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A VIEW OF THE ORIGINS AND 
DEVELOPMENT OF PROLOG 

Dealing with failure is easy: 
Work hard to improve. 
Success is also easy to handle: 
You’ve solved the wrong problem. 
Work hard to improve. 

(UNIX “fortune” message aptly describing Prolog’s sequential 
search mechanism in finding all solutions to ,a query) 

JACQUES COHEN 

The birth of logic programming can be viewed as the 
confluence of two different research endeavors: one in 
artificial or natural language processing, and the other 
in automatic theorem proving. It is fair to say that both 
these endeavors contributed to the genesis of Prolog. 
Alain Colmerauer’s contribution stemmed mainly from 
his interest in language processing, whereas Robert Ko- 
walski’s originated in his expertise in logic and theorem 
proving. (See [26] and the following article.) 

This paper explores the origins of Prolog based on 
views rising mainly from the language processing per- 
spective. With this intent we first describe the related 
research efforts and their significant computer litera- 
ture in the mid-1960s. We then show that those exist- 
ing circumstances would very naturally lead to the de- 
velopment of a language like Prolog. 

In this paper I present a review of the origins and 
development of Prolog based on a long-term associa- 
tion, both academic and personal, with Colmerauer, the 
computer scientist who led the Marseilles team in help- 
ing to develop that language. 

A description of the evolution of logic programming 
presented by Robinson covers over a century of events 
stemming from the work of Frege [37]. Loveland’s re- 
view of the related area of automated theorem proving 
spans a quarter of a century of developments in that 
field [29]. 

Both Robinson’s and Loveland’s papers contain narra- 
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tives of the significant work done in the described 
areas. This review contrasts and complements these 
two references by providing the background and moti- 
vation that led to the development of Prolog as a pro- 
gramming language. 

The underlying thesis is that even seemingly abstract 
and original computer languages are discovered rather 
than invented. This by no means diminishes t:he formi- 
dable feat involved in discovering a language. It is 
tempting to paraphrase the path to discovery in terms 
of Prolog’s own search mechanism: One has to combine 
the foresight needed to avoid blind alleys with the aes- 
thetic sense required to achieve the simplest and most 
elegant solution to a given problem. In our view the 
various research topics studied by Colmerauer and his 
colleagues, including myself, (almost) determi.nistically 
led to the development of Prolog. 

AN EARLY INVOLVEMENT WITH SYNTAX 
ANALYSIS 
Both Colmerauer and I started doing research on com- 
pilers in the fall of 1963. Our research group at the 
Institute of Applied Mathematics, attached to the Uni- 
versity of Grenoble, was led by Louis Bolliet. [t was an 
exciting period for French informatics. First, i.here was 
a national pride involved in building up a computer 
industry. Although not entirely successful in its practi- 
cal performance, the Bull Gamma 60 computer was rec- 
ognized as having a novel architecture and showed the 
talent and promise of its hardware designers. Second, 
there was an effort to decentralize research from Paris 
by providing additional funds to the regional universi- 
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the most active in software development and in numer- 
ical analysis; considerable funds were made available 
to Bolliet’s group. 

One of the projects undertaken by the group was the 
development of an Algol 60 compiler for an IBM 7044, 
considered a fairly large mainframe at the time. J.C. 
Boussard was responsible for that project, and all mem- 
bers of the group collaborated in testing the compiler. 
We familiarized ourselves with the Algol 60 Report [32] 
and with the existing compiling techniques. Several of 
us marveled at the pioneering and highly intuitional 
approach of Rutishauser in the multiple pass compila- 
tion of arithmetic expressions (see [l]). The next major 
work read by most of us was that of Dijkstra [14], in 
which a stack and empirically derived weights were 
used to perform a single pass compilation of Algol 60 
programs. Bauer, Samelson, and Paul had also done 
work along similar lines, this time trying to establish a 
relationship between a given BNF grammar and the 
weights used by Dijkstra in his empirical approach [33, 
401. However, in our view it was Floyd [15] who first 
succeeded in automatically determining that relation- 
ship for certain classes of grammars. 

Before analyzing the effect of Floyd’s work on the 
members of our group, I would like to digress briefly 
to describe a few related papers that raise the issue of 
determinism versus nondeterminism, which in turn is 
central to the theme of this article. Brooker and Morris 
in England and Irons in the United States had by this 
time suggested innovative approaches to compilation 
called syntax-directed translations. Brooker and Morris 
showed how recursive procedures obtained automati- 
cally from the grammar rules could parse a string in the 
language generated by the grammar [3, 41. Actions were 
then triggered whenever certain syntactic constructs 
were encountered while parsing. 

Iron’s compiler also used a parser defined by recur- 
sive procedures that, in contrast to Brooker’s, was 
guided by data representing the grammar rules [Zl]. A 
notable characteristic of the parsers proposed by these 
authors is that they could operate in a nondeterministic 
manner by trying to apply a given grammar rule and, in 
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case of failure, backtrack to try another rule. The non- 
deterministic parsers were more general (i.e., they 
could process other classes of grammars), but less effi- 
cient than their deterministic counterparts. 

With these previous works available, the Grenoble 
compiler’s group began to have a clearer idea of the 
type of research that could yield significant results. 
Among the pertinent questions were, 

l How could one reduce the degree of nondeterminism 
necessary for parsing? 

l Could Dijkstra’s empirically derived weights be de- 
termined formally for various classes of grammars? 

Two remarkable papers addressed these questions and 
were avidly read by members of the group. The first, by 
Griffiths and Petrick, described an attempt to quantify 
backtracking in parsing [18]. Their approach was to se- 
lect a two-stack nondeterministic Turing machine and 
use its instructions to write various parsers for different 
grammars. Nondeterminism could be controlled by us- 
ing a selectivity matrix that allowed the parser to avoid 
certain blind alleys. By simulating the Turing machine 
on a computer, the authors were able to measure the 
relative efficiencies of the various parsers. 

