
Defense Against the Dark Arts

ABSTRACT
Computer science faculty must attract and retain students by offer-
ing innovative courses that spark student interest, yet still teach
core, computer science concepts. These efforts have become par-
ticularly important as computer science enrollments have declined,
thus increasing concerns for attracting and retaining students. We
describe an innovative course that leverages students’ interest in
computer security issues to attract and retain technically-oriented
students. Our initial vision was to offer a course covering computer
viruses—a subject that even a novice computer user has some
familiarity. To avoid the controversy associated with teaching stu-
dents how to write malicious software, we focused the course on
techniques for defending against viruses, so we named the course
Defense Against the Dark Arts. In teaching the course, we have
found the subject matter provides an engaging way to introduce
and reinforce many important computer science concepts that
other courses often cover, most particularly, the traditional com-
piler course. We have taught the course three times at two separate
institutions, with a third school soon to follow. The course has
been well received by students—completely filling each semester
with enrollments that are four to five times greater than the com-
piler course. Furthermore, student surveys indicate that the course
raises students’ awareness of computer security while introducing
students to important program translation and analysis concepts.

Categories and Subject Descriptors
K.3.2 [Computers and Education]: Computer and Information
Science Education—Computer science education; D.4.6 [Operat-
ing Systems]: Security and Protection—Invasive software; D.3.4
[Programming Languages] Processors—Compilers.

General Terms
Security, Languages, Theory.

Keywords
Anti-virus software, compilers, computer viruses, computer sci-
ence education.

1 INTRODUCTION
The recent decline in computer science enrollments demands that
we develop core curricula that today’s students consider relevant.
Given that computer security breaches, including those committed
by viruses and worms, continually make news headlines, many stu-
dents’ interests are naturally drawn to the field of computer secu-
rity. Thus, security seems to be an appropriate topic to demonstrate
the relevance of computer science while simultaneously providing
a solid foundation in core computer science principles. In this
paper, we describe an anti-virus course that achieves these objec-
tives and our experience teaching the course at two different insti-
tutions.

In our course, students study how effective anti-virus software
must automatically identify and defend against malicious software.
However, in the course we cover more than just anti-virus tech-
niques and vulnerability issues in software. By studying the ongo-
ing battle between virus writers and anti-virus researchers,
students learn that pattern-matching techniques used in early anti-
virus software are no longer capable of detecting modern, evolv-
ing, and obfuscated viruses. We demonstrate that cutting-edge
virus detection techniques use sophisticated program analyses that
go far beyond simple pattern matching using virus signatures.
Interestingly, modern compilation systems also commonly use
such program analyses.

The development of virus detectors using compiler tools presents
opportunities to accomplish the objectives of two courses in one.
While teaching about the computer security topics related to
viruses, worms, vulnerable software, etc., we also introduce core
concepts of computer science by studying compiler program anal-
yses. These concepts include applications of theoretical computer
science from compiler-related domains such as formal languages
and computability theory. We study topics including regular
expressions, automata, pattern matching tools (e.g., lex), compiler
intermediate representations, SSA (static single assignment) form
[3], data flow analyses, and the Chomsky hierarchy in the applied
subject area of computer security that students find interesting and
exciting.

We designed the anti-virus course to be widely disseminated. To
ensure the course’s suitability for a broad spectrum of colleges and
universities, we have developed the course at both a large, public,
research university, and a small, private, liberal arts college. We
have used feedback from both institutions to refine the course
twice, and we soon will make the curriculum materials available
through a curriculum repository.

Mark W. Bailey
Department of Computer Science

Hamilton College
Clinton, NY USA

mbailey@hamilton.edu

Clark L. Coleman
Department of Computer Science

University of Virginia
Charlottesville, VA USA

clc5q@cs.virginia.edu

Jack W. Davidson
Department of Computer Science

University of Virginia
Charlottesville, VA USA
jwd@virginia.edu

Permission to make digital or hard copies of all or part of this work for per-
sonal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCSE’08, March 12–15, 2008, Portland, Oregon, USA.
Copyright 2008 ACM 978-1-59593-947-0/08/0003...$5.00.
315

2 COURSE OVERVIEW
Table I lists the course topics. Weeks 1–3 covers anti-virus termi-
nology and the Intel IA-32 assembly language and architecture.
Students use simple disassembly and machine code display tools,
such as Microsoft Visual Studio’s dumpbin, in the first program-
ming assignment (assigned at the beginning of week three) to
review IA-32 assembly language and examine the Windows pro-
gram file format.

