not include queuing instructions, but YC's optimizer can introduce 
them into the object code where appropriate. YC's abstract machine and YC's 
first two implementations (targeting the PDP-11 and the DECSystem-10) were 
developed in parallel. Since this initial phase, YC's abstract machine design has 
been stable over five additional machines. Minor changes have been made to 
accommodate languages other than Y, but no changes have been made to 
accommodate new machines. 

Unfortunately, intersection machines require verbose code sequences. Verbose 
abstract machine code usually yields verbose target machine code, which no 
doubt explains the historical dominance of union machines. Theoretically, any 
simple compiler based on an intersection machine would be retargetable, but its 
code would be unacceptable without object code optimization, and classical object 
code optimizers are hard to retarget. Sections 2.3 and 2.4 show how YC's object 
code optimizer overcomes this obstacle. 

These points recall the attempt to define a universal intermediate language or 
"UNCOL" [32, 33], which was to have solved the "M.N" compiler problem. 
Given M languages and N machines, M.N compilers are required if each directly 
compiles source code into machine code. With UNCOL, only M + N compilers 
were to have been required: M to compile source code to UNCOL, plus N to 
compile UNCOL to machine code. Unfortunately, no truly universal UNCOL 
has emerged to handle all languages and machines. This is partly because 
UNCOLs traditionally had to be union machines to achieve reasonable perform- 
ance. Optimizing object code removes this constraint and thus extends the range 
of any particular UNCOL. Such optimization helps an UNCOL accommodate a 
wide range of machines, but it is not yet clear whether it helps accommodate a 
wide range of languages. In particular, compiling very-high-level languages into 
very-low-level code may discard efficiency clues that present optimizers cannot 
recover. YC shows that is not the case for Algol-like languages, but the question 
remains open for other languages. 

2.2 Code Expander 

Most code generators perform much case analysis. They must supply at least one 
code pattern for each abstract machine instruction, and, for "large" abstract 
machine instructions, they often need different patterns for different classes of 
operands. 

Special-case instructions add complexity. The hardware may not have a special- 
case instruction for some abstract machine special-case instruction. Here, the 
semantic analyzer's case analysis was wasted (on this machine), and an otherwise 
unnecessary pattern must be written to use a more general hardware instruction. 
Conversely, the hardware may have special cases that were not anticipated by 
the designer of the abstract machine. Here, case analysis is necessary to detect  
those instances of, say, the abstract machine's general compare instruction that 
can use a particular "skip-if-zero" hardware instruction. 
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To yield good code, most code generators also store and check contextual data. 
For example, the DECSystem-10 has register-to-register, register-to-memory, 
and memory-to-register adds. Theright choice for any particular addition de- 
pends on which, if either, of its operands is available in a register, and which, if 
any, of its operands or result should remain in a register. Such machine-specific 
context checking works against a clean separation of instruction selection from 
register allocation and assignment, and forms a substantial component of the 
typical hand-written code generator. 

YC leaves all such case analysis to the object code optimizer. Each language 
operation has only one image on the abstract machine, and each abstract machine 
operation has only one image on each target machine. YC also leaves register 
allocation to the object code optimizer. Its code generators assume an infinity of 
pseudoregisters, which the object code optimizer maps onto the available supply. 

This makes YC's code expanders about as simple as is possible. The code 
expanders take only two actions to simplify subsequent optimization. First, the 
code expanders emit register transfers instead of assembly code, though this adds 
little complexity. Second, the code expanders flag cells that are obviously dead. 
For example, the code expander knows that any condition code registers are used 
only after comparisons, so it marks such registers as dead as it generates code 
for other operations. This allows, for example, subsequent phases to implement 
some additions with an autoincrement that does not set the condition code 
instead of a more costly add instruction that does. 

The program below gives the PDP-11 code for the example from Section 2.1. 
It shows how naive the code selection can be. 

Input Output Comment 

pushga i r[12] = i Load i's address. 
pushi r[13] = m[r[12]] Load i's value 
pushga a r[14] -- a Load a's address. 
index 2 r[15] -- r[13] Copy i, 

r[15] = r[15] << i and shift to form byte offset. 
r[16] -- r[15] Copy offset, 
r[16] = r[16] + r[14] and form a[i]'s address. 

pushga i r[17] = i Repeat for b[i] 
push i  r[20] = m[r[17]] • 
p u s h g a b  r[21] = b  
index 2 r[22] = r[20] 

r[22] --- r[22] << 1 
r[23] -- r[22] 
r[23] = r[23] + r[21] 

pushi  r[24] -- m[r[23]]  Load  b[ i ] ' s  value,  
popi  re[r[16]] = r[24] and  s tore  i t  in to  a[i] 

/ 

Each value is formed in a new register so that each value will be available 
during common subexpression elimination. For example, a[i]'s address is formed 
in r[16] to preserve the shifted value of i in r[15]. Common subexpression 
elimination will reuse r[15] in the formation of b[i]'s address, and computations 
used only once will be absorbed into larger instructions wherever possible. The 
code above is verbose. Cacher and Combiner collaborate to make it usable. 