The second paper, by Floyd [15], described automatic 
means for generating a matrix from a given grammar. 
This matrix, called a precedence matrix, was then used 
by the parser to perform a (deterministic) syntactic 
analysis of input strings. Floyd also showed that infor- 
mation contained in the matrix could, in certain cases, 
automatically yield the weights that had been empiri- 
cally determined by Dijkstra. 

The precedence matrix could always be generated 
from grammars not containing two adjacent nontermin- 
als in the right-hand side of a rule. It was also known 
that any BNF grammar could be “massaged” into an- 
other one whose rules had that special type of right- 
hand sides. Determinism could only be attained if the 
generated matrix contained single entries. One could 
imagine a Floyd-type nondeterministic parser that, 
when confronted with multiple entries in the matrix, 
would successively try each one of them and backtrack 
whenever a blind alley was reached. 

Nevertheless, for compiler writing purposes, nonde- 
terminism was to be avoided, and it became desirable 
to extend Floyd’s work to other classes of grammars. 
Wirth and Weber’s paper [45] eliminated the restric- 
tions imposed by Floyd as to the type of right-hand 
sides of rules. Essentially, Floyd’s precedence matrix 
was constructed only for the elements of the terminal 
vocabulary. Wirth and Weber extended the matrix con- 
struction and parsing to cover nonterminals as well as 
terminals. That, however, introduced an asymmetry 
that was not aesthetically pleasing since parsing had to 
proceed sequentially from left to right. 

Colmerauer’s project was to write an error detection 
and recovery program for Algol 60. After studying the 
Griffiths-Petrick and Floyd papers, he first thought of 
means to generalize Floyd’s ideas in order to make 
them applicable to wider classes of grammars. In his 
1967 dissertation on total precedence relations [7], 
Colmerauer restored the parsing symmetry by allowing 
nonterminals to appear as elements of a (pseudo) input 
string behaving as a stack. The similarity to Griffiths 
and Petrick’s two-stack Turing machine then becomes 
obvious. 

Finally, it should be mentioned that, although 
Knuth’s work on LR (k) grammars was known to us at 
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the time, his mainly theoretical emphasis offered little 
hope of usage in actual compilers [ZZ]. (Later devel- 
opments, however, proved this was not the case for 
small k.) 

NONDETERMINISTIC ALGORITHMS AND 
W-GRAMMARS 
It is interesting that Floyd, who had made significant 
contributions in helping remove nondeterminism in 
parsing, was the first person to suggest the introduction 
of certain primitives allowing the full usage of nonde- 

The existence of parameters in Prolog rules 
reinforces the similarity to W-grammars 
since the parameters may specify a 
potentially infinite number of rules. 

terminism in programming languages [16]. When his 
paper was made available to our group (prior to its 
formal publication), it generated great excitement. I re- 
call that, having finished his dissertation, Colmerauer 
spent some time with other colleagues in the group 
incorporating Floyd’s nondeterministic primitives into 
Algol 60. These primitives allowed a user to write very 
short programs to perform fairly complicated tasks. The 
examples considered by Floyd were the eight queens 
problem and determining minimum paths in graphs. 
The notion of a tree of choices was clearly described in 
that paper, and details for an implementation were pro- 
vided. Three stacks called M, W, and R were used: The 
main stack, M, was needed to store the information that 
had to be restored while backtracking (e.g., values of 
variables prior to an assignment, labels from where 
gotos originated); the other stacks were used for input 
(R) and output (W). Floyd also detailed the implementa- 
tion of nondeterministic (i.e., backtrackable) proce- 
dures. All these features would play a significant role 
in the actual implementation of Prolog. 

By 1966-1967, the Grenoble compiler group had be- 
come interested in Algol 68. Colmerauer then turned 
his interests to the two-level grammars that had been 
proposed by van Wijngaarden [42]. An interesting char- 
acteristic of these grammars is their ability to specify an 
infinite number of context-free rules that would be 
generated by using an auxiliary context-free grammar. 
Prolog rules bear a remarkable similarity to context- 
free grammar rules: They both have one element in the 
left-hand side and several or no elements (i.e., the 
empty string) in the right-hand side. The existence of 
parameters in Prolog rules reinforces the similarity to 
W-grammars since the parameters may specify a poten- 
tially infinite number of rules. Also striking is the simi- 
larity of Prolog rules to Knuth’s attribute grammars 
[23]. These similarities actually confirm the existence 
of common themes in computer science. 

Colmerauer’s involvement with W-grammars repre- 
sented another step (perhaps unconscious at the time] 
toward designing the future language. In fact, Colmer- 
auer implemented an analyzer for strings generated by 
W-grammars, as well as a sentence generator operating 
on given grammar rules. This early effort bears a rela- 
tionship to his later work on natural languages where 
parsing and generation are accomplished by the same 
Prolog program. 

NATURAL LANGUAGE PROCESSING AND 
THEOREM PROVING 
In fall 1967, both Colmerauer and I left Grenoble, he for 
the University of Montreal, where he stayed until 1979, 
and I for Boston, where I became associated first with 
MIT and later with Brandeis University. At -this time 
Colmerauer became primarily interested in artificial in- 
telligence and natural language processing. Although 
my own research activities were in the area.s of compi- 
lers and artificial languages, I kept my interest in non- 
deterministic algorithms and acquainted myself with 
theorem-proving techniques utilized in program cor- 
rectness. Despite the occasional visits to Montreal, and 
later on to Marseilles, it was not until 1961 that I had 
the opportunity to reestablish a close contact with 
Colmerauer and his colleagues of the GIA (Artificial 
Intelligence Group) at Marseilles. 

