Design Patterns for Parser Combinators
(Functional Pearl)

Jamie Willis
Imperial College London
United Kingdom
j-willis19@imperial.ac.uk

Abstract

Parser combinators are a popular and elegant approach for
parsing in functional languages. The design and implemen-
tation of such libraries are well discussed, but having a well-
designed library is only one-half of the story. In this paper
we explore several reusable approaches to writing parsers in
combinator style, focusing on easy to apply patterns to keep
parsing code simple, separated, and maintainable.

CCS Concepts: « Software and its engineering — Soft-
ware design engineering; Functional languages; Parsers;
Domain specific languages.

Keywords: parser combinators

ACM Reference Format:

Jamie Willis and Nicolas Wu. 2021. Design Patterns for Parser
Combinators (Functional Pearl). In Proceedings of the 14th ACM
SIGPLAN International Haskell Symposium (Haskell *21), August
26-27, 2021, Virtual, Republic of Korea. ACM, New York, NY, USA,
14 pages. https://doi.org/10.1145/3471874.3472984

1 Introduction

Design patterns, popularised by Gamma et al. [9], are soft-
ware design principles that are not necessarily rigid or must
be adhered to but are a guide for solving common problems
and structuring large bodies of code. Their most prolific use is
within the Object-Oriented Programming (0op) community;
within the Functional Programming (FP) community, many
patterns are simply implemented using higher-order func-
tions. In fact, one example of the strength of higher-order
functions is the development of combinator libraries, and in
particular parser combinators [7, 14, 15, 19, 27, 29, 31, 32]. But
while Fp provides many of these beautiful abstractions, not
enough is said about how to actually use them in a maintain-
able and scalable way. Indeed, this paper aims to highlight

This work is licensed under a Creative Commons Attribution 4.0 Interna-
tional License.

Haskell 21, August 26-27, 2021, Virtual, Republic of Korea
© 2021 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-8615-9/21/08.
https://doi.org/10.1145/3471874.3472984

71

Nicolas Wu
Imperial College London
United Kingdom
n.wu@imperial.ac.uk

several parser combinator design patterns; these patterns,
certainly not exhaustive, should:

e Structure and organise larger parsers

e Separate the various concerns of different parts of parsers
o Keep the intention and shape of the grammar clear

o Create informative error messages

o Guide the implementation with strong types

As mentioned, parser combinators are an elegant func-
tional approach to performing parsing of grammars, includ-
ing context-sensitive, embraced by many in the Haskell com-
munity. Compared to parser generator tools, like Haskell’s
Happy, parsers developed with combinators are written in
pure Haskell as a Domain-Specific Language. This paper
assumes some knowledge of parser combinators and the
tutorial by Swierstra [28] serves as a good introduction.

The most ubiquitous family of combinators in Haskell is
the parsec [19] family: consisting of the libraries parsec,
attoparsec, and megaparsec. This family is primarily char-
acterised by their shared semantics for backtracking, where
alternative parts of a grammar may only be taken when in-
put has not been consumed in another; in particular they
all leverage the try combinator to opt-in to backtracking,
as opposed to a cut combinator to opt-out. Practically, this
means there are some considerations when implementing
some of our patterns within this family, concerning try, that
do not occur in other libraries.

The presentation of our patterns will be anchored around
a main running example developed in a generic and simple
implementation of a parsec family library in Haskell. The
aim is to provide a solid foundation without having to focus
on the specifics of any particular Ap1 or their individual
quirks. Importantly, our patterns are not only useful for
parsec or necessarily Haskell and apply generally.

1.1 An Introductory Example

The classic example used to demonstrate how to use parser
combinators is some variant of an expression language, the
grammar for which is shown in Figure 1. To start with, this
language supports: the standard arithmetic operators, each
of which is left-associative, denoted by the left recursion;
numbers; variables; parenthesised expressions; and prefix
negation operator negate, modelled by the following AsT:

http://creativecommons.org/licenses/by/4.0/
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://orcid.org/0000-0003-3834-4741
https://orcid.org/0000-0002-4161-985X
https://doi.org/10.1145/3471874.3472984
https://doi.org/10.1145/3471874.3472984

Haskell °21, August 26-27, 2021, Virtual, Republic of Korea

(digit) == 0 .9
(number) = (digit)+
(ident) ::= (alpha) (alpha-num)*
(expry u= (expr) ‘+* (term)

| (expr) =’ (term)

| (term)
(term) = (term) %’ (negate) | (negate)
(negate) ::= ‘negate’ (negate) | (atom)
(atom) == C (expr))’

| (number) | (ident)

Figure 1. Grammar

data Expr = Num Int | Var String
| Neg Expr | Mul Expr Expr
| Add Expr Expr | Sub Expr Expr

The parser will directly construct this datatype: combinator
libraries can incorporate semantic actions directly into the
parser itself. For now, the asT is monolithic and homoge-
neous, but ideally, it would itself mirror the grammar. The
corresponding parser for the grammar is given in Figure 2.
This parser maps closely to the original grammar: rule al-
ternatives are expressed with the « “or” combinator, and
semantic actions and sequencing are applied with the stan-
dard Applicative <> and <+> combinators, pronounced “fmap”
and “ap” respectively. The Kleene star and plus operations are
implemented with Alternative many and some respectively.

The Combinators. For reference, here is a summary of
the combinators used in this paper, along with their types:

(«<¢») = Functorf= (a—b) >fa—ofb

(¢¢) =Functorf=>a—fb—ofa

pure : Applicativef = a — fa

(¢x») : Applicativef = f(a—b) - fa—fb
(«<x) :Applicativef = fa—fb—fa

(%) = Applicativef = fa—fb—fb

(<) :: Applicativef = fa — f(a—b) — fb
(«<») ::Applicativef = fa — f[a] — f[a]

This first set of combinators are responsible for sequencing
actions (in this case parsing actions) and combining their
results in a way that follows the combinator’s type signature:
<>, for instance, will apply the function returned by the first
action to the value returned by the second. Notably, pure
does nothing in a parsing sense except return a result.

()
many : Alternativef = fa — f [a]
some : Alternativef = fa — f[a]
choice :: Alternative f = [fa] — fa

: Alternativef > fa — fa — fa

72

Jamie Willis and Nicolas Wu

digit =oneOf['0'..'9"]
number = foldl addDigit 0 <$> some digit
ident = alpha <> many alphaNum
expr = Add <> expr > (char '+' %> term)
> Sub <$> expr <o (char '-' x> term)
@ term
term = Mul <> term o (char '*' %> negate) « negate
negate = Neg <> (string "negate" %> negate) «> atom
atom = char ' (' % expr«tchar ')’

«> Num <$> number «> Var > ident
addDigit n d = n * 10 + digitTolnt d

Figure 2. Parser

The next set of combinators are responsible for choice and
data-independent branching: «» will try parsing its first ar-
gument, if it fails then the second argument is tried (in some
libraries, only if the first consumed no input). Both many
and some are built on top of this and <>, to try performing
an action multiple times until it fails, collecting the results
into a list, with many requiring zero or more successes, and
some requiring one or more. The choice combinator tries
each action in the list in turn, until one succeeds, using <.

The canonical form for terms using these operators is
sequencing operations separated by alternative operations:
usually achieved by making the «> combinator infixl 3 and
the rest infixl 4, so that «> binds weaker than the others.

:: Char — Parser Char
string :: String — Parser String
oneOf :: [Char] — Parser Char

try

char

:: Parser a — Parser a

The final group of combinators are specific to parsers: char
parses a specific character; string parses a specific string of
characters one after the other; and oneOf is a character class,
using choice to parse any of the provided characters. The try
combinator in the parsec family undoes input consumption
on failure, allowing «> to take its second branch.

1.2 The Common Problems with Combinators

Whilst the example parser perfectly maps to the grammar for
the language it, in fact, exhibits several common problems:

Left-Recursive Expressions. The biggest problem with
this parser is that it is left-recursive. For many parser combi-
nator libraries, this will cause infinite recursion at runtime
since the recursion is unguarded by input consumption.

Instead of using traditional grammar transformations on
both the grammar and the parser to left-factor [1, 21] it, our
first pattern addresses it idiomatically, whilst introducing
extra type safety (Section 2).

Design Patterns for Parser Combinators

In-Place Lexing. The example parser does not make any
attempt to parse whitespace, and there are some counter-
intuitive parses possible from poor lexing.

