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Peephole optimizers improve object code by replacing certain sequences of instructions with better 
sequences. This paper describes PO, a peephole optimizer that uses a symbolic machine description 
to simulate pairs of adjacent instructions, replacing them, where possible, with an equivalent sing!e 
instruction. As a result of this organization, PO is machine independent and can be described formally 
and concisely: when PO is finished, no instruction, and no pair of adjacent instructions, can be 
replaced with a cheaper single instruction that has the same effect. This thoroughness allows PO to 
relieve code generators of much case analysis; for example, they might produce only load/add-register 
sequences and rely on PO to, where possible, discard them in favor of add-memory, add-immediate, 
or increment instructions. Experiments indicate that naive code generators can give good code if used 
with PO. 
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1. INTRODUCTION 

Of al l  o p t i m i z a t i o n s ,  t h o s e  a p p l i e d  to  o b j e c t  code  a r e  a m o n g  t h e  l ea s t  u n d e r s t o o d .  
A d  hoc  i n s t r u c t i o n  se t s  c o m p l i c a t e  f o r m a l  t r e a t m e n t  a n d  p o r t a b i l i t y .  H o w e v e r ,  
e x p e r i e n c e  s h o w s  t h e  v a l u e  of  o b j e c t  code  op t im iz a t i on ;  even  c o m p i l e r s  w i t h  
t h o r o u g h  g loba l  o p t i m i z a t i o n  r e d u c e  code  size b y  15-40 p e r c e n t  w i t h  o b j e c t  code  
o p t i m i z a t i o n  [12]. T h i s  is no su rpr i se .  T o  be  m a c h i n e  i n d e p e n d e n t ,  g loba l  op t i -  
m i z a t i o n  u s u a l l y  p r e c e d e s  code  gene ra t ion ;  to  be  s i m p l e  a n d  fast ,  code  g e n e r a t o r s  
u s u a l l y  o p e r a t e  local ly ;  so t h e  code  g e n e r a t o r  p r o d u c e s  code  f r a g m e n t s  t h a t  can  
be  l oca l ly  o p t i m a l  b u t  m a y  be  s u b o p t i m a l  w h e n  j u x t a p o s e d .  F o r  e x a m p l e ,  loca l  
code  for  a sou rce  p r o g r a m  c o n d i t i o n a l  ends  w i th  a b r a nc h ;  so does  loca l  code  for  
t h e  e n d  of  a loop.  C o n s e q u e n t l y ,  a c o n d i t i o n a l  a t  t h e  e n d  of  a loop  b e c o m e s  a 
b r a n c h  to  a b r a n c h .  C h a n g i n g  t h e  code  g e n e r a t o r  to  h a n d l e  such  s i t u a t i o n s  (for 
i n s t ance ,  to  g e n e r a t e  on ly  one  b r a n c h )  c o m p l i c a t e s  i ts  case  a n a l y s i s  c o m b i n a t o -  
r ia l ly ,  s ince  e a c h  c o m b i n a t i o n  of  l a n g u a g e  f e a t u r e s  m a y  a d m i t  s o m e  o p t i m i z a t i o n  
[6]. I t  is e a s i e r  to  s i m p l i f y  t h e  code  g e n e r a t o r  a n d  to  s u b s e q u e n t l y  o p t i m i z e  o b j e c t  

code.  
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Little has been published on object code optimization, and some early object 
code optimizations [2, 8, 9] (e.g., constant folding, exponentiation via multiplica- 
tion} are now performed at a higher level [1, 11]. Recent object code optimizers 
[4, 12] delete unnecessary tests (a previous instruction may have incidentally set 
the condition code), exploit special case instructions and exotic address calcula- 
tions, collapse chains of branches, delete unreachable code, and simulate register 
contents to replace, where possible, memory references with equivalent register 
references. They typically detect and correct only a few machine-specific patterns. 

PO is a retargetable peephole optimizer. Given an assembly language program 
and a symbolic machine description, PO simulates pairs of adjacent instructions 
and, where possible, replaces them with an equivalent single instruction. PO 
makes one pass to determine the effect of each instruction, a second to collapse 
pairs of effects, and a third to select the cheapest instruction for each resulting 
effect. 

