
Code Selection through Object Code
Optimization
JACK W. DAVIDSON
University of Virginia
and
CHRISTOPHER W. FRASER
University of Arizona

This paper shows how thorough object code optimization has simplified a compiler and made it easy
to retarget. The code generator forgoes case analysis and emits naive code that is improved by a
retargetable object code optimizer. With this technique, cross-compilers have been built for seven
machines, some in as few as three person days. These cross-compilers emit code comparable to host-
specific compilers.

Categories and Subject Descriptors: D.3.4 [Programming Languages]: Processors--code genera-
tion; compilers; optimization

General Terms: Languages

Additional Keywords and Phrases: Code generation, compilation, optimization, peephole optimiza-
tion, portability

1. INTRODUCTION

Most compilers perform lexical, syntactic, and semantic analysis, code optimi-
zation, and code generation, in this order [1]. Code optimization includes common
subexpression elimination, constant folding, code motion, and strength reduction
[1, 37]. Code generation includes register allocation, code selection, and perhaps
some peephole optimization [1]. Most optimizers treat a high-level intermediate
code to avoid machine dependencies. Most peephole optimizers are machine
specific and ad hoc, so they are normally confined to correcting a handful of
patterns that cannot be more easily corrected before code generation [4, 23,
24, 37].

This paper describes a compiler that optimizes after code generation [8]. A
naive code generator emits "worst case" code that is subsequently improved by
an object code optimizer. The object code optimizer is machine independent and

This work was supported in part by the National Science Foundation under Grant MCS-7802545.
Authors' addresses: J. W. Davidson, Dept. of Applied Mathematics and Computer Science, Univ. of
Virginia, Charlottesville, VA 22901; C. W. Fraser, Dept. of Computer Science, Univ. of Arizona,
Tucson, AZ 85721.
Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.
© 1984 ACM 0164-0925/84/1000-0505 $00.75

ACM Transactions on Programming Languages and Systems, Vol. 6, No. 4, October 1984, Pages 505-526.

506 • J W Davidson and C W Fraser

general. It extracts its machine specifics from a machine description, and it
implements only two general optimizations: eliminating common subexpressions
and replacing adjacent instructions with equivalent singletons. The optimizer
allows the use of simple code generators and makes the compiler easy to retarget.
Cross-compilers for seven machines have been built, some in as few as three
days. They emit code comparable to that from typical machine-specific compilers.

The compiler, called "YC", translates the Y programming language [18], though
its techniques apply to other Algol-like languages as well. Indeed, its optimizer
and code generation strategy have been used to build compilers for subsets of
Modula II [36] and a guarded command language [28]. Section 2 describes YC's
organization, Section 3 describes its performance, and Section 4 compares this
work with similar work.

2. ORGANIZATION

Figure I shows YC's five phases. Like many retargetable compilers [22, 26], YC's
front end compiles source code into an abstract machine code. The next phase
expands this into register transfers [5], a representation roughly equivalent to
assembly code. The Cacher phase eliminates common subexpressions in register
transfers, the Combiner phase replaces sequences of register transfer instructions
with equivalent singletons, and the Assigner phase translates them into assembly
code. Cacher, Combiner, and Assigner extend an earlier optimizer called PO [7].

YC uses abstract machine code to keep the front end machine independent,
and it uses register transfers as a machine-independent representation for ma-
chine-specific instructions. Register transfers describe the effect of machine
instructions. They have the form of conventional expressions and assignments
over the hardware's storage cells. 1 For example, if the instruction represented by
the assembly code

load x

loads the accumulator with the memory cell labeled x, then it might be repre-
sented with the register transfer

a c = r e [x]

Any particular register transfer is machine specific, but the form of register
transfers is machine independent. YC uses register transfers because their
machine-independent form permits it to optimize machine-specific code in a
machine-independent way. For example, a machine-independent algorithm can
identify even machine-specific common subexpressions in register transfers. Such
machine-independent optimizations take the place of classical machine-specific
case analysis and thus improve retargetability.

Given a machine description like that in Section 2.4, it is simple to perform
syntax-directed translation between register transfers and assembly code [7,
10]. Thus YC could substitute assembly code for register transfers in interphase
communication. However, register transfers are not appreciably harder to emit
than assembly code, so this extra step is omitted in the interest of efficiency.

1 Thus YC's register t ransfers are not suited to describe instruct ions so complex as to have internal
loops (like block moves). Such instruct ions require separate t r ea tmen t [25].

ACM Transactions on Programming Languages and Systems, Vol. 6, No. 4, October 1984.

Code Selection through Object Code Optimization 507

source code

Front end

abstract machine code

Code expander

register transfers

Cacher Figure 1

register transfers

Combiner

register transfers

Assigner [

assembly code

The five subsections below elaborate on YC's five phases. Other documents
focus more closely on Cacher [9] and on early versions of Combiner [7, 10]. The
following subsections summarize the operation of these phases and show how
they collaborate to simplify code generation.

2.1 Front End

Like many compilers, YC's scanner and parser are completely machine inde-
pendent, and the only machine dependencies in its semantic analyzer are three
arguments that define the relative widths of the basic integer, character, and

ACM Transactions on Programming Languages and Systems, Vol. 6, No. 4, October 1984.

508 • J.W. Davidson and C. W. Fraser

floating-point data types. Like many portable compilers [22, 26], YC's semantic
analyzer emits abstract machine code. However, thorough object code optimiza-
tion makes it practical to use an abstract machine that is particularly simple.

Abstract machines are usually implemented through a process logically equiv-
alent to macro expansion. These code expanders may track register contents to
avoid redundant loads, and they may try to avoid a few inefficient juxtapositions
in the object code, but the final code expansion process is typically quite local.
This encourages abstract machine instructions that are "large" enough to collect
features from many intended target machines. Consider the following examples:

(1) Some machines have special-case instructions like clear instructions that are
cheaper than stores, increment and decrement instructions that are cheaper
than adds and subtracts, and tests against zero that are cheaper than arbitrary
comparisons. If some intended target machine has such special-case instruc-
tions, then it is common to include similar instructions in the abstract
machine, so that the code generators can generate the target instructions
without checking operands.

(2) If some intended target machine has three-address adds, then the abstract
machine may be given three-address adds, so that the code generators need
not examine more than one abstract machine instruction to select the proper
add.

(3) If some intended target machine has an autoincrement (which dereferences
a pointer and automatically advances it to the next item), the abstract
machine may be given a similar or "larger" feature (e.g., built-in vector
operations). The code generators would otherwise need to examine two or
more abstract machine instructions to use autoincrements.

Such abstract machines might be termed union machines because they offer a
set of features roughly equivalent to the union of the sets of features offered by
typical machines. This definition is elaborated below.

YC achieves local code quality through optimization instead of case checking,
so its abstract machine need not be a union machine. The abstract machine uses
a simple postfix code, has no registers, and supports about the smallest set of
operators, types, addressing modes, and structures required by the source lan-
guage. For example, the translation of

a[i] = b[i]

is little more than a translation into postfix:

pushga i load i's address
pushi load i's value
pushga a load a's base address
index 2 form a[i]'s address, given that elements have width 2

(i.e., add 2.i to a's base address)
repeat this process for b[i] . . . pushga i

pushi
pushga b
index 2
pushi
popi

load b[i]'s value
store it into a[i]

ACM Transactions on Programming Languages and Systems, Vol. 6, No. 4, October 1984.

