
ARTICLES

A VIEW OF THE ORIGINS AND
DEVELOPMENT OF PROLOG

Dealing with failure is easy:
Work hard to improve.
Success is also easy to handle:
You’ve solved the wrong problem.
Work hard to improve.

(UNIX “fortune” message aptly describing Prolog’s sequential
search mechanism in finding all solutions to ,a query)

JACQUES COHEN

The birth of logic programming can be viewed as the
confluence of two different research endeavors: one in
artificial or natural language processing, and the other
in automatic theorem proving. It is fair to say that both
these endeavors contributed to the genesis of Prolog.
Alain Colmerauer’s contribution stemmed mainly from
his interest in language processing, whereas Robert Ko-
walski’s originated in his expertise in logic and theorem
proving. (See [26] and the following article.)

This paper explores the origins of Prolog based on
views rising mainly from the language processing per-
spective. With this intent we first describe the related
research efforts and their significant computer litera-
ture in the mid-1960s. We then show that those exist-
ing circumstances would very naturally lead to the de-
velopment of a language like Prolog.

In this paper I present a review of the origins and
development of Prolog based on a long-term associa-
tion, both academic and personal, with Colmerauer, the
computer scientist who led the Marseilles team in help-
ing to develop that language.

A description of the evolution of logic programming
presented by Robinson covers over a century of events
stemming from the work of Frege [37]. Loveland’s re-
view of the related area of automated theorem proving
spans a quarter of a century of developments in that
field [29].

Both Robinson’s and Loveland’s papers contain narra-

This work was partly supported by the National Science Foundation under
Grant DCR 85-00861.

tives of the significant work done in the described
areas. This review contrasts and complements these
two references by providing the background and moti-
vation that led to the development of Prolog as a pro-
gramming language.

The underlying thesis is that even seemingly abstract
and original computer languages are discovered rather
than invented. This by no means diminishes t:he formi-
dable feat involved in discovering a language. It is
tempting to paraphrase the path to discovery in terms
of Prolog’s own search mechanism: One has to combine
the foresight needed to avoid blind alleys with the aes-
thetic sense required to achieve the simplest and most
elegant solution to a given problem. In our view the
various research topics studied by Colmerauer and his
colleagues, including myself, (almost) determi.nistically
led to the development of Prolog.

AN EARLY INVOLVEMENT WITH SYNTAX
ANALYSIS
Both Colmerauer and I started doing research on com-
pilers in the fall of 1963. Our research group at the
Institute of Applied Mathematics, attached to the Uni-
versity of Grenoble, was led by Louis Bolliet. [t was an
exciting period for French informatics. First, i.here was
a national pride involved in building up a computer
industry. Although not entirely successful in its practi-
cal performance, the Bull Gamma 60 computer was rec-
ognized as having a novel architecture and showed the
talent and promise of its hardware designers. Second,
there was an effort to decentralize research from Paris
by providing additional funds to the regional universi-

0 1988 ACM 0001.0782/88/0100-0026 $1.50 ties. The University of Grenoble was at the time one of

26 Communications of the ACM January 1988 Volume 31 Number 1

Articles

the most active in software development and in numer-
ical analysis; considerable funds were made available
to Bolliet’s group.

One of the projects undertaken by the group was the
development of an Algol 60 compiler for an IBM 7044,
considered a fairly large mainframe at the time. J.C.
Boussard was responsible for that project, and all mem-
bers of the group collaborated in testing the compiler.
We familiarized ourselves with the Algol 60 Report [32]
and with the existing compiling techniques. Several of
us marveled at the pioneering and highly intuitional
approach of Rutishauser in the multiple pass compila-
tion of arithmetic expressions (see [l]). The next major
work read by most of us was that of Dijkstra [14], in
which a stack and empirically derived weights were
used to perform a single pass compilation of Algol 60
programs. Bauer, Samelson, and Paul had also done
work along similar lines, this time trying to establish a
relationship between a given BNF grammar and the
weights used by Dijkstra in his empirical approach [33,
401. However, in our view it was Floyd [15] who first
succeeded in automatically determining that relation-
ship for certain classes of grammars.

Before analyzing the effect of Floyd’s work on the
members of our group, I would like to digress briefly
to describe a few related papers that raise the issue of
determinism versus nondeterminism, which in turn is
central to the theme of this article. Brooker and Morris
in England and Irons in the United States had by this
time suggested innovative approaches to compilation
called syntax-directed translations. Brooker and Morris
showed how recursive procedures obtained automati-
cally from the grammar rules could parse a string in the
language generated by the grammar [3, 41. Actions were
then triggered whenever certain syntactic constructs
were encountered while parsing.

Iron’s compiler also used a parser defined by recur-
sive procedures that, in contrast to Brooker’s, was
guided by data representing the grammar rules [Zl]. A
notable characteristic of the parsers proposed by these
authors is that they could operate in a nondeterministic
manner by trying to apply a given grammar rule and, in

It was an exciting period for French
iyformatics. . . . there was a national pride
involved in building up a computer
industry.

case of failure, backtrack to try another rule. The non-
deterministic parsers were more general (i.e., they
could process other classes of grammars), but less effi-
cient than their deterministic counterparts.

With these previous works available, the Grenoble
compiler’s group began to have a clearer idea of the
type of research that could yield significant results.
Among the pertinent questions were,

l How could one reduce the degree of nondeterminism
necessary for parsing?

l Could Dijkstra’s empirically derived weights be de-
termined formally for various classes of grammars?

Two remarkable papers addressed these questions and
were avidly read by members of the group. The first, by
Griffiths and Petrick, described an attempt to quantify
backtracking in parsing [18]. Their approach was to se-
lect a two-stack nondeterministic Turing machine and
use its instructions to write various parsers for different
grammars. Nondeterminism could be controlled by us-
ing a selectivity matrix that allowed the parser to avoid
certain blind alleys. By simulating the Turing machine
on a computer, the authors were able to measure the
relative efficiencies of the various parsers.

The second paper, by Floyd [15], described automatic
means for generating a matrix from a given grammar.
This matrix, called a precedence matrix, was then used
by the parser to perform a (deterministic) syntactic
analysis of input strings. Floyd also showed that infor-
mation contained in the matrix could, in certain cases,
automatically yield the weights that had been empiri-
cally determined by Dijkstra.

The precedence matrix could always be generated
from grammars not containing two adjacent nontermin-
als in the right-hand side of a rule. It was also known
that any BNF grammar could be “massaged” into an-
other one whose rules had that special type of right-
hand sides. Determinism could only be attained if the
generated matrix contained single entries. One could
imagine a Floyd-type nondeterministic parser that,
when confronted with multiple entries in the matrix,
would successively try each one of them and backtrack
whenever a blind alley was reached.

Nevertheless, for compiler writing purposes, nonde-
terminism was to be avoided, and it became desirable
to extend Floyd’s work to other classes of grammars.
Wirth and Weber’s paper [45] eliminated the restric-
tions imposed by Floyd as to the type of right-hand
sides of rules. Essentially, Floyd’s precedence matrix
was constructed only for the elements of the terminal
vocabulary. Wirth and Weber extended the matrix con-
struction and parsing to cover nonterminals as well as
terminals. That, however, introduced an asymmetry
that was not aesthetically pleasing since parsing had to
proceed sequentially from left to right.