In a paper that appeared in 1969, de Chastellier and 
Colmerauer showed how W-grammars can be used to 
specify syntax-directed translations [13]. One of the ex- 
amples considered in that paper was the translation of 
arithmetic expressions into their postfix polish counter- 
parts. Basically, postfix “patterns” are first generated by 
metalevel rules and then substituted into the main 
grammar rules as special nontermina1s.l These rules 
are then used to generate (or analyze) infix arithmetic 
expressions. A more complex example considered in 
the de Chastellier-Colmerauer paper is the translation 
of (simple) sentences from French into English and vice 
versa. The main idea is to design two W-grammars, one 
describing the generation of English sentences and the 
other, the generation of the French counterparts. The 
metalevel rules for each of these grammars describe the 
so-called deep structure of a phrase. A source string in 
one of the languages is parsed to produce its deep struc- 
ture, which appears as a (special) nonterminal in the 
metalevel grammar. This deep structure is then used to 
generate the corresponding target string in the other 
language. 

Colmerauer’s work on W-grammars showed that they 
could be used to carry out the type of syntax-directed 
translation used in natural language processing. Never- 
theless, he started working on a relatively simple for- 
malism for expressing transformations of directed 
graphs. This formalism incorporated the combined use 
of rewriting grammar rules and pattern matching, and 

’ Note that the substitution of patterns into the main grammar rules bears a 
striking similarity with the substitution of variables by their values into a 
Prolog rule: Each occurrence of a variable is replaced by its corresponding 
V&U?. 
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could be efficiently interpreted. This became known as 
System Q, which he considers the ancestor of Prolog 
[8]. A remarkable (Prolog-like) characteristic of pro- 
grams written using this formalism is their ability to 
work in both directions; that is, not only could input 
data produce output results, but also, given a possible 
output, the program could determine the corresponding 
input data. The pattern-matching algorithm used to im- 
plement System Q was nondeterministic, and the re- 
writing rules were reminiscent of Chomsky’s type 0 
grammars stating that a sequence of trees of a given 
shape are rewritten into a sequence of trees having 
another specified shape. The notions of terms (trees) 
and variables as they are known in present-day Prolog 
had their counterparts in System Q. Actually, the main 
basic differences between the two formalisms are (1) 
the absence in System Q of a bidirectional pattern- 
matching mechanism equivalent to Prolog’s unification, 
and (2) the restriction to the use of context-free Prolog- 
like rules instead of the more general rules used in 
System Q. Nevertheless. considerable experience was 
gained by implementing and experimenting with a Sys- 
tem Q processor. The system is still used to translate 
Canadian weather reports from English into French. 

It was just before his return to France in 1970 that 
Colmerauer became acquainted with Robinson’s key 
paper on resolution and unification [36]. At that time 
he had accepted a professorship at the University of 
Aix-Marseilles. With Jean Trudel, a Canadian student 
who was already well versed in logic, Philipe Roussel, 
and Robert Pasero, Colmerauer became interested in 
text understanding using logic deduction. That interest 
led the Marseilles group to establish contact with 
Kowalski, then at the University of Edinburgh, whose 
work with Donald Kuehner on SL-resolution [27] 
served as an initial theoretical model for the then em- 
bryonic language. The main concern of the Marseilles 
group in 1972 still remained the development of a 
man-machine interactive system capable of making de- 
ductions from a set of natural language sentences. An 
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minal N. Basically, list U contains list V as a tail, and 
N generates the elements between the beginning of U 
and the beginning of V. This representation proved to 
be the most efficient for parsing using Prolog and later 
became known as difference lists. A most remarkable 
feature of the 1972-1973 paper is the presentation of a 
quite complex program, comprising hundreds of (fairly 
general) clauses to implement a man-machine interac- 
tive system using natural language. The authors end 
the report by stating that the system was admittedly 
slow, but they were confident that a 25-fold speedup 
could be attained by using an improved version that 
was under development. 

Roussel’s first Prolog interpreter was written in Algol- 
W and employed what is now known as the clause- 
copying technique. During a visit to Edinburgh later 
that year, Roussel learned of the structure-sharing ap- 
proach of Boyer and Moore [2]. Upon his return, two of 
his students, H. Meloni and G. Battani, implemented a 
Fortran version of the prototype using structure sharing 
(see [39]). 

The use of cuts (similar in spirit to gotos in Algol) 
became indispensable in helping to reduce the size of 
the search space constructed by programs. Although 
Colmerauer today insists that programmers should 
minimize the use of cuts, he assumes full responsibil- 
ity for introducing it in the language at that early stage. 
Negation as failure was also utilized informally by the 
Marseilles group at that time; however, a definition of 
what it accomplishes only appeared in 1978 [5]. 

It was the availability of the Fortran interpreter of 
Prolog that helped disseminate the language. In particu- 
lar, D. H. D. Warren from the University of Edinburgh 
spent some time in Marseilles to acquaint himself with 
the interpreter and language. It is fair to say that the 
subsequent interpreters and compilers developed by 
Warren played a major role in the acceptance of Prolog. 
The reason is simple: The previous interpreters were 
slow and ran on relatively small computers. The availa- 
bility of the compiler developed by Warren on a PDP-10 

Considerable experience was gained by implementing and experimenting with a System Q 
processor. The system is still used to translate Canadian weather reports from English into 
French. 