There are several advantages to this organization. PO is easily retargetted by 
changing machine descriptions; the PDP-10, PDP-11, and Cyber 175 have already 
been accommodated. PO is not cluttered by ad hoc case analysis because it 
combines all  possible adjacent pairs, not just branch chains or constant compu- 
tations or any other special cases. As a result, PO's effect can be described 
formally and concisely: when PO is finished, no instruction, and no pair of 
adjacent instructions, can be replaced with a cheaper single instruction that has 
the same effect. Subsequent sections explain "adjacent" and "cheaper" and show 
how this thoroughness may relieve code generators of much case analysis. 

The two-instruction window catches inefficiencies at the boundaries between 
fragments of locally generated code. It is not designed to catch others, so PO is 
best used with a high-level, machine-independent global optimizer. 

2. MACHINE DESCRIPTIONS 

To simulate an instruction, PO must know its syntax and its effect. Effects are 
represented as ISP register transfers [3]; for example, 

R[3] ~-- R[3] + 1 increments  register 3 
M[c] *-- 0 clears memory  location c 
PC ~-- (NZ = 0 ~ 140 e l se  PC) j u m p s  to 140 i f  NZ is zero 

PO assumes that PC names the program counter. No other names are assumed 
to have specific meanings, so PO can accommodate single-accumulator and stack 
machines as easily as general register machines. 

A machine is uescribed by a grammar for syntax-directed translation between 
assembly language and register transfers. Productions are displayed in three 
columns: the nonterminal being defined (in italic lowercase letters), the assembler 
syntax for that nonterminal (with terminal symbols in boldface uppercase letters), 
and the corresponding register transfer syntax. For example, these productions 
from a PDP-11 description 

nonterminal assembler syntax pattern register transfer pattern 

*s i i 
*d i i 
inst  CLR d d ~-- 0; NZ ~-- 0 ? 0 
ins t  A D D  s, d d ~--d + s; NZ ~--d + s ?  0 
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state that  the CLR instruction clears its destination operand, that  the ADD 
instruction adds its source to its destination, and that  both set condition code 
bits N and Z to indicate whether the result is negative, zero, or positive. The 
asterisk preceding the definitions of d and s tells PO that  all of their instances 
must match identical substrings of the register transfer. PO assumes that  the 
program counter is automatically incremented, so this effect need not be made 
explicit. The productions 

nonterminal assembler syntax pattern register transfer pattern 

i a a 

i @a M[a] 

state that  a word operand a may be preceded by a "@" for an indirect reference. 
Finally, the productions 

nonterminal assembler syntax pattern register transfer pattern 

a x M[x] 
a #x  x 
a Rn R[n] 
a x(Rn) M[R[n]+x] 

define how the word operand a may appear in assembly code: the lone address x 
stands for the named memory location M[x], #x  stands for the literal value x, Rn 
stands for the named register R[n], and x(Rn) stands for an indexed address 
where address x is the base and register R[n] holds the offset. The primitive 
nonterminals are x, which stands for a symbolic address, and n, which stands for 
a register index. Appendix A contains additional descriptions for the PDP-11. 

Details irrelevant to the object code may be omitted from the machine 
description. For example, PO does not need to know how the condition code 
represents comparisons, so the machine description does not say. Similarly, 
instructions that  PO has little or no chance of collapsing {e.g., HALT, block 
moves, subroutine calls, and returns) may be omitted. Undescribed instructions 
may appear in programs--PO will not disturb them. 

The machine description may disguise awkward machine features. For example, 
PDP-11 conditional branches can only reach nearby words; assemblers--and PO 
machine descriptions based on them--disguise this fact by allowing conditional 
branches to arbitrary targets and translating them into two-instruction sequences 
when "short" branches cannot reach. Similarly, the PDP-11 hardware does not 
offer immediate operands; instead it offers "autoincrement" addressing, which 
references indirectly through an index register that  is subsequently incremented. 
Since the program counter is also an index register, assemblers--and PO machine 
descriptions--offer immediate operands by generating the less obvious autoincre- 
ment through the program counter [10]. 