Colmerauer’s project was to write an error detection
and recovery program for Algol 60. After studying the
Griffiths-Petrick and Floyd papers, he first thought of
means to generalize Floyd’s ideas in order to make
them applicable to wider classes of grammars. In his
1967 dissertation on total precedence relations [7],
Colmerauer restored the parsing symmetry by allowing
nonterminals to appear as elements of a (pseudo) input
string behaving as a stack. The similarity to Griffiths
and Petrick’s two-stack Turing machine then becomes
obvious.

Finally, it should be mentioned that, although
Knuth’s work on LR (k) grammars was known to us at

January 1988 Volume 31 Number 1 Communications of the ACM 27

Articles

the time, his mainly theoretical emphasis offered little
hope of usage in actual compilers [ZZ]. (Later devel-
opments, however, proved this was not the case for
small k.)

NONDETERMINISTIC ALGORITHMS AND
W-GRAMMARS
It is interesting that Floyd, who had made significant
contributions in helping remove nondeterminism in
parsing, was the first person to suggest the introduction
of certain primitives allowing the full usage of nonde-

The existence of parameters in Prolog rules
reinforces the similarity to W-grammars
since the parameters may specify a
potentially infinite number of rules.

terminism in programming languages [16]. When his
paper was made available to our group (prior to its
formal publication), it generated great excitement. I re-
call that, having finished his dissertation, Colmerauer
spent some time with other colleagues in the group
incorporating Floyd’s nondeterministic primitives into
Algol 60. These primitives allowed a user to write very
short programs to perform fairly complicated tasks. The
examples considered by Floyd were the eight queens
problem and determining minimum paths in graphs.
The notion of a tree of choices was clearly described in
that paper, and details for an implementation were pro-
vided. Three stacks called M, W, and R were used: The
main stack, M, was needed to store the information that
had to be restored while backtracking (e.g., values of
variables prior to an assignment, labels from where
gotos originated); the other stacks were used for input
(R) and output (W). Floyd also detailed the implementa-
tion of nondeterministic (i.e., backtrackable) proce-
dures. All these features would play a significant role
in the actual implementation of Prolog.

By 1966-1967, the Grenoble compiler group had be-
come interested in Algol 68. Colmerauer then turned
his interests to the two-level grammars that had been
proposed by van Wijngaarden [42]. An interesting char-
acteristic of these grammars is their ability to specify an
infinite number of context-free rules that would be
generated by using an auxiliary context-free grammar.
Prolog rules bear a remarkable similarity to context-
free grammar rules: They both have one element in the
left-hand side and several or no elements (i.e., the
empty string) in the right-hand side. The existence of
parameters in Prolog rules reinforces the similarity to
W-grammars since the parameters may specify a poten-
tially infinite number of rules. Also striking is the simi-
larity of Prolog rules to Knuth’s attribute grammars
[23]. These similarities actually confirm the existence
of common themes in computer science.

Colmerauer’s involvement with W-grammars repre-
sented another step (perhaps unconscious at the time]
toward designing the future language. In fact, Colmer-
auer implemented an analyzer for strings generated by
W-grammars, as well as a sentence generator operating
on given grammar rules. This early effort bears a rela-
tionship to his later work on natural languages where
parsing and generation are accomplished by the same
Prolog program.

NATURAL LANGUAGE PROCESSING AND
THEOREM PROVING
In fall 1967, both Colmerauer and I left Grenoble, he for
the University of Montreal, where he stayed until 1979,
and I for Boston, where I became associated first with
MIT and later with Brandeis University. At -this time
Colmerauer became primarily interested in artificial in-
telligence and natural language processing. Although
my own research activities were in the area.s of compi-
lers and artificial languages, I kept my interest in non-
deterministic algorithms and acquainted myself with
theorem-proving techniques utilized in program cor-
rectness. Despite the occasional visits to Montreal, and
later on to Marseilles, it was not until 1961 that I had
the opportunity to reestablish a close contact with
Colmerauer and his colleagues of the GIA (Artificial
Intelligence Group) at Marseilles.

In a paper that appeared in 1969, de Chastellier and
Colmerauer showed how W-grammars can be used to
specify syntax-directed translations [13]. One of the ex-
amples considered in that paper was the translation of
arithmetic expressions into their postfix polish counter-
parts. Basically, postfix “patterns” are first generated by
metalevel rules and then substituted into the main
grammar rules as special nontermina1s.l These rules
are then used to generate (or analyze) infix arithmetic
expressions. A more complex example considered in
the de Chastellier-Colmerauer paper is the translation
of (simple) sentences from French into English and vice
versa. The main idea is to design two W-grammars, one
describing the generation of English sentences and the
other, the generation of the French counterparts. The
metalevel rules for each of these grammars describe the
so-called deep structure of a phrase. A source string in
one of the languages is parsed to produce its deep struc-
ture, which appears as a (special) nonterminal in the
metalevel grammar. This deep structure is then used to
generate the corresponding target string in the other
language.

Colmerauer’s work on W-grammars showed that they
could be used to carry out the type of syntax-directed
translation used in natural language processing. Never-
theless, he started working on a relatively simple for-
malism for expressing transformations of directed
graphs. This formalism incorporated the combined use
of rewriting grammar rules and pattern matching, and

’ Note that the substitution of patterns into the main grammar rules bears a
striking similarity with the substitution of variables by their values into a
Prolog rule: Each occurrence of a variable is replaced by its corresponding
V&U?.

28 Commckcations of the ACM]anuary 1988 Volume 31 Number 1

could be efficiently interpreted. This became known as
System Q, which he considers the ancestor of Prolog
[8]. A remarkable (Prolog-like) characteristic of pro-
grams written using this formalism is their ability to
work in both directions; that is, not only could input
data produce output results, but also, given a possible
output, the program could determine the corresponding
input data. The pattern-matching algorithm used to im-
plement System Q was nondeterministic, and the re-
writing rules were reminiscent of Chomsky’s type 0
grammars stating that a sequence of trees of a given
shape are rewritten into a sequence of trees having
another specified shape. The notions of terms (trees)
and variables as they are known in present-day Prolog
had their counterparts in System Q. Actually, the main
basic differences between the two formalisms are (1)
the absence in System Q of a bidirectional pattern-
matching mechanism equivalent to Prolog’s unification,
and (2) the restriction to the use of context-free Prolog-
like rules instead of the more general rules used in
System Q. Nevertheless. considerable experience was
gained by implementing and experimenting with a Sys-
tem Q processor. The system is still used to translate
Canadian weather reports from English into French.