Each of YC's target machines needs its own code expander, but the lack of 
redundancy and case analysis makes code expanders easy to implement. Each is 
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a large case s ta tement  with one case per abstract machine instruction, and each 
case is logically equivalent to a macro. Theoretically, the code expander must  be 
completely rewritten for each new machine. In practice, a new code expander is 
written by editing one for another  machine. Since the code expanders generate 
similar pat terns on different machines (mainly register-to-register operations 
and simple addressing), and  since register transfers can be more similar t han  
assembly codes (e.g., "r[x]" is often used to name registers), their  realization is 
similar on different machines. Thus  many  of the edits affect not  logic but  the 
skeletal register transfers tha t  addresses and register indices instantiate.  The 
seven code expanders writ ten to date are each about 650 lines of C. 

2.3 Cacher 

Cacher eliminates common subexpressions in blocks of register transfers bounded 
by labels in the input program. It uses a conventional algorithm [11], which 
effectively simulates the register transfers and records the value taken on by 
each register. When  it finds a register taking on an already available value, it  
reuses the previously computed value and deletes the instructions tha t  compute 
the new one. For  example, this removes four instructions from the PDP-11 
program above: 

Input 

r[12] = i 
r[13] --- m[r[12]] 
r[14] - a 
r[15] = r[13] 
r[15] -- r[15] << 1 
r[16] -- r[15] 
r[16] = r[16] + r[14] 
r[17] = i 
r[20] --- m[r[17]] 
r[21] = b 
r[22] = r[20] 
r[22] --- r[22] << 1 
r[23] -- r[22] 
r[23] = r[23] + r[21] 
r[24] = m[r[23]] 
m[r[16]] = r[24] 

Output Comment 

r[12] = i Load i's address. 
r[13] -- m[r[12]] Load i's value. 
r[14] = a Load a's address. ' 
r[15] = r[13] Copy i, 
r[15] -- r[15] << 1 and shift to form byte offset. 
r[16] -- r[15] Copy offset, 
r[16] = r[16] + r[14] and form a[i]'s address. 

Repeat for b[i] 

r[21] -- b 

r[23] = r[15] . . .  but reuse byte offset . . .  
r[23] -- r[23] + r[21] 
r[24] -- m[r[23]] Load b[i]'s value, 
m[r[16]] - r[24] and store it into a[i] 

Cacher also flags each block's last use of each cell so tha t  Combiner will know 
when it has deleted such a use and can then  delete the instruction tha t  sets the 
now-unused cell, and so tha t  Assigner will know when to release a register 
assigned to a cell. An example making use of these data  appears below. 

Cacher also links each instruction to the first instruction tha t  uses one of its 
results. Benchmarks show tha t  Combiner typically runs 30 percent faster and 
yields code tha t  is 20 percent shorter when it tries combining only such "logically" 
adjacent instructions rather  t han  the more obvious physical adjacencies. 

Cachet  is retargeted by changing three routines, which, respectively, identify 
the names of registers to track, extract  such register names from larger strings, 
and compare the efficiency of two expressions. For most machines, this last 
function merely prefers expressions consisting of a single register reference to all 
other expressions. 
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Common subexpression elimination is not much harder to perform on register 
transfers than on a more regular structure like quadruples, and it is possible to 
catch common subexpressions after code generation that cannot be caught before 
because they are machine specific. Expanding abstract machine code for address 
calculations often creates such machine-specific common subexpressions. 

2.4 Combiner 

Combiner advances over Cacher's register transfers seeking adjacent instructions 
that can be replaced with singletons. It symbolically simulates adjacent pairs and 
triples 3 of instructions to learn their combined effect and searches a machine 
description for an instruction with this combined effect. If it finds one, it replaces 
the original instructions with the singleton. 

Symbolic simulation is a string operation. To simplify the searching of machine 
descriptions, instructions that make several register transfers are represented as 
though the transfers were done in parallel, not sequentially. Thus Combiner 
computes the combined effect of two instructions by substituting the values 
assigned to cells in the first for appearances of those cells in the second. Consider, 
for example, the first two PDP-11 instructions above: 

r[12] = i 
r[13] = m[r[12]] 

Combiner computes their combined effect by replacing the r[12] in the second 
instruction with the value assigned to r[12] in the first, and then concatenating 
the two effects. This yields 

r[12] = i; r[13] = m[i] 

This algorithm treats assignments to the program counter as a special case. If 
the first instruction branches, the register transfers from the second are made 
conditional on the branch not being taken. If the first instruction branches 
unconditionally, this effectively removes unreachable code. Combiner also sim- 
ulates such branches with their targets, which often collapses branch chains. 

Next, Combiner removes from this combined effect any register transfers that 
set dead variables. In the example above, Cacher will have flagged this spot as 
the last use of r[12], so Combiner can simplify the initial combined effect to 

r[13] -- m[i] 

At this point, Combiner also performs a few symbolic simplifications. For 
example, if symbolic simulation creates an expression like r[1] + 0, symbolic 
simplification deletes the "+0" to simplify instruction recognition. A few of 
Combiner's simplifications involve labels (e.g., those that eliminate a branch to 
the label on the next statement) and thus may need changing for an assembler 
with an unusual label syntax. The other simplications are machine independent. 
Occasionally a new machine requires a machine-independent simplification to 

Combiner simulates triples because many machines with singletons equivalent to a load/operate/ 
store sequence do not have singletons for the load/operate and operate/store subsequences. Thus 
Combiner needs a three-instruction window to catch these optimizations, though no pressing need 
for a larger fixed window has emerged. 
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correct a pat tern tha t  does not occur on other machines. For example, one 
simplification replaces POP(PUSH(x))  with x. The need for such simplifications 
is machine specific, but  the simplifications themselves are machine independent.  

