Hybrid Eager and Lazy Evaluation for Efficient Compilation of
Haskell
by
Jan-Willem Maessen

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Computer Science
at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
June 2002

(© Massachusetts Institute of Technology 2002. All rights reserved.

AULNOT . o
Department of Electrical Engineering and Computer Science
17 May 2002
Certified DYo
Arvind

Charles and Jennifer Johnson Professor of Computer Science and Engineering
Thesis Supervisor

ACCEPIEA DY . .o
Arthur C. Smith
Chairman, Department Committee on Graduate Students

Hybrid Eager and Lazy Evaluation for Efficient Compilation of Haskell

by
Jan-Willem Maessen

Submitted to the Department of Electrical Engineering and Computer Science
on 17 May 2002, in partial fulfillment of the
requirements for the degree of
Doctor of Philosophy in Computer Science

Abstract

The advantage of a non-strict, purely functional language such as Haskell lies in its clean equational
semantics. However, lazy implementations of Haskell fall short: they cannot express tail recursion
gracefully without annotation. We descritesource-bounded hybrid evaluatiamixture of strict

and lazy evaluation, and its realizationeager Haskell From the programmer’s perspective, Eager
Haskell is simply another implementation of Haskell with the same clean equational semantics.
Iteration can be expressed using tail recursion, without the need to resort to program annotations.
Under hybrid evaluation, computations are ordinarily executed in program order just as in a strict
functional language. When particular stack, heap, or time bounds are exceeded, suspensions are
generated for all outstanding computations. These suspensions are re-started in a demand-driven
fashion from the root.

The Eager Haskell compiler translateg, the compiler's intermediate representation, to ef-
ficient C code. We use an equational semantics\torto develop simple correctness proofs for
program transformations, and connect actions in the run-time system to steps in the hybrid evalua-
tion strategy. The focus of compilation is efficiency in the common case of straight-line execution;
the handling of non-strictness and suspension are left to the run-time system.

Several additional contributions have resulted from the implementation of hybrid evaluation.
Eager Haskell is the first eager compiler to use a call stack. Our generational garbage collector uses
this stack as an additional predictor of object lifetime. Objects above a stack watermark are assumed
to be likely to die; we avoid promoting them. Those below are likely to remain untouched and there-
fore are good candidates for promotion. To avoid eagerly evaluating error checks, they are compiled
into speciabottom thunkswhich are treated specially by the run-time system. The compiler iden-
tifies error handling code using a mixture of strictness and type information. This information is
also used to avoid inlining error handlers, and to enable aggressive program transformation in the
presence of error handling.

Thesis Supervisor: Arvind
Title: Charles and Jennifer Johnson Professor of Computer Science and Engineering

Acknowledgments

I would like to to those who have helped me along through the long haul. Most especial gratitude
goes to Andrea Humez, who has supported me as friend and confidante over eight and a half years.
On the technical | have been influenced by so many people an exhaustive list is out of the question. |
would like to single out mypH co-conspirators, especially Alejandro Caro, Mieszko Lis, and Jacob
Schwartz. | learned a tremendous amount in my collaborations with Lennart Augustsson, Rishiyur
S. Nikhil, Joe Stoy, and Xiaowei Shen. Finally, Arvind’s support and interest has magél taed

Eager Haskell projects possible and kept things on the straight and narrow.

Contents

1

Introduction 18
1.1 Functionallanguages e e e 18
1.1.1 Strictlanguages 19
1.1.2 Non-strictlanguages 20
1.1.3 Theimportanceofpurity o 21
1.2 Evaluation Strategies e 23
121 LazyEvaluation 23
1.2.2 EagerEvaluation e 24
1.2.3 Multithreaded strategies for parallelism 25
1.3 The advantages of eagernessoverlaziness 26
1.4 Contributions 28
1.5 Overviewofthisthesis 30
Representing Eager Programs: The\¢ Calculus 32
2.1 OVEIVIEBW . . . o e 32
2.2 Notation e 33
23 Functions e 34
2.4 Application e 34
25 Blocks e 35
2.6 Primitives 36
2.7 AlgebraicDataTypes e e e 36
2.8 CaseEXpressions 37
2.9 Othersyntax. i i e e e e 39

3 The Semantics of\¢ 40

3.1 Extensionality 40

3.2 Equivalence 41

3.3 Conversion 43
3.3.1 Functions 43
3.3.2 Primitives 44
3.3.3 Algebraictypes e 44
3.34 Binding 46
3.3.5 Structuralrules a7

3.4 Mgisbadlybehaved. 49

3.5 Canonicalformsofkc 49
351 Fullerasure 49
3.5.2 Fullynamedform. 50
3.5.3 Bindingcontexts 52
3.54 Namedform 52
3.5.,5 Argument-namedform 53
3.5.6 Flattenedform 53

3.6 Reductionofc e 53

4 Evaluation strategies forA¢ 56

41 OVEIVIEW . . . o i e e 56

4.2 Evaluationmechanisms 57
421 Termstructure e 57
4.2.2 Startingtheprogram 58
4.2.3 Evaluationcontext 58
4.2.4 Function calls: manipulatingthestack 59
425 Results 59
426 Deadlock 60
4.2.7 Storingand fetchingvalues., 60
4.2.8 Placing non-valuesontheheap. 60
4.2.9 Placing computationsontheheap 61
4.2.10 Garbagecollection e 62

