
QUICK PIPING: A Fast, High-Level Model for Describing
Processor Pipelines†

Christopher W. Milner and Jack W. Davidson
Department of Computer Science, University of Virginia

Charlottesville, Virginia 22904

{cmilner,jwd}@cs.virginia.edu

ABSTRACT
Responding to marketplace needs, today’s embedded processors
must feature a flexible core that allows easy modification with fast
time to market. In this environment, embedded processors are
increasingly reliant on flexible support tools. This paper presents
one such tool, called Quick Piping, a new, high-level formalism
for modeling processor pipelines. Quick Piping consists of three
primary components that together provide an easy-to-build, reus-
able processor description:

• Pipeline graphs—a new high-level formalism for model-
ing processor pipelines,

• pipe—a companion domain-specific language for specify-
ing a pipeline graph,

• pipe miner—a compiler specification generator for pipe
descriptions. pipe miner processes a pipe description and
produces a compiler specification that is used to build a
compiler that reads the corresponding machine’s instruc-
tion set and automatically generates resource vectors.

Despite their ubiquity and importance in achieving high perfor-
mance in modern processors, pipelines—and improving the mech-
anisms for specifying their operation—have received little
attention. Until now, handwritten resource vectors have served to
specify information about a processor’s pipeline and encode rele-
vant information about each instruction’s resource usage. Describ-
ing the complete set of resource vectors for a machine can be quite
tedious and error prone, since it commonly must be developed by
hand on an instruction-by-instruction basis.

With its use of pipeline graphs, the pipe language, and the pipe
miner compiler specification generator, Quick Piping gives the
embedded processor architect and compiler writer an intuitive
high-level abstraction of pipelines, a language for specifying a
pipeline, and a tool for automatically producing pipeline resource
vectors. The resulting specifications are quick to develop, easy to
understand, simple to modify and maintain, and can be automati-
cally processed to produce the low-level information required by
processor control units and instruction schedulers.

Category and Subject Descriptors
D.3.4 [Programming Languages]: Processors—compilers, opti-
mization; C.1.1 [Computer Systems Organization]: Other archi-
tecture styles—pipeline processors, cellular architectures; D.4.7
[Operating Systems]: Organization and Design—real-time sys-
tems and embedded systems

General Terms
Performance, Design, Languages

Keywords
Modeling of computer architecture, pipelines, embedded systems

1 INTRODUCTION
As embedded applications have grown in complexity, so have the
processors designed for them. Most embedded processors now use
pipelining to gain increased performance. In contrast to desktop
microprocessor design, a market where there are typically few
processor variants, in the embedded market there are usually
many different variants of an embedded processor, each one
designed to meet the needs of a particular application area. There
are both instruction set variations and underlying microarchitec-
ture variations (i.e., pipeline, number of functional units, and
speed and capability of the functional units).

Because embedded processors employ pipelining to help achieve
high performance, an important aspect of embedded processor
construction is designing and implementing cost-effective, fault-
free pipelines [17, 14]. Similarly, an important aspect of compiler
construction for embedded processors is designing and imple-
menting instruction schedulers that make effective use of these
pipelines. To achieve their respective goals, computer architects
and compiler writers rely on run-time and compile-time models of
processor pipelines.

Typically a resource vector specifies information about when an
instruction uses processor resources. A resource vector describes,
in a compact tabular form, the resources used by an instruction as
it moves through each stage of the pipeline [32, 1]. Processor con-
trol units employ resource vectors to control the flow of instruc-
tions through the pipeline to prevent overuse of resources. Recent
instruction schedulers use automata constructed from resource
vectors at compile-compile time to model the pipeline at compile
time and produce instruction schedules that minimize the number
of pipeline stalls [13, 26, 28, 3].

† This work is supported in part by National Science Foundation grant
EIA-0072043.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior spe-
cific permission and/or a fee.
LCTES’02-SCOPES’02, June 19-21, 2002, Berlin, Germany.
Copyright 2002 ACM 1-58113-527-0/02/0006…$5.00

2

While resource vectors provide the relevant information about each
instruction’s pipeline resource usage, processor manufacturers usu-
ally do not provide resource vectors to end users. For example, a
survey of the published documentation on 11 processors showed
that only for one processor did a manufacturer supply resource
vectors [13, 31, 16, 30]. As a result, resource vectors for a
machine’s complete instruction set are usually developed by hand
on an instruction-by-instruction basis from informal descriptions
of the operation of the pipeline.

Developing resource vectors by hand is tedious and error prone.
Modern processors have large instruction set repertoires. While
instructions can be grouped into classes (another potential error
source), the number of instruction classes can be large. For exam-
ple, the MIPS32 4K embedded processor core family requires 39
resource vectors to describe the pipeline resource usage of the
instruction set [16, 34]. The resulting vectors are subject to logic,
interpretation, and transcription errors. Worse, it is difficult to ver-
ify the correctness of the resulting vectors. Furthermore, the result-
ing vectors are hard to maintain and modify.