Code Selection through Object Code Optimization • 509

YC's abstract machine has only one significant union machine feature. Most of
its abstract machine instructions that treat addresses have two variants, one for
conventional addresses and another for addresses of elements of a character
array. This is necessary to allow packed character arrays on word-addressed
machines, where conventional addresses are not enough to address a packed
element. Thus YC's abstract machine does not have union machine operations,
but it does have a union machine data type. It needs one because its optimizer
can improve code but not storage formats. Appendix A summarizes the abstract
machine's instructions.

In contrast with union machines, an abstract machine like YC's might be
termed an intersection machine because it offers a set of features roughly
equivalent to the intersection of the sets of features offered by typical machines.
That is, an intersection machine is that subset of machine functions that can be
expected of all target machines. 2 This makes intersection machines similar to
reduced-instruction-set computers (RISCS) [29, 30], which have been shown to
simplify compilers. Intersection machines need not use postfix, though, like
RISCs, they should use a small, regular instruction set.

Absolute minimality is not necessary in intersection machines. For example,
an abstract machine could force the front end to compile all conditionals into
combinations of branch-if-zero and branch-if-positive instructions. However, this
would complicate the front end without significantly simplifying the implemen-
tation of the abstract machine. Thus a practical intersection machine includes
all the usual arithmetic, logical, and conditional operations, but it includes only
one form of each and allows the front end to emit simple code without case
analysis.

Indeed, absolute minimality is not even useful. Technically, any effective
procedure can be computed by a machine with only one instruction (e.g., to
subtract two cells and branch if the result is positive). Thus the ultimate
intersection machine has just one instruction, and, conversely, the ultimate union
machine interprets source code directly. All practical abstract machines are on a
continuum between these extremes. Just as practical RISCs are "impure" for
they can always be further reduced, so few practical union or intersection
machines are "pure." They are defined as the union and intersection of typical
machines, not abstract contrivances.

Intersection machines are easy to implement. For example, YC's abstract
machine has 99 opcodes, whereas P-code [27], a union machine for Pascal
compilers, has 219 opcodes and tends to emit more object code per abstract
machine instruction. Wulf notes that, to simplify compilers, computer architec-
tures should offer "precisely one way to do something, or all ways should be
possible" [38]. Intersection machines normally have exactly one obvious imple-
mentation for each source language construct, so they effectively meet this
requirement. Simplifying the abstract machine simplifies semantic analyzers that
emit its code and code expanders that implement it. This helps make a compiler
reliable, easy to understand, and easy to modify.

2 This definition is due to an anonymous referee.

ACM Transactions on Programming Languages and Systems, Vol. 6, No. 4, October 1984.

510 • J.W. Davidson and C. W. Fraser

Intersection machines are stable. For example, few union machines exploit the
VAX-ll's new queue-manipulation operations. Queuing extensions might be
added, but the need for such changes makes union machines unstable. In contrast,
intersection machines are less sensitive to target machine changes. YC's abstract
machine may not include queuing instructions, but YC's optimizer can introduce
them into the object code where appropriate. YC's abstract machine and YC's
first two implementations (targeting the PDP-11 and the DECSystem-10) were
developed in parallel. Since this initial phase, YC's abstract machine design has
been stable over five additional machines. Minor changes have been made to
accommodate languages other than Y, but no changes have been made to
accommodate new machines.

Unfortunately, intersection machines require verbose code sequences. Verbose
abstract machine code usually yields verbose target machine code, which no
doubt explains the historical dominance of union machines. Theoretically, any
simple compiler based on an intersection machine would be retargetable, but its
code would be unacceptable without object code optimization, and classical object
code optimizers are hard to retarget. Sections 2.3 and 2.4 show how YC's object
code optimizer overcomes this obstacle.

These points recall the attempt to define a universal intermediate language or
"UNCOL" [32, 33], which was to have solved the "M.N" compiler problem.
Given M languages and N machines, M.N compilers are required if each directly
compiles source code into machine code. With UNCOL, only M + N compilers
were to have been required: M to compile source code to UNCOL, plus N to
compile UNCOL to machine code. Unfortunately, no truly universal UNCOL
has emerged to handle all languages and machines. This is partly because
UNCOLs traditionally had to be union machines to achieve reasonable perform-
ance. Optimizing object code removes this constraint and thus extends the range
of any particular UNCOL. Such optimization helps an UNCOL accommodate a
wide range of machines, but it is not yet clear whether it helps accommodate a
wide range of languages. In particular, compiling very-high-level languages into
very-low-level code may discard efficiency clues that present optimizers cannot
recover. YC shows that is not the case for Algol-like languages, but the question
remains open for other languages.

2.2 Code Expander

Most code generators perform much case analysis. They must supply at least one
code pattern for each abstract machine instruction, and, for "large" abstract
machine instructions, they often need different patterns for different classes of
operands.

Special-case instructions add complexity. The hardware may not have a special-
case instruction for some abstract machine special-case instruction. Here, the
semantic analyzer's case analysis was wasted (on this machine), and an otherwise
unnecessary pattern must be written to use a more general hardware instruction.
Conversely, the hardware may have special cases that were not anticipated by
the designer of the abstract machine. Here, case analysis is necessary to detect
those instances of, say, the abstract machine's general compare instruction that
can use a particular "skip-if-zero" hardware instruction.
ACM Transactions on Programming Languages and Systems, Vol. 6, No. 4, October 1984.

Code Selection through Object Code Optimization • 511

To yield good code, most code generators also store and check contextual data.
For example, the DECSystem-10 has register-to-register, register-to-memory,
and memory-to-register adds. Theright choice for any particular addition de-
pends on which, if either, of its operands is available in a register, and which, if
any, of its operands or result should remain in a register. Such machine-specific
context checking works against a clean separation of instruction selection from
register allocation and assignment, and forms a substantial component of the
typical hand-written code generator.

YC leaves all such case analysis to the object code optimizer. Each language
operation has only one image on the abstract machine, and each abstract machine
operation has only one image on each target machine. YC also leaves register
allocation to the object code optimizer. Its code generators assume an infinity of
pseudoregisters, which the object code optimizer maps onto the available supply.

This makes YC's code expanders about as simple as is possible. The code
expanders take only two actions to simplify subsequent optimization. First, the
code expanders emit register transfers instead of assembly code, though this adds
little complexity. Second, the code expanders flag cells that are obviously dead.
For example, the code expander knows that any condition code registers are used
only after comparisons, so it marks such registers as dead as it generates code
for other operations. This allows, for example, subsequent phases to implement
some additions with an autoincrement that does not set the condition code
instead of a more costly add instruction that does.

The program below gives the PDP-11 code for the example from Section 2.1.
It shows how naive the code selection can be.

Input Output Comment

pushga i r[12] = i Load i's address.
pushi r[13] = m[r[12]] Load i's value
pushga a r[14] -- a Load a's address.
index 2 r[15] -- r[13] Copy i,

r[15] = r[15] << i and shift to form byte offset.
r[16] -- r[15] Copy offset,
r[16] = r[16] + r[14] and form a[i]'s address.

pushga i r[17] = i Repeat for b[i]
push i r[20] = m[r[17]] •
p u s h g a b r[21] = b
index 2 r[22] = r[20]

r[22] --- r[22] << 1
r[23] -- r[22]
r[23] = r[23] + r[21]

pushi r[24] -- m[r[23]] Load b[i] ' s value,
popi re[r[16]] = r[24] and s tore i t in to a[i]

/

Each value is formed in a new register so that each value will be available
during common subexpression elimination. For example, a[i]'s address is formed
in r[16] to preserve the shifted value of i in r[15]. Common subexpression
elimination will reuse r[15] in the formation of b[i]'s address, and computations
used only once will be absorbed into larger instructions wherever possible. The
code above is verbose. Cacher and Combiner collaborate to make it usable.