4.3 Reductionstrategies e e 62
4.3.1 Alazystrategy 62
4.3.2 Astrictstrategy 63

4.4 EaAQgerness e e e e 64
441 Afullyeagerstrategy 65
442 Thehybridstrategy 66

4.5 How strategiestreattheheap 67

4.6 Other Eager Strategies e 68

4.7 Resource-bounded Computation 69

Run-time Structure 71

5.1 OVerVIEW 71

5.2 Drivingassumptions e e e e 72
5.2.1 Architecturesrewardlocality L oL 72
5.2.2 Branches should be predictable 72
5.2.3 Compiling to C will produce bettercode 73
5.2.4 Non-strictnessisrare 73
525 Valuesarecommon 74

5.3 Taggeddata e 74

5.4 Function structure 77

55 CUurmying 79
55,1 Theeval-applyapproach 80
5.5.2 Thepush-enterapproach 82
553 Analysis 83

5.6 SUSPENSIONS e e e e e e e 84

57 Thunks 87

5.8 Indirections e 88

5.9 Garbage Collection 89
5.9.1 Multiprocessor collection constrainsourdesign 89
5.9.2 Writebarrier 90
5.9.3 Nurserymanagement e 91
5.9.4 Fallbackpolicy e 92

5.9.5 Promotionpolicy 93

5.9.6 Tenured space management 94
5.9.7 Problems with the tenured collector 95
5.9.8 Towards better storage management 96
6 Lowering Transformations 97
6.1 Optimizations e e e 98
6.2 ConstantHoisting 99
6.3 Lambdalifting e 101
6.4 Splitting huge expressions e e e 103
6.5 Top-level common subexpression elimination 104
6.6 Constantapplicativeforms e 105
6.7 Pseudo-constructors 106
6.8 Backedgeinsertion 106
6.9 Making synchronizationexplicit, 108
6.9.1 Introducing synchronization 109
6.9.2 Eliminating excess synchronization 109
6.10 Eliminating additional synchronization 111
6.10.1 Hoisting to eliminate redundant synchronization 111
6.10.2 Using Transitivity 112
6.10.3 Partitioning versus explicit synchronization 113
6.10.4 Interprocedural synchronization elimination 114
6.11 Canonicalloweredc 117
Eager Code Generation 118
7.1 Save pointsS e 118
7.2 Framestructure e 121
7.3 Allocation 122
7.4 FUunClions e 123
7.5 CONSIIUCIOrS o e 125
7.6 Functionapplication 126
7.7 Primitive eXpressions e e e 128
7.8 CaseexpressiONSo 129

7.9 Suspensivebindings e e e e 131

8 Bottom Lifting: Handling Exceptional Behavior Eagerly 133
8.1 Semanticsofdivergence 135
8.1.1 The meaning of a divergent expression 136
8.2 Evaluation strategies fordivergence 000 137
8.3 Identifying bottom expressions 138
8.3.1 Strictnessinformation o 138
8.3.2 Typeinformation 138
8.3.3 Compilerassistance e 139
8.4 Enlargingtheliftedregion 139
8.5 Lifting divergentterms 140
8.6 Divergent computationatruntime 141
8.7 Relatedwork 141
9 Implementing Lazy Arrays 143
9.1 SignalPools 145
9.2 USINGSEQ v v o e e e e e 146
9.3 Fairnessusin@stEXp 147
10 Results 149
10.1 Thebenchmarks 150
10.1.1 Fib . . e 151
10.1.2 Clausify e 151
10.1.3 fibheaps 151
10.1.4 QUEENS o e e e e e 151
10.1.5 Paraffins 151
10.1.6 Primes 152
10.1.7 Multiplier 152
10.1.8 Wavefront 153
10.1.9 Matrix Multiply e 153
10.2.10Gamteb 153
10.1.1LSYMAIG « o o v e e e e 154

11

11

12

13

10.1.12ANNa . . . L e e 154

10.2 EagerHaskellversus GHC 154
10.3 Garbage collection 158
10.4 Function Application e 163
10.5 Fallback e 166
10.6 SUSPENSION e 167
10.7 Forcingvariables 169
10.8 Space-efficient recursion: the multiplier benchmark 172
Scheduling Eager Haskell on a Multiprocessor 178
11.1 Indolenttask creation 179
11.2 Scheduling Strategy e 180
11.3 Scheduling in the presence of useless computation. 181
11.4 Memory Structure: The Principle of Monotonicity 182
Compiling pH Programs Using the Eager Haskell Compiler 186
12.1 Whatisabarrier? 186
12.2 Barriersinth@H compiler 187
12.2.1 Alazierbarrier 187
12.2.2 Reducingstate saving 188
12.3 Barriersin EagerHaskell 189
12.3.1 Trackingthework e 189
12.3.2 Run-time systemchanges 190
12.3.3 Compilerchanges. i e 190
12.3.4 Asynchronizationlibrary, 191
Conclusion 193
13.1 SemantiCsS 193
13.2 EAQEINESS o o e e e 194
13.2.1 Faststackunwinding 194
13.2.2 Hybrid evaluation without fallback 195
13.3 Improving the quality of generatedcode 196
13.3.1 GarbageCollection 196