It was just before his return to France in 1970 that
Colmerauer became acquainted with Robinson’s key
paper on resolution and unification [36]. At that time
he had accepted a professorship at the University of
Aix-Marseilles. With Jean Trudel, a Canadian student
who was already well versed in logic, Philipe Roussel,
and Robert Pasero, Colmerauer became interested in
text understanding using logic deduction. That interest
led the Marseilles group to establish contact with
Kowalski, then at the University of Edinburgh, whose
work with Donald Kuehner on SL-resolution [27]
served as an initial theoretical model for the then em-
bryonic language. The main concern of the Marseilles
group in 1972 still remained the development of a
man-machine interactive system capable of making de-
ductions from a set of natural language sentences. An

Articles

minal N. Basically, list U contains list V as a tail, and
N generates the elements between the beginning of U
and the beginning of V. This representation proved to
be the most efficient for parsing using Prolog and later
became known as difference lists. A most remarkable
feature of the 1972-1973 paper is the presentation of a
quite complex program, comprising hundreds of (fairly
general) clauses to implement a man-machine interac-
tive system using natural language. The authors end
the report by stating that the system was admittedly
slow, but they were confident that a 25-fold speedup
could be attained by using an improved version that
was under development.

Roussel’s first Prolog interpreter was written in Algol-
W and employed what is now known as the clause-
copying technique. During a visit to Edinburgh later
that year, Roussel learned of the structure-sharing ap-
proach of Boyer and Moore [2]. Upon his return, two of
his students, H. Meloni and G. Battani, implemented a
Fortran version of the prototype using structure sharing
(see [39]).

The use of cuts (similar in spirit to gotos in Algol)
became indispensable in helping to reduce the size of
the search space constructed by programs. Although
Colmerauer today insists that programmers should
minimize the use of cuts, he assumes full responsibil-
ity for introducing it in the language at that early stage.
Negation as failure was also utilized informally by the
Marseilles group at that time; however, a definition of
what it accomplishes only appeared in 1978 [5].

It was the availability of the Fortran interpreter of
Prolog that helped disseminate the language. In particu-
lar, D. H. D. Warren from the University of Edinburgh
spent some time in Marseilles to acquaint himself with
the interpreter and language. It is fair to say that the
subsequent interpreters and compilers developed by
Warren played a major role in the acceptance of Prolog.
The reason is simple: The previous interpreters were
slow and ran on relatively small computers. The availa-
bility of the compiler developed by Warren on a PDP-10

Considerable experience was gained by implementing and experimenting with a System Q
processor. The system is still used to translate Canadian weather reports from English into
French.

often mentioned reference describing the research of showed the potential of Prolog programs being executed
the group at the time is [12]. This work, implemented by with a speed comparable to those of Lisp programs [43].
Roussel in 1972, embodies a few of the features that are An important (although basically ancillary) contribu-
still current in most Prolog interpreters. Among them tion was also made by Colmerauer in the mid-1979s.
were (1) a method for redefining priorities and associa- This is his concept of metamorphosis grammars [9]. In
tivities of operators, and (2) the use of annotations (ac- that work he directly mapped the rules of Chomsky’s
tually the precursors of the cut) to let the user reduce grammar to Prolog programs capable of recognizing
the search space during execution. A valuable contri- strings generated by the grammar. By adding parame-
bution of Colmerauer in this work was the use of two ters to the grammar rules, one could easily perform
lists represented by the variables U and V to indicate syntax-directed translations. Colmerauer demonstrated
parts of the input string that parse to a given nonter- the usefulness of metamorphosis grammars by consid-

Ianuary 1988 Volume 32 Number 1 Communications of the ACM 29

Arficles

ering two applications. He first showed how a compiler
for a minilanguage could be succinctly described and
rapidly implemented. The second application, one that
admits his predilection, considers the use of metamor-
p.hosis grammars to develop an interactive system capa-
ble of carrying out a dialogue in natural language. The
work is based on a detailed study of the meaning of
articles in French. The system is capable of reasoning
about the contents of input sentences by providing logi-
cally derived answers to questions, or by finding incon-
sistencies within the sentences. In both applications,
the underlying grammars and semantic actions are
automatically translated into Prolog programs.

Unfortunately, the work on metamorphosis gram-
mars remained little known until 1686, when Warren
pointed out its importance as a powerful tool for writ-
ing compilers [44]. The usage of metamorphosis gram-
mars in natural language processing has also been dem-
onstrated by Pereira and Warren [34].

In a recent conversation with Kowalski, I was pro-
vided with further information about the origins of the
language. He introduced me to his unpublished manu-
script on this subject, which had been circulated infor-
mally among members of the Prolog community [26]. In
the early 197Os, Kowalski’s research effort was spent on
theorem proving. In their collaboration, Kowalski and
Colmerauer became interested in problem solving and
automated reasoning using resolution theorem proving.
Green’s work in this area was known to both research-
ers [17]. Kowalski, then at Edinburgh, concentrated his
research on attempting to reduce the search space in
resolution-based theorem proving. With this purpose,
he developed with Kuehner a variant of the linear reso-
lution algorithm called SL resolution (for linear resolu-
tion with selection function), based on Loveland’s
model elimination [27, 281. Kowalski’s view is that,
from the automatic theorem-proving perspective, this
work paved the way for the development of Prolog.
Having this more efficient (but still general) predicate
calculus theorem prover available to them, the Mar-
seilles and Edinburgh groups started using it to experi-
ment with problem-solving tasks. Several formulations
for solving a given problem were attempted. Almost
invariably, the formulations that happened to be written
in Horn clause form turned out to be much more natu-
ral than those that used non-Horn clauses. According to
Kowalski a typical example was that of addition that
can be represented either by using Horn clauses, analo-
gous to both a recursive function definition and a Peano
axiomatization, or by non-Horn clauses whose meaning
is not as easily explained. (See [25, p. 1621 and examples
in Figures 1 and 2). Another case in which the Horn
clause formulation was particularly elegant occurred
in parsing strings defined by given grammar rules.

Kowalski, interested in logic, was amazed at the
capabilities of the Horn clause formulation when he
found that recursive programs (such as factorial) could
easily be expressed in that formalism. In contrast,
Colmerauer, interested in language processing, saw the
great potential of the then embryonic Prolog when he

could express the list processing procedure append
using the same formalism.

There were two important theoretical developments
to Prolog made in the mid-1976s. The first was the
Horn clause basis for logic programming presented by
Kowalski [24] and the proof of completeness of the
theorem-proving method in which Prolog was based
[19]. The second was the establishment of a formal se-
mantics for the language: van Emden and Kowalski de-
fined a fixed-point semantics for Horn clause programs
and showed that it was equivalent both to the minimal
model and to the operational semantics [41].

Almost invariably, the formulations that
happened to be written in Horn clause
form turned out to be much more natural
than those that used non-Horn clauses.

DESCRIBING THE TWO PERSPECTIVES
USING METALEVEL INTERPRETERS
Using Prolog itself we will now describe how the com-
ponents (1) parsing and natural language processing,
and (2) theorem proving actually resulted in the same
inference mechanism currently utilized in the interpre-
tation of Prolog programs.