Each of YC's target machines needs its own code expander, but the lack of
redundancy and case analysis makes code expanders easy to implement. Each is

ACM Transactions on Programming Languages and Systems, Vol. 6, No. 4, October 1984.

512 • J.W. Davidson and C. W. Fraser

a large case s ta tement with one case per abstract machine instruction, and each
case is logically equivalent to a macro. Theoretically, the code expander must be
completely rewritten for each new machine. In practice, a new code expander is
written by editing one for another machine. Since the code expanders generate
similar pat terns on different machines (mainly register-to-register operations
and simple addressing), and since register transfers can be more similar t han
assembly codes (e.g., "r[x]" is often used to name registers), their realization is
similar on different machines. Thus many of the edits affect not logic but the
skeletal register transfers tha t addresses and register indices instantiate. The
seven code expanders writ ten to date are each about 650 lines of C.

2.3 Cacher

Cacher eliminates common subexpressions in blocks of register transfers bounded
by labels in the input program. It uses a conventional algorithm [11], which
effectively simulates the register transfers and records the value taken on by
each register. When it finds a register taking on an already available value, it
reuses the previously computed value and deletes the instructions tha t compute
the new one. For example, this removes four instructions from the PDP-11
program above:

Input

r[12] = i
r[13] --- m[r[12]]
r[14] - a
r[15] = r[13]
r[15] -- r[15] << 1
r[16] -- r[15]
r[16] = r[16] + r[14]
r[17] = i
r[20] --- m[r[17]]
r[21] = b
r[22] = r[20]
r[22] --- r[22] << 1
r[23] -- r[22]
r[23] = r[23] + r[21]
r[24] = m[r[23]]
m[r[16]] = r[24]

Output Comment

r[12] = i Load i's address.
r[13] -- m[r[12]] Load i's value.
r[14] = a Load a's address. '
r[15] = r[13] Copy i,
r[15] -- r[15] << 1 and shift to form byte offset.
r[16] -- r[15] Copy offset,
r[16] = r[16] + r[14] and form a[i]'s address.

Repeat for b[i]

r[21] -- b

r[23] = r[15] . . . but reuse byte offset . . .
r[23] -- r[23] + r[21]
r[24] -- m[r[23]] Load b[i]'s value,
m[r[16]] - r[24] and store it into a[i]

Cacher also flags each block's last use of each cell so tha t Combiner will know
when it has deleted such a use and can then delete the instruction tha t sets the
now-unused cell, and so tha t Assigner will know when to release a register
assigned to a cell. An example making use of these data appears below.

Cacher also links each instruction to the first instruction tha t uses one of its
results. Benchmarks show tha t Combiner typically runs 30 percent faster and
yields code tha t is 20 percent shorter when it tries combining only such "logically"
adjacent instructions rather t han the more obvious physical adjacencies.

Cachet is retargeted by changing three routines, which, respectively, identify
the names of registers to track, extract such register names from larger strings,
and compare the efficiency of two expressions. For most machines, this last
function merely prefers expressions consisting of a single register reference to all
other expressions.
ACM Transactions on Programming Languages and Systems, Vol. 6, No. 4, October 1984.

Code Selection through Object Code Optimization • 513

Common subexpression elimination is not much harder to perform on register
transfers than on a more regular structure like quadruples, and it is possible to
catch common subexpressions after code generation that cannot be caught before
because they are machine specific. Expanding abstract machine code for address
calculations often creates such machine-specific common subexpressions.

2.4 Combiner

Combiner advances over Cacher's register transfers seeking adjacent instructions
that can be replaced with singletons. It symbolically simulates adjacent pairs and
triples 3 of instructions to learn their combined effect and searches a machine
description for an instruction with this combined effect. If it finds one, it replaces
the original instructions with the singleton.

Symbolic simulation is a string operation. To simplify the searching of machine
descriptions, instructions that make several register transfers are represented as
though the transfers were done in parallel, not sequentially. Thus Combiner
computes the combined effect of two instructions by substituting the values
assigned to cells in the first for appearances of those cells in the second. Consider,
for example, the first two PDP-11 instructions above:

r[12] = i
r[13] = m[r[12]]

Combiner computes their combined effect by replacing the r[12] in the second
instruction with the value assigned to r[12] in the first, and then concatenating
the two effects. This yields

r[12] = i; r[13] = m[i]

This algorithm treats assignments to the program counter as a special case. If
the first instruction branches, the register transfers from the second are made
conditional on the branch not being taken. If the first instruction branches
unconditionally, this effectively removes unreachable code. Combiner also sim-
ulates such branches with their targets, which often collapses branch chains.

Next, Combiner removes from this combined effect any register transfers that
set dead variables. In the example above, Cacher will have flagged this spot as
the last use of r[12], so Combiner can simplify the initial combined effect to

r[13] -- m[i]

At this point, Combiner also performs a few symbolic simplifications. For
example, if symbolic simulation creates an expression like r[1] + 0, symbolic
simplification deletes the "+0" to simplify instruction recognition. A few of
Combiner's simplifications involve labels (e.g., those that eliminate a branch to
the label on the next statement) and thus may need changing for an assembler
with an unusual label syntax. The other simplications are machine independent.
Occasionally a new machine requires a machine-independent simplification to

Combiner simulates triples because many machines with singletons equivalent to a load/operate/
store sequence do not have singletons for the load/operate and operate/store subsequences. Thus
Combiner needs a three-instruction window to catch these optimizations, though no pressing need
for a larger fixed window has emerged.

ACM Transactions on Programming Languages and Systems, Vol. 6, No. 4, October 1984.

514 • J.W. Davidson and C. W. Fraser

correct a pat tern tha t does not occur on other machines. For example, one
simplification replaces POP(PUSH(x)) with x. The need for such simplifications
is machine specific, but the simplifications themselves are machine independent.

Combiner presents the simplified register t ransfer to a finite automaton tha t
recognizes the legal instructions. This automaton is automatically constructed
from a formal machine description, described below. If no match is found,
Combiner advances to the next instruction and tries combining it with its logical
predecessors. If a match is found- -and , in the example above, ozie is, though the
dead-variable elimination was necessary--Combiner replaces the original instruc-
tions with the combined effect and tries combining the new instruction with its
logical predecessors. Combiner reaches back instead of forward to find adjacencies
so as to cascade optimizations in one pass without backup.

Optimizations routinely cascade. Consider this (logical, not physical) sub-
sequence of the sample program above:

r[14] = a

r[16] --- r[15]
r[16] = r[16] + r[14]

After step 1
r[16]=r[15]
r [16]=r [16]+a

m[r[16]]=r[24]

re[r[16]] --- r[24]

Combiner reduces it to one instruction in three steps:

After step 2 After step 3
r[16] - r[15]

m[r[16] + a] = r[24] m[r[15] + a] = r[241

Eventually, the original 16 instructions are reduced to the optimal three:

r.[151 = m[i]
r[15] = r[15] << 1
m[r[15] + a] - m[r[15] + b]

This example shows how repeated object code optimizations can substitute for
careful case selection. The "case analysis" has been done by an automatically
generated finite automaton.