12

13.3.2 Reducing synchronization 197

13.3.3 Better representations for empty objects L. 199
13.3.4 ObjectTagging o o v i 200
13.3.5 Unboxing e e e 200
13.4 Other compilerimprovements 202
13.4.1 Specialization 202
13.4.2 Control-flowanalysiso 203
13.4.3 Loopoptimization 203
13.4.4 Improvinginlining 204
13.4.5 Range-based optimizations00 205
13.4.6 Constructed products 205
13.4.7 Betterdeforestation 205
13.4.8 Escapeanalysis e 206
135 ENVOi . . . o 206
A The Defer List Strategy for A¢ 221

13

List of Figures

1-1

2-1

3-1
3-2
3-3
3-4

3-6
3-7
3-8
3-9
3-10
3-11
3-12

Simple expression parser written using parsing combinators 22
SyntaxofAc 33
Syntactic equivalences fortermsip L oL 41
Conversionin\g e e e 42
Instantiation contexts iR e 46
Derivations folr,,, andr,,, 47
Strictcontexts il\c e 48
Restricted rulesforfullnaming, 50
Fullynamedformohc o 50
Orderof floatingmatters 51
Bindingcontextsimc e 52
Argument-named formofo Lo 53
Argument-named during reduction Lo L 54
General dynamic reductionrulesfor oo L. 55
Structure of terms during evaluation 57
Reductionrulesused by every strategy 58
Reduction rules for lazy strategy 63
Additional reduction rule for strictstrategy 64
Afullyeagerstrategy e 65
Hybrid eagerand lazy strategy 66
Reduction in the presence of exceptions 69
Boxed representation of numbers oL 75

14

5-3
5-4
5-5
5-6

7-1
7-2
7-3
7-4
7-5
7-6

8-2
8-3

9-1
9-2
9-3

10-1
10-2
10-3
10-4
10-5
10-6
10-7

Partial application ofasimpleclosure. 81
Applying a partial application 83
SUSPENSION STTUCTUre 84
Updating transitive dependency fields. 86
Elision and shortcutting of indirections. 88
Correctness of full laziness 101
ReverseinstantiationisCSE 104
Synchronization elimination for transitive dependencies 113
Worker/wrapper requires additional synchronization 115
Fully synchronized, lowerell> 116
Skeletoncodefdib 124
Codeforconstructors e 125
Three cases of function application 127
Code for primitive @Xpressions 128
Code forcaseexpressions e 130
Spawncode L e e 132
Semantics of divergence 135
Hybrid reduction with divergence 137
Hoisting divergence from a multi-disjunctcase. 140
Thewavefront benchmark 143
Implementing arrays usirgignalPoos oL 145
ImplementindSignalPoa$ 147
Runtimesofbenchmarks, 156
Slowdown of Eager Haskell comparedtoGHC. 157
Percentage of total run time spent in garbage collector. 159
Number of write barrier checks, normalized to mutatortime. 161
Actual number of write barriers triggered, normalized to mutatortime. 161
Barrier indirections per write barrier L L Lo 162
Function entries, normalized to mutatortime. 164

15

10-8 Entries tadGeneralApplyas a percentage of all applications 164

10-9 Fallbacks persecond 165
10-10The consequences of fallback 166
10-11Touch operations normalized to mutatortime 167
10-12Percentage of touches whichforce 168
10-13Function entries upon resumption 168
10-14Percentage of indirections which are followed 169
10-15Variables forced, normalizedtotime 170
10-16Variables forced, proportionallyo 170
10-170riginal multipliercode 172
10-18Inlined multipliercode 173
10-19Run times of different versions of multiplier 174
10-20Slowdown of Eager Haskell compared to GHC on multiplier. 174
10-21Speedup of re-annotated multipliero 0 L. 176
11-1 Monotonic update of objects 183
12-1 Types and functions for representing barriers 190
12-2 Barriertranslation 191
A-1 Eagerness using defer listsand work stealing 222

16

List of Tables

11

51
5.2
5.3

10.1
10.2
10.3
10.4

A taxonomy of languages, semantics, and strategies. 20
Different cases of curried function application and their presumed frequency 79
The eval-apply approach to partial application used in Eager Haskell 81
The push-enter approach to partial applicationusedinGHC. 82
Benchmarks presented inthischapter 150
Runtimesofbenchmarks 155
Write barrierbehavioro 160
Function entry behavior 163

17

Chapter 1

Introduction

The advantage of a non-strict, purely functional language such as Haskell lies in its clean equa-
tional semantics. This clean semantics permits the programmer to create high-level abstractions that
would ordinarily require special-purpose tools. It should be possible to code using these high-level
abstractions without any knowledge of the underlying execution model. However, lazy implemen-
tations of Haskell fall short: they cannot express tail recursion gracefully without annotation. These
annotations change the semantics of programs, often destroying their equational semantics.

This thesis will describeesource-bounded eager evaluatianhybrid of strict and lazy eval-
uation, and its realization ikager Haskell From the programmer’s perspective, Eager Haskell
is simply another implementation of Haskell [51, 46, 95, 96] with exactly the same semantics as
the usual lazy implementations of the language. Hybrid evaluation provides efficient tail recursion
without the need for program annotation. Internally, programs are ordinarily executed in a strict
fashion. When resource bounds are exceeded, computation falls back and is restarted lazily. The
fallback mechanism uses techniques from lazy language implementations to efficiently suspend and

resume ongoing computations.

1.1 Functional languages

The idea of dunctionallanguage traces its origins to thecalculus [22]. Early efforts at turning the
lambda calculus into a programming language establish the pattern for later work: A distinction is
made between purelanguage [108], in which variables can be freely instantiated with their value,
and animpurelanguage with side effects and a simpler implementation. In either case higher-order

functions can be written by treating function values in the same way as any other program data.