In the “Nondeterministic Algorithms and W-
Grammars” section, I referred to the striking similarity
between nondeterministic parsing and the Prolog infer-
ence mechanism. This similarity is easily malde appar-
ent by expressing a predictive parser in Prolog and
comparing it with the language’s metalevel interpreter.

A predictive (top-down) parser successivel:y replaces
a nonterminal N on the top of the stack by the right-
hand side (RI-IS) of a grammar rule defining N. The
Prolog counterpart of grammar rules are clauses, and a
nonterminal corresponds to a Prolog procedure. Unit
clauses represent nonterminals that rewrite into the
empty symbol c (indicated below by the empty list
nil). Therefore, when the nonterminal Non the top of
the stack rewrites into E, N is simply popped. Grammar
rules are stored using the unit clauses rule(N, RHS),
where variables appear in italic, The parser then be-
comes

parse(ni1)
parse(N.Resf) t

rule(N,RHS),
parse(RHS),
parse(Rest).

This program is identical to the classic meta-
level Prolog interpreter in which the predicate
clause (Goal, Tail) is the counterpart of rule (N,
RI%) and true replaces nil. (See, e.g., [6]). A query
represents a given sequence of nonterminals; success is
achieved if that sequence can be parsed into the empty
string.

30 Communications of the ACM January 1988 Volume 37 Number I

Articles

This is an example of the non-Horn clause addition using SL
resolution
X.Y denotes cons(X, Y)
input-clause(+p(X, Y, Z).+a(O, Y).nil)
input-clause(+p(X,Y, Z).-a(X,Z).nil)
input-clause(+a(s(X), s(Y)).-a(X,Y).nil)
input-clause(-p(X, Y, s(s(s(O)))).nil)

example t
prove(-p(X, Y, s(s(s(O)))).nil, nil)

An empty clause is a contradiction
prove(ni1, Ancestors)

Else resolve against an ancestor or an input clause
prove (LiteralClause, Ancestors) +-

get-resolvent (Literal, Ancestors, Resolvent) ,
prove (Resolvent, LiteraLAncestors) ,
prove (Clause, Ancestors)

Obtain a resolvent from the ancestor list
get-resolvent (Literal, Ancestors, nil) +

complement (Literal, Literal’) ,
remove (Literal’, Ancestors, Ancestors’)

Or obtain it from an input clause
get-resolvent (Literal, Ancestors, Resolvent) t

input-clause(Clause),
complement (Literal, Literal’) ,
remove (Literal’, Clause, Resolvent)

complement (-Literal, +Literal)
complement (+Literal, -Literal)

remove (Element, Element. List, List)
remove (Element, Element’. List, Element’. List’) c

remove (Element, List, List’)

FIGURE 1. A Simplified SL Prover

Horn clause addition using SLD resolution
input-clause(+p(O,X, X).nil)
input-clause(+p(s(X),Y, s(Z))

.-p(X,Y,Z).nil)

An empty clause is a contradiction
prove(ni1)

Else resolve against an input clause
prove (LiteraLClause) t-

get-resolvent (Literal, Resolvent) ,
prove (Resolvent)
prove(Clause)

FIGURE 2. An SLD Theorem Prover

What is implicit in this program as well as in the
metalevel interpreter is the crucial role played by uni-
fication when the predicate clause (Goal, Tail) is
invoked. The pioneering work of Robinson using unifi-
cation in theorem proving is, therefore, of capital signif-
icance in the development of Prolog.

As mentioned earlier, the original quest of the Greno-
ble compiler group was to reduce the amount of nonde-
terminism involved in parsing. This same problem,

when transposed to the case of Prolog execution, still
remains of paramount importance. Indeed, several cur-
rent research papers in the Prolog literature are dedi-
cated to the study of means to avoid run-time blind
alleys by careful program examination at compile time.
As in the parsing of context-free grammars, it is also
important to detect programs that are strictly determin-
istic. Since a large number of practical Prolog programs
satisfy this requirement, it has become important, in
this context, to detect and optimize Prolog programs
that do not require backtracking. There are many other
similarities between grammar properties and properties
of Prolog programs. Some examples are ambiguous
grammars and Prolog programs exhibiting multiple so-
lutions, and grammar transformations corresponding to
program transformations. However, the prevalent use of
unification in Prolog programs renders the study of pro-
gram properties a considerably more difficult task than
that of grammar properties.

A relevant parallel between parsing and theorem
proving is the correspondence relating bottom-up par-
sers to forward-chaining theorem provers, and top-
down parsers to backward-chaining theorem provers.
Loveland, through his pioneering work in model elimi-
nation [28], advocated backward chaining, which is by
far the preferred approach presently used in logic pro-
gramming. Also note that a combined forward- and
backward-chaining scheme based on Earley’s parsing
algorithm has been proposed as a model for Horn clause
deduction [x].

Although it may seem anachronistic, it is enlighten-
ing to describe the evolution of Prolog from the theorem-
proving point of view by presenting the successive
methods that led to the presently used inference mech-
anism: Selective Linear Definite or SLD clause resolu-
tion. The word definite refers to Horn clauses with ex-
actly one positive literal, whereas general Horn clauses
may contain entirely negative clauses.

Let I be a set of input clauses. The set of clauses N
representing the negation of the theorem to be proved
is initially placed in the list I. Robinson’s original reso-
lution algorithm can be described as a nondeterministic
algorithm. The initialization stage consists of (nondeter-
ministically) selecting one of the clauses in N and
placing it in a list R. Then, pairs of resolvable clauses
from I U R are (nondeterministically) selected, and
their resolvent is placed in R. This process is repeated
until the empty resolvent is generated. This algorithm
can be implemented by any number of search tech-
niques including depth-first and breadth-first search.
Moreover, SL and SLD resolution can be viewed as spe-
cial cases in which restrictions are placed on the
clauses that can be selected for resolution. To simplify
the presentation of the SL and SLD algorithms, we will
henceforth assume the negation N of the theorem con-
sists of a single clause, thereby eliminating the first
choice in the algorithm. In linear resolution, the next
resolvent is generated by considering the clause most
recently placed in R and any other clause taken from
either I or R.

]anuary 1988 Volume 31 Number 1 Communications of the ACM 31

Articles

SL resolution places further restrictions on the choice
of the two clauses that can be used to generate the next
resolvent. As in linear resolution, the first clause must
be the one most recently added to R. Unlike linear
resolution, restrictions are also placed on the second
clause, and on the complementary literals selected in
the two clauses [27]. Most of the subtleties of this
choice are captured in the simplified SL prover pre-
sented in Figure 1. The main purpose for presenting
this program is to show that, when its input is re-
stricted to Horn clauses, the resulting SLD prover be-
comes the Prolog metalevel interpreter. Therefore, only
the principal features of SL resolution are considered
in the program.

In Figure 1, input clauses and the negation of the
theorem to be proved are asserted in the database using
the unit clause input-clause having as a parameter
the list whose elements represent the clause. The
clauses in Figure 1 are non-Horn clauses specifying the
addition of natural numbers. Essentially, the literal p
states that Z represents X + Y, and the literal a (X, Y)
is true if the difference X - Y remains constant.