Since PO knows target machines only through these patterns, it is retargetted 
by describing a different instruction set. Its few machine dependencies are 
assumptions built into its algorithms and machine description language. For 
example, the simulator assumes that  the machine uses a program counter and 
that  cells, once set, stay set: PO cannot optimize code that  uses changing device 
registers. Similarly, PO's machine descriptions cannot easily represent instruc- 
tions with internal loops (e.g., block moves, which may appear in programs but 
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will not be collapsed). In general, such assumptions can be removed by extending 
PO. As it stands, PO can handle most instructions on most machines. 

3. DETERMINING EFFECTS 

PO needs to know the effectmin register transfersmof each instruction. If PO is 
built into a compiler, the code generator can emit register transfers equivalent to 
the object code instructions that  it would otherwise generate, and PO can proceed 
directly with collapsing pairs of instructions. On the other hand, if PO is to accept 
assembly code, it must first make a pass to determine the effect of each assembler 
statement in isolation (so PO assumes that  programs do not modify themselves). 
Given an assembler statement, it seeks a matching assembler syntax pattern and 
returns the corresponding register transfer pattern, with pattern variables eval- 
uated. For example, the instruction 

ADD #2, R3 

matches the syntax pattern 

ADD s, d 

so PO substitutes 2 (the translation of #2) for s and R[3] (the translation of R3) 
for d in the register transfer pattern 

d (--d + s; NZ (----d+s ? 0 

and obtains 

R[3] ~-- R[3] + 2; NZ *- R[3]+2 ? 0 

Programs typically ignore some effects of some instructions. For example, a 
chain of arithmetic instructions may set and reset condition codes without ever 
testing them. PO can do a better job if such useless register transfers are removed 
from an instruction's register transfer list. For example, the full effect of the 
instruction above includes assignments to the N and Z bits. If the next instruction 
changes N and Z without testing them, its useful effect is only 

R[3] ~--R[3] + 2 

If the previous instruction references R[3] indirectly, the useful effect may be 
had by autoincrementing instead and removing the ADD instruction. The full 
effect requires the ADD instruction, since autoincrementing does not set the 
condition code. Consequently, when initially determining each instruction's effect, 
PO ignores effects on such "dead" variables. To do so, the initial pass scans the 
program backward and associates with each instruction both its useful effect and 
a list of cells that  are unused and therefore may be changed arbitrarily. Each 
instruction's list is computed to be that  of its lexical successor, plus the cells its 
successor sets, minus the cells its successor examines. If the instruction branches, 
its list is taken to be empty, since the dead variables depend on the destination 
of the branch. Full dead variable elimination (considering control flow and 
subscripting) [7] is an unnecessary expense, for this simpler analysis permits the 
first pass over the code to eliminate most "extra" effects such as condition code 
setting. As a bonus, code not subjected to dead variable elimination at a higher 
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level enjoys a measure of it now: instructions with no effect are removed. If PO 
is used with a code generator that  produces register transfers instead of assembly 
code, the code generator will not produce extra effects and can report when 
temporaries become dead, so a pass for dead variable identification should not be 
needed. 

4. COLLAPSING PAIRS 

Once PO knows the isolated effect of each instruction, it passes forward over the 
program and considers the combined effect of lexicaUy adjacent instructions; 
where possible, it replaces such pairs with a single instruction having the same 
effect. PO learns the effect of a pair by combining their independent effects and 
substituting the values assigned to variables in the first for instances of those 
variables in the second. The effect of 

SUB #2,  R3 
CLR @R3 

is (ignoring dead variable elimination) 

R[3] *-- R[3] - 2; NZ ~-- R [ 3 ] - 2  ? 0 
M[R[3]] ~-- 0; NZ ~-- 0 ? 0 

which simplifies to 

R[3] *-- a [3 ]  - 2; M[R[3] - 2] ~-- 0; NZ ~-- 0 ? 0 

PO now seeks a single instruction with a register transfer pattern matching this 
effect. It finds the autodecrement version of CLR 

CLR - ( R 3 )  

A register transfer pattern matches if it performs all register transfers requested 
and if the rest of its register transfers set harmless dead variables (e.g., the 
condition code). After each replacement, PO backs up one instruction--to con- 
sider the new adjacency between the new instruction and its predecessor--and 
continues. 