18

Later efforts formalize the treatment of arbitrary data structures by introducing algebraic data types
and strong static typing.

In this thesis, we refer to higher-order, polymorphically-typed programming languages [139] as
functional programming languages. These languages—such as SML [78, 79], Caml and OCaml [66,
65], Id [87, 88],pH [85, 86], Clean [104], and Haskell [95]—share many common traits. All of
them are rooted at some level in thecalculus; functions are lexically scoped, and can be created
anonymously, passed as arguments, returned as results, or stored in data structures. All use an
elaboration of polymorphic type inference [30] with algebraic data types. Storage is managed by
the compiler and run-time system, using some combination of garbage collection and compiler-
directed storage allocation.

There are three major differences which distinguish functional languages from one another: fine
type structure, language semantics (strict versus non-strict), and execution strategy. For the purposes
of this thesis, we will generally ignore typing considerations. Every functional language enriches
basic Hindley-Milner polymorphic type inference [30] in a different way, and these enrichments
leave a distinctive stamp on the structure and style of programs which are written; however, such
differences ordinarily disappear after type checking and explicitly-typed intermediate representa-
tions are used.

More important for the purposes of this thesis are the differences in language semantics (strict
versus non-strict) specified by a particular language, and in the execution strategy (eager versus
lazy) chosen by the language implementation. Language semantics define what results a program
must produce. Execution strategy influences every aspect of language implementation, dictating
the ways in which programs are run and optimized, and consequently the style in which programs
are written. Different execution strategies are suited to particular semantics. In an effort to make
distinctions between semantics and strategies clear, Table 1.1 presents a taxonomy of the languages

and concepts we discuss in this chapter.

1.1.1 Strict languages

Languages such as Standard ML and OCaml have strict semantics: subexpressions of a program
(bindings and function arguments) are evaluated in the order in which they occur in the program.
When a function in a strict language is called, every argumentvislge A particular integer, a

pointer to a list, the closure of a particular function.

There are certain programs that cannot be expressed efficiently in a purely functional language

19

Languageg ML, OCaml Id, pH Haskell, Clean
Moniker “Strict” “Multithreaded” “Pure”
Semantics strict — non-strict —
Side effects — impure — pure
call-by-value \ multithreaded lazy
Strategy — eager — hybrid

Table 1.1: A taxonomy of languages, semantics, and strategies.

with strict semantics [26], but can be expressed efficiently in a procedural language by using side
effects, or in a non-strict language by using laziness. As a result, in practice all strict functional
languages arenpure they include side effects and state. The difference between a strict functional
language and a procedural language is therefore a difference of degree: functional languages offer
a richer and stronger type system and carefully delimit the scope of side effects by segregating
mutable types from pure (immutable) types.

The need for side effects combined with the ordering constraints imposed by strict semantics
scuttles strongequational reasoning In practice, this means that manipulating a strict program
involves checking many side conditions. For example, we might like to reheitel[e;, ;] to e;;
however, in a strict language we must prove #gaterminates and is side-effect-free before such a
transformation is legal. Conventionally, this means that a good deal of code motion (especially loop

invariant hoisting and the like) is limited to primitive operations.

1.1.2 Non-strict languages

The Haskell programming languagenisn-strict We need not compute function arguments before
invoking a function; instead, we interleave the computation of arguments and results. This makes
it possible to write arbitrary recursive bindings: the value returned by a computation may be used

(possibly indirectly) in that computation. For example, the following binding creates a cyclic list:

oneTwos = 1:two: oneTwos
where two = head oneTwos- 1

In strict languages, only functions may be recursively defined, and cyclic structures sudTass
must be created using mutation. In a non-strict language we can write cyclic definitions directly.
It falls to the language implementation to perform the necessary side effects to create a cyclic data

structure. These side effects must be correctly interleaved with the computatiiem cégardless of

20

the strategy used to perform this interleaving, the control structure of the underlying implementation
must be sophisticated.

A pure language also permits infinite data structures to be expressed in a regular way. For
example, we can construct the infinite list of fibonacci numbers using one line of code:

let fibList = 1:1:zipWith(+) fibList (tail fibList)

in fibList!! 100
Note that a non-strict semantics must define carefully what is meant GBgsaver In this example
it should be sufficient to compute and return 18" element ofibList (which in turn requires the
previous99 elements to be evaluated). The expressibhist!! 100 is theroot of computation; in
non-strict programming languages it is customary to evaluate until the root is in Weak Head Normal
Form (a simple syntactic constraint) [92].

It is particularly natural to realize definitions suchfésl.ist using a lazy evaluation strategy,
where list elements are computed only when they are needed. Reduction strategy is often closely
bound to particular semantics in this way. An unfortunate consequence of this close association is
that details of reduction strategy often impinge upon semantics. If this happens, even small changes
to reduction strategy may have unintended consequences for the meaning of programs.

Historically, non-strict evaluation has been used in languages such as fiHatiodexploit the
parallelism implicit in a functional language. Id apH incorporate impure features such as barriers
and side effects. In an impure language there may be outstanding side effects or barriers after a
result is obtained. The semantics must therefore define a notiterrafnation which is defined
for the entire program rather than just the root. Consequently, even the side-effect-free subsets of
these languages have a weak equational semantics (comparable to those of strict languages). For
example, thdibList example returns a result but does not terminate. The semantics of non-strict
languages with barriers have been explored extensively in the context of lHafik®6, 3, 2, 17,

18]. These languages represent a middle ground between strict languages and purely functional

non-strict languages.