This paper details an alternative approach to describing processor
pipelines and developing resource vectors, called Quick Piping.
Quick Piping incorporates three critical components: a new,
domain-specific language, called pipe, linked to a new, high-level
model for describing pipelines, the pipeline graph, and a compiler
specification generator called pipe miner that generates resource
vectors automatically.

Using the pipeline graph model and pipe, Quick Piping allows the
embedded architect and compiler writer to specify quickly and
compactly the operation of the processor’s pipeline. The language
and the underlying model are sufficiently general that superscalar
and multiple-issue processors can be specified. A pipe specifica-
tion of a complex pipeline is typically less than a page of text.

The paper also describes the design and implementation of Quick
Piping’s pipe miner tool, the compiler specification generator for
processing pipe specifications. pipe miner processes a pipe specifi-
cation of a machine and produces a yacc grammar. The grammar,
in turn, produces a compiler that processes the machine’s instruc-
tion set and emits the corresponding low-level resource vectors. In
addition, the pipe miner-generated compiler verifies that the pipe
description is complete and consistent with the description of the
machine’s instruction set and that resource vectors for all instruc-
tions have been computed.

There are several advantages to using Quick Piping over conven-
tional handwritten resource vectors. First, unlike low-level
resource vectors, pipe specifications are simple to modify and
maintain. This simplicity is due to the high-level of the underlying
model. Resource vectors combine information about the instruc-
tion set and pipeline behavior. Consequently, if the embedded core
requires a change in the instruction set or the structure of the pipe-
line, the resource vectors must be rewritten. pipe specifications, on
the other hand, are independent of the instruction set and vice
versa. As a result, a change in one need not affect the other.

Second, pipe specifications support composition whereas resource
vectors provide no abstraction mechanism. Composition allows
compiler writers and architects to describe complex pipelines to
any level of detail with a consistent level of effort. Because of the
tediousness of writing resource vectors by hand, the tendency is to
favor simplicity over accuracy when developing resource vectors
directly.

Third, the pipe miner compiler specification generator provides
assurance that resource vectors for all instructions will be gener-
ated and that the specified pipeline contains the necessary
resources to execute the instructions. When writing resource vec-
tors by hand, it is very easy either to omit instructions or place an
instruction in an incorrect category. In the fast-changing embedded
environment, where instructions are added to customize the pro-
cessor to the application, these errors are even more likely. Overall,
pipe provides compiler writers and computer architects a simple,
easy-to-use language for obtaining robust and complete resource
vectors for a processor.

This paper has the following organization. Section 2 describes
pipeline graphs, the underlying model of pipelines. Section 3
describes pipe. The pipe specification of the MIPS R3000 is used
to illustrate the main features of pipe. The implementation of the
pipe miner compiler specification generator is described in Section
4. Section 5 discusses related work and Section 6 provides a sum-
mary of Quick Piping’s benefits.

2 PIPELINE GRAPHS
A review of dozens of processor reference manuals reveals that
there are essentially three approaches for describing the operation
of a pipeline. Text descriptions, by far, are the most common
approach for describing pipeline operation. Typically the descrip-
tions name the various stages and give a brief summary of the
operation the stage performs. Table 1 reproduces the description of
the MIPS32 4Kp processor core pipeline from the previously refer-
enced datasheet. The tables are often augmented with text to
explain exceptional conditions. For example, the following text is
from the datasheet.

Figure 1: Quick Piping toolchain for producing resource vectors

pipe
specification

pipe miner

instruction grammar
and actions

Quick Piping
Support Library

RTL compiler

resource
vectors

rtl parser
c code

yacc

cc

 instruction
instances

3

The 4Kp core contains a multiply/divide unit (MDU) that con-
tains a separate pipeline for multiply and divide operations.
This pipeline operates in parallel with the integer unit (IU)
pipeline and does not stall when the IU pipeline stalls.

Another approach for describing pipeline operation is to supply a
diagram or schematic illustrating the operation of the pipeline.
Such diagrams typically take two forms—an instruction execution
sequence diagram or a pipeline schematic.

Figure 2 contains the instruction execution sequence diagram for
the MIPS R6000. This type of diagram reads from left to right. It
names the processor stages and usually contains some indication of
the resources used by a stage. For example, Figure 2 shows that the
W stage uses the register file (RF). While instruction execution
sequence diagrams help one gain an intuitive understanding of the
operation of the pipeline, they do not contain enough details to
determine precisely the pipeline’s operational characteristics.

Pipeline schematics, on the other hand, contain much greater
detail. Figure 3 shows the pipeline schematic for the MIPS R3000.
Pipeline schematics contain all the information one would need to
understand the operation of the pipeline, but they are complex and
require some effort to digest. Clearly, a pipeline schematic is not
appropriate for quickly specifying pipeline behavior.

The third approach for describing pipeline operation is the
resource vector. Table 2 gives the integer unit resource vectors for
the MIPS R2000/R3000 architecture [28]. As we noted in the
introduction, resource vectors are concise and convey the informa-
tion needed by the instruction scheduler generators and automated
design tools. For example, the jal entry of Table 2 shows that the
jump and link instruction uses the memory resource mem at pipe-
line stage four and the register file and write back resources (r_d
and wb) at stage five. Unfortunately, as noted earlier, most micro-
processor manufacturers do not provide resource vectors. The
resource vectors can be generated by hand by careful analysis of
the pipeline schematic (if one is available). However, this is a time-
consuming and error-prone task.