This example is not unusual; indeed, one 17-to-1 reduction has been reported.
It is possible to build a machine with instructions for the naive sequences and
the singletons but without the intermediate-level instructions Combiner needs
as it reduces a six-instruction sequence to five instructions, then four, then three,
etc. Giegerich proposes an improvement on Combiner tha t eliminates its narrow
window and accommodates such machines [14]. Fortunately, such machines
seldom appear in practice. Designers tha t include "large" and "small" instructions
seem to include "medium" ones as well, presumably because it is easy to do so
once the "big" instructions have been included. 4

4 Only once--for the above-mentioned VAX queue instructions--has a crucial "medium" instruction

ACM Transactions on Programming Languages and Systems, Vol. 6, No. 4, October 1984.

Code Selection through Object Code Optimization • 515

Classical peephole optimizers correct only those sequences that match a few
hand-written, machine-specific patterns. In contrast, Combiner has no ad hoc
case analysis: it combines all possible adjacent pairs and triples. As a result, its
effect can be described formally and concisely: when it is finished, no one-,
two-, or three-instruction sequence can be replaced with a cheaper single instruc-
tion having the same effect.

In the presence of naive code generation, Combiner's machine description and
patternless substitution algorithm appear preferable to a classical peephole
optimizer. For example, when compiling YC's front end for the PDP-11, Com-
biner has been observed to make about 300 distinct types of replacements, each
involving two or three input instructions and one output instruction. A collection
of 300 patterns to perform the same replacements would be more complex, less
complete, and harder to check [35] than the 100-line PDP-11 machine descrip-
tion. Also, the number of possible patterns grows rapidly with machine complex-
ity. If A is the number of addressing modes and I the number of instructions,
then a pattern list of only two-input patterns may grow as (A.I) 2 where, as shown
below, a machine description grows as A + I.

Combiner is retargeted by supplying a new machine description. The machine
description is processed into tables that are compiled with Combiner. These
tables isolate Combiner's machine-specific data. Combiner's code is machine
independent just as a table-driven parser is language independent. Since Com-
biner is machine independent, it is not tuned to improve code quality on a new
machine. Machine descriptions are occasionally tuned (see the discussion of
trade-offs below), but Combiner is not.

Each machine description is a grammar for syntax-directed translation between
assembly language and register transfers. For example, the production

NZ = DSTW ? 0; :--: tst DSTW

describes the PDP-11 "tst" instruction, which compares a word with zero and
sets the condition code register ("NZ") accordingly. The register transfer appears
on the left and the equivalent assembly code on the right. Similarly, the produc-
tion

DSTW = DSTW + SRCW; NZ -- DSTW + SRCW ? 0; :=: add SRCW, DSTW

describes the PDP-11 instruction that adds two words and sets the condition
code register to describe the result. Code generators need not know the details of
encoding of the condition code, so the semantics of the comparison operator ("?")
need not be described. The code expander and machine description need only
use the operator consistently. This technique is routinely used to suppress
architectural details irrelevant to code generation.

Productions also describe the legal operands. For example, the production

DSTW :--- r[REGNO] :=: rREGNO

been missing. This problem is solved by including the missing instruction as a macroinstruction in
the machine description. This solution is ad hoc, but the problem is VAX specific, so it seems better
to add an instruction to the VAX-11 machine description than to the abstract machine, which must
be implemented once for each target. The proposed windowless optimizers will solve this problem
more elegantly.

ACM Transactions on Programming Languages and Systems, Vol. 6, No. 4, October 1984.

516 • J.W. Davidson and C. W. Fraser

describes register operands. They are expressed in register transfers with a string
like "r[1]", and in assembly code with a string like "rl". Similarly, the production

DSTW := m[r[REGNO] + IDENT] :=: IDENT(rREGNO)

describes indexed operands. They are expressed in register transfers with a string
like "m[r[1] + a]" and in assembly code with a string like "a(rl)".

Machine descriptions are occasionally tuned to achieve specific effects. For
example, Combiner does not currently make time-space trade-offs. That is, it
assumes that one instruction is always better than two. This assumption is
usually valid but fails occasionally. There are several ways a machine description
can help solve this problem. First, if some forms of some singleton are always
worse than the equivalent pair or triple, then the machine description should
describe only the desirable forms. Alternately, the machine description can
describe a pseudoinstruction realized by an assembler macro that implements
the preferred multiinstruction sequence. If the pseudoinstruction appears in the
machine description before the less desirable singleton, then it will be used
whenever it applies. Such ad hoc measures have sufficed so far, but ultimately it
may prove necessary to include instruction costs (in space and time) in machine
descriptions. Such data should be optional so that machine describers are not
obliged to provide them when the usual "one instruction is better than two"
heuristic holds.

2.5 Assigner

Once all optimization is complete, Assigner maps the now-reduced set of pseu-
doregisters onto the available hardware registers, introducing spills where needed.
It also translates the register transfers to assembly code, using a finite automaton
generated from the machine description. For example, this phase accepts the
three register transfers above and produces the assembly code:

mov i,r2
asl r2
mov b(r2),a(r2)

Appendix B traces the compilation of a longer example.
When a register transfer is realized by more than one instruction, Assigner's

automaton prefers the one listed first in the machine description. Thus machine
descriptions should list faster special-case intructions first. Only Assigner uses
this ordering. Combiner cares only that some instruction realizes a combined
effect. Assigner decides which instruction is best.

Assigner is retargeted by supplying a function to print a label definition in the
appropriate assembler syntax and by revising the register assignment module.
For general register machines, the register assignment module is retargeted by
changing a few tables that describe the number of registers, their names, and
whether they may be allocated. Machines with unique register structures may
require some recoding, but even the unique register set of the CDC Cyber was
accommodated by the first author in 2-3 days. Assigner also uses Cacher's
function that extracts register names from a string and Combiner's machine
description.
ACM Transactions on Programming Languages and Systems, Voh 6, No. 4, October 1984.

Code Selection through Object Code Optimization • 517

Table I

Y C Pascal

8q 37.0 seconds 37.3 seconds 62.2 seconds
306 bytes 304 bytes 492 bytes

ctoi 19.5 seconds 21.5 seconds 26.2 seconds
192 bytes 188 bytes 424 bytes

ictoi 39.5 seconds 45.9 seconds 69.6 seconds
236 bytes 244 bytes 426 bytes

3. EVALUATION

3.1 Machine Retargetability
YC runs on the VAX-11 and the PDP-11 under UNIX 5 and produces code for
the VAX-ll , PDP-11, DECSystem-10, CDC Cyber, Motorola 68000, IBM 370,
and Intel 8080. The system has been in production use for over two years, and it
is stable enough that the 68000 and 370 versions were brought up by students in
a second-term compiler course. It has been distributed and is running at several
sites.

YC is easily retargeted. Once the initial DECSystem-10 and PDP-11 versions
had shaken out most of the bugs, the Cyber, 8080, and VAX-ll versions were
brought up in no more than five person-days each, and students new to the
system, the target machine, and even UNIX have retargeted YC in about 20
person-days. This includes writing a machine description, coding a naive code
generator, making the simple changes to Cacher and Assigner, and assembling a
skeletal runtime system for Y.