Combiner presents the simplified register t ransfer  to a finite automaton tha t  
recognizes the legal instructions. This  automaton is automatically constructed 
from a formal machine description, described below. If  no match is found, 
Combiner advances to the next  instruction and tries combining it with its logical 
predecessors. If  a match is found- -and ,  in the example above, ozie is, though the 
dead-variable elimination was necessary--Combiner  replaces the original instruc- 
tions with the combined effect and tries combining the new instruction with its 
logical predecessors. Combiner reaches back instead of forward to find adjacencies 
so as to cascade optimizations in one pass without  backup. 

Optimizations routinely cascade. Consider this (logical, not  physical) sub- 
sequence of the sample program above: 

r[14] = a 

r[16] --- r[15] 
r[16] = r[16] + r[14] 

After step 1 
r[16]=r[15] 
r [16]=r [16]+a  

m[r[16]]=r[24] 

re[r[16]] --- r[24] 

Combiner reduces it to one instruction in three steps: 

After step 2 After step 3 
r[16] - r[15] 

m[r[16] + a] = r[24] m[r[15] + a] = r[241 

Eventually, the original 16 instructions are reduced to the optimal three: 

r.[151 = m[i] 
r[15] = r[15] << 1 
m[r[15] + a] - m[r[15] + b] 

This example shows how repeated object code optimizations can substitute for 
careful case selection. The "case analysis" has been done by an automatically 
generated finite automaton.  

This example is not  unusual; indeed, one 17-to-1 reduction has been reported. 
It is possible to build a machine with instructions for the naive sequences and 
the singletons but  without  the intermediate-level instructions Combiner needs 
as it reduces a six-instruction sequence to five instructions, then  four, then  three, 
etc. Giegerich proposes an improvement on Combiner tha t  eliminates its narrow 
window and accommodates such machines [14]. Fortunately,  such machines 
seldom appear in practice. Designers tha t  include "large" and "small" instructions 
seem to include "medium" ones as well, presumably because it is easy to do so 
once the "big" instructions have been included. 4 

4 Only once--for the above-mentioned VAX queue instructions--has a crucial "medium" instruction 
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Classical peephole optimizers correct only those sequences that match a few 
hand-written, machine-specific patterns. In contrast, Combiner has no ad hoc 
case analysis: it combines all possible adjacent pairs and triples. As a result, its 
effect can be described formally and concisely: when it is finished, no one-, 
two-, or three-instruction sequence can be replaced with a cheaper single instruc- 
tion having the same effect. 

In the presence of naive code generation, Combiner's machine description and 
patternless substitution algorithm appear preferable to a classical peephole 
optimizer. For example, when compiling YC's front end for the PDP-11, Com- 
biner has been observed to make about 300 distinct types of replacements, each 
involving two or three input instructions and one output instruction. A collection 
of 300 patterns to perform the same replacements would be more complex, less 
complete, and harder to check [35] than the 100-line PDP-11 machine descrip- 
tion. Also, the number of possible patterns grows rapidly with machine complex- 
ity. If A is the number of addressing modes and I the number of instructions, 
then a pattern list of only two-input patterns may grow as (A.I) 2 where, as shown 
below, a machine description grows as A + I. 

Combiner is retargeted by supplying a new machine description. The machine 
description is processed into tables that are compiled with Combiner. These 
tables isolate Combiner's machine-specific data. Combiner's code is machine 
independent just as a table-driven parser is language independent. Since Com- 
biner is machine independent, it is not tuned to improve code quality on a new 
machine. Machine descriptions are occasionally tuned (see the discussion of 
trade-offs below), but Combiner is not. 

Each machine description is a grammar for syntax-directed translation between 
assembly language and register transfers. For example, the production 

NZ = DSTW ? 0; :--: tst DSTW 

describes the PDP-11 "tst" instruction, which compares a word with zero and 
sets the condition code register ("NZ") accordingly. The register transfer appears 
on the left and the equivalent assembly code on the right. Similarly, the produc- 
tion 

DSTW = DSTW + SRCW; NZ -- DSTW + SRCW ? 0; :=: add SRCW, DSTW 

describes the PDP-11 instruction that adds two words and sets the condition 
code register to describe the result. Code generators need not know the details of 
encoding of the condition code, so the semantics of the comparison operator ("?") 
need not be described. The code expander and machine description need only 
use the operator consistently. This technique is routinely used to suppress 
architectural details irrelevant to code generation. 

Productions also describe the legal operands. For example, the production 

DSTW :--- r[REGNO] :=: rREGNO 

been missing. This problem is solved by including the missing instruction as a macroinstruction in 
the machine description. This solution is ad hoc, but the problem is VAX specific, so it seems better 
to add an instruction to the VAX-11 machine description than to the abstract machine, which must 
be implemented once for each target. The proposed windowless optimizers will solve this problem 
more elegantly. 
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describes register operands. They are expressed in register transfers with a string 
like "r[1]", and in assembly code with a string like "rl". Similarly, the production 

DSTW := m[r[REGNO] + IDENT] :=: IDENT(rREGNO) 

describes indexed operands. They are expressed in register transfers with a string 
like "m[r[1] + a]" and in assembly code with a string like "a(rl)". 