To combat this, whitespace handling and general prac-
tices of lexing are discussed (Section 3), and measures are
introduced to abstract them, further refining the design.

Bookkeeping Information. The design does not lend it-
self well to changing requirements: suppose position infor-
mation must be added to the AsT, the parser would be altered
in a way that obscures its underlying purpose and structure.

As a result, further separation is introduced between the
semantic action of the parser (in this case AST construc-
tion) and the parsing logic that represents the grammar (Sec-
tion 4). The result of this pattern will be code that is robust to
changes in AsT requirements and more effectively separates
the concerns of the code. This will be illustrated by extending
the grammar to handle assignments and statements.

Helpful Errors. To show how to improve errors, the gram-
mar is extended again with conditional statements, and both
positive and negative lookahead will be leveraged to make
bespoke error messages for the user (Section 5).

Related work is discussed (Section 6) and the parser’s
development is summarised and reflected on at the very end
of the journey, with some closing remarks (Section 7).

2 Expression Parsing

Expression parsers have a very standardised shape in a gram-
mar. Consider the following grammar:

(pred) == {comp) ‘&& (pred) | (comp)

(comp) == {expr) ‘< {expr) | {expr) ‘=" {expr) | {expr)
(expry == {expr) ‘+’ (term) | (expr) ‘=" (term) | (term)
(term) == (term) ‘¥’ (atom) | {atom)

(atom) == “C (expr))’ | (number) | (ident)

This consists of various rules each referring to the next,
denoting the precedence of each operator ({term) is tighter
than (expr)). When two operators appear in the same rule
they share the same precedence (like < and =; or + and -).
Usually, the location of recursion - or its absence — denotes
the associativity — or lack thereof - of the operator. Recursion
on the left is left-associative (as in (expr)), on the right is
right-associative (as in (pred)), and no self-recursion is non-
associative (as in (comp)). Most parser combinator libraries
operate as recursive descent including the parsec family:
this means that left recursion results in non-termination.

Problem 1: Left-Recursive Expressions. Expressions
with left recursion cannot be encoded by recursive descent
parsers and will diverge.

One solution to handling left recursion in a grammar is
to change the grammar using left-factoring, however, it is
preferable to leave the grammar alone: the grammar should
not have to be tailored to the implementation.

73

Haskell °21, August 26-27, 2021, Virtual, Republic of Korea

Anti-pattern 1: Grammar Refactoring. Modifying the
grammar to remove left recursion exposes implementation
details and complicates the grammar.

2.1 The Homogeneous Chain Combinators

Hutton and Meijer [15] discuss the classic technique of re-
placing left recursion with iteration or recursion with an ac-
cumulating parameter. The resulting idiomatic combinators
are known traditionally as the chain combinators. Conven-
tionally, parser combinator libraries usually define two sorts
of chains: chainl1 and chainr1.

chainl1 :: Parser a — Parser (a — a — a) — Parser a
chainr1 :: Parser a — Parser (a — a — a) — Parser a

The chainx1 p op combinator should parse one or more
ps, separated by ops, applied x-associatively.

Pattern 1a: Homogeneous Chains. For binary operators
where the associativity is not specified, use chainl1 or
chainr1 to combine operands with their operators.

expr = chainl1 term (Add < char '+' « Sub < char '-")
term = chainl1 negate (Mul <s char 'x")

This parser, in conjunction with the original definitions for
negate, atom, number, and ident now works correctly and
also does not backtrack. However, the use of the Homoge-
neous Chains pattern implies that the grammar does not
specify the associativity like, for example, the following:
(func) ::= (func) °.” (func) | (lambda)

The recursion on both sides of the “.” operator in the
(func) rule means that it is associative, without specifying
whether it is to the left or the right. This makes the rule a
great candidate for the Homogeneous Chains patterns, since
the concrete associativity is left as an implementation detail:
since chainl1 and chainr1 share the same type, changing the
associativity would be seamless. With our example, however,
the grammar does specify the exact associativity of the oper-
ators, so the ease of exchanging one chain for the other can
allow the parser to be unfaithful to the grammar.

2.2 The Heterogeneous Chain Combinators

The problem with using the conventional chains introduced
in Section 2.1 for our grammar is that they fail to distinguish
(except lexically) between each other. It is very easy to acci-
dentally use the wrong one and silently change the meaning
of the parser and make it unfaithful. Instead, we offer two
new chains with refined types along with their definitions:

infixI1 :: (a — b) — Parser a
— Parser (b — a — b) — Parserb
infixI1 wrap p op = (wrap <> p) <> rest
where rest = flip (-) <> (flip <$> op <x> p) <> rest
<« pure id

Haskell °21, August 26-27, 2021, Virtual, Republic of Korea

infixr1:: (a — b) — Parser a
— Parser (a = b — b) — Parserb
infixr1 wrap p op =
p <> (flip <$> op <> infixr1 wrap p op « pure wrap)

The type of the chains in this formulation make it much
clearer which is which: the operators produce bs more tightly
in the correct position. This comes at an ergonomic cost,
since a wrapping function that transforms the terminal item
in the chain into the correct type must be provided. Like
chainl1 and chainr1, their definitions generalise the shape of
left- and right-factored parsers, providing a recipe for how
to transform the grammars by hand, though a strength of
combinators is allowing these higher-order parsing recipes
to be defined and used instead. These new chains are related
to the classic versions:

infixI1 id

infixr1id

chainl1 =
chainr1 =

Additionally, postfix and prefix serve as a natural extension:

postfix :: (a — b) — Parser a
— Parser (b — b) — Parser b
postfix wrap p op = (wrap <> p) <> rest
where rest = flip () <$> op <#> rest <> pure id

prefix :: (a — b) — Parser (b — b)

— Parser a — Parser b
prefix wrap op p = op <> prefix wrap op p <> wrap <> p
These chain combinators handle many applications of postfix
operators or prefix operators to a terminal item. In particular,

the definition of postfix is very close in shape to infixI1’s,
indeed, infixI1 can be easily given in terms of postfix:

infix|1 wrap p op = postfix wrap p (flip <$> op <> p)

Pattern 1b: Heterogeneous Chains. For associative oper-
ators where operand types may differ, use infixI1 or infixr1
to combine operands with their operators, in conjunction
with strongly typed semantic actions.

To properly leverage the additional type-safety provided
by the new heterogeneous chains, the AsT itself must change:

data Expr = Add Expr Term | Sub Expr Term
| Of Term Term
data Term = Mul Term Negate | OfNegate Negate

data Negate = Neg Negate | OfAtom Atom

data Atom = Num Int | Var String | Parens Expr

This datatype more accurately describes the shape of the
grammar; this is good because it provides a second layer
with which to check that the parser is correct. As an added
benefit, functions that consume this datatype can rely on the
shape of the AsT being left- or right-associated. The parser
now has to be adapted to the new type:

74

Jamie Willis and Nicolas Wu

expr = infixI1 Of Term term
(Add < char '+' « Sub < char '-")

term = infixIT OfNegate negate (Mul < char 'x")
negate = prefix OfAtom (Neg < string "negate") atom
atom = char ' (' % (Parens <$> expr) < char ')

> Num <$> number « Var «$> ident

This new parser conforms to the new datatype and, as such,
if the programmer accidentally switches an infix|1 for an
infixr1, this parser would fail to typecheck. Unfortunately,
the same level of guarantee is not present for prefix and
postfix, other than their reversed arguments. Unlike the pre-
vious, homogeneous, version of the parser, the “recursive”
point in atom has to be wrapped in the Parens constructor.

2.3 Generalising to Precedence Tables

Section 2.1 introduced chainl1 as a way of managing left re-
cursion in a grammar, refactored the parser to eliminate left
recursion, and introduced heterogeneous chains to support
datatypes that encode the grammar more precisely. This is
a good first step but there is still a lot of mechanical busy-
work to encode the precedence and associativity of opera-
tors, not to mention the daunting prospect of running out
of four-letter parser names as the grammar expands! Parser
generator tools often expose a more concise and scalable
representation of expression parsers: this same experience
can be developed for parser combinators.