The tables below quantify the performance of the retargets on three typical
programs. The program "8q" solves the eight queens problem recursively, "ctoi"
converts a packed digit string into an integer, and "ictoi" converts an unpacked
digit string into an integer, to expose differences in the handling of characters
and integers. The tables show the size of the emitted code and its execution time.
To minimize timing errors, the eight queens program is called 100 times, and the
other functions are called 30,000 times. Where compilers offer different levels of
optimization, the comparisons below use the level that produces the best code.
No trade-offs were necessary: optimization levels that produced the shortest code
also produced the fastest. All debugging options like subscript checking were
turned off.

Table I compares the PDP-11 retarget with the host-specific UNIX C compiler
[31], and the Vrije University portable Pascal compiler [34]. The portable UNIX
C compiler [21] produces PDP-11 code similar to the host-specific C compiler's,
and the published code fragments from recent description-driven code generators
[12, 15] suggest that they do too. YC's code runs fastest mainly because it
eliminates redundant expressions, though other factors effect the Pascal corn-

5 UNIX is a registered trademark of AT&T Bell Laboratories.
ACM Transactions on Program~aing Languages and Systems, Vol. 6, No. 4, October 1984.

518 J. W. Davidson and C. W., Fraser

Table II

Y (retargetable) Y (hbst-specific) Ratfor

8q 26.7 seconds 26.1 seconds n /a
85 words 74 words n /a

ctoi 34.9 seconds 51.2 seconds n /a
71 words 61 words n /a

ictoi 25.7 seconds 24.8 seconds 19.2 seconds
72 words 70 words 66 words

Table III

Y Pascal Ratfor

8q 17.6 seconds 16.6 seconds n /a
71 words 76 words n /a

ctoi 18.1 seconds 26.3 seconds n / a
56 words 88 words n /a

~ctoi 15.5 seconds 14.0 seconds 8.7 seconds
60 words 77 words 47 words

piler's code. Some of these factors are Pascal related and beyond the control of
the compiler. For example, the Pascal compiler may use two instructions to load
a character because the one instruction used by the other compilers extends the
sign bit. However, at least one factor illustrates a trade-off made differently by
the Y and Pascal compilers. In particular, there are patterns in the code produced
by the Pascal compiler that need peephole optimization. The compiler performs
peephole optimization, but it does so early, on abstract machine code. This
simplifies retargeting but misses machine-specific inefficiencies introduced dur-
ing code expansion.

Table II compares the DECSystem-10 retarget with a host-specific Y compiler
and with a Ratfor translator that uses the host-specific DEC Fortran compiler.
The Ratfor code does best mainly because the Fortran compiler performs global
(interblock) register allocation. Ratfor does not offer recursion or packed char-
acter strings, so 8q and ctoi benchmarks are unavailable for this compiler. YC
yields faster code for ctoi than the host-specific Y compiler because of a different
code generation strategy for handling characters. Otherwise, the host-specific Y
compiler does better, due to more global register allocation [19].

Table III compares the CDC Cyber retarget with the host-specific ETH Pascal
compiler [2] and with a Ratfor translator that uses the host-specific CDC Fortran
compiler. The CDC Fortran compiler is an ambitious optimizing compiler, though
much of the speed indicated above is due to a nonrecursive calling sequence
unavailable to the Y and Pascal compilers. The Pascal and Y compilers are more
nearly comparable, but even they generate code quite differently. YC eliminates
a few more common subexpressions, where the Pascal compiler performs more
sophisticated Cyber-specific optimizations. For example, YC uses ordinary short-

ACM Transactions on Programming Languages and Systems, Vol. 6, No. 4, October 1984.

Code Selection through Object Code Optimization • 519

Table IV

Y C

8q 40.4 seconds 41.6 seconds
286 bytes 307 bytes

ctoi 38.2 seconds 40.3 seconds
164 bytes 161 bytes

ictoi 40.5 seconds 41.1 seconds
198 bytes 175 bytes

circuit evaluation for relationals where the Pascal compiler uses more Boolean
instructions, perhaps to avoid jumps that invalidate the instruction buffer. Also,
it implements some multiples with shifts and adds, which is beyond Combiner
and would have to be implemented in YC by extra case analysis in the code
expander or machine description. As reflected in Table III, some of these
optimizations make a program longer but faster. Some of these optimizations
were tailored to the CDC 6400 and are less appropriate on the newer Cybers,
though the effect of this anomaly on the timings given is small.

The Cyber retarget was the first after YC stabilized. Despite an irregular
register set that complicated register allocation, this retarget took the first author
five days, which included developing a skeletal runtime system. Thus the tables
above show that a compiler based on thorough retargetable object code optimi-
zation can compete with a carefully tailored host-specific compiler like the E T H
Pascal compiler.

Table IV compares the VAX-l l compiler with the UNIX C compiler for the
VAX-ll . The code produced by the two compilers differs in two notable ways.
First, YC eliminates redundant expressions and the C compiler does not. Second,
C loops use add-compare-and-branch instructions that cannot be exploited by Y
loops because YC's front end puts the loop test at the top of the loop and the
increment at the bottom. Here a seemingly machine-independent high-level code
generation decision influences the generated code. The VAX-11 retarget was
cbmpleted in one person-week.

YC has also been retargeted for the Intel 8080, Motorola 68000, and IBM 370
though lack of hardware has left these versions largely untested. The 8080 retarget
was done by the first author in three days. The 68000 and 370 retargets were
done by students in a second term compiler class with no previous experience
with Y, its compiler, or, in some cases, UNIX. They took about 20 person-days
each.

In summary, YC is competitive with host-specific compilers. In some cases, its
code is as good as or better than its competitors. In the remaining cases, no
important differences are due to code selection. Rather, they are due to calling
conventions outside the control of the compiler, or to global optimizations that
could be added to YC.

YC would benefit from some global optimization. The front end folds constants,
Cachet eliminates common subexpressions within blocks, and Combiner replaces
adjacent pairs and triples with equivalent singletons, but no other optimizations

ACM Transactions on Programming Languages and Systems, Vol. 6, No. 4, October 1984.

520 ° J.W. Davidson and C. W. Fraser

are performed. In particular, YC omits strength reduction, execution ordering,
loop optimizations (e.g., moving loop-invariant code, eliminating induction vari-
ables), and optimizations requiring global data-flow analysis (e.g., global register
allocation, code hoisting) [1]. Many of these optimizations are machine inde-
pendent and could be done before code expansion. Alternately, they could be
performed on register transfers, which are not so different from the quadruples
to which these optimizations are often applied. Because the form of register
transfers is machine independent, the optimizations can be implemented machine
independently. They would, however, automatically optimize machine-specific
code. For example, they would automatically move all loop-invariant code,
including machine-specific code introduced during code expansion, where opti-
mizing quadruples moves only the machine-independent quads exposed prior to
code expansion. This recommends register transfers as an intermediate code.

3.2 Language Retargetability

YC's back end has been also used to develop retargetable compilers for a subset
of Modula II [36] and for a guarded command language [28]. These compilers
have the same organization as YC. The front end for the guarded command
language emits an intermediate code tailored to the source language, but the
Modula II compiler uses YC's abstract machine with minor changes. The Modula
II compiler targets the PDP-11 and uses the optimizer developed for the PDP-
11 YC retarget. The other compiler targets the VAX-11 and uses the optimizer
developed for the VAX-ll YC retarget. Each of these compilers was developed
in a semester by a student carrying other courses.