Initially, the first parameter of prove contains, in
clause form, the negation of the theorem to be proved,
and the second parameter, the ancestor list, is the
empty list. The ancestor list will contain the literals
that have been previously processed. The procedure
will succeed if the resolvent, the literals in the ancestor
list, and the input clauses are not simultaneously satis-
fiable.

The resolvent is unsatisfiable if and only if each of its
literals are unsatisfiable. To prove that a literal L, a set
of input clauses I, and the conjunction of ancestor liter-
als A is unsatisfiable, one can

(1)

(4

obtain an ancestor that unifies with the comple-
ment of the literal;’ or, if this is not possible,
find an input clause that resolves against the literal
to form a new resolvent N, and then show that N,
I, L A A are unsatisfiable.

The procedure prove has two levels of recursion, spec-
ified by the calls

prove (Resolvenf, LiteraLAncestors) ,
prove (Clause, Ancestors) .

The second call is used to prove that each of the
literals in a clause is unsatisfiable, while the first is
used to prove that the current literal is unsatisfiable
(assuming the satisfiability of I and A).

The call to remove in the first clause of get-
resolvent simply attempts to unify the complement
of the literal with a member of the ancestor list,
whereas the call to remove in the second clause ac-
tually produces a resolvent. The resolvent produced by
the first clause of get-resolvent is always empty. It
is assumed the Prolog processor interpreting the pro-
gram in Figure 1 incorporates the occur check so that
logical soundness is preserved.

‘We have omitted a membership test that prevents the selection of a literal
already present in the ancestor list: this test can be used to avoid (certain
instances of) infinite loops [27].

32 Communications of the ACM

An alternate informal presentation of the SL resolu-
tion algorithm can be done by elaborating further the
correspondences between parsing and theorem proving.
(We will initially restrict our attention to the proposi-
tional case.) Table I summarizes the relevant corre-
spondences.

A clause containing n literals, A,, Al, . , .A,, will
represent the n context-free rewriting rules

A; + AzA3 . . . A,

A; + AlA . . . A,

(1)

A:, ---* A,Az . . . A,-,,

where Ai is the complement of Ai. The rewr.iting rule
A + BC should be interpreted logically as “if A then
(B V C).”

The parsing counterpart of proving the validity of a
query is showing that the sequence of nonte:rminals
representing the query can be rewritten into the empty
string 6. It follows that the order in which one shows
that each nonterminal in the sequence rewrites into t is
irrelevant.

The counterpart of resolution in theorem proving is
the rewriting of a nonterminal in a sentential form
using a grammar rule to produce a new sentential form
[20]. More specifically, if Not is a sequence of nonter-
minals whose first element is N and N + /3 is a rule,
then Pm is the resulting new sequence; that is,

NCY =+ /!h.

It should be noted that, from an intuitional point of
view, a sequence of nonterminals also corresponds to a
clause that, in turn, can be viewed as a grammar rule.
For example, the sequence Nol corresponds tfo the gram-
mar rule N’ + CY. Therefore, the derivation N’ 4 Na
can be replaced by the simpler derivation N’ 4 (Y. This
operation is performed by the program in Fig,ure 1
when it checks whether the complement of a literal is
in the ancestor list (first clause of get-resolvent).
Therefore, the parsing counterpart of get-resolvent
has the role of checking if the given nonterminal is in
the ancestors’ list, in which case a success is assumed
(the procedure remove is used to test for membership);
otherwise, the nonterminal is (later) incorporated to the
ancestors’ list, and the procedure remove simply gen-
erates the proper right-hand side of the rule by remov-
ing the appropriate nonterminal to simulate i.he appli-
cation of one of the rules (eq. (1)). The procedure
prove then proceeds to determine if the sequence of
nonterminals that constitute the right-hand side can be
rewritten into t.

It should be noted that, when generalizing the pre-
vious explanation to the predicate case, each clause
containing variables corresponds to an infinite number
of grammar rules. Therefore, unless the literals in the
query are all ground, it becomes necessary to include
the query as an additional input clause.

It is straightforward to transform the (simplified)

January 1988 Volume 31 Number 1

Articles

TABLE I. Correspondences between Parsing
and Theorem Proving

Nonterminal Literal
Grammar rule Clause
8-rule Unit clause
Concatenation Disjunction
Rewriting Resolution
Parsing tree Proof tree

SL prover in Figure 1 into an SLD3 program capable of
handling Horn clauses only. In this case it can be as-
sumed that the clause to be proved is a list of negative
literals. Furthermore, each input clause contains ex-
actly one positive literal: the first. Thus, the ancestor
list will consist only of negative literals, and hence no
ancestor can resolve with the current literal since both
are negative. Consequently, the second parameter in
the procedures prove and get-resolvent of Fig-
ure 1 can be eliminated without sacrificing soundness.
The pertinent part of the transformed program appears
in Figure 2, which also shows a program to perform
natural number additions using Horn clauses.

The procedure get-resolvent in Figure 2 will
now only resolve against an input clause. A symbolic
execution yields

get-resolvent (-Literal, Resolvent) c
input-clause (+Literal.Resolvent) _

Finally, the replacement of the above get-resolvent
in Figure 2 yields the classical metalevel interpreter:

prove(ni1)
prove (-Literal.Clause) +-

input-clause (+Literal.Resolvent) ,
prove (Resolvent) ,
prove (Clause) .

A COMPARISON WITH THE DEVELOPMENT
OF LISP
List processing in Prolog is done using terms that simu-
late the classical Lisp primitives, cons, car, and cdr, that
allow for the construction of lists and the determination
of their head and tail components. Recursion plays a
primary role in both languages.

It is fair to say that most list processing in Prolog is
done i la Lisp. Prolog, however, offers the additional
features of nondeterminism and logical variables that
allow the automatic determination of multiple solutions
to a problem and, in certain cases, the performance
of inverse computations (e.g., sorting-permutation,
parsing-string generation, differentiation-integration).

We will now draw parallels between the develop-
ment of the two languages and venture an explanation
as to possible reasons for the longer time taken by
Prolog to establish itself as a useful language.

‘The word selective in SLD means that any negative literal in the current
resolvent can be selected. Selective in SL means that any most recent literal
can be selected. Therefore, SLD is not strictly a special case of SL.

First, it should be pointed out that the theoretical
foundations of both languages resulted from the efforts
of persons who had a training in mathematical logic.
Coincidentally, both McCarthy and Robinson obtained
their doctorates from Princeton University. Not surpris-
ingly, McCarthy chose a logician’s “language,” Church’s
lambda calculus, as the theoretical foundation for Lisp.
His presence at MIT in the early 1960s played a signifi-
cant role in the success of the language [31]. He was
surrounded by brilliant “hackers” and had ample access
to up-to-date equipment.

The success of a language depends greatly on the
development of a handful of interesting (and prefera-
bly short) programs that show its expressive power.
McCarthy was certainly on the right track when he
chose to present, among others, a differentiation pro-
gram and evalquote, the universal interpreter [30].
Today these programs are assigned as homework in
undergraduate computer science courses. Yet, one can
imagine what a tour de force this would have been a
quarter of a century ago, using much smaller and
slower computers, disposing of relatively meager soft-
ware.