The resource vectors shown have been hand-developed and illus-
trate a disadvantage of ad hoc development. The author of this
description hoped to integrate register allocation with instruction
selection. Consequently, it was necessary to specify individual reg-
isters (e.g., the use of resource r_31 for the bgtzal class). Such
additions and tweaks make hand-generated resource vectors harder
to maintain.

Our approach to developing the appropriate abstractions for
describing processor pipelines has focused on evaluating existing
descriptions. Cursory examination of resource vectors and the
description approaches shows that the pipeline model should sup-
port the concepts of named resources and pipeline stages. The out-
standing problem concerns modeling the dependencies between
instructions.

Our key insight is the realization that a pipeline schematic specifies
the flow of information (i.e., instructions) through the pipeline.
Furthermore, the flow of a sequence of instructions through the
pipeline is constrained by the connections between resources and
the stage location of resources.1 Flow of information (edges)
between resources (nodes) is naturally represented by a graph.

Using a graph to model a pipeline is appealing for several reasons.
First, efficient representations of graphs are well known. Second,
efficient algorithms for analyzing and manipulating graphs are
readily available. Third, a graph is a natural abstraction of a pipe-
line schematic, which is also a graph, albeit highly detailed.

Thus, our basic model of a pipeline is a directed, partitioned graph.
Pipeline resources are nodes in the graph, and directed edges indi-
cate flow of information (both data, address, and control) between
resources. The nodes of the graph are partitioned into stages that
correspond to the stages in the pipeline.

3 THE PIPE LANGUAGE
Fortunately, a language for specifying graphs can be fairly simple
and intuitive. Further, there are several domain-specific languages
(DSLs) for specifying graphs that provide good models for pipe
[18]. We have drawn upon these DSLs in designing our language.

Stage Name Explanation

I instruction
fetch

An instruction is fetched from the instruc-
tion cache

E execution Operands are fetched from register file.
ALU begins arithmetic operation for regis-
ter to register operation
ALU calculates data virtual address for load
ALU determines if branch condition is true
Instruction logic selects instruction address
All multiplies start in this stage

M memory
fetch

ALU operation completes, data cache fetch
performed for loads/stores, data cache look-
up is performed, multiplies stall here for 31
clocks

A Align Aligner aligns load data to its word bound-
ary, multiply/divide updates HI/LO, Mul
operation makes result available.

W writeback For register-to-register or load instructions
the instruction result is written back to the
register file during the W stage.

Table 1: MIPS32 4Kp Processor Core Description.

Figure 2: MIPS R6000 instruction execution sequence schematic.

RFAlignD-CacheRF

I

I-Cache

ALU

R/A D N WI

Instruction Execution

1. An instruction sequence is also constrained by the operation char-
acteristics of the resource.

4

To illustrate pipe, we use the pipeline specification of the MIPS
R3000 pipeline given previously in Figure 3. This pipeline
includes a floating-point unit. The syntax of pipe is given using
Extended Backus-Naur Form (EBNF) grammars [7].

3.1 Pipeline stages
A pipe specification has the following form:

PipeDecl → pipeline name :
stages: StageDecls
resources: ResourceDecls
connections: ConnectionDecls

StageDecls → name : ResourceList {name : ResourceList }
ResourceList → {name { , name }}

where the stages are an ordered list of the pipeline stages with a list
of resources each stage contains. The pipe specification for the
R3000 pipeline stages is:
stages

IF: IR, PC, pc_adder, pc_mux
DEC: int_reg,fp_reg,cmp, FCcmp, FC
EXE: alu, falu, FC_WritePort
MEM: Memory
WB: WritePort
FWB: FP_WritePort

For example, the stage FWB is the stage used by the floating-point
unit to write back falu results to its register file.

Figure 3: MIPS R3000 pipeline diagram.
IF/ID

PC
0 pc_m

ux 1 Add

falu

alu

Instruction
Memory

address

int_reg

Integer Registers

read
register1
read
register2

write
register
write
data

Read
data 1

Read
data 1

fp_reg

Floating Point
Registers

read
register1
read
register2

write
register
write
data

Read
data 1

Read
data 1

ID
/E

X

EX/M
E

M
M

W
B

EX
M

W
B

0 M
U

X 1

Memory

Address

Write
data

Read
data

M
EM

/W
B

W
B

0 M
U

X 1

Control

integer
alu

Control

float
ALU

in
st

ru
ct

io
n

ALUop

shift
left 2

sign
extend

instruction
[15-0]

instruction
[20-16]

Add

PC+4

4

cmp
0

branch

W
B/FW

B

FW
B

FW
B

FW
B

FW
B

RegWrite

FPRegWrite

0 M
U

X 1

0 M
U

X 1

AluSrc

 Inst.Class Resource usage

j pc+ir rd+pc+epc alu mem wb

bgtzal pc+ir rd+pc+epc alu r_31+mem wb

ctc1 pc+ir rd alu c+s+mem wb pwb

lwc1 pc+ir rd alu mem wb fwb+f_d

mtlo pc+ir rd alu lo+mem wb

mthi pc+ir rd alu mem+hi wb

arith pc+ir rd alu mem r_d+wb

stores pc+ir rd alu mem wb

loads pc+ir rd alu r_t+mem wb

jal pc+ir rd+pc+epc alu mem r_d+wb

mult pc+ir rd lo+alu+hi lo+hi^11

div pc+ir rd lo+alu+hi lo+hi^34

Table 2: MIPS R3000 integer unit resource vectors.