Pairs that  start with a branch need special treatment. The condition on which 
the branch depends must be inverted and added to the register transfers of the 
second instruction before combining effects. For example, the two instructions 

PC ~-- (NZ -- 0 ~ 11 else PC) 
PC *-- 12 

11: 

combine to 

PC *-- (NZ = 0 ~ 11 else PC); PC *-- (not NZ -- 0 ~ 12 else PC) 
11: 

A symbolic simplifier now improves awkward relationals and deletes redundant 
PC assignments, yielding 

PC ~-- (NZ ~ 0 ~ lz else PC) 
11 : 
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for the example above. Unconditional branches depend on the constant condition 
true; the symbolic simplifier deletes register transfers depending on its inverse, 
removing unreachable code. 

Labels prevent the consideration of some pairs. Combining pairs whose second 
instruction is labeled changes, erroneously, the effect of programs that  jump to 
the label to include the effect of the first instruction. PO must ignore such pairs 
and assume that  all branches are to explicit labels. To improve its chances, PO 
removes any labels it can. When it encounters a label, it looks for a reference to 
it; if it finds none--possibly because optimizations like the one above have 
removed them all--PO removes the label and tries combining the two instructions 
that  it separated. This technique enables PO to remove the last three branches 
in the large example below. 

When PO removes the last reference to a label that  it has passed, it should 
back up to reconsider the instructions the label separated: new optimizations are 
possible after the label is removed. This reconsideration is needed only for labels 
referenced following their definition. However, when optimizing the code gener- 
ated locally from a program with "structured" control flow, loop and subroutine 
heads are the only such labels, and peephole optimizers seldom remove these 
labels. So this particular form of backup, though easily implemented and theo- 
retically necessary, was discarded as ineffective. 

PO collapses branch chains by treating a branch and its target as an extra pair. 
If an instruction branches to l, PO concatenates the branch instruction with the 
instruction at l, attempts optimization of this pair, and replaces the first branch 
(leaving the instruction at 1 alone) if possible. For example, the PDP-10 sequence 

J R S T  11 

l l :  A O J G  3, 12 

has the effect 

PC ~-- 11 
* , °  

11: R[3]  ~-- R[3]  + 1; PC ~-- ( R [ 3 ] + l  > 0 ~ 12 else PC)  

which combines to 

R[3]  *-- R[3]  + 1; PC *-- ( R [ 3 ] + l  > 0 ~ 12 else PC)  
, . o  

11: R[3]  ~-- R[3]  + 1; PC ~-- ( R [ 3 ] + 1  > 0 ~ 12 else PC)  

so PO replaces the first instruction with the second. (Note that  the second 
instruction may now be unreachable.) PO does not make the replacement if it 
requires the introduction of a new label. For example, if the second instruction 
had the effect 

11: R [ 3 ] * - - R [ 3 ]  + 1 

PO could replace the first instruction with 

A O J G  3,11+1 
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but it does not because, as shown above, introducing new labels (1,+1) prevents 
the consideration of other pairs. PO combines only physically adjacent instruc- 
tions and branch chains. 

When this pass reaches the end of the program, PO makes a third and final 
pass to translate the remaining register transfers back to assembly code. When 
searching for an instruction that realizes a particular set of register transfers, PO 
scans the instruction list in order, so cheaper instructions should be described 
first. Occasionally two (or more) instructions are better than one; the general 
solution to this problem is to add instruction timings to machine descriptions, 
but it is less expensive and just as practical to describe the two-instruction 
sequence as a macro instruction and place it before the less desirable single 
instruction. This third pass could be absorbed into the second pass if the second 
pass kept track of register transfers and the equivalent assembly code. 

For purposes of comparison, Appendixes B-D show PO optimizing a 30-instruc- 
tion program that has been used to illustrate FINAL, the PDP-11-dependent 
object code optimizer of the BLISS-11 optimizing compiler [12]. PO yields 19 
instructions; by simply combining adjacent instructions, it collects branch chains, 
uses special-purpose addressing modes, combines jumps-over-jumps, and deletes 
useless tests and unreachable code. FINAL yields 16 instructions, because it does 
"cross-jumping," a reordering that can eliminate redundant code. Cross-jumping 
may permit other optimizations but, by itself, does not make programs faster, 
only smaller. Hence, it differs fundamentally from PO's optimizations; even a 
wider window would not help. Cross-jumping could be added to PO, but  the 
larger need is for a space-optimizer that reduces code size through general 
reorderings. 