The availability of Lisp in the early 1960s at MIT was
a bonanza for its AI group and provided an unusual
environment in which to test and perfect the language.
Dozens of significant doctoral dissertations published at
the time were made possible because of the existence
of Lisp running on adequate equipment.

In contrast to Lisp, the development of Prolog pro-
ceeded at a relatively slower pace, especially consider-
ing that Robinson’s ground-breaking paper [36] had
been published in 1965. It remains for us to speculate
as to the reason for this difference.

The first point has to do with the resemblance of
Church’s lambda calculus to an actual programming
language, even a more primitive one. The notion of
subroutines was well known at the time of Lisp’s devel-
opment, as was the concept of recursion. In my view,
McCarthy’s greatest contributions were (1) to have
chosen a solid theoretical foundation for his language,
(2) to show that it could be implemented with the exist-
ing available computers, and (3) to present a sample of
useful examples demonstrating the language’s capabili-
ties.

Although Robinson’s paper [36] provided the solid
theoretical foundation for a language like Prolog, reso-
lution was originally intended to be used to prove theo-
rems in the predicate calculus. Theorem provers using
the original resolution method had to contend with
rampant nondeterministic situations, the redundancy
in obtaining solutions, and the lack of goal-oriented
searches. The knowledge on how to face these prob-
lems would require a considerably greater effort than
did rendering lambda calculus usable as a computer
language.

At least three other factors may be credited with
responsibility for slowing down the development of
Prolog: (1) the absence of a corpus of interesting exam-
ples demonstrating the novel usage of the language;
(2) the unavailability of fast computers with substantial

January 1988 Volume 31 Number I Communications of the ACM 33

Articles

main memories, as well as optimizing compilers ena-
bling the practical use of Prolog in writing larger pro-
grams; and (3) the existence of better compilers and
environments for the then more mature language Lisp,
which had already proved its value in symbolic pro-
cessing.

Most knowledgeable Prolog programmers would
agree that just writing the procedure append in Prolog
and exploring its use in writing other programs would
be a substantial step toward establishing the set of con-
vincing examples of the language’s usefulness. The set
of examples using append was developed at Marseilles
and then expanded with the ongoing interactions with
Edinburgh. The lack of adequate equipment must have
hindered the Marseilles group. Edinburgh was more
fortunate, and in my view, that accounted in part for
the very successful work of Warren who, around 1677,
was able to show that Prolog programs could achieve
efficiencies comparable to those of Lisp.

The success of a language depends greatly
on the development of a handful of
interesting (and preferably short) programs
thaf show ifs expressive power.

UNIFICATION AND CONTROL
The original unification algorithm proposed by Robin-
son included a special test called the occur test that
prevented circular structures from being constructed by
the algorithm.

The elimination of the occur test, originally sug-
gested by the Marseilles group, was both a daring step
and a pragmatic move toward decreasing the time
taken by unification. This was risky, since the elim-
ination could result in logically unsound results and,
unless the necessary precautions were taken, the pro-
grams could enter infinite loops during unification or
printing. An analogous situation occurs in Pascal-like
programs in which run-time checks are introduced by
compilers to test if an array index remains within its
declared bounds. C. A. R. Hoare compared the elimina-
tion of such tests after debugging to “wearing life jack-
ets during near-shore drills, but disregarding them in
high-seas.” In the case of the occur test, however, its
elimination enabled the solution of problems using a
reasonable amount of computation.

Nonetheless, Colmerauer was dissatisfied with the
elimination of the occur test. By the late 197Os, he was
engaged in developing a modified unification algorithm
in which circular structures could be unified. His claim
was that these structures play an important role in rep-
resenting graphs (such as those describing flowcharts,
and transition diagrams for finite state automata) and
should not be avoided. His new algorithm is described

in [lo] and [ll] and has now been incorporated in sev-
eral interpreters. In the algorithm the notion of the
most general unifier [36] is replaced by that of solvable
constraints.

The cut is another feature that was originally intro-
duced by the Colmerauer group, but for which, as men-
tioned, Colmerauer recommends spare usage. The cut
is indispensable since it provides the ability .to define
negation by failure and the optimization of programs by
supplying information to the interpreter that parts of
the search space need not be inspected. As K.owalski
aptly puts it, Algorithm = Logic + Control, and the cut is
one of the few existing resources in Prolog to control
Control.

We now return to the subject of unification and its
extensions. Besides incorporating the capabilhties of
handling circular structures, Colmerauer also added to
his unification algorithm the predicate di f f (A, B) ,
which is based on Roussel’s work on equalities in theo-
rem proving [38]. This predicate requires a nontrivial
implementation. Most available interpreters adopt a
simplistic version of dif f that fails if either one or
both of its arguments are unbound, or bound to differ-
ent ground terms. In Colmerauer’s version of the algo-
rithm, sets of equations and inequations are kept by
the interpreter, and failure only occurs when the sets
are unsatisfiable [ll]. This manner of handling unifi-
cation using equations is not unlike that proposed by
Colmerauer’s fellow countryman, the famous logician
J. Herbrand. For the latter, unification (finding an ele-
ment of the Herbrand universe) entailed finding a solu-
tion to a system of equations.

The availability of predicates expressing constraints
(like dif f) allows a programmer to increase the
“purity” of Prolog programs by avoiding the cut and
possibly increasing the potential of performing inverse
computations. For example, if a predicate p is defined

by

P + Cl, PI, . . .

I

P - cn, Pn, ...

and the conditions ci are all mutually exclusive, then
cuts become unnecessary.

It should be stressed that in logic programming unifi-
cation and control are closely related. Normally, back-
tracking occurs when unification fails; otherwise, com-
putation proceeds in the forward mode. Therefore, by
extending the capabilities of unification one also ex-
tends the control features of the language.

Colmerauer’s present goal is to extend the unification
algorithm to cover linear inequations over the rationals,
Boolean equations, and equations on special (linear-
like) types of strings. In his forthcoming version of
Prolog III, backtracking only occurs when the set of
inequations and equations becomes unsatisfiable. In
this respect Prolog’s notion of variables becomes the

34 Communications of the ACM January 1988 Volume 3.1 Number 1

Articles

same as that of a variable as used in mathematics. Be-
sides opening new horizons for the language, investing
research efforts in extending unification is also wise:
Even if other subsets of first-order predicate calculus
are found to be more powerful than Horn clauses, it is
very likely that the proposed extensions for unification
would be applicable to those subsets as well.

REFERENCES
Note: Reference 1121 is not cited in text.

1.

2.

3.

CONCLUSIONS 4.