In developing the course, we wanted to use an existing infrastruc-
ture rather than develop tools from scratch. The ideal choice would
enable examining of machine code programs (it is not realistic to
tell the students: “pretend the virus writer has given you his source
code to analyze”). The system should also enable students to write
their virus analyzing code as an extension without requiring the
students learn all the details of the infrastructure. The system
should document and expose its intermediate representations and
its control and data flow data structures, to help the students learn
these topics.

We determined that the Phoenix compiler [11] from Microsoft
Research satisfied all these criteria. Microsoft plans for this com-
piler suite to become the next generation of the Visual Studio prod-
uct line. Unlike many other compilation systems, the Phoenix
compiler can manipulate either source code or machine code. The
compiler translates the machine code into a low-level intermediate
representation (LIR) that numerous Phoenix program analyses can
process. Students can take advantage of the modular plug-in archi-
tecture of Phoenix to insert analyses without understanding the
intricacies of the supporting compiler. Phoenix provides Visual
Studio wizards that generate code to plug in new analyses into
Phoenix, so that students can focus on core topics rather than insig-
nificant system details.

The lectures and documentation on Phoenix describe the overall
structure of the compiler, the various intermediate forms used in
Phoenix (e.g., high-, medium-, and low-level intermediate repre-

sentations), and why the compiler requires different levels of IR for
different analyses and transformations. In the second programming
assignment, students learn to extract and analyze the LIR form of a
program in preparation for more extensive analyses in subsequent
assignments

Weeks 4–11 of the course integrate compiler concepts with anti-
virus material. We teach the underlying mechanisms used by
viruses, without teaching how to write a complete virus. We dem-
onstrate the ongoing battle between developers of viruses and
developers of anti-virus scanners through historical examples.

We use code examples from the DOS era. Modern virus writers
still use the fundamental concepts these DOS era viruses exhibit.
The fragments of DOS virus code we provide will not work in a
modern operating system. By focusing on key fragments of DOS
viruses, we teach the fundamental concepts without providing
malicious code that could spread in today’s computing environ-
ment.

Students gain experience in writing code to recognize viruses dur-
ing week seven. After teaching how anti-virus scanners use pattern
matching to find viruses in programs, we introduce regular expres-
sions. We explain the use of tools such as lex [9] to recognize code
using regular expressions and students apply lex skills in the third
programming assignment. Viruses often use code sequences that a
compiler would never generate. We ask the students to write a lex
scanner specification to recognize such code as that used by a DOS
interrupt-hooking virus:

This code fragment writes the contents of register edx into address
4C. In DOS, this address contains a pointer to code to handle disk
interrupts. An interrupt-hooking virus would make register edx
point to the address of its own replacement interrupt-handling code
for disk accesses so that all disk interrupts would pass through the
virus code. This enables the virus code to infect diskettes as they
are loaded into the system, for example. In a modern Windows sys-
tem, the code fragment code generates a system error message and
terminates the program; we also construct the code such that regis-
ter edx does not point to any malicious code. The code fragment
still provides an opportunity for realistic pattern matching of code
that would cause an anti-virus scanner to raise an alarm.

Students pass the machine code through dumpbin to disassemble
it, then pass the disassembled code through the program produced
by their lex pattern specification. A correct pattern specification
will detect the malicious code.

In a compiler course, students would learn how to create a lex
scanner to recognize keywords and identifiers of a programming
language while studying lexical analysis. Defense Against the
Dark Arts exposes students to the same material—lex and regular
expressions—in a more interesting context.