A precedence combinator accepts a table of operator prece-
dence along with a base “atom”. This is a combinator that
is found, in some shape or form, in most parser combinator
libraries — including the parsec family — as well as in the
literature [3, 12, 13]. This table is normally implemented as
a list of some Op datatype that expresses one or more opera-
tors of some associativity and fixity. However, [Op a] would
imply a homogeneous table, and this is not desirable for the
heterogeneous parser in Section 2.2. A heterogeneous list
will fit better:

data Fixity a b sig where

InfixL :: Fixityab (b — a — b)
InfixR : Fixityab (a — b — b)
InfixN :: Fixityab (a — a — b)
Prefix : Fixityab (b — b)
Postfix :: Fixity ab (b — b)

data Op a b where
Op :: Fixity a b sig — (a — b) — Parsersig — Op ab
data Prec a where
Level :: Preca — Opab — Precb
Atom :: Parser a — Preca
(>+) = Level --infix] 5
(+) =flip (»+) --infixr 5

Design Patterns for Parser Combinators

The Fixity datatype relates the input a with the output b of
an operator, given by the type sig. The InfixN constructor
represents non-associative operators, which can appear at
most once!. The Fixity datatype is useful since it detaches
any potential functions building on Op from needing to
worry about considering every specialised fixity. The Op
datatype is a defunctionalised representation of a heteroge-
neous chain, partially applied to the operator but not the
atom. The list-like Prec structure combines smaller prece-
dence tables with a new layer, connected by the Op. To make
this more ergonomic, the (»+) and (+) operators allow the
table to be built from strongest to weakest or weakest to
strongest’. A precedence combinator is a “fold” over a table:

precedence :: Prec a — Parser a
precedence (Atom atom) = atom
precedence (Level Ivls ops) = con (precedence lvls) ops
where con :: Parsera — Op ab — Parserb
con p (Op InfixL wrap op) = infixI1 wrap p op
con p (Op InfixR wrap op) = infixr1 wrap p op
con p (Op InfixN wrap op) =
p <> (flip <$> op <x> p «> pure wrap)
con p (Op Prefix wrap op) = prefix wrap op p
con p (Op Postfix wrap op) = postfix wrap p op
precHomo :: Parsera — [Op aa] — Parsera
precHomo atom = precedence - foldl (>+) (Atom atom)

The idea is to traverse the table from the deepest layer out-
wards, converting each operator in turn into the correspond-
ing chain. The homogeneous precedence parser precHomo
can easily be recovered as a fold over a regular list.

Using helper functions can make the Op datatype easier
to use by providing common wrapping functions: these are
id and functions that implement a sort of sub-typing.

gops :: Fixity a b sig — (a — b) — [Parsersig] —» Opab
gops fixity wrap = Op fixity wrap - choice
ops :: Fixity a a sig — [Parsersig] — Opaa
ops fixity = gops fixity id
class sub < sup where
upcast :sub — sup
downcast :: sup — Maybe sub
sops ::a < b = Fixity a b sig — [Parsersig] — Opab
sops fixity = gops fixity upcast

The gops function takes many operators at the same level
and combines them into one with choice. The ops function
supports homogeneous operators with id. The sops function
uses upcasting to perform wrapping: in Functional-oop lan-
guages, datatype hierarchies are often made using subtype

INotice that b appears in neither the operator’s left nor right positions.
2The operators are eating the levels with the higher precedence.

Haskell °21, August 26-27, 2021, Virtual, Republic of Korea

polymorphism to avoid explicit wrapper constructors. This
is mimicked by a < b: a function is designated as the cast.

Pattern 1c: Precedence Tables. For expressions, use the
precedence combinator to deal with both fixity and prece-
dence concisely.

By giving each layer of the AsT its own (<) instance —
using the OfX constructors — a simpler and more concise
definition of expr can be given using precedence and sops:

expr = precedence $
sops InfixL [Add <¢ char '+',Sub « char '-'] «

sops InfixL [Mul <¢ char '*"'] =
sops Prefix [Neg < string "negate" | ~
Atom atom

By using sops, the wrapper constructors in the original
parser are avoided as they are resolved implicitly. Like the
version with heterogeneous chains, adding, removing, or al-
tering any layers will generate a type error’. Any alterations
to the parser need to be reflected in the datatype itself.

2.4 Aside: Folds for Parsers

The left chain (Section 2.1) is a conversion from recursion to
iteration or, in this case, recursion using an accumulating pa-
rameter (realised here by composing functions). The relation
between iteration with fold and recursion with accumulation
is an instance of deforestation [10, 30]. The idea is to fuse the
building and the consumption of an intermediate structure
— in this case lists — to eliminate it. In fact, in the existing
parser, there is an example of a structure that is built up and
immediately crushed back down:

number = foldl addDigit 0 <$> some digit

The combinator some returns a list of results, but this list is
then folded immediately: this is wasteful. Happily, the chains
are useful for trimming the forest, in particular postfix, prefix,
and infix|1 can be used to create so-called parser folds.

manyr:: (a > b — b) — b — Parser a — Parser b
manyr f k p = prefix id (f <¢> p) (pure k)

manyl :: (b - a — b) — b — Parsera — Parserb
manyl f k p = postfix id (pure k) (flip f <$> p)
somer :: (a — b — b) — b — Parser a — Parser b
somer fkp=f«p<»manyrfkp

somel :: (b — a — b) — b — Parser a — Parser b
somel fkp =infixI1 (fk) p (puref)

Just as foldr (:) [] is the identity fold, manyr (:) [] = many
and somer (:) [] = some. Here, the heterogeneous infix|1
can be used with the wrapping function f k representing
the initial application of the accumulator to the first item in
the fold: this would not be possible with the homogeneous

3In fact, this mechanism successfully caught a typo in this example parser!

Haskell °21, August 26-27, 2021, Virtual, Republic of Korea

chainl1. The relation between a deforested parser fold and
the “forested” fold with iterative combinator is as follows:

manyr f k p = foldr f k <$> many p
manyl fk p = foldl fk <$> many p
somer f k p = foldr f k <$> some p
somel f k p = foldl f k <$> some p

With this in mind, the definition of number can be simplified:
number = somel addDigit 0 digit

While there is little aesthetic difference between the old
version and the new one, the second is more efficient as it
does not have to build a list, instead consuming its elements
in situ. Really, it serves to highlight the flexibility of chains
and their applicability in a variety of different scenarios.

Discussion. The issues of left recursion and organising
expression parsers can be cleanly eliminated with the help
of precedence and chains. On the surface, it appears as if
precedence is a clear win, however, as illustrated by Sec-
tion 2.4, chains are more versatile than they might first ap-
pear, and, arguably, precedence is overkill for only a single
layer. This appears in practice from time to time: grammars
where “;” is considered an operator, for instance.

3 Effective Lexing

When writing parsers with a parser generator tool, there is
often a distinction between the lexical analysis and the pars-
ing stages. This is often exemplified by having two distinct
tools: alex and happy, for instance. With parser combina-
tors, however, the distinction is much less clear but no less
important to consider. Even though the tool used for lexing
and parsing is the same, clean and well-separated code leads
to more maintainable and readable parsers.

The parser refined in the previous section still has some
issues. Some easy ones to see are the following (where Left
represents failure and Right represents success):

parse expr "x + 7" = Right (Var "x")
parse (expr <« eof) "x + 7" = Left "(1, 2): unex[..]"

parse expr "negatex" = Right (Neg (Var "x"))

All three of these problems are caused by the absence of
proper lexing parsers and whitespace handling: "negatex"
should be treated as a single identifier, the parser is not
greedy, and it cannot consume spaces. The naive solution
would be to insert whitespace consuming logic everywhere
it is necessary straight into the parser: this is very noisy.

Problem 2: In-Place Lexing. Dealing with tokens while
parsing is intrusive to the overall structure of the parser
and introduces clutter.

Traditionally, parsers are designed with two phases: lexing
and then parsing. The idea is to build up a stream of tokens
instead of working on raw characters. This allows reading

76

Jamie Willis and Nicolas Wu

whitespace and chunking the input to be abstracted away
from the grammar. Running a lexing pass upfront has the
disadvantage that tokens will be generated greedily and
missing any contextual information about where the token
may lie relative to the grammar: a '-' might represent a
subtraction or be part of an integer literal but the lexer cannot
know which, so the choice is often deferred to the parser
and unary negation typically replaces negative literals.

Anti-pattern 2: Lexing then Parsing. Preprocessing the
input with a dedicated lexer has no contextual awareness
with which to selectively construct tokens.