often mentioned reference describing the research of showed the potential of Prolog programs being executed 
the group at the time is [12]. This work, implemented by with a speed comparable to those of Lisp programs [43]. 
Roussel in 1972, embodies a few of the features that are An important (although basically ancillary) contribu- 
still current in most Prolog interpreters. Among them tion was also made by Colmerauer in the mid-1979s. 
were (1) a method for redefining priorities and associa- This is his concept of metamorphosis grammars [9]. In 
tivities of operators, and (2) the use of annotations (ac- that work he directly mapped the rules of Chomsky’s 
tually the precursors of the cut) to let the user reduce grammar to Prolog programs capable of recognizing 
the search space during execution. A valuable contri- strings generated by the grammar. By adding parame- 
bution of Colmerauer in this work was the use of two ters to the grammar rules, one could easily perform 
lists represented by the variables U and V to indicate syntax-directed translations. Colmerauer demonstrated 
parts of the input string that parse to a given nonter- the usefulness of metamorphosis grammars by consid- 
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ering two applications. He first showed how a compiler 
for a minilanguage could be succinctly described and 
rapidly implemented. The second application, one that 
admits his predilection, considers the use of metamor- 
p.hosis grammars to develop an interactive system capa- 
ble of carrying out a dialogue in natural language. The 
work is based on a detailed study of the meaning of 
articles in French. The system is capable of reasoning 
about the contents of input sentences by providing logi- 
cally derived answers to questions, or by finding incon- 
sistencies within the sentences. In both applications, 
the underlying grammars and semantic actions are 
automatically translated into Prolog programs. 

Unfortunately, the work on metamorphosis gram- 
mars remained little known until 1686, when Warren 
pointed out its importance as a powerful tool for writ- 
ing compilers [44]. The usage of metamorphosis gram- 
mars in natural language processing has also been dem- 
onstrated by Pereira and Warren [34]. 

In a recent conversation with Kowalski, I was pro- 
vided with further information about the origins of the 
language. He introduced me to his unpublished manu- 
script on this subject, which had been circulated infor- 
mally among members of the Prolog community [26]. In 
the early 197Os, Kowalski’s research effort was spent on 
theorem proving. In their collaboration, Kowalski and 
Colmerauer became interested in problem solving and 
automated reasoning using resolution theorem proving. 
Green’s work in this area was known to both research- 
ers [17]. Kowalski, then at Edinburgh, concentrated his 
research on attempting to reduce the search space in 
resolution-based theorem proving. With this purpose, 
he developed with Kuehner a variant of the linear reso- 
lution algorithm called SL resolution (for linear resolu- 
tion with selection function), based on Loveland’s 
model elimination [27, 281. Kowalski’s view is that, 
from the automatic theorem-proving perspective, this 
work paved the way for the development of Prolog. 
Having this more efficient (but still general) predicate 
calculus theorem prover available to them, the Mar- 
seilles and Edinburgh groups started using it to experi- 
ment with problem-solving tasks. Several formulations 
for solving a given problem were attempted. Almost 
invariably, the formulations that happened to be written 
in Horn clause form turned out to be much more natu- 
ral than those that used non-Horn clauses. According to 
Kowalski a typical example was that of addition that 
can be represented either by using Horn clauses, analo- 
gous to both a recursive function definition and a Peano 
axiomatization, or by non-Horn clauses whose meaning 
is not as easily explained. (See [25, p. 1621 and examples 
in Figures 1 and 2). Another case in which the Horn 
clause formulation was particularly elegant occurred 
in parsing strings defined by given grammar rules. 

Kowalski, interested in logic, was amazed at the 
capabilities of the Horn clause formulation when he 
found that recursive programs (such as factorial) could 
easily be expressed in that formalism. In contrast, 
Colmerauer, interested in language processing, saw the 
great potential of the then embryonic Prolog when he 

could express the list processing procedure append 
using the same formalism. 

There were two important theoretical developments 
to Prolog made in the mid-1976s. The first was the 
Horn clause basis for logic programming presented by 
Kowalski [24] and the proof of completeness of the 
theorem-proving method in which Prolog was based 
[19]. The second was the establishment of a formal se- 
mantics for the language: van Emden and Kowalski de- 
fined a fixed-point semantics for Horn clause programs 
and showed that it was equivalent both to the minimal 
model and to the operational semantics [41]. 

Almost invariably, the formulations that 
happened to be written in Horn clause 
form turned out to be much more natural 
than those that used non-Horn clauses. 

DESCRIBING THE TWO PERSPECTIVES 
USING METALEVEL INTERPRETERS 
Using Prolog itself we will now describe how the com- 
ponents (1) parsing and natural language processing, 
and (2) theorem proving actually resulted in the same 
inference mechanism currently utilized in the interpre- 
tation of Prolog programs. 

In the “Nondeterministic Algorithms and W- 
Grammars” section, I referred to the striking similarity 
between nondeterministic parsing and the Prolog infer- 
ence mechanism. This similarity is easily malde appar- 
ent by expressing a predictive parser in Prolog and 
comparing it with the language’s metalevel interpreter. 

A predictive (top-down) parser successivel:y replaces 
a nonterminal N on the top of the stack by the right- 
hand side (RI-IS) of a grammar rule defining N. The 
Prolog counterpart of grammar rules are clauses, and a 
nonterminal corresponds to a Prolog procedure. Unit 
clauses represent nonterminals that rewrite into the 
empty symbol c (indicated below by the empty list 
nil). Therefore, when the nonterminal Non the top of 
the stack rewrites into E, N is simply popped. Grammar 
rules are stored using the unit clauses rule(N, RHS), 
where variables appear in italic, The parser then be- 
comes 

parse(ni1) 
parse(N.Resf) t 

rule(N,RHS), 
parse(RHS), 
parse(Rest). 