This paper has presented a historical review of the
origins and development of Prolog as a programming
language. It is worth noting that during their research
effort both Colmerauer and Kowalski recall rather pre-
cise moments in which they had the sudden insight of
having discovered a fascinating novel way of expressing
computer programs. Therefore, discovery in language
design is not unlike discoveries occurring in fields such
as physics or mathematics. This reinforces the thesis
that discovery, rather than invention, lies at the heart
of creative computer language design. I hope to have
provided the sequence of closely related research ef-
forts and events so that the reader can infer that indeed
Prolog would have had its place in computer science
regardless of its discoverers. In a similar vein, I have
had the opportunity to ask McCarthy the analogous
question vis-a-vis Lisp. His answer was unequivocal:
Yes, Lisp would have existed anyway.

5.

6.

7.

8.

9.

10.

11.

32.

13.

Such a determinism says a great deal about the na-
ture of computer science. It indicates there is a basic set
of concepts in this science that keep recurring in a
variety of forms (e.g., grammars, nondeterminism, pat-
tern matching). It also manifests a great affinity be-
tween computer science and mathematics, whose prac-
titioners are almost unanimous in their praise for the
beauty of certain theorems. The elegance and simplic-
ity of Prolog will undoubtedly be judged in a similar
way by computer scientists.

14.

15.

16.

17.

18.

Acknowledgments. I wish to express my wholehearted
thanks to Alain Colmerauer for helping me make pre-
cise some of the factual material described in this paper
and for providing an improved version of the SL prover.
I also had the opportunity to discuss candidly with
Robert Kowalski his own views about the origins of
Prolog; the conversations I had with him provided me
with further insight into this matter. Both Alain and
Bob read the original version of this paper at least twice
and proposed numerous significant and detailed sugges-
tions that were gladly incorporated into the revised
version. The collaboration of my colleague Tim Hickey
was also invaluable: His careful reading of the manu-
script and thoughtful comments consistently resulted in
a better presentation and increased accuracy. My
thanks are also extended to Jean Louis Lassez for his
helpful remarks.

19.

20.

21.

22.

23.

24.

25.

26.

27.

A final note: This paper survived numerous revi-
sions, several of them with the help of refinement
operators provided by Alain, Bob, and Tim. Hopefully,
we have at last reached a fixed point.

28.

29.

30.

31.

Bauer, F.L. ~ist&ical remarks on compiler construction. In Advances in
Compiler Construction. Lecture Notes in Computer Science, vol. 21.
Springer-Verlag, New York, 1974, pp. 603-621.
Boyer, R.S.. and Moore, J.S. The sharing of structure in theorem
proving programs. In Machine Intelligence, vol. 7. M. Melzer and
D. Michie, Eds. Edinburgh University Press, Edinburgh. U.K., 1972,
pp. 101-116.
Brooker, R.A., and Morris. D. A general translation program for
phrase structure languages. /, ACM 9, 1 (Jan. 1962). l-10.
Brooker. R.A., MacCallum. I.R., Morris, D., and Rohl, J.S. The compi-
ler-compiler. Anna. Rev. Autom. Program. 3 (1963). 229-275.
Clark, K. Negation as failure. In Logic and Data Bases, H. Gallaire and
J. Minker, Eds. Plenum, New York, 1978. pp. 293-322.
Cohen, J. Describing Prolog by its interpretation and compilation.
Commun. ACM 28, 12 (Dec. 1985), 1311-1324.
Colmerauer. A. Total precedence relations. J ACM 17. 1 (Jan. 1970),
14-30.
Colmerauer, A. Les Systemes-Q ou un form&me pour analyser et
synth6tiser des phrases sur ordinateur. Rep. 43, Dept. of Computer
Science. Univ. of Montreal, Quebec, 1970.
Colmerauer, A. Les grammaires de m&amorphose. Groupe d’tntelli-
gence Artificielle, Univ. of Marseilles-Luminy, France. 1975. (Also:
Metamorphosis grammars. In Natural Language Communication
with Computers, L. Bale, Ed. Springer-Verlag, New York. 1978),
pp. 133-189.
Colmerauer, A. Prolog and infinite trees. In Logic Programming,
K. Clark and S. A. Tarnlund, Eds. Academic Press. New York, 1982,
pp. 231-251.
Colmerauer, A. Equations and inequations on finite and infinite
trees. In Proceedings on the International Conference on Fifth Generation
Compufer Systems (Tokyo, Japan. Nov.). ICOT, Tokyo, 1984.
Colmerauer, A., Kanoui, H.. Pasero, R.. and Roussel. P. Un syst&me
De communication homme-machine en Fran$ais. Res. Rep., Groupe
Intelligence Artificielle, Univ. Aix-Marseille II, France, 1973.
De Chastellier. G. and Colmerauer. A. W-grammar. In Proceedings of
the ACM Congress (San Francisco, Calif., Aug.). ACM, New York.
1969, pp. 511-518.
Dijkstra, E.W. ALGOL 60 translation. ALGOL Bull. (supplement) 10
(1960). [Also: Recursive programming. Namer. Math. 2 (1960),
312-318.)
Floyd, R.W. Syntactic analysis and operator precedence. J. ACM 20
(1963), 316-333.

Floyd, R.W. Nondeterministic algorithms. 1. ACM 14, 4 (Oct. 1967),
636-644.

Green, CC. Theorem proving by resolution as a basis for question-
answering systems. In Machine Intelligence, vol. 4. B. Melzer and
D. Michie, Eds. Edinburgh University Press. Edinburgh. U.K.. 1969,
pp. 183-205.
Griffith, T.V., and Petrick, S.R. On the relative efficiencies of
context-free grammar recognizers. Commun. ACM 8, 5 (May 1965).
289-300.
Hill. R. LUSH-resolution and its completeness. DCL Memo 78, Dept.
of Artificial Intelligence. Univ. of Edinburgh, U.K., 1974.
Hopcroft, J.E., and Ullman, 1.0. Introduction to Automata Theory, Lan-
guages and Computation. Addison-Wesley, Reading, Mass.. 1979.
Irons, E.T. The structure and use of the syntax directed compiler.
Anna. Rev. Autom. Program. 3 (1963), 207-227.
Knuth, D.E. On the translation of languages from left to right. Inf,
Confrol 8, 6 (1965), 607-639.
Knuth, D.E. Semantics of context-free languages. Math. Syst. Theory
2, 2 (1968), 127-14s.
Kowalskj, R. Predicate logic as programming language. In Proceedings
of IFIP. 74 (1974). North Holland Publishing Co., Amsterdam, 1974,
569474.
Kowalski, R. Logic for Problem Solving. North-Holland, Amsterdam,
1979.
Kowalski, R. The early history of logic programming. Dept. of Com-
puting. Imperial College, London, Oct. 1984.
Kowalski, R.. and Kuehner, D. Resolution with selection function.
Arfif. Intell. 2, 3 (1970), 227-260.
Loveland, D.W. A simplified format for the model elimination
theorem-proving procedure. /. ACM 16, 3 (July 19691, 349-363.
Loveland. D.W. Automated theorem proving: A quarter-century re-
view. Am. Math. Sot. 29 (19841, l-42.
McCarthy, J. Recursive functions of symbolic expressions and their
computation by machine, Part I. Commun. ACM 3, 4 (Apr. 1960),
185-195.
McCarthy, J. History of Lisp. SIGPLAN Not. (ACM) 13, 8 (1978),
217-222.

lanuay 1988 Volume 31 Number 1 Communications of the ACM 35

Articles

32. Naur, P. Ed. Revised report on the algorithmic language ALGOL 60.
Commun. ACM 6, 1 (Jan. 1963), 1-17.

33. Paul. M. A general processor for certain formal languages. In Pro-
ceedings of the Symposium on Symbolic Languages in Data Processing
(Rome, Italy). Gordon and Breach, New York, 1962, pp. 65-74.