3.1 Dealing with Whitespace

The most pressing issue to fix with the parser is whitespace.
This is not difficult, but there are a couple of considerations:

1. Whitespace should be read uniformly
2. Whitespace should be unintrusive to the rest of the parser

In particular, (2) will be properly addressed in Section 3.3,
however (1) can be addressed now. The meaning of uniform
in this context is to establish a convention on exactly where
whitespace is read. A common temptation that newcomers
make when writing parsers is to always consume whitespace
around any given token (or worse between any two combina-
tors); this is not ideal, since, if done “properly”, this technique
will double up on reading whitespace. This is fairly benign
as it is only wasteful computationally - the second attempt
at reading whitespace will always consume nothing; but, for
efficiency, there are two options: always consume leading
whitespace, or always consume trailing whitespace (and ul-
timately consume in the opposite direction exactly once at
the end or beginning respectively).

At first glance, it might appear as if both approaches are
equivalent to each other, however, that is not the case. In
fact, reading leading whitespace has a few flaws that trailing
whitespace does not. Firstly, it is inefficient since it leads
to excessive backtracking. Secondly, in the parsec family
this falls afoul of (2): taking the second branch of an « is
conditional on the first having not consumed any input so
to perform backtracking try combinator must be used. Ulti-
mately, this means that whitespace is already intrusive to the
rest of the parser, since try combinators must be inserted on
the first branch of every « where whitespace is consumed.
The third reason to avoid using the leading approach is that
it can make acquiring position information from the parser
more difficult, since the reported positions will be before the
whitespace in front of the relevant token.

As a result, it is much better to deal with trailing white-
space and read whitespace once at the very beginning of
the parser. If every token parser consumes whitespace after
performing its duties, whitespace will be handled correctly.

Design Patterns for Parser Combinators

Pattern 2a: Whitespace Combinators. Build a lexeme
combinator dedicated to consuming trailing whitespace
after a given lexeme. Build a fully combinator to consume
initial whitespace and the end of input.

For the expression grammar, actually parsing whitespace
will be easy, since there are no comments or special white-
space described in the language:

whitespace :: Parser ()
whitespace = () <$ many (satisfy isSpace)

fully :: Parser a — Parser a
fully p = whitespace %> p <+ eof
lexeme :: Parser a — Parser a
lexemep = p <t whitespace

The whitespace parser is responsible for reading zero or
more space-like characters and comments®. The fully combi-
nator is used to treat the top-level parser as a greedy unit that
is required to reach the end of input, whilst also consuming
the first chunk of whitespace. The lexeme combinator should
be used to wrap up any token parsers to ensure they con-
sume the trailing spaces. Ideally, these parsers should be kept
in a module separately from the main grammar, to cleanly
encapsulate them: after all, the token parsers exposed to the
main parser should all deal with whitespace themselves.

3.2 Tokens

When working with a lexer where tokens are generated on
demand, lexing can be context-aware meaning that certain
tokens are only demanded within certain grammar rules
only. The disadvantage to this approach, however, is it may
require several lexes of a single token when the parser back-
tracks. However, ideally, parsers should be constructed to
minimise backtracking, so the favoured approach here will
be to combine lexing and parsing into a single pass.

Tokens and Atomicity. The key consideration when cre-
ating lexing parsers with parser combinators is that they
should be atomic so that if reading a token fails it consumes
no input at all: it is either all or nothing. This allows the
parser to try matching a similar token without the grammar
needing to worry about performing any backtracking. In
practice, backtracking is still performed, but it should be
performed immediately as opposed to waiting until an al-
ternative branch is taken. For libraries with some form of
cut operation, this means cuts can often be inserted after
tokens. In the parsec family, however, backtracking of this
kind is done with the try combinator. Thankfully, try is very
cheap when the parser succeeds, so the lexing parsers will
use it liberally: it does not even matter if the token is already
atomic (which is the case for single-character tokens). With
that in mind here is the first relevant combinator:

4Learning from Section 2.4, manyl const () (satisfy isSpace) is better.

77

Haskell °21, August 26-27, 2021, Virtual, Republic of Korea

token :: Parser a — Parser a
token = lexeme - try

This combinator can be used to make a given parser into a
token, which is to say that it consumes any trailing white-
space and is completely atomic. In the parsec family, it is
important to not put the whitespace parsing within the scope
of the try: this would mean that if there were a syntax error
caused by the whitespace itself, it would needlessly back-
track for a while before the parser finally dies. This could be
the case, for instance, if the language contained comments.

Pattern 2bi: Tokenizing Combinators. Annotate termi-
nals with a token combinator, built on lexeme, to atomi-
cally parse them with whitespace consumed.

Using the token combinator, the primitive tokens can be
wrapped up and the whitespace problems fixed. As a re-
minder, here is the parser up to this point:

alpha =oneOf (['a".."z']+H['A"..'Z'])
digit =oneOf['0'.."'9"]

alphaNum = alpha « digit

number = somel addDigit 0 digit

ident = alpha <> many alphaNum

expr = precedence $
sops InfixL [Add <¢ char '+',Sub « char '-'] «

sops InfixL [Mul <¢ char '*"'] =
sops Prefix [Neg < string "negate"] «
Atom atom

atom = char ' (' %> (Parens <> expr) <« char ')’
<> Num <$> number «> Var <> ident

The question is which of these are tokens, and which of them
are not. This is largely subjective, but here alpha, digit, and
alphaNum are treated as building blocks whereas number,
ident, parentheses, and the operators are tokens.

number = token (somel addDigit 0 digit)

ident = token (alpha <> many alphaNum)

expr = precedence $
sops InfixL [Add «s token (char '+"),

Sub <« token (char '-')] ~
sops InfixL [Mul < token (char '*')] ~
sops Prefix [Neg < token (string "negate")] «
Atom atom

atom = Parens <>
(token (char ' (") #> expr <« token (char ') "))
<> Num <$> number «> Var <> ident

By ensuring all of the terminals of the grammar have been
marked with token, no other whitespace handling needs
to be performed for the expr in the parentheses. This has
addressed the original problem so that parse expr "x + 7"
now returns a correct successful result.

Haskell °21, August 26-27, 2021, Virtual, Republic of Korea

Token Validation. The previous parser has correctly han-
dled each of the tokens within the grammar. However, using
string for "negate" is inappropriate: it fails to enforce any
separation between tokens. A better approach is to develop
a distinct method for handling keywords.

keyword :: String — Parser ()

keyword k = token (string k x> notFollowedBy alphaNum)
keys :: [String]
keys = ["negate"]

The keyword combinator is simple: it will parse the given
string, but then ensure that it is not followed by another

valid identifier character. Care must be taken to consume
whitespace and make it atomic after the validation.

Pattern 2bii: Keyword Combinators. Avoid using string
with token for keywords. Use a keyword combinator that
enforces that the keyword does not form a valid prefix of
another token.

By substituting token - string for keyword to handle the
negate operator, parse expr "negatex" correctly returns
Right (Var "negatex"). A similar system can be devised for
longest-match operators, but there is no potential ambiguity
with operators in the example parser.

3.3 Using OverloadedStrings as a Facade

While Section 3.1 provided a rationale for how to robustly
handle whitespace in a grammar, and Section 3.2 neatly en-
capsulated the combination of whitespace logic with other
properties of the tokens, the solutions can justifiably be ac-
cused of polluting the parser. Indeed, a suggested property
of whitespace parsing was that it should not be intrusive
to the main body of parser, but with the current setup, the
parser is littered with tokens and keywords.

The Haskell OverloadedStrings extension allows the
regular Haskell syntax for string literals to represent some-
thing else entirely. In other words, if there is an instance of
the IsString type class available for a type s, string literals
can represent values of type s implicitly.

{-# LANGUAGE OverloadedStrings #-}
class IsString s where fromString :: String — s

Pattern 2c: Overloaded Strings. Hide tokenizing logic
by allowing string literals to serve as parsers.

The IsString type class is of particular interest where lex-
ing is concerned, with a valuable instance being one for
Parser () (to help GHC’s constraint solver, u~() is used):

instance u~() = IsString (Parser u) where
fromString str
| elem str keys = keyword str
| otherwise = () < token (string str)

78

Jamie Willis and Nicolas Wu

This magical instance encapsulates both the use of token
and the use of keyword in the parser. Except for the tokens
number and ident themselves (which should be separated),
the rest of the parser can be stripped of its lexing baggage:

expr = precedence $
sops InfixL [Add < "+",Sub < "-"] «

sops InfixL [Mul < "*"] ~
sops Prefix [Neg < "negate" | ~
Atom atom

atom = " (" x> (Parens > expr) < ")"
« Num <$> number « Var «$> ident

Discussion. The final result of the lexing transformation
is striking as it ends up eliminating noise from before lexing
was even incorporated in: the original char combinators have
been removed. This keeps it looking closer to the original
grammar in form, more so for non-precedence grammars.
Preferably, the combinators and non-string tokens them-
selves should be kept in another module.