This program is identical to the classic meta- 
level Prolog interpreter in which the predicate 
clause (Goal, Tail ) is the counterpart of rule (N, 
RI%) and true replaces nil. (See, e.g., [6]). A query 
represents a given sequence of nonterminals; success is 
achieved if that sequence can be parsed into the empty 
string. 
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This is an example of the non-Horn clause addition using SL 
resolution 
X.Y denotes cons(X, Y) 
input-clause(+p(X, Y, Z).+a(O, Y).nil) 
input-clause(+p(X,Y, Z).-a(X,Z).nil) 
input-clause(+a(s(X), s(Y)).-a(X,Y).nil) 
input-clause(-p(X, Y, s(s(s(O)))).nil) 

example t 
prove(-p(X, Y, s(s(s(O)))).nil, nil) 

An empty clause is a contradiction 
prove(ni1, Ancestors) 

Else resolve against an ancestor or an input clause 
prove (LiteralClause, Ancestors) +- 

get-resolvent (Literal, Ancestors, Resolvent) , 
prove (Resolvent, LiteraLAncestors) , 
prove (Clause, Ancestors) 

Obtain a resolvent from the ancestor list 
get-resolvent (Literal, Ancestors, nil) + 

complement (Literal, Literal’ ) , 
remove (Literal’, Ancestors, Ancestors’) 

Or obtain it from an input clause 
get-resolvent (Literal, Ancestors, Resolvent) t 

input-clause(Clause), 
complement (Literal, Literal’) , 
remove (Literal’, Clause, Resolvent ) 

complement (-Literal, +Literal) 
complement (+Literal, -Literal) 

remove (Element, Element. List, List ) 
remove (Element, Element’. List, Element’. List’ ) c 

remove (Element, List, List’) 

FIGURE 1. A Simplified SL Prover 

Horn clause addition using SLD resolution 
input-clause(+p(O,X, X).nil) 
input-clause(+p(s(X),Y, s(Z)) 

.-p(X,Y,Z).nil) 

An empty clause is a contradiction 
prove(ni1) 

Else resolve against an input clause 
prove (LiteraLClause) t- 

get-resolvent (Literal, Resolvent) , 
prove (Resolvent) 
prove( Clause) 

FIGURE 2. An SLD Theorem Prover 

What is implicit in this program as well as in the 
metalevel interpreter is the crucial role played by uni- 
fication when the predicate clause (Goal, Tail ) is 
invoked. The pioneering work of Robinson using unifi- 
cation in theorem proving is, therefore, of capital signif- 
icance in the development of Prolog. 

As mentioned earlier, the original quest of the Greno- 
ble compiler group was to reduce the amount of nonde- 
terminism involved in parsing. This same problem, 

when transposed to the case of Prolog execution, still 
remains of paramount importance. Indeed, several cur- 
rent research papers in the Prolog literature are dedi- 
cated to the study of means to avoid run-time blind 
alleys by careful program examination at compile time. 
As in the parsing of context-free grammars, it is also 
important to detect programs that are strictly determin- 
istic. Since a large number of practical Prolog programs 
satisfy this requirement, it has become important, in 
this context, to detect and optimize Prolog programs 
that do not require backtracking. There are many other 
similarities between grammar properties and properties 
of Prolog programs. Some examples are ambiguous 
grammars and Prolog programs exhibiting multiple so- 
lutions, and grammar transformations corresponding to 
program transformations. However, the prevalent use of 
unification in Prolog programs renders the study of pro- 
gram properties a considerably more difficult task than 
that of grammar properties. 

A relevant parallel between parsing and theorem 
proving is the correspondence relating bottom-up par- 
sers to forward-chaining theorem provers, and top- 
down parsers to backward-chaining theorem provers. 
Loveland, through his pioneering work in model elimi- 
nation [28], advocated backward chaining, which is by 
far the preferred approach presently used in logic pro- 
gramming. Also note that a combined forward- and 
backward-chaining scheme based on Earley’s parsing 
algorithm has been proposed as a model for Horn clause 
deduction [x]. 

Although it may seem anachronistic, it is enlighten- 
ing to describe the evolution of Prolog from the theorem- 
proving point of view by presenting the successive 
methods that led to the presently used inference mech- 
anism: Selective Linear Definite or SLD clause resolu- 
tion. The word definite refers to Horn clauses with ex- 
actly one positive literal, whereas general Horn clauses 
may contain entirely negative clauses. 

Let I be a set of input clauses. The set of clauses N 
representing the negation of the theorem to be proved 
is initially placed in the list I. Robinson’s original reso- 
lution algorithm can be described as a nondeterministic 
algorithm. The initialization stage consists of (nondeter- 
ministically) selecting one of the clauses in N and 
placing it in a list R. Then, pairs of resolvable clauses 
from I U R are (nondeterministically) selected, and 
their resolvent is placed in R. This process is repeated 
until the empty resolvent is generated. This algorithm 
can be implemented by any number of search tech- 
niques including depth-first and breadth-first search. 
Moreover, SL and SLD resolution can be viewed as spe- 
cial cases in which restrictions are placed on the 
clauses that can be selected for resolution. To simplify 
the presentation of the SL and SLD algorithms, we will 
henceforth assume the negation N of the theorem con- 
sists of a single clause, thereby eliminating the first 
choice in the algorithm. In linear resolution, the next 
resolvent is generated by considering the clause most 
recently placed in R and any other clause taken from 
either I or R. 
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SL resolution places further restrictions on the choice 
of the two clauses that can be used to generate the next 
resolvent. As in linear resolution, the first clause must 
be the one most recently added to R. Unlike linear 
resolution, restrictions are also placed on the second 
clause, and on the complementary literals selected in 
the two clauses [27]. Most of the subtleties of this 
choice are captured in the simplified SL prover pre- 
sented in Figure 1. The main purpose for presenting 
this program is to show that, when its input is re- 
stricted to Horn clauses, the resulting SLD prover be- 
comes the Prolog metalevel interpreter. Therefore, only 
the principal features of SL resolution are considered 
in the program. 

In Figure 1, input clauses and the negation of the 
theorem to be proved are asserted in the database using 
the unit clause input-clause having as a parameter 
the list whose elements represent the clause. The 
clauses in Figure 1 are non-Horn clauses specifying the 
addition of natural numbers. Essentially, the literal p 
states that Z represents X + Y, and the literal a (X, Y) 
is true if the difference X - Y remains constant. 