5

3.2 Pipeline resources
The next section of a pipeline specification declares the resources.
There are six types of resources: functional units, main memory,
register files, registers, instruction registers, multiplexers and
latches. Resources are distinguished by the operations they can
perform and the types of connections they allow. For example, a
multiplexer must have a control connection. These constraints are
natural for architectural building blocks, but perhaps more impor-
tantly they also permit a pipe specification to be checked for con-
sistency.

The syntax for declaring resources is:

ResourceDecl → TypedResource { TypedResource}
TypedResource →

functional unit name : Operation {, Operation}
| memory name : AccessSpec {, AccessSpec}
| register name {, name }
| register file name:(r|f|d) {,(r|f|d) }
| instruction register name : Field { , Field }
| mux name :
| latch name :
Operation → Operator { DelayOrRepeat }
AccessSpec → (B|W|L|D) {LoadStoreType}{ DelayOrRepeat}
MemorySize → (B|W|L|D)
LoadStoreType → { .l | .s }
DelayOrRepeat → (^Delay | || Repeat)

The specification of the R3000’s resources is:

resources:
functional unit falu: ’/.s’^12,’.d’^19,

CV.s’^2 , CV.d^1,’*.s’^4,’*.d’^5,
’.ps’,’.pd’, ’+.s’^2,’+.d’^2,’=’,
TR, MF, ’+.s’ , ’+.d’, ’*.s’, ’*.d’,
’:.s’, '<.s', '<.d', WF.s, WF.d,
'-.s', '-.d', '-.ps','-.pd'

functional unit alu: '+','*'^12,'&',
'/'^35,'\\','=',MT,'-.p','~',':','`',
'g','>','h','s','<','l','!','\'',
'|','%','#','{','}','"','-','^'

functional unit cmp: '<', ':', '`' ,'\'',
'!', 'g', '>','h','s','l'

functional unit FCcmp: ':','!'
functional unit pc_adder: '+'

memory Memory : B.s, W.s, L.s, D.s, B.l,
W.l, L.l, D.l

register PC , FC

register file int_reg: r
register file fp_reg: f,d

instruction register IR : GLO, LOCAL,
LBL, CON, FCON, ’0’, ’1’, ’2’, ’3’,
’4’, ’5’, ’6’,’7’,’8’,’9’

mux pc_mux:

latch WritePort:
latch FP_WritePort:

The specification of a functional unit includes the operations that
the functional unit can perform. Some operations have been aug-
mented with type information. For instance, a single-precision
floating-point addition operator is listed for the floating-point ALU
falu as ’+.s’. This type information is used for consistency
checking and to help match the description of the instruction to the
resource vector.

When not explicitly given, operations are assumed to have unit
latency (i.e., take a single clock cycle). However some operations
have longer latencies (e.g., multiplication and division, floating-
point operations, etc.). Operations can be annotated with ^ Delay
to specify explicitly a latency. Similarly, operations can be anno-
tated with || Number to specify explicitly a repeat count.

The specification of a memory resource includes the sizes of the
memory locations that can be accessed and the type of access.
Similarly, the integer and floating-point register files specify the
data types that can be fetched. This information is necessary for
automatically determining the resources an instruction uses. Laten-
cies and repeat counts may be included in the specification. This
mechanism can also be used to handle instructions with variable
latency.

Multiplexers are used to select which of several inputs to output. In
pipelines, multiplexers are used to select the appropriate input to
functional units and to write into memory elements. Resource
pc_mux is a multiplexer. It is used to determine whether to route
the branch address of the ID stage adder to the PC (i.e., a condi-
tional branch), or whether to use the incremented PC (contained in
PC) to fetch the next instruction. This decision is made under con-
trol of the output of the ID stage adder. Notice the only input con-
nection type information needed is that pc_mux is making a
choice based on control input.

3.3 Pipeline connections
The connection section of a pipe program specifies how resources
are connected together. The syntax for a connection section is:

ConnectionDecl → connections:
data:

ConnectionList
address:

ConnectionList
control:

ConnectionList

ConnectionList → { name -> name }

The following is the connection section for the R3000 pipeline.

data:
int_reg -> cmp
int_reg -> alu
int_reg -> Memory
fp_reg -> falu
fp_reg -> Memory
Memory -> WritePort
Memory -> FP_WritePort
WritePort -> int_reg

6

FP_WritePort -> fp_reg
falu -> FP_WritePort
alu -> WritePort
falu -> FC
FC -> FCcmp
PC -> pc_adder
pc_adder -> pc_mux
pc_mux -> PC
IR -> pc_mux

address:
alu -> Memory

control:
FCcmp -> pc_mux
cmp -> pc_mux

The use of distinguished connection types (data, address and con-
trol) allows pipe miner to check that the pipeline graph is well-
formed.