In practice, parser combinator libraries often support some
form of “lexer combinator generator”, where a specification
of the language’s tokens are given and out pops the combi-
nators to parse them. This mechanism, where it exists, will
also handle whitespace just as described in Section 3.1, but
there is still value in understanding the justification behind
the canonical implementations.

4 Abstracting Ast Construction

A common realisation after writing a working parser is that
the AsT produced during parsing may need to be augmented
with extra information from the parse: this can be any infor-
mation that might be required for a later part of the overall
pipeline, often the line and column numbers. This can be a
frustrating realisation, as the parser and the data type needs
to be modified to accommodate the new requirements, and
the bookkeeping required to patch the parser is intrusive,
undoing all the work of the other patterns!

Problem 3: Bookkeeping. Asts built during parsing oc-
casionally require parser metadata.

To demonstrate both the problem and a taste of the dam-
age done, the grammar will be augmented to now include
assignments and statements. For the sake of illustration, the
requirement is that variables and assignments require po-
sition information, so that, at a later point in the program,
scoping errors can be reported referencing the original posi-
tions of the offenders. The new rules in the grammar are:
(stmt) == (asgn) *;’ (stmt) | {asgn)

(asgn) == (ident) *:=" (expr)

In the spirit of the type safety adopted in Section 2, the
new datatypes will mirror the structure of these rules:

Design Patterns for Parser Combinators

data Stmt = Seq Asgn Stmt | OfAsgn Asgn
data Asgn = Asgn String Expr (Int, Int)
data Atom = Num Int | Var String (Int, Int) | Parens Expr

As discussed, the Asgn constructor has been given an extra
argument to accommodate the extra position information
required for scope errors. The same has been done for the
Var constructor in Atom. The implementation of the parser
is familiar, making use of infixr1 to handle statements:

stmt = infixr1 OfAsgn asgn (Seq < ";")

asgn = pos x> (Asgn <> ident <+ " :=

"

LE expr)

atom = "(" x> (Parens > expr) < ")"
<> Num <$> number <> pos <> (Var <> ident)

The atom parser is the only parser that needs to change to
accommodate the new requirements. The new intrusion into
the parser is the pos :: Parser (Int, Int) combinator, which
yields the required information. Perhaps interestingly, the
combinator is merged in a somewhat counter-intuitive order-
ing, applied on the left to the rest of the partial constructor.
This is because the position has been placed at the end of
the constructor, but positions should be obtained before any
tokens have been read otherwise they will point at the next
token after the variable or assignment. This serves as further
justification of the principle that only trailing whitespace
should be consumed. This has already introduced noise into
the parser, if position information were required for the op-
erators as well, the problem would get much worse.

Anti-pattern 3: Inline Bookkeeping. Incorporating meta-
data inline into the parser is intrusive and brittle.

4.1 Smart Constructors for Parsers

Smart constructors are a well-known Haskell technique for
augmenting a datatype with additional builder functions to:

e Define compound structures built of core constructors

e Perform light-weight validation on constructor inputs to
guarantee invariants hold true

e Perform light-weight optimisations on constructors that
compose their arguments

o Simplify the Ap1 by providing default values

e Processing constructor arguments into normal forms

They are simply regular Haskell functions, often with a
similar name to the constructor they are abstracting and the
prefix mk (or make). In general, given a regular constructor
C:A; — ... = A, — T, a smart constructor typically has
the form mkC :: B; — ... —» B,, — T where the required
arguments A;...A, are synthesised from other values B;...By,
and used to instantiate C to make a T. A simple but effective
concept, they appeared in Section 2.3: the smart constructors
ops and sops both helped to simplify the ar1 by providing
default wrappers; and gops extended the Op constructor by
combining a list of parsers with choice.

79

Haskell °21, August 26-27, 2021, Virtual, Republic of Korea

When parsing it is convenient to have a lifted smart con-
structor of shape mkC :: Parser Ay — ... — Parser A, —
Parser T, since the value C is built during parsing. When the
arguments are plainly parsed then combined in sequence, the
constructor can be implemented by liftA, F, which abstracts
away the <$> and <> normally required to combine results.
However, smart constructors can also be made to perform
any of three common tasks:

o Perform bookkeeping as the AsT is built
e Perform semantic validation on the AsT nodes
e Perform normalisation on the AST nodes

All of these are properties of the underlying constructor, and
may or may not be required. An example of bookkeeping may
be extracting position information (this is possible since the
smart constructor operates in the parsing effect), an example
of semantic validation might be to ensure that integers do
not overflow and normalisation might arbitrate between two
ambiguous constructions without backtracking.

Pattern 3a: Lifted Constructors. Use smart constructors
to decouple bookkeeping logic from the parser.

The first of the three advertised properties above can im-
mediately address the issues with the current parser. The
smart constructors for Asgn and Var should both handle po-
sition tracking, but the others, for instance, Num, need do
nothing but lift the underlying constructor:

mkAsgn :: Parser String — Parser Expr — Parser Asgn
mkAsgn var body = pos «xx> (Asgn <> var <> body)

mkVar var = pos <> (Var <$> var)
mkNum n = Num <$> n
mkParens x = Parens <> x

asgn = mkAsgn (ident <« ":=") expr
atom = " (" % mkParens expr ¢ ")"
> mkNum number « mkVar ident

The parsers now have been simplified further: the work
needed to combine various results has been abstracted into
the smart constructors, and the parser does not need to be
aware of what additional work needs to be performed on
these sub-parts. The advantage to this approach is that if
the position information was no longer needed, it can be
removed without changing the parser: this adheres nicely to
the Single-Responsibility Principle of Software Engineering [4,
20, 23] as the parser only cares about building results, not
how they are built, which is the sole job of the constructors.
The Lifted Constructors pattern works well for linear seg-
ments of parser, where the arguments to constructors are
situated next to the application of the constructor itself. But
this is not always the case: consider the constructors for the
operators in the precedence table. In these instances, the
same principle can be applied, but in a different shape.

Haskell °21, August 26-27, 2021, Virtual, Republic of Korea

Pattern 3b: Deferred Constructors. Defer the construc-
tion of an AST node to abstract the bookkeeping when its
arguments are not immediately available.

Here constructors are returned by parsers so that their
arguments can be applied to them later but without any re-
quired metadata in the type. In the basic case, the constructor
can be returned with pure:

mkAdd :: Parser (Expr — Term — Expr)
mkAdd = pure Add

mkNeg :: Parser (Negate — Negate)
mkNeg = pure Neg

While it might appear like this is not particularly useful, it
still means that if position information needs to be added to
a node, the parser does not need modification, for example:

mkMul :: Parser (Term — Negate — Term)
mkMul = (Ap xy = Mul xy p) > pos

In this case, the position can be read immediately and applied
ahead of time, with the other arguments deferred to later.
The remainder of the parser is modified as follows:

expr = precedence $
sops InfixL [mkAdd o "+", mkSub « "-"] «
sops InfixL [mkMul < "*"]
sops Prefix [mkNeg <« "negate"] =

*

Atom atom

The intrusion here is minimal, but the flexibility increased:
this is more robust to change than any previous version.

Discussion. The smart constructor pattern is ultimately a
simple one, but very flexible. It allows the parser maintainer
to improve the separability of their code and removes yet
more combinator noise to bring the parser closer still to the
original look of the grammar.

It can be improved further, however: in other languages,
for instance, the constructor can easily be overloaded so
that the name does not require any prefix attached; and,
in Haskell, the mechanical nature of the position tracking
variant can be leveraged by Template Haskell to automati-
cally generate the smart constructors for a datatype. Pattern
synonyms [25] can be used as an alternative to smart con-
structors to construct compound structures, however the
result must be pattern matchable.

5 Improving Errors: Anticipating Mistakes

An important part of a parser (up till now overlooked by this
paper) is generating meaningful and helpful error messages.
Writing good error messages is incredibly subjective as an
exercise and so the focus here is not so much on what makes
good error messages but instead on providing tools that the
parser writer can keep in mind when considering their errors.