1.1.3 The importance of purity

By contrast, Haskell has a strong equational semantics, made possible by the fact that it is pure (for
convenience, we refer to non-strict, purely-functional languages simply as “pure” in the remainder
of this thesis). This encourages a style where high-level program manipulation is possible, permit-

ting a high degree of meta-linguistic abstraction [1] within Haskell itself. For example, in most

21

opGroup op term = exp

where exp = exp++ op++ term >— Op
[|! term

expr = opGroup(lit >+’) term

term = opGroup(lit **’) factor

factor = it > .+ expr+.lit >)°
[|I! var >>— Var
[|! const >>— Const

Figure 1-1: Simple expression parser written using parsing combinators. The result is both a gram-
mar and a valid Haskell program.

languages we would generate a parser using a standalone tool which takes a grammar and gener-
ates code which parses that grammar. In Haskell, a grammar can be written directly as a program
using any of a number of suites of parsing combinators. Figure 1-1 the grammar of a simple ex-
pression parser, written using the same parsing library used by the Eager Haskell compiler itself.
Because this is full-fledged Haskell code, we can write functions suocp@esupwhich generates

a grammar fragment; a standalone tool does not permit this kind of abstraction.

In an impure language we cannot express such computations with the same degree of abstrac-
tion. The expressive power of a pure language can be used in numerous ways. The Haskell
language itself uses monads to encapsulate state and control flow in a purely functional setting.
Monads obey a simple set of algebraic rules which can be used to reason about monadic pro-
grams [138, 125, 69, 98, 43, 91]. Hudak’s textbook [50] is devoted to describing how graphics,
animation, and sound can be encapsulated and manipulated naturally within Haskell.

The level of abstraction and expressiveness permitted by equational reasoning is Haskell's most
important advantage. It is always possible to re-code a Haskell program in, say, C and usually we
will realize a performance gain from doing so. However, the effort and complexity involved in such
a project may be prohibitive, and in the worst case will result in marginal performance improvement.
Itis generally easier and more productive to make algorithmic improvements to the original Haskell
program. This can reduce the asymptotic complexity of a program rather than simply speeding it up
by a constant factor.

Equational reasoning is used extensively by compilers. Many equational optimizations are quite

simple, but are considered critical to efficiency; Santos [110] examines these transformations and

22

their effects in his dissertation. Even complex and dramatic transformations such as deforesta-
tion [135, 137] can be captured using simple equational rules, as in the foldr/build optimization
of Gill [38, 39, 40]. Complex equational transformations are often guided by static analysis. The
oldest example of such a transformation is full laziness [53], which generalizes the loop invariant
hoisting of procedural languages. Arbitrarily complex constant subexpressions (usually including
function calls) are hoisted out of arbitrary recursive procedures; analysis identifies subexpressions
for which such hoisting will be beneficial.

The root of equational reasoning is an equational semantics. In HaskelklWwayssafe to
replace a variable with its definition, or to name a subexpression and “lift” it out of its original
context. Haskell can be specified using a simple order- and context-independent set of evaluation
rules (equational rules). Thecalculus is itself a particularly simple set of equational rules which is
then used as the basis for the semantics of all functional programming languages; ¢éleulus
presented in Chapters 2 and 3 elaborates or\tbalculus, capturing the constructs of desugared

Haskell.

1.2 Evaluation Strategies

A program will generally have multiple reducible expressions (redexes) according to our equational
semantics. Arevaluation strategis a method for identifying one or more of these redexes as candi-
dates for reduction. Aormalizing strategguarantees that evaluation will never “get stuck” (signal

an error or fail to terminate) if it is possible to produce an answer according to our equational rules.
Pure languages require a normalizing strategy. There are a broad range of normalizing evaluation
strategies for tha-calculus [22]. The call-by-name (leftmost) strategy is the simplest, and serves as
the inspiration for lazy evaluation. The Gross-Knuth strategy evaluates all the current redexes of a

term in parallel; it serves as the inspiration for parallel evaluation strategies based on fair scheduling.

1.2.1 Lazy Evaluation

In principle, any normalizing strategy can be used as the basis for implementing a pure language.
In practice, most normalizing strategies are inefficient; for example, the call-by-name strategy re-
computes the value of an expression each time it is used. Existing Haskell implementations use
call-by-need evaluation. An expression is computed only if its value is required; this computation

is performed at most once, and the result is remembered for subsequent uses. A distinguished root

23

computation is used (often implicitly) to determine whether a particular expression is required; the
goal of evaluation is to compute the value of this root (in Haskell, the root of computatioaiins

in general the root is comparable to the main function of a procedural language). Lazy evaluation
has been formalized with call-by-need semantics [11, 14].

Lazy compilers use very different implementation techniques from those used in procedural
languages. In a lazy compiler, particular attention is paid to the creation and invocatitam&s
A thunk contains the information required to represent a computation, which is saved until it can be
proven that the computation is necessary. When its value is required, a tHonteid The thunk
is then overwritten with its value, so that future attempts to force it simply retrieve the value rather
than repeating the computation.