In the first teaching of the course, we then discussed simple code
obfuscation techniques used by virus writers. Students then created
a lex pattern file to reverse code obfuscations. Students passed the
resulting output through their program from the previous assign-

Week Contents
1 Introduction; ethics; threat models
2 Terminology; Intel IA-32 architecture
3 Binary disassembly tools; Phoenix compiler
4 Boot, interrupt hooking, memory resident viruses
5 Virus infection of machine code program files
6 Exam 1; detecting viruses using patterns
7 Regular expressions and lex; obfuscation
8 SSA form; Phoenix SSA and IR
9 Anti-anti-virus schemes; tunneling, armored, and retro-

viruses
10 Exam 2; Encrypted and oligomorphic viruses
11 Polymorphic and metamorphic viruses.
12 Dynamic tools and SDT: security applications
13 Vulnerabilities & exploits; secure coding standards
14 Exam 3; rootkits
15 Special topics and exam review
16 Final exam

Table I. Course topics mov eax,4Ch
mov dword ptr [eax],edx
316

ment to detect the (now obfuscation reversed) malicious code.
Based on student feedback, we dropped this programming assign-
ment in the subsequent versions of the course in favor of more pro-
gramming assignments using Phoenix compiler technology, which
the students found to be the most interesting aspect of the course
assignments.

In recent versions of the course, we explain obfuscation tech-
niques, and show how regular expression tools can identify and
reverse only a small subset of possible code obfuscations. For
other obfuscation techniques, more powerful program analyses are
required. For example, if a virus writer inserts instructions that can
be seen, without program context, to accomplish nothing (e.g.,
instructions with no effect, such as adding zero to, or subtracting
zero from, a register) then a lex transformation could remove them.
However, if a virus writer obfuscates a malicious code sequence by
inserting the instruction: add eax, ebx, then the instruction can
only be declared to have no effect if the value in the destination
register is not subsequently used.

We teach many fundamental computer science concepts using the
difficulty of reversing obfuscations. First, we use the Chomsky lan-
guage hierarchy and the pumping lemma for regular languages to
explain why pattern-matching tools can never reverse all possible
obfuscations. Students usually encounter such topics only in for-
mal languages courses, or sometimes within compiler courses. In
Defense Against the Dark Arts, students learn the direct applica-
tion of topics that otherwise would seem to be purely theoretical in
the computer science curriculum. For example, assume that the
following instructions are part of a virus:

Here, the virus is copying itself to a new address, perhaps to propa-
gate itself, or for some other malicious purpose. We could add a
pattern of the code above to a virus signature database to enable
detection of the virus by pattern matching. However, the virus
writer could simply add some obfuscating instructions to change
the sequence, causing it not to match the signature in the database:

Incrementing register ebx and decrementing it before its next use
preserves the semantics of the program, but changes the virus sig-
nature. To detect this by pattern matching, one would have to cre-
ate patterns that match, pair-wise, increments with decrements.
However, there is no limit to the number of increments, as long as
they have matching decrements. The pumping lemma for regular
languages proves that no regular language (or finite state automa-
ton) can match such an unbounded, paired sequence.

In compiler courses, students learn the relative power of languages
at different levels of the Chomsky hierarchy using the problems of
lexical analysis, syntax analysis, and semantic analysis. Each of
these analyses requires the power of a language at a different level
of the Chomsky hierarchy. In the anti-virus assignments, students
are impressed with the different analytical requirements of obfus-
cation reversal tasks. By having a virus obfuscation technique
defeat a student’s analysis, and then having the student defeat the
obfuscation with a more powerful analysis, we make this point
more memorably than we could in a traditional compiler class.

We teach other compiler techniques that recognize obfuscating
“junk instructions” with an interesting, motivating example. In the
previous obfuscated code, the instruction “mov edx, eax” is a
junk instruction because register edx immediately acquires a new
value in the next instruction, so the old value is never used. A data
flow analysis can follow a definition-use chain and find all defini-
tions that have no uses. The corresponding assignment instructions
can be removed from the code. Students are taught SSA form, both
in general and in the data structures built within Phoenix. SSA
form is an intermediate representation that incorporates control
flow and data flow information, including definition-use chains
[3]. We then assign the fourth programming project, in which stu-
dents perform simple SSA data flow analysis to detect and remove
junk instructions. Note that SSA form and data flow analysis con-
cepts are not usually taught in undergraduate compiler courses,
because too much engineering work is required in a one semester
compiler course to create a working compiler with such advanced
features. Our anti-virus course presents the perfect opportunity to
introduce important compiler concepts that are often not possible
to include in an undergraduate compiler course.