Machine descriptions are occasionally tuned to achieve specific effects. For 
example, Combiner does not currently make time-space trade-offs. That  is, it 
assumes that one instruction is always better than two. This assumption is 
usually valid but fails occasionally. There are several ways a machine description 
can help solve this problem. First, if some forms of some singleton are always 
worse than the equivalent pair or triple, then the machine description should 
describe only the desirable forms. Alternately, the machine description can 
describe a pseudoinstruction realized by an assembler macro that implements 
the preferred multiinstruction sequence. If the pseudoinstruction appears in the 
machine description before the less desirable singleton, then it will be used 
whenever it applies. Such ad hoc measures have sufficed so far, but ultimately it 
may prove necessary to include instruction costs (in space and time) in machine 
descriptions. Such data should be optional so that machine describers are not 
obliged to provide them when the usual "one instruction is better than two" 
heuristic holds. 

2.5 Assigner 

Once all optimization is complete, Assigner maps the now-reduced set of pseu- 
doregisters onto the available hardware registers, introducing spills where needed. 
It also translates the register transfers to assembly code, using a finite automaton 
generated from the machine description. For example, this phase accepts the 
three register transfers above and produces the assembly code: 

mov i,r2 
asl r2 
mov b(r2),a(r2) 

Appendix B traces the compilation of a longer example. 
When a register transfer is realized by more than one instruction, Assigner's 

automaton prefers the one listed first in the machine description. Thus machine 
descriptions should list faster special-case intructions first. Only Assigner uses 
this ordering. Combiner cares only that some instruction realizes a combined 
effect. Assigner decides which  instruction is best. 

Assigner is retargeted by supplying a function to print a label definition in the 
appropriate assembler syntax and by revising the register assignment module. 
For general register machines, the register assignment module is retargeted by 
changing a few tables that describe the number of registers, their names, and 
whether they may be allocated. Machines with unique register structures may 
require some recoding, but even the unique register set of the CDC Cyber was 
accommodated by the first author in 2-3 days. Assigner also uses Cacher's 
function that extracts register names from a string and Combiner's machine 
description. 
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Table I 

Y C Pascal 

8q 37.0 seconds 37.3 seconds 62.2 seconds 
306 bytes 304 bytes 492 bytes 

ctoi 19.5 seconds 21.5 seconds 26.2 seconds 
192 bytes 188 bytes 424 bytes 

ictoi 39.5 seconds 45.9 seconds 69.6 seconds 
236 bytes 244 bytes 426 bytes 

3. EVALUATION 

3.1 Machine Retargetability 
YC runs on the VAX-11 and the PDP-11 under UNIX 5 and produces code for 
the VAX-ll ,  PDP-11, DECSystem-10, CDC Cyber, Motorola 68000, IBM 370, 
and Intel 8080. The system has been in production use for over two years, and it 
is stable enough that the 68000 and 370 versions were brought up by students in 
a second-term compiler course. It has been distributed and is running at several 
sites. 

YC is easily retargeted. Once the initial DECSystem-10 and PDP-11 versions 
had shaken out most of the bugs, the Cyber, 8080, and VAX-ll  versions were 
brought up in no more than five person-days each, and students new to the 
system, the target machine, and even UNIX have retargeted YC in about 20 
person-days. This includes writing a machine description, coding a naive code 
generator, making the simple changes to Cacher and Assigner, and assembling a 
skeletal runtime system for Y. 

The tables below quantify the performance of the retargets on three typical 
programs. The program "8q" solves the eight queens problem recursively, "ctoi" 
converts a packed digit string into an integer, and "ictoi" converts an unpacked 
digit string into an integer, to expose differences in the handling of characters 
and integers. The tables show the size of the emitted code and its execution time. 
To minimize timing errors, the eight queens program is called 100 times, and the 
other functions are called 30,000 times. Where compilers offer different levels of 
optimization, the comparisons below use the level that produces the best code. 
No trade-offs were necessary: optimization levels that produced the shortest code 
also produced the fastest. All debugging options like subscript checking were 
turned off. 

Table I compares the PDP-11 retarget with the host-specific UNIX C compiler 
[31], and the Vrije University portable Pascal compiler [34]. The portable UNIX 
C compiler [21] produces PDP-11 code similar to the host-specific C compiler's, 
and the published code fragments from recent description-driven code generators 
[12, 15] suggest that they do too. YC's code runs fastest mainly because it 
eliminates redundant expressions, though other factors effect the Pascal corn- 

5 UNIX is a registered trademark of AT&T Bell Laboratories. 
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Table II 

Y (retargetable) Y (hbst-specific) Ratfor 

8q 26.7 seconds 26.1 seconds n /a  
85 words 74 words n /a  

ctoi 34.9 seconds 51.2 seconds n /a  
71 words 61 words n /a  

ictoi 25.7 seconds 24.8 seconds 19.2 seconds 
72 words 70 words 66 words 

Table III 

Y Pascal Ratfor 

8q 17.6 seconds 16.6 seconds n /a  
71 words 76 words n /a  

ctoi 18.1 seconds 26.3 seconds n / a  
56 words 88 words n /a  

~ctoi 15.5 seconds 14.0 seconds 8.7 seconds 
60 words 77 words 47 words 

piler's code. Some of these factors are Pascal related and beyond the control of 
the compiler. For example, the Pascal compiler may use two instructions to load 
a character because the one instruction used by the other compilers extends the 
sign bit. However, at least one factor illustrates a trade-off made differently by 
the Y and Pascal compilers. In particular, there are patterns in the code produced 
by the Pascal compiler that need peephole optimization. The compiler performs 
peephole optimization, but it does so early, on abstract machine code. This 
simplifies retargeting but misses machine-specific inefficiencies introduced dur- 
ing code expansion. 