The preceding 57 line specification is the complete pipe specifica-
tion of the MIPS R3000 pipeline shown in Figure 3. Clearly, a pipe
specification is simple to write. It can be written in an hour or so by
examining the available documentation on the pipeline (i.e., an
instruction sequence diagram, written descriptions, or a pipeline
schematic).

3.4 Multiple instruction issue
Embedded core designers often use multiple instruction issue to
boost processor performance. The MIPS64 5K family of embed-
ded cores extends the MIPS32 4K family by (among other things)
moving to 64 bits, adding floating-point processing and adding
dual instruction capabilities [37, 35, 36].

Multiple instruction issue processors are modeled in pipe using
two or more instruction register nodes. For example, Figure 4
shows a partial pipeline graph model of the SUN UltraSPARC
[33]. The UltraSPARC has two integer ALUs, modeled by alu1
and alu2, an integer multiplier, mul, and an integer divider, div.
The processor has two floating-point/graphics operation ALUs,
modeled by falu1 and falu2. The UltraSPARC can issue up to
four instructions per cycle. This is modeled by the array of instruc-
tion register nodes, IR[1-4].

When using n instruction register nodes, the pipeline graph
defaults to modeling a processor in which any one of n instruction
registers may be used to issue any instruction. Often, processors
have restrictions on the type of operation which may be issued
from a particular slot. These restrictions may be specified using
issue constraints.

Multi-issue processors may place constraints on the instructions
that may be issued from a particular issue slot. VLIW processors
are the most restrictive in this respect, with each slot in the instruc-
tion word reserved for specific operations while superscalar pro-
cessors with out-of-order issue are the least restrictive.

An issue constraint section may be added to a pipe specification to
express such restrictions on instruction order. The EBNF syntax
for the issue constraint section is:

IssueConstraints → issue constraints :
Constraint { Constraint }

The issue constraint section is composed of one or more con-
straints. The EBNF syntax for constraints is:

Constraint → InstructionRegisterName issues to
Resource { , Resource }

| InstructionRegisterName issues operation
Operation { , Operation }

Constraints are expressed with instruction registers and one of two
types of issue constraints. The first constraint names the operations
that may be issued from an instruction register. The second con-
straint names the functional unit (or multiplexer) which will be
used by the operations issued from the instruction register.

To illustrate the use of issue constraints, the UltraSPARC processor
is used. The UltraSPARC processor can issue a group of up to four
instructions per cycle. The following rules apply to the instruction
groups:

• integer instructions can only issue from the first three slots,

• floating-point instructions can issue from any slot,

• only floating-point, NOPs or branch instructions may be
issued from the fourth slot, and

• loads and stores can only issue from the first three slots.

The UltraSPARC processor is modeled with two integer functional
units, alu0 and alu1, two floating-point units, falu0 and
falu1, one load/store unit, memory and a multiplexer,
pc_mux, for guarded assignments (branches).

The UltraSPARC instruction issuing constraints are specified as
follows:

Figure 4: UltraSPARC instruction register nodes.

ir[1-4
]

integer
register

file

floating
-point

register
file

alu1

falu0

falu1

div

mul

alu2

7

issue constraints:
ir[0] issues to alu0, alu1, falu0,

falu1, pc_mux, memory
ir[1] issues to alu0, alu1, falu0,

falu1, pc_mux, memory
ir[2] issues to alu0, alu1, falu0,

falu1, pc_mux, memory
ir[3] issues to falu0,falu1,pc_mux

3.5 Embedded pipelines
In the pipeline schematic of Figure 3, the details of the operation of
the floating-point pipeline were not shown. This omission is fairly
common. Typically, floating-point pipelines are complex and con-
sequently processor reference manuals often avoid discussing the
details. However, manufacturers will publish floating-point opera-
tion latencies, hence the ^ annotation.

When details about the floating-point pipeline are provided, they
are usually presented by giving a separate description of the float-
ing-point pipeline. Again, this is to avoid complicating the sche-
matic so much that it would be difficult to determine the operation
of the pipeline.

When information about the operation of the floating-point pipe-
line is available, we would like to describe the pipeline so that we
obtain the resource vectors that model the pipeline as accurately as
possible. Drawing from the approach often used by manufacturers,
pipe allows pipeline descriptions to be composed via embedding.
That is, a pipeline description can contain another pipeline descrip-
tion and so on. This mechanism allows us to describe a complex
floating-point pipeline separately, yet take its effect into account
when constructing the resource vectors.