80

Jamie Willis and Nicolas Wu

Many libraries have a few combinators in common for errors
that will be leveraged here:

(<) :: Parser a — String — Parsera --infix 0
unexpected :: String — Parser a

ail :: String — Parser a

lookAhead :: Parser a — Parser a

notFollowedBy :: Parser a — Parser ()

The «?> combinator, pronounced “label” assigns a name to a
parser to identify it in an error message. As an example:

digit = oneOf['0".."'9"'] <» "digit"

As an aside, adding whitespace is hardly ever the solution to
a syntax error (with the exception of indentation-sensitive
grammars), so ideally it should be hidden from any syntax
errors to reduce noise. This can often be accomplished by
using («»"") to hide the label of the whitespace.

The unexpected and fail combinators both fail immedi-
ately, as indicated by their ability to seemingly produce a
value of any type a out of thin air if they were to succeed.
Normally, unexpected changes the part of the error message
representing the problematic token, and fail adds a bespoke
message to the error®. The specific combinators required for
each technique may differ depending on the library.

The lookAhead and notFollowedBy combinators are pos-
itive and negative look-ahead respectively. If lookAhead
succeeds, it does so without consuming any input, and if
notFollowedBy’s argument fails, then the combinator suc-
ceeds, and vice-versa; notFollowedBy never consumes input.

Conditionals. To provide a basis for the upcoming discus-
sion, the grammar is extended one final time with conditional
statements and basic comparisons:

(stmts) u= (stmt) ;’ (stmts) | (stmt)

(stmt) == (asgn) | (ifStmt) | ‘skip’

(ifStmt) == ‘if’ (comp) ‘{’ (stmt) ‘} ‘else’ ‘{’ (stmt) ‘Y
(comp) == (expr) ‘<’ (expr)

Since there is more than one type of statement now, the
sequence in (stmt) has been split out into a (stmts) rule
instead. This change, along with the new components, must
be incorporated into the AsT:

data Stmts = Seq Stmt Stmts | OfStmt Stmt
data Stmt = Asgn String Expr (Int, Int)

| If Comp Stmt Stmt | Skip
data Comp = Less Expr Expr

It is perhaps a little overkill to create a new If datatype
when Stmt will do, but, other than that, the datatype aligns
perfectly with the grammar. The parser makes use of the
same techniques used so far in the paper®:

5It may or may not also remove other information from the error.
® Assume that the additional keywords have been added to the lexer and
new smart constructors have been created.

Design Patterns for Parser Combinators

stmts = infixr1 OfStmt stmt (mkSeq <+ "; ")

stmt = asgn « ifStmt «> mkSkip < "skip"

ifStmt = mklf ("if" % comp) ("{" %> stmt < "}")
("else" x> ("{" > stmt <+ "3}"))

comp = mkLess expr ("<" x> expr)

Happily, this new syntactic extension offers some non-
conventional syntax ripe for exploration. One example is
that the body of an if statement cannot be empty:

parse (fully stmts)
"if @ <1 {3} else { x :=10 }"
(1, 11): unexpected "}"
expected identifier, if, skip
>if 0 <1 {3} else { x :=10 }

This error could be improved by marking it using <> to
give the three alternatives the name “statement”. This is
fine for experts, but it would be nice to explain what that
means for those not versed in such terminology. This can be
achieved by adding a fail combinator:

stmt = (asgn « ifStmt «> mkSkip <« "skip"
<> "statement")
«> fail "statements consist of skips, [..]"

This produces a more friendly error:

(1, 11): unexpected "}"
expected statement
statements consist of skips, [...]
>if 0 <1 {} else{ x :=10 }

As another example, unlike many mainstream languages,
if statements not only require an else branch, but a trailing
semicolon too:

parse (fully stmts)
"if @ <1 { skip } else { skip }\nskip"

(2, 1): unexpected "s"
expected ";", end of file
> skip

A

Here, the user has fallen afoul of this restriction, assuming
that a semicolon is not needed after braces. Unfortunately,
the error message gives no indication that this is the cause
of the issue, other than suggesting adding a semicolon.

Problem 4: Helpful Errors. The parser may wish to pro-
vide guidance about avoiding common mistakes.

This example will be revisited later. Instead, suppose that
the user now realises a semicolon is necessary, and now
incorrectly assumes that all braces require a semicolon after:

81

Haskell °21, August 26-27, 2021, Virtual, Republic of Korea

(1, 18): unexpected ";"
expected else
> if 0 <1 { skip }; else { skip }

A

Again, it is clear that writing an else instead of the semi-
colon is the way to fix the problem, but fails to explain to
the user why in a more useful way. The user has fallen afoul
of the choice to make semicolons an operator instead of a
delimiter, and again, there is no indication in the error mes-
sage that would help the user understand what the rules are
and why they have gotten them wrong.

A first attempt may use the same strategy used with state-
ments, by adding a bespoke fail firing if else is not parsed:

elseClause = "else" « fail "semicolons are not [..]"

Whilst this seems fine at first glance (and works for the “true-
positive” input above), it generates nonsensical messages in
the presence of “false-positive” instances:

(1, 18): unexpected end of input
expected else
semicolons are not allowed between if and else
> if @ < 1 { skip }

Anti-pattern 4: Unconditional Errors. Addressing a
common issue with a fixed error message can produce
misleading errors.

5.1 Using Positive Lookahead

The problem with the naive approach using solely fail on its
own is that it has no awareness of the surrounding input:
clearly, reporting that semicolons are illegal when found
between if and else is only valid when there actually is
a semicolon between them. The previous attempt failed to
respect that idea, instead always emitting the message.

Pattern 4a: Verified Errors. Use lookAhead to verify that
contextual obligations are met before raising an error.

In contrast, lookAhead can be used to inspect the next part
of the input to determine whether or not the conditions are
met to make the error make sense. In the previous scenario,
it is important to ensure that a semicolon has been written
before referencing them, so the fail will be guarded. To help
ensure that the added error widgets are not seen as part of
the grammar, prefix their name with an underscore.

"else" « _semi
lookAhead (";" %> "else"
x> fail "semicolons are not [..]" < "")

elseClause =
_semi =

By predicating the fail behind the parsing of a semicolon and
an else the message only appears when appropriate. The
widget should be given the “hidden” error label.

Haskell °21, August 26-27, 2021, Virtual, Republic of Korea

5.2 Using Negative Lookahead

While the Verified Errors pattern is useful, it is less appropri-
ate when the context of the error depends on non-local infor-
mation in the grammar or when there are multiple places it
can occur. As an example, informing the user that assigning
comparisons to variables is illegal cannot be performed with
lookAhead, since the valid continuations of assign: end of
input, semicolons, or closing braces are valid elsewhere. If a
lookAhead was placed at each of these places, then bad in-
put like "skip <" may be reported as a bad assignment and,
even if worked properly, it would duplicate the logic around
the parser. Placing a lookAhead in the assignment, on the
other hand, would only work with lookAhead comp...wexpr,
which always parses valid input twice, so it is not ideal.

Pattern 4b: Preventative Errors. Use notFollowedBy to
rule out illegal input or else raise an error.

A reasonable substitute is to use notFollowedBy to ensure
that the right-hand side of an assignment is an expression
that does not form part of an otherwise valid comparison.
As with the Verified Errors pattern, the error widget can be
distinguished by prepending its name with _no.

_noComp =
notFollowedBy ("<" x> expr)
<> unexpected "<"
o fail "\"<\" cannot be used in assignments"
< "end of assignment"
asgn = mkAsgn (ident <+ ":=") expr <x _noComp

This widget ensures that only when a < appears after an as-
signment with another expression will the user be informed
that comparisons are illegal in assignments.

This technique was applied in Section 3.2 to prevent key-
words from being followed by a letter. It can also be used
after a closing brace to guard against another statement being
written before a semicolon, resolving the very first exam-
ple. Finally, it can also report that non-associative operators
cannot be chained in the precedence combinator.

Discussion. These final two patterns are more situational
than the rest presented in this paper but no less useful. How-
ever, the formulation using lookAhead and notFollowedBy
is not perfect, and depends on how a library arbitrates be-
tween different messages. But they are a good heuristic for
generating more bespoke, and applicable, errors.

6 Related Work

Object-oriented design patterns [9] are ubiquitous in the
oop world, being widely applied and embraced. There are
instances of their use for the design and creation of parsers
themselves: Nguyen et al. [22] uses several of the classic
oop design patterns to create easily extensible LL(1) parsers,
where the elements of the grammar are decoupled to isolate

82

Jamie Willis and Nicolas Wu

the scope of any changes; Schreiner and Heliotis [26] lever-
age many of the same patterns in the internal design of a
parser generator tool called oops3.