Thunks may have an indefinite lifespan, and the associated computation may require an arbitrary
amount of data in order to complete. For this reason, thunks are typically created in the heap.
Forcing a thunk, however, triggers computation much like a function call in a procedural language;
this may in turn force other thunks and trigger further computation. A stack may therefore be used
for forcing thunks just as it is used for nested function calls in a procedural language. In a lazy
language, stack frames represent individual computations rather than procedure activations.

The lazy evaluation mechanism itself—creating thunks, testing them to see if they have been
evaluated, fetching suspended computations from them, updating them, and so forth—introduces
a tremendous amount of overhead which simply does not exist in a procedural language. If the
value of a computation is not needed, its thunk is unnecessary; if the value is needed, it is generally
cheaper to compute it immediately rather than creating a thunk. Compilers for lazy languages
perform extensive analysis in order to eliminate one or more steps in thunk creation and update, and
intermediate representations for lazy languages define a virtual machine whose operations represent
those steps. Examples include the G-machine [54], TIM [99], and the spineless, tagless G-machine
[93]. Compilation of lazy languages is treated extensively in several books [92, 99, 104], though all

these treatments are somewhat out of date.

1.2.2 Eager Evaluation

In an eager evaluation strategy, expressions are evaluated as they are encouetaredd order
in which they occur in the program text). Strict languages are implemented using call-by-value,
an eager evaluation strategy. Call-by-value is not a normalizing strategy. However, under call-by-

value there is a simple correspondence between a primitive operation (such as integer addition)

24

and its realization on the machine (load values into registers and add). We represent the state of a
computation as a stack of nested activation frames, each containing the local data for a procedure
call. As aresult, itis relatively easy to produce an efficientimplementation of a strict language using
eager evaluation. Compilers for strict languages draw directly on the technigques used to compile
procedural languages such as C, Java, and Scheme. Consequently, a program written in a strict
language will nearly always run faster and more efficiently than an identical one written in a non-
strict language. This efficiency advantage means that compilers for strict languages make universal
use of the call-by-value strategy; when we refer to “a strict compiler” we mean “a compiler for

a strict language using the eager call-by-value compilation strategy.” Appel has written excellent

overviews of the compilation of both procedural languages [8] and strict functional languages [7].

1.2.3 Multithreaded strategies for parallelism

Parallel execution strategies have evolved over time, but all are multithreaded eager strategies,
that is, they focus on the management of very small threads of computation. Id implementa-
tions [133, 49, 42, 84] originally made use of multithreading to tolerate remote memory latencies.
Memory accesses occur in two phases: each transaction is initiated, and other code is run until
a response is received. Fine-grained threads are a particularly good match for this computation
model: computations run freely in parallel when their inputs are available, and block when they are
not. A long-latency memory operation and a non-strict dependency look much the same from the
perspective of the compiled code.

Unfortunately, the Id evaluation model is not particularly suited to execution on ordinary unipro-
cessor or shared memory multiprocessor (SMP) machines. On a modern microprocessor, caching
masks the latency of memory operations, rewarding applications which exhibit temporal and spa-
tial locality. This is fundamentally at odds with the unstructured control flow of an application
using fine-grained threads. Rather than providing a means to tolerate latencies, the mechanisms of
multithreaded execution become a source of overhead and complexity on a machine with limited
parallelism.

ThepH compiler [16, 31] addresses these issues, with the goal of rupiiri86, 85] programs
efficiently on an SMP machine. Data is stored on a garbage-collected heap in shared memory;
memory access is by ordinary loads and stores. Fine-grained partitions (equivalent to the fine-
grained threads of Id implementations) are grouped together into suspensive threads. A suspensive

thread allows the compiler to generate an efficient schedule for a group of partitions based on the

25

assumption that non-strictness will be rare in practice. A work-stealing execution model based on
the one in Cilk [37] is used to ensure that parallel computations are as coarse-grained as possible.
The pH implementation still shares a number of important properties with its forebeap$i In
the presence tests required by non-strictness are accomplished using a level of indirection. Every
computation has a separately-allocated proxy; the proxy is initially empty, and is eventually up-
dated with a pointer to the actual value it should contain. Parallel execution occurs using a cactus
stack: every function call allocates a frame on the heap to contain its local variables (and various
suspension-related data structures). By heap-allocating frames, multiple sibling calls can easily co-
exist in parallel, and computations can suspend and resume without copying execution state between
stack and heap. There was some hope that sufficiently fast allocation and garbage collection could
be as fast as stack allocation [6, 9]. In practice, however, the advantages of stack-based execution
(fast allocation and deallocation of activation frames, good cache locality, ease of interoperability
with other languages) are compelling [77], and Eager Haskell uses a stack for function calls.
Meanwhile, if we are to believe Schausgral.[116] then the picture for multithreading is very
bleak indeed. The Id programs they survey are by and large easy to transform into strict code; those
that are not amenable to this transformation can be transformed so that all non-strictness is captured
in data structures. Conditionals and function calls can be strict. Indeed, Shaw [120] showed that
such programs can be efficiently compiled using simple structured parallelism with no need for
synchronizing memory (though a certain amount of parallelism is lost in his approach). The result

is essentially a strict functional language with automatic parallelization.