To illustrate, we consider floating-point division. The previous
pipe specification gave the latency as 19 cycles. This is indeed the
latency of the instruction, however, it was given by specifying that
it used resource falu for 19 cycles. This is incorrect. In fact, the
floating-point division instruction uses the falu for one cycle, a
special division unit (div) for 15 cycles, and the falu again for
three cycles for a total of 19 cycles. Specifying that the instruction
uses the falu for all 19 cycles reduces the amount of concurrency.
That is, another floating-point instructions could execute concur-
rently with the floating-point divide instruction (i.e., the ALU can
be used while the divide instruction is proceeding through the divi-
sion unit).

To describe the floating-point divide instruction accurately, we
indicate that the operation is pipelined. The previous description of
the falu resource is changed to be:

functional unit falu :
'/.d'^pipelined,'/.s'^12, '==.s', CV^3,
'*.s'^4, '*.d'^5,'+.s', '+.d'^2 ;

That is, we remove the latency and add the keyword pipelined.
The keyword specifies that this operation is implemented by a
pipeline.

The description of the pipeline is added at the end of the top-level
pipe specification. The name of the pipeline is formed by concate-

nating the name of the containing resource (falu) with the opera-
tor name (‘/.d’).

embedded pipeline falu:'/.d'
stages

1: falu
2: div^15
3: falu^3

With the addition of the above code, the pipe miner processor will
produce the following resource vector for the floating-point divide
instruction:

/.d falu div^15 falu^3

The next section describes how a pipe specification is processed by
pipe miner to produce resource vectors.

4 PIPE MINER
A common technique for implementing both prototypes and pro-
duction implementations of DSL compilers is to compile the DSL
to an existing high-level language. Many DSLs are compiled to C
or C++ because of their high availability. For example, lex [19],
yacc [15], hancock[6], among others, are compiled to C. Because
our ultimate goal is to produce a compiler that will process instruc-
tions and produce resource vectors, we compile pipe specifications
to a yacc grammar. The resulting yacc grammar is used to generate
a compiler that processes the instruction set of the processor and
produces resource vectors. Thus pipe miner is a program generator
for a compiler-compiler.

4.1 Pipeline graph translation
Figure 5 illustrates the process of translating a pipe specification to
an appropriate yacc grammar. pipe miner reads a pipe specification
and for each embedded pipeline, and the top-level pipeline, builds
a pipeline graph data structure. Building the pipeline graph data
structure is straightforward.

After constructing the pipeline data structures, pipe miner per-
forms semantic checks on the graph. It verifies that each graph is
connected and that the graphs corresponding to embedded graphs
are connected to the top-level graph. It also verifies that each
resource has the proper number of inputs and the types are correct.

After verifying the pipeline graph, pipe miner processes the set of
graphs in a bottom-up fashion—lower-level embedded graphs are
processed before the graphs that contain them. Each pipeline graph
is traversed breadth first. As pipe miner visits each node in the
graph, it emits a grammar rule and action corresponding to the vis-
ited node. For example, the grammar fragment emitted for a func-
tional unit resource has the form

alu_name : alu_in1 op alu_in2
| op alu_in1

where op is the set of operations the alu can perform (which was
given in the pipe specification). The productions for the

8

nonterminals alu_in1 and alu_in2 would be produced when
the resources that produced the inputs to the alu were processed.

For the example in Figure 5, pipe miner emits the grammar rule

alu : reg '+' reg { rv[exe] = rv[exe]|alu;}

Other resources are processed in a similar manner. Embedded
pipelines are handled by producing grammar chain rules that link
the “start” symbol of the embedded pipeline to the grammar for the
top-level pipeline. The start rule for the emitted grammar is simply
all possible assignments to all storage resources. yacc processes
the pipe miner-emitted grammar, and yields a parser that is linked
with a support library to produce a compiler.

Compilation of instructions to produce resource vectors is shown
in Figure 6. The compiler processes instructions expressed in reg-
ister transfer lists (RTL) [4, 5]. The list of instructions to process is
extracted automatically from our Computer System Description
Language (CSDL) description of the instruction set[2]. As each
instruction is parsed, the resources that the instruction uses are
identified, and the appropriate semantic action is executed to place
the resource in the correct stage of the resource vector.

There are several types of errors that can occur when parsing an
instruction. The most common is not recognizing an RTL. This
error is caused when the specified pipe cannot implement the
instruction. This means that either the pipeline description is
incomplete, or the parsed instruction was not a legal instruction.
Because we use instructions generated automatically from a
machine description, errors are usually due to an incomplete pipe-
line description.

4.2 Implementation
pipe miner is a literate program of approximately 4500 lines that
converts to 2500 lines of C source code [29]. The implementation
also includes a graphical editor called pipelayer for building pipe-
line graphs. pipelayer allows a user to draw the graph using a tem-
plate of stencils representing pipeline resources. The tool produces

a pipe specification which is then processed by pipe miner.

5 RELATED WORK
There has been some work on using graphs to model the data path
of a processor. Leupers and Marwedel use similar graph modelling
and tree rewriting techniques in the context of generating code
selectors from hardware description languages [21, 20]. Whereas
we allow the user to model the processor at a very high-level of
abstraction, they present a very low-level and very general model.
In their methodology, the user constructs a full high-level descrip-
tion language (HDL) model of the processor or application specific
integrated circuit. The resulting netlist is traversed and register
transfer templates, similar to our yacc rules, are generated.