The ANTLR parser generator tool [24] uses the Visitor pat-
tern to separate the building of a semantic action from pars-
ing by exposing a visitor to process a generic parse tree;
this contrasts with our Lifted Constructors pattern to decou-
ple the concrete construction of AsTs from the parser which
generates them. The difference in approach is a form of defor-
estation where the parser itself acts as a fold over the parse
tree. ANTLR also uses the Observer pattern in the form of lis-
teners to allow bespoke errors to be generated depending on
the surrounding context, contrasting with our parser-driven
Verified Errors and Preventative Errors patterns.

While there is an abundance of parser combinator tutori-
als [7, 15, 27, 28], they focus on how to design the libraries
themselves, and do not offer any substantial discussion on
reusable patterns for writing parsers. This is surprising since
design patterns find such popularity in other disciplines.
Kovesdan et al. [18] do document specific design patterns in
the parsing space, but these are directed at an architectural
level, describing the differences and applications of tech-
niques such as hand-rolled parsers, parser generators, and so
on. In this context, they would describe parser combinators
as a pattern in themselves, and not describe their underlying
nuances. As far as we are aware, our patterns have not been
presented in the true design pattern style before, instead
existing in folklore.

Different parsing algorithms such as Earley’s algorithm
[6], LALR, and LR can all handle left-recursion without any
changes to the grammar or the parser [1]. There are also
examples of libraries that use memoisation to allow left-
recursion [8, 16, 17]. Danielsson [2] presents a parser com-
binator library using guarded co-induction to ensure that
left-recursive grammars are still productive. Devriese and
Piessens [5] present a parser combinator library that uses
the left-corner transform [21] to automatically remove left-
recursion. In all of these cases, the Chains pattern is not
needed. However, variants of the Precedence Tables pattern
still appear in many parser generator tools, like Happy [11].

7 Conclusion

The final state of the grammar is shown in Figure 3, and
the final state of the parser (with the asT, lexer, and smart
constructors omitted) is shown in Figure 4, along with the
definitions of the error widgets that are used.

The effect of the Precedence Table pattern is that the prece-
dence and fixities of the expression portion of the grammar
are clearly represented in the expr rule in a way that lever-
ages strong types to ensure the correctness of the table’s
fixities and ordering. While this does make the parser di-
verge from the grammar, it provides an easy way to establish
information about each operator. The Heterogeneous Chains

Design Patterns for Parser Combinators

(stmts) == (stmt) *;’ (stmits) | (stmt)
(stmt) == (asgn) | (ifStmt) | ‘skip’
(asgn)y == (ident) ‘:=" (expr)
(ifStmty == ‘if’ {comp) ‘{’ (stmt) }’
‘else’ ‘(" (stmt) ‘}
(comp) == (expr) ‘< (expr)
(expry u= (expr) ‘+ (term) | {expr) ‘=’ (term) | (term)
(term) = (term) ‘%’ (negate) | (negate)
(negate) ::= ‘negate’ (negate) | (atom)
(atom) == “C (expr) ‘)’

| (number) | (ident)

Figure 3. Final Grammar

pattern has been used to handle the separation of statements
using semicolons: here, the right-associativity of sequencing
is enforced using the stronger types offered by infixr1. If the
grammar did not specify the associativity for us, however,
the Homogeneous Chains pattern could have been used to
provide a more flexible implementation.

Using the Overloaded Strings pattern, the parser is void
of any references to tokens or whitespace. This allows the
parser to adopt a form closer to that of the grammar by using
string literals. Behind the scenes, the Whitespace, Tokeniz-
ing, and Keyword Combinators patterns are used to cleanly
manage lexing and consume whitespace consistently.

The Lifted, and Deferred Constructors patterns have been
employed to abstract the creation of the AsT from the parser,
in the process abstracting away many sequencing combina-
tors. While parts of the AsT this parser produces may require
position information, that is not evident here and can be
easily managed separately.

The Verified and Preventative Errors patterns have been
employed in the form of _semi and _noComp to provide
some bespoke errors to the user of the parser. Whilst they
distract a little from the overall parser, they can be kept
separate and distinguished with their naming convention.

In all, the use of all of these patterns has yielded a clean
and maintainable parser that can be easily extended as the
language grows, and we have no doubt there are plenty more
patterns waiting to be documented!

Acknowledgements

We would like to thank the anonymous reviewers for their
constructive comments on the draft of this paper. This work
has been supported by EPSRC grant number EP/S028129/1
on “SCOPE: Scoped Contextual Operations and Effects”.

83

Haskell °21, August 26-27, 2021, Virtual, Republic of Korea

stmts = infixr1 OfStmt stmt (mkSeq < "; ")

stmt = asgn « ifStmt o> mkSkip <« "skip"

asgn = mkAsgn (ident <« ":=") expr < _noComp

ifStmt = mkIf ("1if" % comp) ("{" #> stmt <« "}")

(("else" @ _semi) % "{" % stmt <+ "}")

comp = mkLess expr ("<" x> expr)

expr = precedence $
sops InfixL [mkAdd ¢ "+", mkSub « "-"] «
sops InfixL [mkMul ¢ "*" =
sops Prefix [mkNeg <+ "negate"] =
Atom atom

atom = "(" % mkParens expr <+ ")"

o mkNum number « mkVar ident

_semi = lookAhead (";" %> "else"
%> fail "semicolons are not [...]" ¢ "")
_noComp =
notFollowedBy ("<" x> expr)
< unexpected "<"
> fail "\"<\" cannot be used in assignments"
<> "end of assignment"

Figure 4. Final Parser

References

[1] Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman. 2006.
Compilers: Principles, Techniques, and Tools (2nd Edition). Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA. https://doi.
org/doi/10.5555/1177220

[2] Nils Anders Danielsson. 2010. Total Parser Combinators. SIGPLAN Not.
45, 9 (Sept. 2010), 285-296. https://doi.org/10.1145/1932681.1863585

[3] Nils Anders Danielsson and Ulf Norell. 2011. Parsing Mixfix Operators.
In Implementation and Application of Functional Languages, Sven-Bodo
Scholz and Olaf Chitil (Eds.). Springer Berlin Heidelberg, Berlin, Hei-
delberg, 80-99. https://doi.org/10.1007/978-3-642-24452-0_5

[4] Tom DeMarco. 1979. Structured Analysis and System Specification.
Prentice Hall PTR, USA. https://doi.org/doi/book/10.5555/1102012

[5] Dominique Devriese and Frank Piessens. 2011. Explicitly Recursive

Grammar Combinators. In Practical Aspects of Declarative Languages,

Ricardo Rocha and John Launchbury (Eds.). Springer Berlin Heidelberg,

Berlin, Heidelberg, 84-98. https://doi.org/10.1007/978-3-642-18378-

2.9

Jay Earley. 1970. An Efficient Context-Free Parsing Algorithm. Com-

mun. ACM 13, 2 (Feb. 1970), 94-102. https://doi.org/10.1145/362007.

362035

[7] Jeroen Fokker. 1995. Functional Parsers. In Advanced Functional Pro-

gramming, First International Spring School on Advanced Functional

Programming Techniques-Tutorial Text. Springer-Verlag, Berlin, Heidel-

berg, 1-23. http://dl.acm.org/citation.cfm?id=647698.734153

Richard A. Frost, Rahmatullah Hafiz, and Paul C. Callaghan. 2007. Mod-

ular and Efficient Top-down Parsing for Ambiguous Left-Recursive

Grammars. In Proceedings of the 10th International Conference on Pars-

ing Technologies (Prague, Czech Republic) (IWPT ’07). Association for

Computational Linguistics, USA, 109-120. https://doi.org/doi/10.5555/

1621410.1621425

(6]

8

[}

https://doi.org/doi/10.5555/1177220
https://doi.org/doi/10.5555/1177220
https://doi.org/10.1145/1932681.1863585
https://doi.org/10.1007/978-3-642-24452-0_5
https://doi.org/doi/book/10.5555/1102012
https://doi.org/10.1007/978-3-642-18378-2_9
https://doi.org/10.1007/978-3-642-18378-2_9
https://doi.org/10.1145/362007.362035
https://doi.org/10.1145/362007.362035
http://dl.acm.org/citation.cfm?id=647698.734153
https://doi.org/doi/10.5555/1621410.1621425
https://doi.org/doi/10.5555/1621410.1621425

Haskell °21, August 26-27, 2021, Virtual, Republic of Korea

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides.
1995. Design Patterns: Elements of Reusable Object-Oriented Soft-
ware. Addison-Wesley Longman Publishing Co., Inc., USA. https:
//doi.org/doi/book/10.5555/186897

Andrew Gill, John Launchbury, and Simon L. Peyton Jones. 1993. A
Short Cut to Deforestation. In Proceedings of the Conference on Func-
tional Programming Languages and Computer Architecture (Copen-
hagen, Denmark) (FPCA ’93). Association for Computing Machinery,
New York, NY, USA, 223-232. https://doi.org/10.1145/165180.165214
Andy Gill and Simon Marlow. 1995. Happy: the parser generator for
Haskell.