Thus YC's back end can be used with other languages. Y has no pointers,
structures, or multidimensioned arrays, but YC's abstract machine does not
assume any such restrictions. Indeed, it cannot, for Y's call-by-reference requires
abstract machine pointers, and Y's procedure frames are essentially structures.
The only significant additions likely to be required by other Algol-like languages
should be a few extended-precision types and operators for them.

Further, YC's back end can be used with other front ends. It assumes only that
the front end folds constant expressions. Combiner will automatically fold
constant expressions itself, but its finite automaton cannot process arbitrary
context-free expressions correctly, so this should done by the front end. A more
sophisticated instruction recognizer would avoid this requirement. YC's back end
requires no other particular assistance from the front end, and it allows the front
end to forgo case analysis.

3.3 Speed

YC's speed is tolerable but could be better. On a VAX-11/780, it processes about
10 source lines per second, where the UNIX C compiler processes 40. Some of
this difference is due to extra optimizations performed by YC. Table V shows
the rough fraction of time taken by each phase. YC eliminates redundant
expressions, and the C compiler does not. If Cachet, YC's redundant expression
eliminator, were eliminated for comparison purposes, YC would process about 15
source lines per second, to the C compiler's 40. The code expanders would have
to compute the back links and dead variables, but this is easily done as the code
is emitted.
ACM Transactions on Programming Languages and Systems, Vol. 6, No. 4, October 1984.

Code Selection through Object Code Optimization • 521

Table V

Phase Time (%)

Front end 10
Code expander 3
Cacher 31
Combiner 45
Assigner 11

The division of the compiler into five separate programs also artificially slows
YC. The division was to simplify development and to accommodate larger
programs in the limited PDP-11 address space. With development largely com-
plete, it is appropriate to consider combining the phases. If the front end
eliminated branch chains as it emitted code, Combiner could buffer only basic
blocks and use much less storage. Profiles suggest that combining the phases
would reduce compile times by 10-20 percent.

Improvements are also possible within some phases. Combiner has been tuned
but not exhaustively, Cacher has been tuned only cursorily, and the other phases
have not been tuned at all. Thus there is room for improvement within the
current implementation. The authors are also working to make Combiner gen-
erate patterns at compile-compile time for a faster compile-time peephole optim-
izer. (Others have made similar proposals [14].) Experiments suggest that this
optimizer may run 5-10 times faster than Combiner. This, plus conventional
tuning and eliminating Cachet for comparison purposes, should give YC about
the same speed as the UNIX C compiler.

4. RELATED WORI~

YC is not the first compiler to emit naive code and then improve it, but its
particular mix of retargetability and code quality appears to be unique. The IBM
ECS/GPO [20] and PL.8 [3] compilers use a similar strategy, though YC's use
of machine descriptions appears to make it faster to retarget than these compilers.

The Vrije University Pascal compiler [34] uses peephole optimization at a
higher, machine-independent level to improve naive abstract machine code.
Peephole optimization is easier at this level, but it misses the opportunities for
optimization introduced when its (union machine) abstract machine code is later
expanded. As such, it trades compiler speed for code quality: on a PDP-11/70, it
processes about 10 lines/second to YC's 6, but its eight queens program takes
622 ms to YC's 370.

Finally, YC's portability suggests using its optimizer with, or as an alternative
to, the new pattern-matching code generators [6, 13, 16, 17]. Each of these
systems works differently, but most match intermediate code with instruction
patterns and pick the one that maximizes some measure. For example, one picks
the instruction that matches the most intermediate/code [16, 17].

These systems generate good local code, but their code requires some peephole
optimization. Indeed, one system accepts peephole optimization rules in an
attribute grammar that describes the instruction set [13], though these rules are
machine specific and require hand-retargeting. An optimizer like Combiner seems
an appropriate companion to these systems because it is more thorough and

ACM Transactions on Programming Languages and Systems, Vol. 6, No. 4, October 1984.

522 • J.W. Davidson and C. W. Fra~er

more easily retargeted than typical hand-coded peephole optimizers. If Combiner
is to be used anyway, it will automatically allow the code generator to emit naive
code and thus require only a small set of instruction patterns.

This set of patterns could be as small as the set used in YC's naive code
generators. It is only slightly harder to plug these instructions into YC's naive
code generators than it is to describe them for a pattern matching code generator,
so a pattern-matching code generator might make YC more elegant, but it is not
expected to make it much faster to retarget.

With a little extra effort, a larger set of instruction patterns could be coded for
a companion pattern-matching code generator, midway between the complete
instruction set and the naive subset. This would divide the responsibility for case
analysis between the code generator and optimizer, reducing the sometimes large
size of the code generation tables [17] and the sometimes long execution time of
Combiner. Eventually, it should be possible to eliminate the need for duplicate
machine descriptions by retargeting a pattern-matching code generator and object
code optimizer from one machine description.

APPENDIX A. YC's Abstract Machine

The executable instructions of YO's abstract machine are summarized below,
with variants indicated in parentheses. Being postfix, most instructions take no
explicit operands.

add, subtract, multiply, divide, negate, convert (integer and real versions)
and, or, complement, modulus, shift right, shift left (integer only)
form address of array element
augment address
load, store a value indirectly (integer, real, character)
load constant (integer, real, address)
load address of a variable (global, local, parameter, reference parameter)
jump (simple, indexed) 6
compare and jump conditionally (integer, real)
compare with two bounds and jump conditionally 6
compare and generate a truth value (integer, real) 6
establish actual argument (integer, real, character, address)
call, return (integer, real, no value)
procedure entry, exit

A few nonexecutable opcodes define labels, initialize storage cells, etc.

s These instructions contain a few redundant features that remain in YC's abstract machine for
historical reasons. The two forms of the jump instruction could be replaced with one if the jump
instruction were changed to take its target address from the stack instead of taking it as an explicit
argument; the "compare with two bounds" instruction could be realized with two "compare and jump"
instructions; and the "compare and generate a truth value" instructions could be realized with
"compare and jump" instructions, or vice versa. These changes should simplify YC without reducing
code quality, and they should yield an abstract machine without redundancies.

ACM Transactions on Programming Languages and Systems, Vol. 6, No. 4, October 1984.

Code Selection through Object Code Optimization • 523

APPENDIX B. A Compilation Trace

This appendix traces the compilation of the program below for VAX-I1.

ctoi--convert string "in" to integer
integer ctoi(in)
character in[]
integer i, n

n--0
i=1
while (in[i] >= '0' & in[i] <= '9'){

n = 10*n + in[i] - '0'
i=i+l
}

return (n)
end

The first tabulation below shows the naive register transfers before Cacher, and
the second traces them through the optimizations.