Initially, the first parameter of prove contains, in 
clause form, the negation of the theorem to be proved, 
and the second parameter, the ancestor list, is the 
empty list. The ancestor list will contain the literals 
that have been previously processed. The procedure 
will succeed if the resolvent, the literals in the ancestor 
list, and the input clauses are not simultaneously satis- 
fiable. 

The resolvent is unsatisfiable if and only if each of its 
literals are unsatisfiable. To prove that a literal L, a set 
of input clauses I, and the conjunction of ancestor liter- 
als A is unsatisfiable, one can 

(1) 

(4 

obtain an ancestor that unifies with the comple- 
ment of the literal;’ or, if this is not possible, 
find an input clause that resolves against the literal 
to form a new resolvent N, and then show that N, 
I, L A A are unsatisfiable. 

The procedure prove has two levels of recursion, spec- 
ified by the calls 

prove (Resolvenf, LiteraLAncestors ) , 
prove ( Clause, Ancestors ) . 

The second call is used to prove that each of the 
literals in a clause is unsatisfiable, while the first is 
used to prove that the current literal is unsatisfiable 
(assuming the satisfiability of I and A). 

The call to remove in the first clause of get- 
resolvent simply attempts to unify the complement 
of the literal with a member of the ancestor list, 
whereas the call to remove in the second clause ac- 
tually produces a resolvent. The resolvent produced by 
the first clause of get-resolvent is always empty. It 
is assumed the Prolog processor interpreting the pro- 
gram in Figure 1 incorporates the occur check so that 
logical soundness is preserved. 

‘We have omitted a membership test that prevents the selection of a literal 
already present in the ancestor list: this test can be used to avoid (certain 
instances of) infinite loops [27]. 
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An alternate informal presentation of the SL resolu- 
tion algorithm can be done by elaborating further the 
correspondences between parsing and theorem proving. 
(We will initially restrict our attention to the proposi- 
tional case.) Table I summarizes the relevant corre- 
spondences. 

A clause containing n literals, A,, Al, . , .A,, will 
represent the n context-free rewriting rules 

A; + AzA3 . . . A, 

A; + AlA . . . A, 

(1) 

A:, ---* A,Az . . . A,-,, 

where Ai is the complement of Ai. The rewr.iting rule 
A + BC should be interpreted logically as “if A then 
(B V C).” 

The parsing counterpart of proving the validity of a 
query is showing that the sequence of nonte:rminals 
representing the query can be rewritten into the empty 
string 6. It follows that the order in which one shows 
that each nonterminal in the sequence rewrites into t is 
irrelevant. 

The counterpart of resolution in theorem proving is 
the rewriting of a nonterminal in a sentential form 
using a grammar rule to produce a new sentential form 
[20]. More specifically, if Not is a sequence of nonter- 
minals whose first element is N and N + /3 is a rule, 
then Pm is the resulting new sequence; that is, 

NCY =+ /!h. 

It should be noted that, from an intuitional point of 
view, a sequence of nonterminals also corresponds to a 
clause that, in turn, can be viewed as a grammar rule. 
For example, the sequence Nol corresponds tfo the gram- 
mar rule N’ + CY. Therefore, the derivation N’ 4 Na 
can be replaced by the simpler derivation N’ 4 (Y. This 
operation is performed by the program in Fig,ure 1 
when it checks whether the complement of a literal is 
in the ancestor list (first clause of get-resolvent). 
Therefore, the parsing counterpart of get-resolvent 
has the role of checking if the given nonterminal is in 
the ancestors’ list, in which case a success is assumed 
(the procedure remove is used to test for membership); 
otherwise, the nonterminal is (later) incorporated to the 
ancestors’ list, and the procedure remove simply gen- 
erates the proper right-hand side of the rule by remov- 
ing the appropriate nonterminal to simulate i.he appli- 
cation of one of the rules (eq. (1)). The procedure 
prove then proceeds to determine if the sequence of 
nonterminals that constitute the right-hand side can be 
rewritten into t. 

It should be noted that, when generalizing the pre- 
vious explanation to the predicate case, each clause 
containing variables corresponds to an infinite number 
of grammar rules. Therefore, unless the literals in the 
query are all ground, it becomes necessary to include 
the query as an additional input clause. 

It is straightforward to transform the (simplified) 
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TABLE I. Correspondences between Parsing 
and Theorem Proving 

Nonterminal Literal 
Grammar rule Clause 
8-rule Unit clause 
Concatenation Disjunction 
Rewriting Resolution 
Parsing tree Proof tree 

SL prover in Figure 1 into an SLD3 program capable of 
handling Horn clauses only. In this case it can be as- 
sumed that the clause to be proved is a list of negative 
literals. Furthermore, each input clause contains ex- 
actly one positive literal: the first. Thus, the ancestor 
list will consist only of negative literals, and hence no 
ancestor can resolve with the current literal since both 
are negative. Consequently, the second parameter in 
the procedures prove and get-resolvent of Fig- 
ure 1 can be eliminated without sacrificing soundness. 
The pertinent part of the transformed program appears 
in Figure 2, which also shows a program to perform 
natural number additions using Horn clauses. 

The procedure get-resolvent in Figure 2 will 
now only resolve against an input clause. A symbolic 
execution yields 

get-resolvent (-Literal, Resolvent ) c 
input-clause (+Literal.Resolvent) _ 

Finally, the replacement of the above get-resolvent 
in Figure 2 yields the classical metalevel interpreter: 

prove(ni1) 
prove (-Literal.Clause) +- 

input-clause (+Literal.Resolvent) , 
prove (Resolvent ) , 
prove (Clause ) . 

A COMPARISON WITH THE DEVELOPMENT 
OF LISP 
List processing in Prolog is done using terms that simu- 
late the classical Lisp primitives, cons, car, and cdr, that 
allow for the construction of lists and the determination 
of their head and tail components. Recursion plays a 
primary role in both languages. 