Monahan and Brewer model the pipeline using a graph with latch,
register, multiplexer and function unit nodes [25]. Using RT-level
symbolic data path execution, they perform exact scheduling of
hardware DFGs on a pre-existing data path.

Gupta and Önder’s Architecture Description Language project
seeks to develop microarchitecture descriptions for producing
many systems tools, such as cycle-level simulators and assemblers
[27]. In this sense, it is similar to our CSDL project. Their pipeline
descriptions are procedural and not designed for analysis.

The Trimaran compiler infrastructure uses IMPACT’s machine
description, HMDES, to describe a processor’s pipeline [11, 12,
10]. Using a Lisp-like notation that is similar to gcc’s machine
description, users create instruction categories and specify reserva-
tion tables for these categories. A HMDES specification is trans-
lated to a form that can be incorporated into the compiler. HMDES
pipeline specifications are much lower level than pipe specifica-
tions. The low-level nature of Trimaran’s description makes them
harder to write, but it does afford users the full power of using res-
ervation tables directly.

The HAWK microarchitecture specification language has been
developed to describe, simulate and verify processors [24]. This

Figure 5: pipe miner compiler specification generator emitting yacc grammar rules and actions for a pipe specification.

pipe miner
sees traversal back to

register file

pipe miner
sees

register file

pipe miner
sees alu

emits rule and action
reg: R[]

{ use reg at IFD}

regfile
+

IFD EXE WB

emits rule and action
alu: reg + reg

{use alu at EXE}

emits rule and action
write: R[] = alu

{ use write port to register file at WB}

9

work emphasizes verification and simulation, rather than system
tool generation.

Several architectural description languages exist for system level
design space exploration. These languages, such as Checkers [23],
EXPRESSION [9, 8] and Mimola [22] are used in toolkits that
contain a series of circuit design tools and program generators for
automatically generating retargetable compilers and simulators.
These systems generate compilers with their own instruction
scheduling mechanisms based on the low-level description of the
processor pipeline. Only EXPRESSION has a system for generat-
ing resource vectors from the descriptions.

6 SUMMARY
In the fast-paced embedded processor development environment, a
flexible core is essential. A tool such as Quick Piping helps bolster
flexibility and speed to market by focusing on automating resource
vector generation and providing an abstract, easy-to-change way to
describe processors.

Quick Piping provides multiple benefits to the architect:

• A processor pipeline model that uses a directed, parti-
tioned graph for simple, intuitive high-level descriptions.

• A high-level pipeline model that greatly enables reuse and
experimentation, in direct contrast to conventional
resource vectors, which must be laboriously rewritten,
instruction-by-instruction, and can be erroneously tran-
scribed.

• The ability to describe complex pipelines at any level of
detail desired.

• A unique mechanism within the model for handling issue
constraints.

• pipe, a simple, intuitive domain-specific language that
yields compact descriptions that correspond to the way
compiler writers think about processors.

• A DSL compiler, pipe miner, that converts high-level pipe
descriptions into low-level resource vectors automatically.
Users get the benefit of thinking at a high level and imple-
menting small modifications at that level that generate sig-
nificant changes at the low-level.

• The marriage of pipeline description to instruction descrip-
tion. The pipe miner compiler actually guarantees this cou-
pling occurs—an advancement beyond handwritten
resource vectors where no such “linkage control” is possi-
ble.

• A high-level tool that, unlike resource vectors, automates
description error identification, reducing time spent on
debugging.

7 REFERENCES

[1] Jean-Loup Baer. Computer Systems Architecture. Computer
Science Press, 11 Taft Court, Rockville, MD, USA, 1980.

[2] Mark W. Bailey. CSDL: Reusable Computing System
Descriptions for Retargetable Systems Software. PhD thesis,
University of Virginia, May 2000.

[3] Vasanth Bala and Norman Rubin. Efficient instruction sched-
uling using finite state automata. International Journal of
Parallel Programming, 25(2):53–82, April 1997.

[4] C. G. Bell and A. Newell. Computer Structures: Readings
and Examples. McGraw–Hill, New York, 1971.

Figure 6: Compiling instructions to resource vectors.

write

rewrites
using

write:R[]=alu
R[]=alu

rewrites
using

alu:reg+reg
R[]=reg+reg

parser
sees

parser
sees

parser
sees

R[]=R[]+R[]

rewrites
using

reg:R[]
R[]=reg+R[]

rewrites
using

reg:R[]

parser
sees

done

models
=R[]

emits
"use regfile at

IFD"

models
=R[]

emits
"use regfile at

IFD"

models
=reg+reg

emits
"use alu at EXE"

models
R[]=

emits
"use writeport at

WB"

regfile regfile regfile

add: RF alu WB
resource vector

+

10

[5] Manuel E. Benitez and Jack W. Davidson. The advantages of
machine-dependent global optimization. Lecture Notes in
Computer Science, 782:105–110, 1994.