Before Cacher Comment

r[21] -- r[15] + n Load n's address.
r[22] = 0 Load zero.
m[r[21]] -- r[22] Clear n.
r[23] = r[15] + i Load i 's address .
r[24] = 1 Load one.
m[r[23]] = r[24] Set i to one.
L I : r[25] = r[15] + i Load i 's address .
r[26] = m[r[25]] Load i 's value.
r[27] = m[r[14] + in] Load in 's address .
r[30] = r[26] + r[27] Compute in[i + 1] 's address .
r[31] = r[30] + - 1 Compute in[i] ' s address .
r[32] = b[r[31]] Load in[i] ' s value.
r[33] = 48 Load '0'.
NZ = r[32] ? r[33] Compare in[i] wi th '0'.
PC = NZ < 0 --* L31 PC Exi t loop if less.
r[34] = r[15] + i Load i 's address .
r[35] = re[r[34]] Load i 's value.
r[36] = m[r[14] + in] Load in 's address .
r[37] --- r[35] + r[36] Compute in[i + 1]'s address .
r[40] = r[37] + - 1 Compute in[i] ' s address .
r[41] -- b[r[40]] Load in[i] ' s value.
r[42] - 57 Load '9' .
NZ = r[41] ? r[42] Compare in[i] wi th '9'.
PC = NZ > 0 ~ L3 1 PC Exi t loop if greater .
r[43] = r[15] + n Load n 's address .
r[44] = r[15] + n Load n 's address .
r[45] = m[r[44]] Load n 's value.
r[46] = 10 Load 10.
r[47] = r [45] , r [46] Compute 10 * n.
r[50] = r[15] + i Load i 's address .
r[51] = re[r[50]] Load i 's value.
r[52] = re[r[14] + in] Load in 's address .
r[53] = r[51] + r[52] Compute in[i + 1]'s address .
r[54] = r[53] + - 1 Compute in[i] ' s address .

ACM Transactions on Programming Languages and Systems, Vol. 6, No. 4, October 1984.

524 • J.W. Davidson and C. W. Fraser

r [5 5] = b [r [5 4]]

r [5 6] = r [4 7] + r [5 5]
r [5 7] = 4 8

r [6 0] = r [5 6] - r [5 7]
m [r [4 3]] = r [6 0]
r [6 1] = r [1 5] + i

r [6 2] = r [1 5] + i

r [6 3] = m [r [6 2]]
r [6 4] = 1

r [6 5] = r [6 3] + r [6 4]
m [r [6 1]] = r [6 5]
P C = L 1

L 3 : r [6 6] = r [1 5] + n
r [6 7] = m [r [6 6]]

r [0] = r [6 7]

r e t

Before Cacher

r[21] = r[15] + n
r[22] = 0
m[r[21]] = r[22]
r[23] = r[15] + i
r[24] = 1
m[r[23]] = r[24]
LI: r[25] = r[15] + i
r[26] = m[r[25]]
r[27] = m[r[14] + in]
r[30] = r[26] + r[27]
r[31] = r[30] + - 1
r[32] = b[r[31]]
r[33] = 48
NZ = r[32] ? r[33]
PC = NZ < 0---, L31 PC
r[34] = r[15] + i
r[35] = m[r[34]]
r[36] = m[r[14] + in]
r[37] = r[35] + r[36]
r[40] = r[37] + - 1
r[41] = b[r[40]]
r[42] = 57
NZ = r[41] ? r[42]
PC = NZ > 0---~ L31 PC
r[43] = r[15] + n
r[44] = r[15] + n
r[45] = re[r[44]]
r[46] = 10
r[47] = r[45]*r[46]
r[50] = r[15] + i
r[51] = m[r[50]]
r[52] = m[r[14] + in]
r[53] = r[51] + r[52]
r[54] = r[53] + - 1
r[55] = b[r[54]]
r[56] = r[47] + r[55]
r[57] = 48
r[60] = r[56] - r[57]
m[r[43]] = r[60]
r[61] = r[15] + i
r[62] = r[15] + i
r[63] = m[r[62]]
r[64] = 1
r[65] = r[63] + r[64]
m[r[61]] = r[65]

L o a d i n [i] ' s v a l u e .

C o m p u t e 1 0 * n + i n [i] .

L o a d '0 ' .

C o m p u t e 1 0 * n + i n [i] - ' 0 ' .
S e t n t o 1 0 * n + i n [i] - ' 0 ' .
L o a d i ' s a d d r e s s .

L o a d i ' s a d d r e s s .
L o a d i ' s v a l u e .

L o a d 1.
C o m p u t e i + 1.
S e t i t o i + 1.

J u m p b a c k t o t o p o f l o o p .
L o a d n ' s a d d r e s s .

L o a d n ' s v a l u e .
S e t r [0] t o n .

R e t u r n .

After Cachet After Combiner

r[21] = r[15] + n
r[22] = 0
m[r[21]] = r[22] m[r[15] + n] = 0
r[23] = r[15] + i
r[24] = 1
m[r[23]] = r[24] m[r[15] + i] = 1
LI: r[25] = r[15] + i
r[26] = m [r [2 5]] LI: r[26] = m[r[15] + i]
r[27] = m[r[14] + in]
r[30] = r[26] + r[27] r[30] = r[26] + m[r[14] + in]
r[31] = r[30] + - 1
r[32] = b[r[31]] r[32] = b[r[30] + -1]
r[33] = 48
NZ = r[32] ? r[33] NZ = r[32] ? 48
PC = NZ < 0--* L3] PC PC = NZ < 0-- , L3] PC

r[41] =r[32]
r [4 2] = 5 7
N Z f r [4 1] ? r[42]
P C = N Z > 0 - - * L 3 1 P C
r [4 3] = r [1 5] + n
r[44] =r[15] + n
r[45] =m[r[44]]
r[46] = 1 0
r[47] = r[45]*r[46]

NZ = r[32] ? 57
PC = NZ > 0 --* L31 PC

r[47] = m[r[15] + n]*10

r [5 5] f r [3 2]
r[56] = r [47]+r [55]
r [5 7] = 4 8
r[60] = r[56] - r[57]
m[r[43]] =r [60]
r[61] = r[15] + i

r [6 3] f r [2 6]
r [6 4] = 1
r [6 5] f r [6 3] + r [6 4]
m[r [61]] f r [65]

m[r[15] + n] = r[47] + r[32] - 48

m[r[15] + i] =r [26] + i

After Assigner

clrl n(r l3)

movl $1, i(r13)

LI: movl i(r13),r2

addl3 in(r12),r2,r3

cvtb1-1(r3),r4

cmpl r4,$48
jlss L3

cmpl r4, $57
jgtr L3

mull3 $10,n(r13),r3

movab -48(r4) [r3],n(r13)

moval 1(r2),i(r13) 7

7 T h i s i n s t r u c t i o n w o u l d c o m b i n e w i t h t he one a t L1 to y i e ld a n i n c r e m e n t i n s t r u c t i o n i f t h e r e were
no i n t e r v e n i n g u se of r e g i s t e r 2.

ACM Transactions on Programming Languages and Systems, Vol. 6, No. 4, October 1984.

Code Selection through Object Code Optimization • 525

PC = L1 PC = L1 PC = L1 jbr L1
L3: r[66] = r[15] + n L3: r[66] = r[15] + n
r[67] = m[r[66]] r[67] = m[r[66]]
r[0] = r[67] r[0] = r[67] L3: r[0] = m[r[15] + n] L3: movl n(rl3),r0
ret ret ret ret

ACKNOWLEDGMENTS

D a v e H a n s o n w r o t e m u c h o f Y C ' s f r o n t e n d a n d h e l p e d w i t h t h e d e s i g n o f t h e

a b s t r a c t m a c h i n e . H e a n d t h e r e f e r e e s o f f e r e d m a n y h e l p f u l c o m m e n t s o n t h i s
p r e s e n t a t i o n .