1.3 The advantages of eagerness over laziness

In this thesis we deliberately take a very different tack: rather than compiling programs written for
multithreaded execution, we attack the much harder problem of compiling a pure language using an
eager evaluation strategy. Eager Haskell programs possess the clean equational semantics of a pure,
non-strict language which are the root of Haskell's expressiveness; thegmanticallyindistin-
guishable from the same programs compiled with a lazy Haskell compiler. This is accomplished
by using ahybrid evaluation strategy which evaluates eagerly by default, but uses laziness to bound
resource usage. These resource bounds permit our implementation to handle codefiblig$t as

which constructs infinite data structures. In Chapter 4 we characterize the space of hybrid evaluation

strategies, including the resource-bounded strategy used in Eager Haskell.

26

Lazy evaluation performs very badly in the presencaasfumulating parameter€onsider the
following canonical example:
fact n = factLoop nl

where factLoopO a = a
factLoop k a factLoop(k — 1) (a* k)

In a strict functional language, code such as this is typical—we express the iterative computation
factas a tail-recursive function with the accumulating parameet@gil recursion does not consume
stack space, and no allocation is required. When we use a lazy language implementation, the picture
is dramatically different:a must not be computed unless it is used. For example, if we evaluate
fact 5, we will eventually create five nested thunks representing the computation . fatteaop
returns, the resulting chain of thunks will finally be forced and the multiply operations will actually
be performed.

An an optimizing Haskell compiler such as hbc [20] or the Glasgow Haskell Compiler [130] can
use strictness information to efficiently compibeectLoop it can be shown thad must eventually
be used and can therefore be passed by value. However, accumulating parameters need not be used
strictly, in which case no optimization is possible. Further, different Haskell systems will produce
very different results for code such as this depending on the precision of strictness analysis (an
unoptimizing system such as hugs [59] or nhc [106] will always build the chain of closures). In

order to obtain consistent behavitactLoopmust be annotated usirsgq

fact n = factLoop nl
where factLoopO a = a
factLoop k a = ak‘seq factLoop(k — 1) ak
where ak = axk

This says “make surak is evaluated before callinfactLoof. We can also use strict function
application$!, which is defined in terms afeq
fact n factLoop nl

where factLoopO a = a
factLoop k a = factLoop(k—1) $laxk

In either case, the annotation is consistent with program semantics; in general, however, adding
annotations changes the semantic behavior of our programs, and can be a source of unintended

deadlockt

1An interesting example: as this dissertation was undergoing final revision, it was discovered by othees) that
annotations actually destroy the equational semantics of monadic operations in the presence of divergence.

27

The need for annotation is Haskell's biggest performance pitfall. A glance at the Haskell and
Haskell-cafe mailing lists in March 2002 (a fairly typical month in the author’s experience) revealed
41 messages (out of a total of 398) discussing how to structure and annotate tail recursive code
so that it behaves reliably and efficiently. Only two or three of the remaining messages in that
time were performance-related. Even more messages are routed to compiler-specific mailing lists;
programmers assume the stack and heap overflows they see are the fault of a compiler bug and not
a simple consequence of constructing and forcing an overly-long chain of lazy computations.

In Eager Haskell we solve this problem. Hybrid evaluation means that accumulating parameters
will ordinarily be eagerly evaluated as we compute. If, however, we encounter an expensive compu-
tation, we will fall back to lazy evaluation in the hopes that the result will be discarded. Under this
regime, an iteration using accumulating parameters will never have more than a single associated

thunk at a time.

1.4 Contributions

This thesis describes resource-bounded hybrid evaluation, a novel execution strategy for non-strict,
purely functional programming languages, and its realization in the Eager Haskell compiler. Hy-
brid evaluation permits iterative algorithms to be expressed using tail recursion, without the need to
resort to program annotations. For a list comprehension version of Queens, our most tail-recursion-
intensive benchmark, Eager Haskell outperforms the Glasgow Haskell Compiler (GHE8Vhy
Adding annotations to this benchmark speeds up GHC by W¥dpin order to match the per-
formance of Eager Haskell, however, list comprehensions must be re-written as explicit recursion,
which effectively means re-coding the benchmark. Similarly, on the multiplier benchmark strict-
ness annotations speed GHC up20ys. The same annotations have no significant effect in Eager
Haskell. We believe that by eliminating the need for annotation hybrid evaluation represents the
better choice of execution strategy for Haskell.

Under hybrid evaluation, code is ordinarily executed in program order just as in a strict func-
tional language. When patrticular stack, heap, or time bounds are exceeded, an exception is signaled,
and computation falls back. During fallback function calls are transformed into thunks and program
execution gradually suspends. When fallback has completed, execution restarts with the root. New
computations proceed eagerly as before; existing thunks, however, are only forced on demand. Un-

like previous eager language implementations, Eager Haskell has exactly the same clean equational

28

semantics as lazy Haskell does. However, eager evaluation avoids one of the biggest pitfalls of lazy
evaluation: the inability to express iteration in a clean and natural way.

Resource-bounded execution bounds the amount of computation which cannot be reached from
the root. This effectively results in a fixed-size tile of computation being performed between each
fallback step. Each fallback step results in progress on the root computation. We therefore conjec-
ture that the worst-case runtime and space of an Eager Haskell program is a constant factor larger
than the equivalent bounds for lazy execution. However, the reduction in space consumption of tail
recursion are likely to reduce asymptotic space usage in many cases.