34. Pereira, F.C., and Warren, D.H.D. Definite clause grammars for lan-
guage analysis. Artif. Intel/. 13 (1980). 231-278.

35. Pereira, F.C., and Warren, D.H.D. Parsing as deduction. In Praceed-
ings of the 21st Annual Meeting of the Association for Computational
Linguisfics (Cambridge, Mass.). Association for Computational Lin-
guistics, 1983, pp. 137-144.

36. Robinson, J.A. A machine-oriented logic based on the resolution
principle. 1. ACM 12, 1 (Jan. 1965). 23-41.

37. Robinson, J.A. Logic programming-Past, present and future. New
Generafion Comput. I (1983). 107-124.

38. Roussel, P. Definition et traitement de I’egalitk formelle en d&non-
stration automatique. Thesis, Facult& des Sciences. Univ. d’Aix-
Marseille, Luminy, France, 1972.

39. Roussel, P. Prolog: Manuel de r8f&ence et d’utilisation. Groupe
d’lntelligence Artificielle, Univ. d’Aix-Marseille, Luminy, France,
1975.

40. Samelson. K., and Bauer, F.L. Sequential formula translation.
Commun. ACM 3, 2 (Feb. 1960), 76-133.

41. Van Emden, M.H., and Kowalski, R. The semantics of predicate logic
as a programming language. J. ACM 23, 4 [Oct. 1976), 733-742.

42. Van Wijngaarden. A., Mailloux, B.J., Peck, J.L., Koster. C.H.A.,
Sintzoff, M., Lindsey. C.H.. Meertens. L.G.L.T., and Fisker, R.G.
Revised report on the algorithmic language ALGOL 66. Acfa Info. 5,
l-3 (1975). 1-236.

43. Warren, D.H.D. Applied logic-Its use and implemeniation as a pro-
gramming tool. Ph.D. dissertation. Dept. of Artificial Intelligence.
Univ. of Edinburgh, Edinburgh. U.K., 1977. Also: Tech. Note 290,
SRI International, Menlo Park, Calif., 1983.

44. Warren. D.H.D. Logic programming and compiler writing. Softw.
Pratt. &per. 10 (Feb. 1980), 97-125.

45. Wirth, N., and Weber, H. EULER: A generalization of ALGOL, and
its formal definition: Part I. Commun. ACM 9, 1 (Jan. 19661, 13-23.

CR Categories and Subject Descriptors: D.3.2 [Programming Lan-
guages]: Language Classifications-very high-level languages; F 4.1
[Mathematical Logic and Formal Languages]: Mathematical Logic-com-
putafional logic: K.2 [Computing Milieux]: History of Computing-peo-
pie; software

General Terms: Design, Human Factors. Languages
Additional Key Words and Phrases: Language design. :.ist processing,

logic programming, nondeterministic algorithms, SL resolution, theorem
proving, unification

Author’s Present Address: Jacques Cohen, Computer Science Depart-
ment, 141 Ford Hall, Brandeis University, Waltham, MA C’2254.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct commer-
cial advantage, the ACM copyright notice and the title of rhe publication
and its date appear, and notice is given that copying is by permission of
the Association for Computing Machinery. To copy otherwise, or to
republish. requires a fee and/or specific permission.

ACM CONFERENCE PROCEEDINGS

1987

6th PODC-Symposium on Principles of Distributed Computing
Vancouver, B.C., August 10-12, 1987. Sponsored by ACM
SlGACT and ACM SIGOPS. ISBN: O-89791-239-X. Order No.
536870. ACM SIGACT/SIGOPS Members: $18.00; Others:
$24.00.

SIGMOD ‘87--International Conference on Management of Data
SIUI Francisco, CA, May 27-29, 1987. Sponsored by ACM
SIGMOD. ISBN: O-89791-236-5. Order No. 472870. ACM/
SIGMOD Members: $27.00; Others: $36.00.

SIGPLAN ‘87-Symposium on Interpreters and Interpretive
Techniques
St. Paul, MN, June 24-26, 1987. Sponsored by ACM SIGPLAN.
ISBN: O-89791-235-7. Order No. 548870. ACM/SIGPLAN
Members: $17.00; Others: $23.00.

14th International Symposium on Computer Architecture
Pittsburgh, PA, June 3-6,x987. Sponsored by ACM SIGARCH
and IEEE-CS. ISBN: 0-89791-223-O. Order No. 415870. ACM/
SIGARCH/IEEE-CS Members: $35.00; Others: $70.00.

24th DAC-Design Automation Conference
Miami, FL, June 28-July 1, 1987. Sponsored by ACM SIGDA and
IEEE-CS. ISBN: O-89791-234-9. Order No. 477870. ACM
SlGDA/IEEE-CS Members: $47.00; Others: $94.00.

1986 Workshop on Interactive 3-D Graphics
Chapel Hill, NC, October 22-24, 1986. Sponsored by ACM
SIGGRAPH. ISBN: O-89791-228-4. Order No. 429861.
ACM/SIGGRAPH Members: $16.50; Others: $22.00.

20th Symposium on Simulation of Computer Systems
Buy Ha&our Inn, Tampa, FL, March 11-13, 1987. Sponsored by
ACM SlGSIM and IEEE-CS. Order No. 577870. ACM/SIGSIM/
IEEE-CS Members: $25.00; Others: $50.00.

1987 ACM SIGBDP/SIGCPR Conference--The Rising lride of
Expert Systems in Business
Coral Gables, FL, March 5-6, 1987. Sponsored by ACM SIGBDP
and SIGCRP. ISBN: O-89791-222-5. Order No. 47287.1. ACM/
SIGCPR/BDP Members: $15.00; Others: $20.00.

5th International Conference on Systems Documentation-
SIGDOC ‘86
University of Toronto, Ontario, June 8-11, 1986. Sponsored by
ACM SIGDOC and Cornell University Computing Services.
ISBN: O-89791-224-1. Order No. 611861. ACM/SIGDOC
Members: $9.00; Others: $12.00.

CHl/GI ‘87-Conference on Human Factors in Computing
Systems and Graphics Interface
Toronto, Ontario, April 5-9, 1987. Sponsored by ACM SICCHI
and Canadian Info. Processing Society’s CMCCS in c:ooperation
with the Human Factors Society and ACM SIGGRAPH. ISBN:
O-89791-213-6. Order No. 608870. ACM/SIGCHI/SIGGRAPH
Members: $20.00; Others: $27.00.

36 Communications of the ACM January 1988 Volume 31 Number 1