Table II compares the DECSystem-10 retarget with a host-specific Y compiler 
and with a Ratfor translator that uses the host-specific DEC Fortran compiler. 
The Ratfor code does best mainly because the Fortran compiler performs global 
(interblock) register allocation. Ratfor does not offer recursion or packed char- 
acter strings, so 8q and ctoi benchmarks are unavailable for this compiler. YC 
yields faster code for ctoi than the host-specific Y compiler because of a different 
code generation strategy for handling characters. Otherwise, the host-specific Y 
compiler does better, due to more global register allocation [19]. 

Table III compares the CDC Cyber retarget with the host-specific ETH Pascal 
compiler [2] and with a Ratfor translator that uses the host-specific CDC Fortran 
compiler. The CDC Fortran compiler is an ambitious optimizing compiler, though 
much of the speed indicated above is due to a nonrecursive calling sequence 
unavailable to the Y and Pascal compilers. The Pascal and Y compilers are more 
nearly comparable, but even they generate code quite differently. YC eliminates 
a few more common subexpressions, where the Pascal compiler performs more 
sophisticated Cyber-specific optimizations. For example, YC uses ordinary short- 
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Table IV 

Y C 

8q 40.4 seconds 41.6 seconds 
286 bytes 307 bytes 

ctoi 38.2 seconds 40.3 seconds 
164 bytes 161 bytes 

ictoi 40.5 seconds 41.1 seconds 
198 bytes 175 bytes 

circuit evaluation for relationals where the Pascal compiler uses more Boolean 
instructions, perhaps to avoid jumps that invalidate the instruction buffer. Also, 
it implements some multiples with shifts and adds, which is beyond Combiner 
and would have to be implemented in YC by extra case analysis in the code 
expander or machine description. As reflected in Table III, some of these 
optimizations make a program longer but faster. Some of these optimizations 
were tailored to the CDC 6400 and are less appropriate on the newer Cybers, 
though the effect of this anomaly on the timings given is small. 

The Cyber retarget was the first after YC stabilized. Despite an irregular 
register set that complicated register allocation, this retarget took the first author 
five days, which included developing a skeletal runtime system. Thus the tables 
above show that a compiler based on thorough retargetable object code optimi- 
zation can compete with a carefully tailored host-specific compiler like the E T H 
Pascal compiler. 

Table IV compares the VAX-l l  compiler with the UNIX C compiler for the 
VAX-ll .  The code produced by the two compilers differs in two notable ways. 
First, YC eliminates redundant expressions and the C compiler does not. Second, 
C loops use add-compare-and-branch instructions that cannot be exploited by Y 
loops because YC's front end puts the loop test at the top of the loop and the 
increment at the bottom. Here a seemingly machine-independent high-level code 
generation decision influences the generated code. The VAX-11 retarget was 
cbmpleted in one person-week. 

YC has also been retargeted for the Intel 8080, Motorola 68000, and IBM 370 
though lack of hardware has left these versions largely untested. The 8080 retarget 
was done by the first author in three days. The 68000 and 370 retargets were 
done by students in a second term compiler class with no previous experience 
with Y, its compiler, or, in some cases, UNIX. They took about 20 person-days 
each. 

In summary, YC is competitive with host-specific compilers. In some cases, its 
code is as good as or better than its competitors. In the remaining cases, no 
important differences are due to code selection. Rather, they are due to calling 
conventions outside the control of the compiler, or to global optimizations that 
could be added to YC. 

YC would benefit from some global optimization. The front end folds constants, 
Cachet eliminates common subexpressions within blocks, and Combiner replaces 
adjacent pairs and triples with equivalent singletons, but no other optimizations 
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are performed. In particular, YC omits strength reduction, execution ordering, 
loop optimizations (e.g., moving loop-invariant code, eliminating induction vari- 
ables), and optimizations requiring global data-flow analysis (e.g., global register 
allocation, code hoisting) [1]. Many of these optimizations are machine inde- 
pendent and could be done before code expansion. Alternately, they could be 
performed on register transfers, which are not so different from the quadruples 
to which these optimizations are often applied. Because the form of register 
transfers is machine independent, the optimizations can be implemented machine 
independently. They would, however, automatically optimize machine-specific 
code. For example, they would automatically move all loop-invariant code, 
including machine-specific code introduced during code expansion, where opti- 
mizing quadruples moves only the machine-independent quads exposed prior to 
code expansion. This recommends register transfers as an intermediate code. 