5. CODE GENERATION 

PO can greatly reduce the number of cases that a code generator must consider 
to produce quality code. Suppose that the early, largely machine-independent 
compiler phases produce intermediate postfix code for a simple stack machine. 
For example, 

i ~ - - i -  1 

might be translated to 

P U S H  i push the address i 
INDIR replace it with the word it addresses 
P U S H  1 push the constant 1 
SUB subtract the 1 from i 
P U S H  i push the address i 
STORE store the result in i 

Though bulky, this code is easy to generate. Furthermore, it is easy to write 
macros that expand it into code for target machine. For example, the macros 
might rewrite the code above in PDP-11 assembly language, simulating the stack 
in words a and b: 

MOV #i ,a  move address i to a 
MOV @a,a replace it with the word it addresses 
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Table  I 

Before After  Hos t  H a n d  
Func t ion  Mach ine  Postf ix PO PO compiler  code 

tprint PDP-11  73 76 19 16 16 
ctoi P DP -  10 56 60 28 20 18 
ctoi Cyber  175 56 64 41 38 26 
m m u l t  PDP-11  81 95 41 40 22 
t u m u l t  PDP-10  81 84 39 26 19 
t u m u l t  Cyber  175 81 93 69 61 27 

MOV # l , b  m o v e  1 to b 
SUB b,a  s u b t r a c t  b f r o m  a 

MOV #i ,b  m o v e  a d d r e s s  i to b 
MOV a,@b m o v e  a to t he  w o r d  a d d r e s s e d  by b 

The macros need know only the most general instructions (e.g., subtract, not 
decrement) and the most primitive addressing modes (enough to fetch addresses 
and simulate a stack) because PO can introduce better ones. For example, PO 
first reduces each of the three pairs above, yielding 

MOV i,a m o v e  i to a 
DEC a d e c r e m e n t  a 
MOV a,i m o v e  a to i 

Then it uses a three-instruction window to reduce these to the optimal 

DEC i d e c r e m e n t  i 

PO needs the larger window when working with naive code generators because, 
while many machines offer some one-instruction replacements for load/operate/  
store sequences, few offer replacements for the load/operate and operate/store 
subsequences; PO must look at all three to reduce them to one. Checking triples 
slows PO but does not make it much more complex because it uses the pair- 
handling machinery to combine triples. Fortunately, no special need has been 
observed for a still larger window or a more complex replacement strategy (e.g., 
replacing triples with equivalent pairs). 

Table I shows how this strategy has performed on larger examples. The 
numbers give the sizes (in instructions) of the stack machine code, the target 
machine code before and after optimization, and similar code produced by a more 
conventional, machine-dependent optimizing compiler and by an assembly lan- 
guage expert for three subroutines: t p r in t  prints trees, ctoi  converts strings to 
integers, and m m u l t  multiplies matrices. 

In fact, PO can come even closer: in general, the host compilers did better, not 
because of superior case analysis during code generation, but because they assign 
crucial variables to registers and perform global optimizations. Because such 
improvements are largely machine independent, they could be added to PO's 
compiler without making it much harder to retarget. 

6. DISCUSSION 

PO is a five-page SNOBOL program that runs in 128K bytes on a PDP-11/70; the 
program includes the simple one-page code generator outlined in the last section. 
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It uses a two-page preprocessor to turn machine descriptions into SNOBOL 
patterns. Machine descriptions are about two pages and can be written in an hour 
or two by someone who knows the machine. This version trades speed for 
simplicity; for example, it will look to see if a register transfer matches a 
decrement pattern even if it already has failed to match a more general subtract 
pattern. Such shortcuts slow PO: it typically processes only 1-10 instructions 
each second, and this rate changes linearly with the number of patterns in the 
machine description. The design of a production version is underway; for example, 
it uses a table-driven pattern matcher that dismisses decrements when it dismisses 
subtracts and is relatively insensitive to the size of the machine description. 
Preliminary experiments indicate that this version will run fast enough for 
everyday use, though conventional, hand-coded peephole optimizers will probably 
remain faster. 