After describing how evolving and mutating viruses obfuscate
themselves, we give a fifth programming assignment at the end of
week 11. Again, we use a Phoenix plug-in analysis to disable a
realistic virus obfuscation technique. Evolving viruses often
change their code signatures by rearranging a sequence of instruc-
tions so that a jump is required to get from each instruction to its
successor. A regular expression pattern matcher cannot detect all
such rearrangements, but a compiler with simple control flow anal-
ysis can rearrange such jumbled code into a simple sequence. After
explanation of the control flow analysis and resulting data struc-
tures within Phoenix, students write a plug-in that finds code
blocks that can only be reached by a jump (not by fall-through
from a previous instruction) and that only have a single jump as a
predecessor in the control flow graph. These code blocks are
moved so that they directly follow their predecessors. After this
process iterates to completion, the obfuscating jumps all transfer
directly to the next instruction in the program, and existing Phoe-
nix optimizations remove them. Students print the control flow
graph and inspect it to confirm that all obfuscating jumps have
been removed (and to learn about control flow graphs!)

Lectures emphasize that the battle against viruses can never be
completely won. Any reverse obfuscation program that could ver-
ify that an obfuscated program is equivalent to another program
could solve the halting problem, which is undecidable. We illus-
trate this fundamental concept with an compelling example.

mov ebx,f400h ; get destination addr
mov cx,3f4h ; get size of virus
mov edx,eip ; get instruction pointer
sub edx,472h ; get start of virus code

L1: movs [ebx],[edx]; copy virus
inc ebx
inc edx
loopcx L1

mov ebx,f400h ; get destination addr
inc ebx ; obfuscate
mov cx,3f4h ; get size of virus
mov edx,eax ; junk instruction
mov edx,eip ; get instruction pointer
sub edx,472h ; get start of virus code
dec ebx ; obfuscate

L1: movs [ebx],[edx]; copy virus
inc ebx
inc edx
loopcx L1
317

Week 12 of the course looks at dynamic tools, in general, and Soft-
ware Dynamic Translation (SDT) in particular. SDT fetches, trans-
lates, and executes instructions within a virtual execution
environment. While fetching and translating the instructions, SDT
can apply certain security policies with little overhead [14]. For
example, SDT can ensure that a program does not fetch instruc-
tions from the address range containing the stack, which is indica-
tive of a code injection attack. Other dynamic tools, such as
emulators, can be important in analyzing newly discovered viruses.
An SDT or emulator can observe an encrypted virus decrypt itself,
and then analyze the virus; this is not possible with static analysis
tools. We discuss the differing capabilities of static and dynamic
compilation concurrently with discussion of different capabilities
of static and dynamic anti-virus tools.

In weeks 13–15, we move beyond viruses to other important secu-
rity issues. We examine code vulnerabilities, and exploits of those
vulnerabilities, in detail. Students learn secure coding techniques
that reduce or eliminate such vulnerabilities. In the sixth and final
programming assignment, we give the students a machine code
program that contains unused code to print a certain string (such as
“You have passed this assignment!”), and tell them that the pro-
gram contains a buffer overflow vulnerability using its command
line arguments. Using dumpbin to find the address of the string,
and then to find the function that prints the string, students must
figure out how to pass an address in the command line to overwrite
a return address and cause the function to be called and print the
string. How to perform such an exploit is common textbook knowl-
edge, but performing the exercise gives an intimate understanding
of code exploits and how hackers can easily discover such vulnera-
bilities (and why the secure coding standards we have presented
are the proper defense).

After covering vulnerabilities and exploits, we discuss rootkits. We
use the Sony rootkit fiasco of 2005 [13] as an example of how their
personal computers can be commandeered by malicious software
that conceals its presence. Sony was attempting to prevent copying
of its music CD’s, a topic of great interest to college students! Spe-
cial topics, especially those that are in current headlines, can be
taught throughout the course.

3 EXPERIENCE
3.1 University of Virginia
We first taught this course in the fall of 2005. Prerequisites were
the core courses of the first two years of the curriculum, from CS1
through data structures. The size of the classroom limited enroll-
ment to 50 students. Prior to the beginning of the semester, enroll-
ment reached this limit and we placed students on a waiting list.
This student interest contrasts sharply with the upper division elec-
tive course in compilers, which typically draws 12–14 students.