3.2 Language Retargetability 

YC's back end has been also used to develop retargetable compilers for a subset 
of Modula II [36] and for a guarded command language [28]. These compilers 
have the same organization as YC. The front end for the guarded command 
language emits an intermediate code tailored to the source language, but the 
Modula II compiler uses YC's abstract machine with minor changes. The Modula 
II compiler targets the PDP-11 and uses the optimizer developed for the PDP- 
11 YC retarget. The other compiler targets the VAX-11 and uses the optimizer 
developed for the VAX-ll YC retarget. Each of these compilers was developed 
in a semester by a student carrying other courses. 

Thus YC's back end can be used with other languages. Y has no pointers, 
structures, or multidimensioned arrays, but YC's abstract machine does not 
assume any such restrictions. Indeed, it cannot, for Y's call-by-reference requires 
abstract machine pointers, and Y's procedure frames are essentially structures. 
The only significant additions likely to be required by other Algol-like languages 
should be a few extended-precision types and operators for them. 

Further, YC's back end can be used with other front ends. It assumes only that 
the front end folds constant expressions. Combiner will automatically fold 
constant expressions itself, but its finite automaton cannot process arbitrary 
context-free expressions correctly, so this should done by the front end. A more 
sophisticated instruction recognizer would avoid this requirement. YC's back end 
requires no other particular assistance from the front end, and it allows the front 
end to forgo case analysis. 

3.3 Speed 

YC's speed is tolerable but could be better. On a VAX-11/780, it processes about 
10 source lines per second, where the UNIX C compiler processes 40. Some of 
this difference is due to extra optimizations performed by YC. Table V shows 
the rough fraction of time taken by each phase. YC eliminates redundant 
expressions, and the C compiler does not. If Cachet, YC's redundant expression 
eliminator, were eliminated for comparison purposes, YC would process about 15 
source lines per second, to the C compiler's 40. The code expanders would have 
to compute the back links and dead variables, but this is easily done as the code 
is emitted. 
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Table V 

Phase Time (%) 

Front end 10 
Code expander 3 
Cacher 31 
Combiner 45 
Assigner 11 

The division of the compiler into five separate programs also artificially slows 
YC. The division was to simplify development and to accommodate larger 
programs in the limited PDP-11 address space. With development largely com- 
plete, it is appropriate to consider combining the phases. If the front end 
eliminated branch chains as it emitted code, Combiner could buffer only basic 
blocks and use much less storage. Profiles suggest that combining the phases 
would reduce compile times by 10-20 percent. 

Improvements are also possible within some phases. Combiner has been tuned 
but not exhaustively, Cacher has been tuned only cursorily, and the other phases 
have not been tuned at all. Thus there is room for improvement within the 
current implementation. The authors are also working to make Combiner gen- 
erate patterns at compile-compile time for a faster compile-time peephole optim- 
izer. (Others have made similar proposals [14].) Experiments suggest that this 
optimizer may run 5-10 times faster than Combiner. This, plus conventional 
tuning and eliminating Cachet for comparison purposes, should give YC about 
the same speed as the UNIX C compiler. 

4. RELATED WORI~ 

YC is not the first compiler to emit naive code and then improve it, but its 
particular mix of retargetability and code quality appears to be unique. The IBM 
ECS/GPO [20] and PL.8 [3] compilers use a similar strategy, though YC's use 
of machine descriptions appears to make it faster to retarget than these compilers. 

The Vrije University Pascal compiler [34] uses peephole optimization at a 
higher, machine-independent level to improve naive abstract machine code. 
Peephole optimization is easier at this level, but it misses the opportunities for 
optimization introduced when its (union machine) abstract machine code is later 
expanded. As such, it trades compiler speed for code quality: on a PDP-11/70, it 
processes about 10 lines/second to YC's 6, but its eight queens program takes 
622 ms to YC's 370. 

Finally, YC's portability suggests using its optimizer with, or as an alternative 
to, the new pattern-matching code generators [6, 13, 16, 17]. Each of these 
systems works differently, but most match intermediate code with instruction 
patterns and pick the one that maximizes some measure. For example, one picks 
the instruction that matches the most intermediate/code [16, 17]. 

These systems generate good local code, but their code requires some peephole 
optimization. Indeed, one system accepts peephole optimization rules in an 
attribute grammar that describes the instruction set [13], though these rules are 
machine specific and require hand-retargeting. An optimizer like Combiner seems 
an appropriate companion to these systems because it is more thorough and 
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more easily retargeted than typical hand-coded peephole optimizers. If Combiner 
is to be used anyway, it will automatically allow the code generator to emit naive 
code and thus require only a small set of instruction patterns. 

This set of patterns could be as small as the set used in YC's naive code 
generators. It is only slightly harder to plug these instructions into YC's naive 
code generators than it is to describe them for a pattern matching code generator, 
so a pattern-matching code generator might make YC more elegant, but it is not 
expected to make it much faster to retarget. 

With a little extra effort, a larger set of instruction patterns could be coded for 
a companion pattern-matching code generator, midway between the complete 
instruction set and the naive subset. This would divide the responsibility for case 
analysis between the code generator and optimizer, reducing the sometimes large 
size of the code generation tables [17] and the sometimes long execution time of 
Combiner. Eventually, it should be possible to eliminate the need for duplicate 
machine descriptions by retargeting a pattern-matching code generator and object 
code optimizer from one machine description. 