Steve Hill. 1994. Continuation Passing Combinators for Parsing Prece-
dence Grammars. Technical report. University of Kent, Computing
Laboratory, University of Kent, Canterbury, UK. https://kar.kent.ac.
uk/21168/

Steve Hill. 1996. Combinators for parsing expressions. Journal of
Functional Programming 6, 3 (1996), 445-464. https://doi.org/10.1017/
$0956796800001799

Graham Hutton. 1992. Higher-order functions for parsing. Journal of
Functional Programming 2, 3 (1992), 323-343. https://doi.org/10.1017/
50956796800000411

Graham Hutton and Erik Meijer. 1996. Monadic Parser Combinators.
Technical Report NOTTCS-TR-96-4. Department of Computer Science,
University of Nottingham. https://doi.org/viewdoc/summary?doi=10.
1.1.54.1678

Anastasia Izmaylova, Ali Afroozeh, and Tijs van der Storm. 2016. Prac-
tical, General Parser Combinators. In Proceedings of the 2016 ACM SIG-
PLAN Workshop on Partial Evaluation and Program Manipulation (St. Pe-
tersburg, FL, USA) (PEPM ’16). Association for Computing Machinery,
New York, NY, USA, 1-12. https://doi.org/10.1145/2847538.2847539
Mark Johnson. 1995. Memoization in Top-down Parsing. Comput. Lin-
guist. 21, 3 (Sept. 1995), 405-417. https://doi.org/doi/10.5555/216261.
216269

Gabor Kévesdan, Mark Asztalos, and Laszl6 Lengyel. 2014. Architec-
tural design patterns for language parsers. Acta Polytechnica Hungarica
11, 5 (2014), 39-57. https://doi.org/10.12700/aph.11.05.2014.05.3
Daan Leijen and Erik Meijer. 2001. Parsec: Direct Style Monadic Parser
Combinators For The Real World. Technical Report. Microsoft. https:
//doi.org/viewdoc/summary?doi=10.1.1.19.5187

Robert C Martin. 2000. Design principles and design patterns. Object
Mentor 1, 34 (2000), 597.

84

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

Jamie Willis and Nicolas Wu

Robert C. Moore. 2000. Removing Left Recursion from Context-Free
Grammars. In Proceedings of the 1st North American Chapter of the
Association for Computational Linguistics Conference (Seattle, Washing-
ton) (NAACL 2000). Association for Computational Linguistics, USA,
249-255. https://doi.org/doi/10.5555/974305.974338

Dung "Zung" Nguyen, Mathias Ricken, and Stephen Wong. 2005. De-
sign Patterns for Parsing. SIGCSE Bull. 37, 1 (Feb. 2005), 477-481.
https://doi.org/10.1145/1047124.1047497

Meilir Page-Jones. 1988. The Practical Guide to Structured Systems
Design: 2nd Edition. Yourdon Press, USA. https://doi.org/doi/book/10.
5555/48039

Terence Parr. 2013. The Definitive ANTLR 4 Reference (2nd ed.). Prag-
matic Bookshelf. https://doi.org/doi/10.5555/2501720

Matthew Pickering, Gerg Erdi, Simon Peyton Jones, and Richard A.
Eisenberg. 2016. Pattern Synonyms. SIGPLAN Not. 51, 12 (Sept. 2016),
80-91. https://doi.org/10.1145/3241625.2976013

Axel-Tobias Schreiner and James Heliotis. 2008. Design Patterns in
Parsing. (2008). https://doi.org/other/82/ Presented at Killer Examples,
a workshop at OOPSLA ’08.

Doaitse Swierstra and Luc Duponcheel. 1996. Deterministic, Error-
Correcting Combinator Parsers. In Advanced Functional Programming,
Second International School-Tutorial Text. Springer-Verlag, London, UK,

184-207. http://dl.acm.org/citation.cfm?id=647699.734159
S. Doaitse Swierstra. 2009. Combinator Parsing: A Short Tutorial.

Springer Berlin Heidelberg, Berlin, Heidelberg, 252-300. https:
//doi.org/10.1007/978-3-642-03153-3_6

Philip Wadler. 1985. How to replace failure by a list of successes a
method for exception handling, backtracking, and pattern matching in
lazy functional languages. In Functional Programming Languages and
Computer Architecture, Jean-Pierre Jouannaud (Ed.). Springer Berlin
Heidelberg, Berlin, Heidelberg, 113-128. https://doi.org/10.1007/3-
540-15975-4_33

Philip Wadler. 1988. Deforestation: Transforming Programs to Elim-
inate Trees. Theor. Comput. Sci. 73, 2 (Jan. 1988), 231-248. https:
//doi.org/10.1016/0304-3975(90)90147-A

Jamie Willis and Nicolas Wu. 2018. Garnishing Parsec with Parsley. In
Proceedings of the 9th ACM SIGPLAN International Symposium on Scala
(St. Louis, MO, USA) (Scala '18). ACM, New York, NY, USA, 24-34.
https://doi.org/10.1145/3241653.3241656

Jamie Willis, Nicolas Wu, and Matthew Pickering. 2020. Staged Selec-
tive Parser Combinators. Proc. ACM Program. Lang. 4, ICFP, Article
120 (Aug. 2020), 30 pages. https://doi.org/10.1145/3409002

https://doi.org/doi/book/10.5555/186897
https://doi.org/doi/book/10.5555/186897
https://doi.org/10.1145/165180.165214
https://kar.kent.ac.uk/21168/
https://kar.kent.ac.uk/21168/
https://doi.org/10.1017/S0956796800001799
https://doi.org/10.1017/S0956796800001799
https://doi.org/10.1017/S0956796800000411
https://doi.org/10.1017/S0956796800000411
https://doi.org/viewdoc/summary?doi=10.1.1.54.1678
https://doi.org/viewdoc/summary?doi=10.1.1.54.1678
https://doi.org/10.1145/2847538.2847539
https://doi.org/doi/10.5555/216261.216269
https://doi.org/doi/10.5555/216261.216269
https://doi.org/10.12700/aph.11.05.2014.05.3
https://doi.org/viewdoc/summary?doi=10.1.1.19.5187
https://doi.org/viewdoc/summary?doi=10.1.1.19.5187
https://doi.org/doi/10.5555/974305.974338
https://doi.org/10.1145/1047124.1047497
https://doi.org/doi/book/10.5555/48039
https://doi.org/doi/book/10.5555/48039
https://doi.org/doi/10.5555/2501720
https://doi.org/10.1145/3241625.2976013
https://doi.org/other/82/
http://dl.acm.org/citation.cfm?id=647699.734159
https://doi.org/10.1007/978-3-642-03153-3_6
https://doi.org/10.1007/978-3-642-03153-3_6
https://doi.org/10.1007/3-540-15975-4_33
https://doi.org/10.1007/3-540-15975-4_33
https://doi.org/10.1016/0304-3975(90)90147-A
https://doi.org/10.1016/0304-3975(90)90147-A
https://doi.org/10.1145/3241653.3241656
https://doi.org/10.1145/3409002

	Abstract
	1 Introduction
	1.1 An Introductory Example
	1.2 The Common Problems with Combinators

	2 Expression Parsing
	2.1 The Homogeneous Chain Combinators
	2.2 The Heterogeneous Chain Combinators
	2.3 Generalising to Precedence Tables
	2.4 Aside: Folds for Parsers

	3 Effective Lexing
	3.1 Dealing with Whitespace
	3.2 Tokens
	3.3 Using OverloadedStrings as a Facade

	4 Abstracting Ast Construction
	4.1 Smart Constructors for Parsers

	5 Improving Errors: Anticipating Mistakes
	5.1 Using Positive Lookahead
	5.2 Using Negative Lookahead

	6 Related Work
	7 Conclusion
	References