A personal computer laboratory with 50 computers running Win-
dows XP is available for course work, as well as other labs main-
tained by the engineering school and the university. We installed
on all 50 machines a release of Cygwin [8] with lex, the Phoenix
compiler suite, and Microsoft Virtual PC, a product similar to
VMware [17]. We installed Virtual PC in order to have a protected
“sandbox” for student work to ensure that no virus assignments

could do any damage. By the end of the semester, it was obvious
that no such damage was possible from any of these assignments
and Virtual PC was not necessary for the course.

Course feedback from the students was positive. The Phoenix
compiler assignments drew particular praise, and several students
wanted more of these assignments. Thus, we dropped the second
lex assignment (reversing obfuscations) in order to make room for
another Phoenix assignment.

After refining the course materials and adapting assignments and
documentation to a new release of Phoenix, we offered the course
again in the spring of 2007. Again, the room limited enrollment,
this time to 30 students. We used questionnaires at the beginning
and end of the semester to measure student interests and knowl-
edge in computer security. Interest in taking further computer secu-
rity courses and working in computer security increased during the
semester. We observed significant increases in awareness of virus
and worm issues and software vulnerabilities in the student
responses. Student enrollment included seven students from out-
side the computer science department but within the engineering
school, and two others from the economics department in the col-
lege of liberal arts and sciences.

Microsoft released a new version of Phoenix in the fall of 2006.
With this release, Microsoft made Phoenix available for free, so
students were able to work from home and were not constrained by
the lab schedules thereby freeing valuable laboratory resources.

3.2 Hamilton College
In the spring of 2007, we taught the course at Hamilton College.
Prerequisites were CS1, data structures, computer organization,
and formal languages. In contrast to the University of Virginia,
Hamilton is a small, highly selective, liberal arts college. The
department has four computer science faculty members and enroll-
ments in the major average about 10 students per class year. While
attracting and retaining majors is a major concern, we also face the
challenging curriculum pressures that all departments our size
face.

We use a dedicated laptop laboratory with computers configured
with Windows XP, Visual Studio, and the latest release of Phoenix.
We found the dedicated lab to be particularly useful in this course
since the software base is particularly sophisticated and cutting-
edge. Students were neither familiar with Phoenix nor Visual Stu-
dio prior to enrollment in the course.

A key difference between the Hamilton and University of Virginia
offerings is the prerequisites. Because we require formal languages
and computer organization, we can compress much of the intro-
ductory material covering these core concepts. As a result, we have
more time to study compiler analyses and we included a research
and presentation component at the end of the semester.

Our experience teaching Defense Against the Dark Arts at Hamil-
ton is that the course is both flexible and appropriate for a depart-
ment with very high curriculum pressures. Because of the liberal
arts mission of the college, we must focus on computer science
fundamentals. This course has enabled us teach these core con-
318

cepts, as well as advanced topics we never cover in our compilers
course, in the context of a topic of great interest to students.

4 PRIOR WORK
As computer security has become a topic of interest to the public,
many have developed security courses to address the growing
demand. Among others, these include virus courses, anti-viruses
courses, and hacking courses. While all three types of courses
share a common theme—code vulnerabilities and exploits—they
differ in approach. Hacking and virus courses focus on the learning
how to develop malicious code to gain an understanding of how to
exploit code vulnerabilities [1, 10, 7]. Such courses have raised
concerns in both the popular press and anti-virus communities
[12]. In contrast, we are unaware of any other work that focuses on
teaching anti-virus techniques. This difference is critical: virus and
hacking courses teach how to write malicious code, while our anti-
virus course teaches techniques of program analysis that are often
applied to more general problems as well as virus detection.

For decades, courses that study compiler design have been a staple
of core curricula. Because of the size and complexity of a com-
piler, there is a rich body of work documenting approaches to
teaching the course. A selection of recent work includes attempts
to make compiler construction more manageable by using tiny lan-
guages [2, 6], more relevant by broadening language translation [4,
16], more viable in a broadening computer science curriculum
[15], or more applicable to other courses [5]. These approaches
focus on the process of constructing a compiler and thereby teach
the underlying fundamental concepts that enable translation. While
understanding program analysis techniques is fundamental, we
believe that developing a compiler to learn the techniques is not.