[6] Dan Bonachea, Kathleen Fisher, Anne Rogers, and Frederick
Smith. Hancock: A language for processing very large-scale
data. In Proceedings of the 2nd Conference on Domain-Spe-
cific Languages, pages 163–176, Berkeley, CA, October 3–5
1999. USENIX Association.

[7] Daniel P. Friedman, Mitchell Wand, and Christopher T.
Haynes. Essentials of Programming Languages. McGraw
Hill, 1992.

[8] P. Grun, A. Halambi, N. Dutt, and A. Nicolau. RTGEN: An
algorithm for automatic generation of reservation tables from
architectural descriptions, 1999.

[9] Peter Grun and et al. Ashok Halambi. EXPRESSION: An
ADL for system level design exploration. Technical Report
98-29, Department of Information and Computer Science,
UC Irvine, Irvine, California, September 1998.

[10] John C. Gyllenhaal. A machine description language for
compilation. Master’s thesis, 1994.

[11] John C. Gyllenhaal, Wen mei W. Hwu, and B. Ramakrishna
Rau. Hmdes version 2.0 specification. Technical report, Uni-
versity of Illinois at Urbana-Champaign, 1996.

[12] John C. Gyllenhaal, Wen mei W. Hwu, and B. Ramakrishna
Rau. Optimization of machine descriptions for efficient use.
International Journal of Parallel Programming, 26(4), 1998.

[13] Joe Heinrich. MIPS R4000 Microprocessor User’s Manual.
Prentice-Hall PTR, Upper Saddle River, NJ, USA, 1993.

[14] John Hennessy and David Patterson. Computer Architecture:
A Quantitative Approach, 2nd ed. Morgan Kaufmann Pub-
lishers Inc., Palo Alto, CA, 1995.

[15] S. C. Johnson. YACC: Yet Another Compiler Compiler. Com-
puting Science TR, 32, 1975.

[16] G. Kane and J. Heinrich. MIPS RISC Architecture. Prentice
Hall, 1992.

[17] P. Kogge. The Architecture of Pipelined Computers. McGraw
Hill Book Company, New York, NY, 1981.

[18] Eleftherios Koutsofios. Editing graphs with dotty. Technical
report, AT&T Bell Laboratories, Murray Hill, NJ, USA, July
1994.

[19] M. E. Lesk. LEX - A lexical analyzer generator. Computing
Science TR, 39, October 1975.

[20] R. Leupers. Retargetable code generation for digital signal
processors, 1997.

[21] Rainer Leupers and Peter Marwedel. Retargetable Generation
of Code Selectors from HDL Processor Models. European
Design and Test Conference, 1997.

[22] P. Marwedel. The MIMOLA design system: Tools for the
design of digital processors. In ACM IEEE 21st Design Auto-
mation Conference, pages 587–593, Los Angeles, Ca., USA,
June 1984. IEEE Computer Society Press.

[23] Peter Marwedel and Gert Goossens. Code Generation for
Embedded Processors. Kluver Academic Publishers, Boston,
1995.

[24] J. Matthews, J. Launchbury, and B. Cook. Microprocessor
specification in Hawk, 1998.

[25] C. Monahan and F. Brewer. Symbolic modeling and evalua-
tion of data paths. In 32nd Design Automation Conference
Proc.

[26] T. Müller. Employing Finite Automata for Resource Schedul-
ing. In Proceedings of the 26th Annual International Sympo-
sium on Microarchitecture (MICRO’93), pages 12–20, Los
Alamitos, CA, USA, December 1993. IEEE Computer Soci-
ety Press.

[27] Soner Önder and Rajiv Gupta. Automatic generation of
microarchitecture simulators. In Proceedings of the 1998
International Conference on Computer Languages, pages
80–89. IEEE Computer Society Press, 1998.

[28] Todd A. Proebsting and Christopher W. Fraser. Detecting
pipeline structural hazards quickly. In Conference Record of
POPL ’94, 21st ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, pages 280–286, New
York, NY, USA, 1994. ACM Press.

[29] Norman Ramsey. Literate programming simplified. IEEE
Software, 11(5):97–105, September 1994.

[30] Richard L. Sites. Alpha Architecture Reference Manual. Dig-
ital Press and Prentice-Hall, 1992.

[31] SPARC International, Inc. The SPARC Architecture Manual -
Version 8. Prentice-Hall, Upper Saddle River, NJ, USA, 1992.

[32] H. Stone. High Performance Computer Architecture. Addi-
son-Wesley, New York, 1987.

[33] Sun Microelectronics. UltraSPARC I&II. Sun Microelectron-
ics, 1997.

[34] MIPS Technologies. MIPS32 4Kp Datasheet. MIPS Technol-
ogies, 2001.

[35] MIPS Technologies. MIPS64 5K Processor Core Family Soft-
ware Users Manual. MIPS Technologies, 2001.

[36] MIPS Technologies. MIPS64 5Kc Processor Core Datasheet.
MIPS Technologies, 2001.

[37] MIPS Technologies. MIPS64 5Kf Processor Core Datasheet.
MIPS Technologies, 2001.