It is fair to say that most list processing in Prolog is 
done i la Lisp. Prolog, however, offers the additional 
features of nondeterminism and logical variables that 
allow the automatic determination of multiple solutions 
to a problem and, in certain cases, the performance 
of inverse computations (e.g., sorting-permutation, 
parsing-string generation, differentiation-integration). 

We will now draw parallels between the develop- 
ment of the two languages and venture an explanation 
as to possible reasons for the longer time taken by 
Prolog to establish itself as a useful language. 

‘The word selective in SLD means that any negative literal in the current 
resolvent can be selected. Selective in SL means that any most recent literal 
can be selected. Therefore, SLD is not strictly a special case of SL. 

First, it should be pointed out that the theoretical 
foundations of both languages resulted from the efforts 
of persons who had a training in mathematical logic. 
Coincidentally, both McCarthy and Robinson obtained 
their doctorates from Princeton University. Not surpris- 
ingly, McCarthy chose a logician’s “language,” Church’s 
lambda calculus, as the theoretical foundation for Lisp. 
His presence at MIT in the early 1960s played a signifi- 
cant role in the success of the language [31]. He was 
surrounded by brilliant “hackers” and had ample access 
to up-to-date equipment. 

The success of a language depends greatly on the 
development of a handful of interesting (and prefera- 
bly short) programs that show its expressive power. 
McCarthy was certainly on the right track when he 
chose to present, among others, a differentiation pro- 
gram and evalquote, the universal interpreter [30]. 
Today these programs are assigned as homework in 
undergraduate computer science courses. Yet, one can 
imagine what a tour de force this would have been a 
quarter of a century ago, using much smaller and 
slower computers, disposing of relatively meager soft- 
ware. 

The availability of Lisp in the early 1960s at MIT was 
a bonanza for its AI group and provided an unusual 
environment in which to test and perfect the language. 
Dozens of significant doctoral dissertations published at 
the time were made possible because of the existence 
of Lisp running on adequate equipment. 

In contrast to Lisp, the development of Prolog pro- 
ceeded at a relatively slower pace, especially consider- 
ing that Robinson’s ground-breaking paper [36] had 
been published in 1965. It remains for us to speculate 
as to the reason for this difference. 

The first point has to do with the resemblance of 
Church’s lambda calculus to an actual programming 
language, even a more primitive one. The notion of 
subroutines was well known at the time of Lisp’s devel- 
opment, as was the concept of recursion. In my view, 
McCarthy’s greatest contributions were (1) to have 
chosen a solid theoretical foundation for his language, 
(2) to show that it could be implemented with the exist- 
ing available computers, and (3) to present a sample of 
useful examples demonstrating the language’s capabili- 
ties. 

Although Robinson’s paper [36] provided the solid 
theoretical foundation for a language like Prolog, reso- 
lution was originally intended to be used to prove theo- 
rems in the predicate calculus. Theorem provers using 
the original resolution method had to contend with 
rampant nondeterministic situations, the redundancy 
in obtaining solutions, and the lack of goal-oriented 
searches. The knowledge on how to face these prob- 
lems would require a considerably greater effort than 
did rendering lambda calculus usable as a computer 
language. 

At least three other factors may be credited with 
responsibility for slowing down the development of 
Prolog: (1) the absence of a corpus of interesting exam- 
ples demonstrating the novel usage of the language; 
(2) the unavailability of fast computers with substantial 
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main memories, as well as optimizing compilers ena- 
bling the practical use of Prolog in writing larger pro- 
grams; and (3) the existence of better compilers and 
environments for the then more mature language Lisp, 
which had already proved its value in symbolic pro- 
cessing. 

Most knowledgeable Prolog programmers would 
agree that just writing the procedure append in Prolog 
and exploring its use in writing other programs would 
be a substantial step toward establishing the set of con- 
vincing examples of the language’s usefulness. The set 
of examples using append was developed at Marseilles 
and then expanded with the ongoing interactions with 
Edinburgh. The lack of adequate equipment must have 
hindered the Marseilles group. Edinburgh was more 
fortunate, and in my view, that accounted in part for 
the very successful work of Warren who, around 1677, 
was able to show that Prolog programs could achieve 
efficiencies comparable to those of Lisp. 

The success of a language depends greatly 
on the development of a handful of 
interesting (and preferably short) programs 
thaf show ifs expressive power. 

UNIFICATION AND CONTROL 
The original unification algorithm proposed by Robin- 
son included a special test called the occur test that 
prevented circular structures from being constructed by 
the algorithm. 

The elimination of the occur test, originally sug- 
gested by the Marseilles group, was both a daring step 
and a pragmatic move toward decreasing the time 
taken by unification. This was risky, since the elim- 
ination could result in logically unsound results and, 
unless the necessary precautions were taken, the pro- 
grams could enter infinite loops during unification or 
printing. An analogous situation occurs in Pascal-like 
programs in which run-time checks are introduced by 
compilers to test if an array index remains within its 
declared bounds. C. A. R. Hoare compared the elimina- 
tion of such tests after debugging to “wearing life jack- 
ets during near-shore drills, but disregarding them in 
high-seas.” In the case of the occur test, however, its 
elimination enabled the solution of problems using a 
reasonable amount of computation. 

Nonetheless, Colmerauer was dissatisfied with the 
elimination of the occur test. By the late 197Os, he was 
engaged in developing a modified unification algorithm 
in which circular structures could be unified. His claim 
was that these structures play an important role in rep- 
resenting graphs (such as those describing flowcharts, 
and transition diagrams for finite state automata) and 
should not be avoided. His new algorithm is described 

in [lo] and [ll] and has now been incorporated in sev- 
eral interpreters. In the algorithm the notion of the 
most general unifier [36] is replaced by that of solvable 
constraints. 