APPENDIX A. YC's Abstract Machine 

The executable instructions of YO's abstract machine are summarized below, 
with variants indicated in parentheses. Being postfix, most instructions take no 
explicit operands. 

add, subtract, multiply, divide, negate, convert (integer and real versions) 
and, or, complement, modulus, shift right, shift left (integer only) 
form address of array element 
augment address 
load, store a value indirectly (integer, real, character) 
load constant (integer, real, address) 
load address of a variable (global, local, parameter, reference parameter) 
jump (simple, indexed) 6 
compare and jump conditionally (integer, real) 
compare with two bounds and jump conditionally 6 
compare and generate a truth value (integer, real) 6 
establish actual argument (integer, real, character, address) 
call, return (integer, real, no value) 
procedure entry, exit 

A few nonexecutable opcodes define labels, initialize storage cells, etc. 

s These instructions contain a few redundant features that remain in YC's abstract machine for 
historical reasons. The two forms of the jump instruction could be replaced with one if the jump 
instruction were changed to take its target address from the stack instead of taking it as an explicit 
argument; the "compare with two bounds" instruction could be realized with two "compare and jump" 
instructions; and the "compare and generate a truth value" instructions could be realized with 
"compare and jump" instructions, or vice versa. These changes should simplify YC without reducing 
code quality, and they should yield an abstract machine without redundancies. 
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APPENDIX B. A Compilation Trace 

This appendix traces the compilation of the program below for VAX-I1. 

# ctoi--convert string "in" to integer 
integer ctoi(in) 
character in[ ] 
integer i, n 

n--0 
i=1 
while (in[i] >= '0' & in[i] <= '9'){ 

n = 10*n + in[i] - '0' 
i=i+l 
} 

return (n) 
end 

The first tabulation below shows the naive register transfers before Cacher, and 
the second traces them through the optimizations. 

Before Cacher Comment 

r[21] -- r[15] + n Load n's address. 
r[22] = 0 Load zero. 
m[r[21]] -- r[22] Clear  n. 
r[23] = r[15] + i Load  i 's  address .  
r[24] = 1 Load  one. 
m[r[23]] = r[24] Set  i to one. 
L I :  r[25] = r[15] + i Load  i 's  address .  
r[26] = m[r[25]] Load  i 's  value.  
r[27] = m[r[14] + in] Load  in 's  address .  
r[30] = r[26] + r[27] Compute  in[i  + 1] 's address .  
r[31] = r[30] + - 1  Compute  in[ i ] ' s  address .  
r[32] = b[r[31]] Load  in[ i ] ' s  value. 
r[33] = 48 Load  '0'. 
NZ = r[32] ? r[33] Compare  in[i] wi th  '0'. 
PC = NZ < 0 --* L31 PC Exi t  loop if  less. 
r[34] = r[15] + i Load  i 's  address .  
r[35] = re[r[34]] Load  i 's  value.  
r[36] = m[r[14] + in] Load  in 's  address .  
r[37] --- r[35] + r[36] Compute  in[i  + 1]'s address .  
r[40] = r[37] + - 1  Compute  in[ i ] ' s  address .  
r[41] -- b[r[40]] Load  in[ i ] ' s  value. 
r[42] - 57 Load  '9' .  
NZ = r[41] ? r[42] Compare  in[i] wi th  '9'. 
PC = NZ > 0 ~ L3 1 PC Exi t  loop if  greater .  
r[43] = r[15] + n Load  n 's  address .  
r[44] = r[15] + n Load  n 's  address .  
r[45] = m[r[44]] Load  n 's  value.  
r[46] = 10 Load  10. 
r[47] = r [45] , r [46]  Compute  10 * n. 
r[50] = r[15] + i Load  i 's  address .  
r[51] = re[r[50]] Load  i 's  value.  
r[52] = re[r[14] + in] Load  in 's  address .  
r[53] = r[51] + r[52] Compute  in[i  + 1]'s address .  
r[54] = r[53] + - 1  Compute  in[ i ] ' s  address .  
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r [ 5 5 ]  = b [ r [ 5 4 ] ]  

r [ 5 6 ]  = r [ 4 7 ]  + r [ 5 5 ]  
r [ 5 7 ]  = 4 8  

r [ 6 0 ]  = r [ 5 6 ]  - r [ 5 7 ]  
m [ r [ 4 3 ] ]  = r [ 6 0 ]  
r [ 6 1 ]  = r [ 1 5 ]  + i 

r [ 6 2 ]  = r [ 1 5 ]  + i 

r [ 6 3 ]  = m [ r [ 6 2 ] ]  
r [ 6 4 ]  = 1 

r [ 6 5 ]  = r [ 6 3 ]  + r [ 6 4 ]  
m [ r [ 6 1 ] ]  = r [ 6 5 ]  
P C  = L 1  

L 3 :  r [ 6 6 ]  = r [ 1 5 ]  + n 
r [ 6 7 ]  = m [ r [ 6 6 ] ]  

r [ 0 ]  = r [ 6 7 ]  