5 CONCLUSIONS
We have developed and refined an anti-virus course that explores
many fundamental and advanced compiler concepts. By teaching
important topics from two domains in one course, we resolve the
curriculum competition between hot, new, topical courses and tra-
ditionally core, course offerings. The shift in focus from compilers
to security enables us to reach many more students while simulta-
neously teaching the most interesting and important ideas from a
traditional compilers course. In addition, the course’s flexible con-
tent makes it amenable to adoption at a variety of institutions.

6 ACKNOWLEDGEMENTS
We thank Microsoft Research External Research and Programs for
their support of this work. In particular, we thank Yan Xu and John
Lefor for their commitment to the project, and Andy Ayers and the
entire Phoenix team for developing Phoenix and their technical
support for the Phoenix infrastructure.

7 REFERENCES
[1] AYCOCK, J., AND BARKER, K. Viruses 101. In Proceedings of

the 36th SIGCSE Technical Symposium on Computer Science
Education (2005), pp. 152–156.

[2] BALDWIN, D. A compiler for teaching about compilers. In
Proceedings of the 34th SIGCSE Technical Symposium on
Computer Science Education (2003), pp. 220–223.

[3] CYTRON, R., FERRANTE, J., ROSEN, B. K., WEGMAN, M. N.,
AND ZADECK, F. K. Efficiently computing static single assign-
ment form and the control dependence graph. ACM Transac-
tions on Programming Languages and Systems 13, 4 (1991),
451–490.

[4] DEBRAY, S. Making compiler design relevant for students
who will (most likely) never design a compiler. In Proceed-
ings of the 33rd SIGCSE Technical Symposium on Computer
Science Education (2002), pp. 341–345.

[5] DEMAILLE, A. Making compiler construction projects rele-
vant to core curriculums. In Proceedings of the 10th Annual
SIGCSE Conference on Innovation and Technology in Com-
puter Science Education (2005), pp. 266–270.

[6] FRENS, J. D., AND MENEELY, A. Fifteen compilers in fifteen
days. In Proceedings of the 37th SIGCSE Technical Sympo-
sium on Computer Science Education (2006), pp. 92–96.

[7] JENSEN, B. K., CLINE, M., AND GUYNES, C. S. Teaching the
undergraduate CS information security course. SIGCSE Bul-
letin 38, 2 (2006), 61–63.

[8] LAZENBY, D. Cygwin: For Windows NT. Linux Journal 2000,
75es (2000), 14.

[9] LESK, M. Lex: a lexical analyzer generator. Tech. Rep. 39,
AT&T Bell Laboratories Computing Science, Murray Hill,
New Jersey, USA, 1975.

[10] LOGAN, P. Y., AND CLARKSON, A. Teaching students to hack:
curriculum issues in information security. In Proceedings of
the 36th SIGCSE Technical Symposium on Computer Science
Education (2005), pp. 157–161.

[11] MICROSOFT CORPORATION. Phoenix.
http://research.microsoft.com/phoenix/, 2007.

[12] READ, B. How to write a computer virus, for college credit
(cover story). Chronicle of Higher Education 50, 19 (Jan.
2004).

[13] RUSSINOVICH, M. Sony, rootkits and digital rights manage-
ment gone too far. http://tinyurl.com/y94s8m, 2005.

[14] SCOTT, K., AND DAVIDSON, J. Safe virtual execution using
software dynamic translation. In Proceedings of the 18th
Annual Computer Security Applications Conference (2002),
p. 209.

[15] WAITE, W. M. The compiler course in today’s curriculum:
three strategies. In Proceedings of the 37th SIGCSE Technical
Symposium on Computer Science Education (2006), pp. 87–
91.

[16] WAITE, W. M., JARRAHIAN, A., JACKSON, M. H., AND DIWAN,
A. Design and implementation of a modern compiler course.
In Proceedings of the 11th Annual SIGCSE Conference on
Innovation and Technology in Computer Science Education
(2006), pp. 18–22.

[17] WALTERS, B. VMware virtual platform. Linux Journal 1999,
63es (1999), 6.
319

	1 Introduction
	2 Course Overview
	3 Experience
	3.1 University of Virginia
	3.2 Hamilton College

	4 Prior Work
	5 Conclusions
	6 Acknowledgements
	7 References