The cut is another feature that was originally intro- 
duced by the Colmerauer group, but for which, as men- 
tioned, Colmerauer recommends spare usage. The cut 
is indispensable since it provides the ability .to define 
negation by failure and the optimization of programs by 
supplying information to the interpreter that parts of 
the search space need not be inspected. As K.owalski 
aptly puts it, Algorithm = Logic + Control, and the cut is 
one of the few existing resources in Prolog to control 
Control. 

We now return to the subject of unification and its 
extensions. Besides incorporating the capabilhties of 
handling circular structures, Colmerauer also added to 
his unification algorithm the predicate di f f (A, B ) , 
which is based on Roussel’s work on equalities in theo- 
rem proving [38]. This predicate requires a nontrivial 
implementation. Most available interpreters adopt a 
simplistic version of dif f that fails if either one or 
both of its arguments are unbound, or bound to differ- 
ent ground terms. In Colmerauer’s version of the algo- 
rithm, sets of equations and inequations are kept by 
the interpreter, and failure only occurs when the sets 
are unsatisfiable [ll]. This manner of handling unifi- 
cation using equations is not unlike that proposed by 
Colmerauer’s fellow countryman, the famous logician 
J. Herbrand. For the latter, unification (finding an ele- 
ment of the Herbrand universe) entailed finding a solu- 
tion to a system of equations. 

The availability of predicates expressing constraints 
(like dif f) allows a programmer to increase the 
“purity” of Prolog programs by avoiding the cut and 
possibly increasing the potential of performing inverse 
computations. For example, if a predicate p is defined 

by 

P + Cl, PI, . . . 

I 

P - cn, Pn, ... 

and the conditions ci are all mutually exclusive, then 
cuts become unnecessary. 

It should be stressed that in logic programming unifi- 
cation and control are closely related. Normally, back- 
tracking occurs when unification fails; otherwise, com- 
putation proceeds in the forward mode. Therefore, by 
extending the capabilities of unification one also ex- 
tends the control features of the language. 

Colmerauer’s present goal is to extend the unification 
algorithm to cover linear inequations over the rationals, 
Boolean equations, and equations on special (linear- 
like) types of strings. In his forthcoming version of 
Prolog III, backtracking only occurs when the set of 
inequations and equations becomes unsatisfiable. In 
this respect Prolog’s notion of variables becomes the 
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same as that of a variable as used in mathematics. Be- 
sides opening new horizons for the language, investing 
research efforts in extending unification is also wise: 
Even if other subsets of first-order predicate calculus 
are found to be more powerful than Horn clauses, it is 
very likely that the proposed extensions for unification 
would be applicable to those subsets as well. 
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ACM CONFERENCE PROCEEDINGS 

1987 

6th PODC-Symposium on Principles of Distributed Computing 
Vancouver, B.C., August 10-12, 1987. Sponsored by ACM 
SlGACT and ACM SIGOPS. ISBN: O-89791-239-X. Order No. 
536870. ACM SIGACT/SIGOPS Members: $18.00; Others: 
$24.00. 

SIGMOD ‘87--International Conference on Management of Data 
SIUI Francisco, CA, May 27-29, 1987. Sponsored by ACM 
SIGMOD. ISBN: O-89791-236-5. Order No. 472870. ACM/ 
SIGMOD Members: $27.00; Others: $36.00. 

SIGPLAN ‘87-Symposium on Interpreters and Interpretive 
Techniques 
St. Paul, MN, June 24-26, 1987. Sponsored by ACM SIGPLAN. 
ISBN: O-89791-235-7. Order No. 548870. ACM/SIGPLAN 
Members: $17.00; Others: $23.00. 

14th International Symposium on Computer Architecture 
Pittsburgh, PA, June 3-6,x987. Sponsored by ACM SIGARCH 
and IEEE-CS. ISBN: 0-89791-223-O. Order No. 415870. ACM/ 
SIGARCH/IEEE-CS Members: $35.00; Others: $70.00. 

24th DAC-Design Automation Conference 
Miami, FL, June 28-July 1, 1987. Sponsored by ACM SIGDA and 
IEEE-CS. ISBN: O-89791-234-9. Order No. 477870. ACM 
SlGDA/IEEE-CS Members: $47.00; Others: $94.00. 

1986 Workshop on Interactive 3-D Graphics 
Chapel Hill, NC, October 22-24, 1986. Sponsored by ACM 
SIGGRAPH. ISBN: O-89791-228-4. Order No. 429861. 
ACM/SIGGRAPH Members: $16.50; Others: $22.00. 

20th Symposium on Simulation of Computer Systems 
Buy Ha&our Inn, Tampa, FL, March 11-13, 1987. Sponsored by 
ACM SlGSIM and IEEE-CS. Order No. 577870. ACM/SIGSIM/ 
IEEE-CS Members: $25.00; Others: $50.00. 

1987 ACM SIGBDP/SIGCPR Conference--The Rising lride of 
Expert Systems in Business 
Coral Gables, FL, March 5-6, 1987. Sponsored by ACM SIGBDP 
and SIGCRP. ISBN: O-89791-222-5. Order No. 47287.1. ACM/ 
SIGCPR/BDP Members: $15.00; Others: $20.00. 

5th International Conference on Systems Documentation- 
SIGDOC ‘86 
University of Toronto, Ontario, June 8-11, 1986. Sponsored by 
ACM SIGDOC and Cornell University Computing Services. 
ISBN: O-89791-224-1. Order No. 611861. ACM/SIGDOC 
Members: $9.00; Others: $12.00. 

CHl/GI ‘87-Conference on Human Factors in Computing 
Systems and Graphics Interface 
Toronto, Ontario, April 5-9, 1987. Sponsored by ACM SICCHI 
and Canadian Info. Processing Society’s CMCCS in c:ooperation 
with the Human Factors Society and ACM SIGGRAPH. ISBN: 
O-89791-213-6. Order No. 608870. ACM/SIGCHI/SIGGRAPH 
Members: $20.00; Others: $27.00. 
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