r e t  

Before Cacher 

r[21] = r[15] + n 
r[22] = 0 
m[r[21]] = r[22] 
r[23] = r[15] + i 
r[24] = 1 
m[r[23]] = r[24] 
LI: r[25] = r[15] + i 
r[26] = m[r[25]] 
r[27] = m[r[14] + in] 
r[30] = r[26] + r[27] 
r[31] = r[30] + - 1  
r[32] = b[r[31]] 
r[33] = 48 
NZ = r[32] ? r[33] 
PC = NZ < 0---, L31 PC 
r[34] = r[15] + i 
r[35] = m[r[34]] 
r[36] = m[r[14] + in] 
r[37] = r[35] + r[36] 
r[40] = r[37] + - 1  
r[41] = b[r[40]] 
r[42] = 57 
NZ = r[41] ? r[42] 
PC = NZ > 0---~ L31 PC 
r[43] = r[15] + n 
r[44] = r[15] + n 
r[45] = re[r[44]] 
r[46] = 10 
r[47] = r[45]*r[46] 
r[50] = r[15] + i 
r[51] = m[r[50]] 
r[52] = m[r[14] + in] 
r[53] = r[51] + r[52] 
r[54] = r[53] + - 1  
r[55] = b[r[54]] 
r[56] = r[47] + r[55] 
r[57] = 48 
r[60] = r[56] - r[57] 
m[r[43]] = r[60] 
r[61] = r[15] + i 
r[62] = r[15] + i 
r[63] = m[r[62]] 
r[64] = 1 
r[65] = r[63] + r[64] 
m[r[61]] = r[65] 

L o a d  i n [ i ] ' s  v a l u e .  

C o m p u t e  1 0 * n  + i n [ i ] .  

L o a d  '0 ' .  

C o m p u t e  1 0 * n  + i n [ i ]  - ' 0 ' .  
S e t  n t o  1 0 * n  + i n [ i ]  - ' 0 ' .  
L o a d  i ' s  a d d r e s s .  

L o a d  i ' s  a d d r e s s .  
L o a d  i ' s  v a l u e .  

L o a d  1. 
C o m p u t e  i + 1. 
S e t  i t o  i + 1. 

J u m p  b a c k  t o  t o p  o f  l o o p .  
L o a d  n ' s  a d d r e s s .  

L o a d  n ' s  v a l u e .  
S e t  r [ 0 ]  t o  n .  

R e t u r n .  

After Cachet After Combiner 

r[21] = r[15] + n 
r[22] = 0 
m[r[21]] = r[22] m[r[15] + n] = 0 
r[23] = r[15] + i 
r[24] = 1 
m[r[23]] = r[24] m[r[15] + i] = 1 
LI:  r[25] = r[15] + i 
r[26] = m [ r [ 2 5 ] ]  LI: r[26] = m[r[15] + i] 
r[27] = m[r[14] + in] 
r[30] = r[26] + r[27] r[30] = r[26] + m[r[14] + in] 
r[31] = r[30] + - 1  
r[32] = b[r[31]] r[32] = b[r[30] + -1]  
r[33] = 48 
NZ = r[32] ? r[33] NZ = r[32] ? 48 
PC = NZ < 0--* L3] PC PC = NZ < 0-- ,  L3] PC 

r[41] =r[32]  
r [ 4 2 ] = 5 7  
N Z f r [ 4 1 ]  ? r[42] 
P C = N Z > 0 - - * L 3 1 P C  
r [ 4 3 ] = r [ 1 5 ] + n  
r[44] =r[15]  + n  
r[45] =m[r[44]]  
r[46] = 1 0  
r[47] = r[45]*r[46] 

NZ = r[32] ? 57 
PC = NZ > 0 --* L31 PC 

r[47] = m[r[15] + n]*10 

r [ 5 5 ] f r [ 3 2 ]  
r[56] = r [47]+r [55]  
r [ 5 7 ] = 4 8  
r[60] = r[56] - r[57] 
m[r[43]] =r [60]  
r[61] = r[15] + i 

r [ 6 3 ] f r [ 2 6 ]  
r [ 6 4 ] = 1  
r [ 6 5 ] f r [ 6 3 ] + r [ 6 4 ]  
m[ r [61] ] f r [65 ]  

m[r[15] + n] = r[47] + r[32] - 48 

m[r[15] + i ]  =r [26]  + i 

After Assigner 

clrl n(r l3)  

movl $1, i(r13) 

LI: movl i(r13),r2 

addl3 in(r12),r2,r3 

cvtb1-1(r3),r4 

cmpl r4,$48 
jlss L3 

cmpl r4, $57 
jgtr  L3 

mull3 $10,n(r13),r3 

movab -48(r4) [r3],n(r13) 

moval 1(r2),i(r13) 7 

7 T h i s  i n s t r u c t i o n  w o u l d  c o m b i n e  w i t h  t he  one  a t  L1 to  y i e ld  a n  i n c r e m e n t  i n s t r u c t i o n  i f  t h e r e  were  
no  i n t e r v e n i n g  u se  of  r e g i s t e r  2. 
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PC = L1 PC = L1 PC = L1 jbr L1 
L3: r[66] = r[15] + n L3: r[66] = r[15] + n 
r[67] = m[r[66]] r[67] = m[r[66]] 
r[0] = r[67] r[0] = r[67] L3: r[0] = m[r[15] + n] L3: movl n(rl3),r0 
ret ret ret ret 
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