PO's relative lack of context is also being addressed. Repeated application of 
two- and three-instruction windows can increase the effective window size (wit- 
ness the reduction of six instructions to one above), but sometimes more context 
is needed. For example, PO cannot collapse an otherwise-reducible pair separated 
by a third, uncombinable instruction; hand-coded peephole optimizers can. The 
production version of PO may use simple data flow analysis to identify such 
nonadjacent pairs that are likely candidates for combining. 

Experience with PO also suggests reexamining the division of labor between 
the global optimizer, register allocator, code generator, and object code optimizer. 
PO eliminates (much) unreachable code; perhaps global optimizers should not 
bother with this improvement. A recent code generator [5] matches intermediate 
code against machine description patterns to guide local register allocation; since 
PO does similar matching, perhaps it can allocate registers. Register transfers 
resemble the quadruples that many global optimizers use to represent programs; 
perhaps a machine-independent, global optimizer [7] can be adapted to accept a 
machine description and use its more global view of object code to catch 
inefficiencies missed by PO's narrow window. 

APPENDIX A. PDP-11 DESCRIPTION 

This is about 40 percent of the PDP-11 machine description; only primitive 
nonterminals, a few instructions, and some other uninteresting details have been 
omitted. 

nonterminal assembler syntax pattern register transfer pattern 

a Rn  R[n] 
a (Rn) + M[R[n] + + l 
a - ( R n )  M [ -  i R[n]]  
a x(Rn)  M[R[n]+x]  
a x M[x] 

a # x  x 
i a a 
i @a  M[a] 
*d i i 
*s i i 

inst T S T  d NZ~--d?. 0; 
inst CMP s,d NZ~-s?d;  
inst CLR d d~--O; NZ*--0?0; 
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nonterminal assembler syntax pattern register transfer pattern 

inst MOV s,d d~-s; NZ~--s?0; 
inst INC d d~-d+ 1; NZ~-d+ 1?0; 

inst DEC d d*--d- l ;  N Z * - d - l ? 0 ;  
inst ASL d d~--d*2; NZ*--d*2?0; 
inst ASI~ d d~--d/2; NZ*-d/2?0;  
inst ADD s,d d~-d+s; NZ~--d+s?0; 
inst SUB s,d d*--d-s; NZe--d-s?0; 
inst BR a PC~-a; 
inst Brel a PC*--NZ rel 0 ~ a else PC; 

APPENDIX B. TREE PRINTER 1 

T h i s  is t h e  P D P - 1 1  a s s e m b l y  c o d e  p r o d u c e d  b y  t h e  f i r s t  p h a s e s  o f  t h e  B L I S S - 1 1  

c o m p i l e r  fo r  a p r o g r a m  t h a t  p r i n t s  t r e e s .  I n  a d d i t i o n  t o  t h e  e f f e c t s  s h o w n ,  e a c h  

n o n b r a n c h  s e t s  t h e  c o n d i t i o n  c o d e  a c c o r d i n g  t h e  v a l u e  i t  a ss igns ;  T S T s  s e t  t h e  
c o n d i t i o n  c o d e  b u t  d o  n o t h i n g  e l se .  

assembly code effect 

(1) J S R  R1, sav3 call  sav3 
(2) MOV S+310,R3 R[3] *-M[S÷310]  
(3) MOV 12(R5),R2 R[2] . -  M[R[5]+12] 
(4) ADD #177776,R3 R[3] *- R[3] - 2 
(5) CLR @R3 M[R[3]] *- 0 

(6) 15 : IS :  TST left(R2) NZ ~-- M[R[2]+left] ? 0 
(7) BNE IT PC *- NZ ~ 0 ~ 1T else PC 
(8) BR Is PC *-- Is 
(9) Iv : ADD #177776,R3 R[3] ~-- R[3] - 2 
(10) S O Y  R2,@R3 M[R[3]] *- R[2] 
(11) MOV left(R2),R2 R[2] *-- M[R[2]+left] 
(12) BR Is PC *- IS 
(13) Is: MOV info(R2),R1 R[1] *-M[R[2]+info]  
(14) J S R  RT,print  call  p r in t  
(15) 19: MOV right(R2),R2 R[2] *-- M[R[2]+right]  

(16) TST R2 NZ . -  R[2] ? 0 
(17) BEQ 11o PC ~-- NZ ffi 0 ~ llo else PC 
(18) BR 111 PC *- In 
(19) 1~0: MOV @R3,R2 R[2] ~-M[R[3]] 
(20) ADD #2,R3" R[3] ~-R[3]  + 2 