REFERENCES
1. AHO, A.V., AND ULLMAN, J.D. Principles of Compiler Design. Addison Wesley,Reading, Mass.,

1977.
2. AMMANN, U. On code generation in a PASCAL compiler. So#w. Pract. & Exper. 7, 3 (June

1977), 391-423.
3. AUSLANDER, M., AND HOPKINS, M. An overview of the PL.8 compiler. In Proceedings of the

SIGPLAN '82 Symposium on Compiler Construction (Boston, Mass., June 23-25). ACM, New
York, 1982, pp. 22-31.

4. BAGWELL, JR., J.T. Local optimizations. SIGPLAN Not. 5, 7 (July 1970), 52-66.
5. BELL, C.G., AND NEWELL, A. Computer Structures: Readings and Examples. McGraw-Hill, New

York, 1971.
6. CATTELL, R.G.G. Automatic derivation of code generators from machine descriptions. ACM

Trans. Prog. Lang. Syst. 2, 2 (Apr. 1980), 173-190.
7. DAVIDSON, J.W., AND FRASER, C.W. The design and application of a retargetable peephole

optimizer. ACM Trans. Prog. Lang. Syst. 2, 2 (Apr. 1980), 191-202.
8. DAVlDSON,J.W. Simplifying code generation through peephole optimization. Ph.D. dissertation,

Dept. of Computer Science, Univ. of Arizona, Tucson 1981.
9. DAVIDSON, J.W., AND FRASER, C.W. Eliminating redundant object code. In Conference Record

of the 9th ACM Symposium on Principles of Programming Languages (Albuquerque, N.M., Jan.
25-27). ACM, New York, 1982, pp. 128-132.

10. FRASER, C.W. A compact, machine-independent peephole optimizer. In Conference Record of
the 6th ACM Symposium on Principles of Programming Languages (San Antonio, Tex., Jan. 29-
31). ACM, New York, 1979, pp. 1-6.

11. FRIEBURGHOUSE, R.A. Register allocation via usage counts. Commun. ACM 17, 11 (Nov. 1974),
638-647.

12. GANAPATHI, M. Retargetable code generation and optimization using attribute grammars. Ph.D.
dissertation, Computer Science Dept., Univ. of Wisconsin, Madison, 1980.

13. GANAPATHI, M., AND FISCHER, C.N. Description-driven code generation using attribute gram-
mars. In Conference Record of the 9th ACM Symposium on Principles of Programming Languages
(Albuquerque, N.M., Jan. 25-27). ACM, New York, 1982, pp. 108-119.

14. GIEGERICH, R. A formal framework for the derivation of machine-specific optimizers. ACM
Trans. Prog. Lang. Syst. 5, 3 (July 1983), 478-498.

15. GLANVILLE, R.S. A machine independent algorithm for code generation and its use in retarget-
able compilers. Ph.D. dissertation, Dept. of Electrical Engineering and Computer Sciences, Univ.
of California, Berkeley, 1977.

16. GLANVILLE, R.S., AND GRAHAM, S.L. A new method for compiler code generation. In Conference
Record of the 5th ACM Symposium on Principles of Programming Languages (Tucson, Ariz., Jan.
23-25). ACM, New York, 1978, pp. 231-240.

17. GRAHAM, S.L., HENRY, R.R., AND SCHULMAN, R.A. An experiment in table driven code
generation. In Proceedings of the SIGPLAN '82 Symposium on Compiler Construction (Boston,
Mass., June 23-25). ACM, New York, 1982, pp. 32-43.

18. HANSON, D.R. The Y programming language. SIGPLAN Not. 16, 2 (Feb. 1981), 59-68.
19. HANSON, D.R. Simple code optimizations. So#w. Pract. Exper. 13, 18 (1983), 745-763.
20. HARRISON, W. A new strategy for code generation--The general purpose optimizing compiler.

In Conference Record of the 4th ACM Symposium on Principles of Programming Languages (Los
Angeles, Calif., Jan. 17-19). ACM, New York, 1977, pp. 29-37.

ACM Transactions on Programming Languages and Systems, Vol. 6, No. 4, October 1984.

526 • J.W. Davidson and C. W. Fraser

21. JOHNSON, S.C. A portable compiler: Theory and practice. In Con[erence Record of the 5thACM
Symposium on Principles of Programming Languages (Tucson, Ariz., Jan. 23-25). ACM, New
York, 1978, pp. 97-104.

22. KORNERUP, P., KRISTEN, B.B., AND MADSEN, O.L. Interpretation and code generation based
on intermediate languages. Softw. Pract. Exper. 10, 8 (Aug. 1980), 635-658.

23. LAMB, D.A. Construction of a peephole optimizer. So#w. Pract. Exper. 11, 6 (1981), 638-647.
24. McKEEMAN, W.M. Peephole optimization. Commun. ACM 8, 7 (July 1965), 443-444.
25. MORGAN, T.M., AND ROWE, L.A. Analyzing exotic instructions for a retargetable code genera-

tor. In Proceedings of the SIGPLAN '82 Symposium on Compiler Construction (Boston, Mass.,
June 23-25). ACM, New York, 1982, pp. 197-204.

26. NEWEY, M.C., POOLE, P.C., AND WAITE, W.M. Abstract machine modelling to produce portable
software--A review and evaluation. So[tw. Pract. Exper. 2, 12 (1972), 107-136.

27. NORI, K.V., AMMANN, V., JENSEN, S., NAGELI, H.H., AND JACOBI, C. Pascal-P Implementation
Notes. In Pascal--The Language and its Implementation, D.W. Barron Ed. Wiley, 1981, 83-123.

28. PARNAS, D.L. A generalized control structure and its formal definition. Commun. ACM 26, 8
(Aug. 1983), 572-581.

29. PATTERSON, D.A., AND SEQUIN, C.H. A VLSI RISC, IEEE Comput. 15, 19 (Sept. 1982), 8-21.
30. RADIN, G. The 801 minicomputer. In Proceedings of the Symposium on Architectural Support

for Programming Languages and Operating Systems, SIGPLAN Not. 17, 4 (Apr. 1982), 39-47.
31. RITCHIE, D.M. A Tour through the UNIX C Compiler. In UNIX Programmer's Manual, Vol.

IIB, Bell Laboratories, January 1979.
32. STEEL, T.B. A first version of UNCOL, In Western Joint Computer Conference Proceedings,

May 1961, 371-378.
33. STRONG, J., WEGSTEIN, J., TRITTER, A., OLSZTYN, J., MOCK, O., AND STEEL, T. The problem

of programming communication with changing machines: A proposed solution. Commun. ACM
I, 8 (Aug. 1958), 12-18.

34. TANENBAUM, A.S., VAN STAVEREN, H., AND STEVENSON, J.W. Using peephole optimization on
intermediate code, ACM Trans. Prog. Lang. Syst. 4, 1 (Jan. 1982), 21-36.

35. WAITE, W~M., AND GOOS, G. Compiler Construction. Springer-Verlag, New York, 1984.
36. WIRTH, N. Modula: A language for modular programming. So#w. Pract. Exper. 7, 1 (1977),

3-35.
37. WULF, W., JOHNSSON, R.K., WEINSTOCK, C.B., HOBBS, S.O., AND GESCHKE, C.M. The Design

of an Optimizing Compiler. Elsevier-North Holland, New York 1975.
38. WULF, W.A. Compilers and computer architecture. IEEE Comput. 14, 7 July 1981, 41-47.

Received November 1982; revised September 1983; accepted January 1984

ACM Transactions on PrOgramming Languages and Systems, Vol. 6, No. 4, October 1984.