(21) TST R2 NZ *- R[2] ? 0 
(22) BNE 112 PC *- NZ ~ 0 ~ 112 else PC 
(23) BR lla PC ~- 113 
(24) 112: MOV info(R2),R1 R[1] *- M[R[2]+info] 
(25) J S R  R7,pr int  call  p r in t  

(26) BR 114 PC *- 114 
(27) lls: BR h PC *- 14 
(28) 114: BR IS PC *- IS 
(29) 111: BR IS PC *- IS 
(30) 14 : RTS R7 r e t u r n  

1 With thanks to Elsevier Publishing. 
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APPENDIX C. PO'S PAIRWlSE OPTIMIZATIONS ON TREE PRINTER 

In most cases, PO replaces the pair named with one equivalent instruction; 
comments note the three reductions involving nonadjacent branch chain members 
where the second instruction is retained. 

pair result instruction explanation 

(a) 4,5 C L R  - ( R 3 )  use au todecrement  
(b) 7,8 B E Q  Is remove label 17 
(c) 9,10 M O V  R 2 , - ( R 3 )  use au todecrement  
(d) 15,16 19: M O V  r i g h t ( R 2 ) , R 2  remove T S T  
(e) 17,16 B N E  111 remove label 110 
(f) (e),29 B N E  16 remove label Iii, re ta in  29 
(g) 19,20 M O V  ( R 3 ) + , R 2  use au to increment  
(h) (g),21 M O V  ( R 3 ) + , R 2  remove T S T  
(i) 22,23 B E Q  ll~ remove label 112 
(j) (i),27 B E Q  14 remove label 1~3, re ta in  27 
(k) 26,27 B R  114 27 unreachable  wi thout  113 
(l) (k),28 B R  19 remove label ll4, re ta in  28 
(m) (1),28 B R  19 28 unreachable  wi thout  ll4 
(n) (m),29 B R  19 29 unreachable  wi thout  l u  

APPENDIX D. OPTIMIZED TREE PRINTER 

Here is the tree printer after PO's optimizations. FINAL's cross-jumping opti- 
mization changes the last branch to go to ls instead of 19 and eliminates the 
second M O V / J S R  sequence. This, in turn, allows it one last optimization: the 
now-adjacent BEQ and BR can be combined into a BNE. 

0 

assembly code effect 

(1) J S R  R l , s a v 3  ca l l  sav3 
(2) M O V  S + 3 1 0 , R 3  R[3]  ~ - -M[S+310]  
(3) M O V  12(R5) ,R2 R[2]  ~-- M [ R [ 5 ] + 1 2 ]  
(4) C L R  - ( R 3 )  M [ R [ 3 ] - 2 ]  ~-- 0; d e c r e m e n t  R[3] 
(6) 15:ls: T S T  le f t (R2)  NZ ~-- M [ R [ 2 ] + l e f t ]  ? O 
(7) B E Q  ls PC *-- NZ ffi O ~ ls else P C  
(9) M O V  R 2 , - ( R 3 )  M [ R [ 3 ] - 2 1  ~-  R[2];  d e c r e m e n t  R[3]  
(11) M O V  le f t (R2) ,R2  R[2]  *-- M [ R [ 2 ] + l e f t ]  
(12) BR 16 PC *-- 14 
(13) 14: M O V  in fo (R2) ,R1  R[1]  * - M [ R [ 2 ] + i n f o ]  
(14) J S R  R 7 , p r i n t  ca l l  print  
(15) 19: M O V  r i g h t ( R 2 ) , R 2  R[2]  ~-- M [ R [ 2 ] + r i g h t ]  
(17) B N E  15 PC *-  NZ ~ 0 ~ 15 else PC 
(19) MOV (R3)+,R2 R[2] *-- M[R[3]]; increment  R[3] 
(22) B E Q  14 PC *-  NZ ffi 0 ~ 14 e / se  P C  
(24) M O V  in fo (R2) ,R1  R I l l  *-- M [ R [ 2 ] + i n f o ]  
(25) J S R  R 7 , p r i n t  ca l l  print 
(26) B R  19 P C  ~-- lg 
(30) 14 : R T S  R7 r e t u r n  
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