This thesis makes a humber of smaller contributions which are relevant to other language im-

plementations:

e In order to better understand the performance consequences of various reduction strategies
and program transformations, we have developed a semanticg:f¢a realization of our
compiler’s intermediate representation). Building on Ariola and Arvind [12] we associate par-
ticular implementation mechanisms with corresponding semantic actions. The use of a com-
mon equational framework to compare radically different language implementation strategies
is novel; previous efforts in this direction have focused on drawing semantic distinctions or

on modeling a particular implementation.

e Eager Haskell is (to our knowledge) the first eager, non-strict functional language implemen-
tation to make use of a call stack, which is far more efficient in the common case than placing

frames on the heap.

¢ By offloading the overhead of non-strictness to the run-time system, dramatic changes in the
execution strategy of Eager Haskell are possible by making changes to the run-time system

without modifying the compiler itself.

e Functions in a memory-safe language such as Haskell contain many error checks. For exam-
ple, theheadoperation on lists must check its argument and signal an error if it is the empty
list. We refer to an expression which always signals an errordageggentexpression. Often
(as inhead these expressions account for the majority of code in a particular function. This
code is rarely executed, and should not be inlined. In addition, divergent expressions have
a very strong equational semantics: no expression which depends upon a divergent expres-

sion can execute. A number of important program transformations are based upon this fact.

29

The compiler identifies divergent expressions statically using type and strictness information.
Divergence information is used to segregate error handling code from regular control flow
to avoid the cost of inlining error handlers, and to guide transformations around divergent

expressions.

e A divergent expression must not be evaluated eagerly; if the answer does not depend on the
divergent expression, doing so will terminate the program spuriously. Divergent expressions
are compiled into speciddottom thunksthese are always evaluated lazily, preserving nor-

malization in the face of error handling.

e The object representation in Eager Haskell combines the idea of object update from lazy lan-
guages with the presence-checked I-structure memory conventionally used by multithreaded

compilers.

e The Eager Haskell garbage collector uses the stack as an additional predictor of object life-
time: near the top of the stack, where old and new objects are intermixed, objects are assumed
to be likely to be updated or to die and will not be promoted. Old objects lower down in the

stack are likely to remain untouched and therefore are good candidates for promotion.

1.5 Overview of this thesis

We begin the thesis by presenting the Eager Haskell compiler’'s intermediate represeniation,
Chapter 2 describes the constructain Chapter 3 present an exhaustive semanticafginclud-
ing a number of extensional rules crucial to equational reasoning but not required for an operational
reading. Chapter 4 characterizes different execution strategies-forBetween lazy and eager
evaluation, there is an enormous space of possible eager execution strategies. A hybrid strategy
combines execution rules from both strict and lazy strategies, resulting in a stack-based eager eval-
uation strategy. Resource-bounded execution is one point within a broad range of hybrid strategies.
Having described the resource-bounded strategy, we shift our focus to implementation. Chap-
ter 5 describes the data structures and run-time mechanisms used by the Eager Haskell compiler.
Chapter 6 describes the various program transformations, most notably the insertion of explicit syn-
chronization operations, required to tuka into a form suitable for code generation. Chapter 7
describes the final code generation step which maps canogjdal C code.

Having described the basic hybrid implementation, the next two chapters fill in crucial detail.

30

Chapter 8 explains how type and strictness information are used to identify divergent expressions,
and how these expressions are handled by the compiler and the run-time system. Chapter 9 describes
the implementation of arrays in Eager Haskell. Preserving non-strict array semantics in the face of
resource-bounded execution is a daunting task: when array initialization suspends, it is not clear
which computations should resume and in what order.

Chapter 10 presents benchmark results for Eager Haskell. We compare Eager Haskell with the
Glasgow Haskell Compiler, the only optimizing Haskell compiler currently under active develop-
ment. The Eager Haskell implementation is able to beat GHC on several benchmarks, but is about
60% slower overall. Much of this figure is due to the relative maturity of the two compilers. We
then examine various aspects of the compiled code and run-time system in detail. Those applica-
tions which perform poorly often stress particular aspects of the runtime; this code is relatively slow
compared to compiled code. Finally, we conclude Chapter 10 with a case study of tail recursion.
Annotations in the multiplier benchmark speed it u@b¥; under GHC, but have no effectin Eager
Haskell.

We conclude the thesis with several chapters on future work. In Chapter 11 we describe how
the present Eager Haskell implementation can be made to run on a multiprocessor. We propose
to schedule computation based on randomized work stealing. The fallback mechanism is a natural
match for indolent task creation; work stacks contain thunks which are created during fallback. Our
design avoids locking whenever possible; we articulate a general monotonicity principle, and use it
to devise a protocol for lock-free update of shared data.

In Chapter 12, we describe how to add barriers to Eager Haskell, allggtingrograms to be
run using the new compiler and run-time system. The record-keeping required to track suspended
work closely parallels the mechanisms used to track work in our array implementation, and to track
outstanding thunks in the multiprocessor version of Eager Haskell.

Finally, in Chapter 13 we conclude by looking at the future of uniprocessor Eager Haskell. A
number of crucial compiler optimizations are either missing or severely crippled. There is ample
potential for future work on problems such as unboxing in an Eager setting. In light of the results
in Chapter 10 it should be possible to tune the run-time system to better handle the most common
uncommon cases. Overall, however, the system is solid and the promise of hybrid evaluation is

evident.

31

Chapter 2

Representing Eager Programs: The\q

Calculus

This thesis assumes that the source syntax of Haskell has been compiled into a simpler interme-
diate representatiorh\c. The techniques for performing this translation—type checking, pattern-
matching compilation, and desugaring of list comprehensions and monad syntax—are well-under-
stood and widely used. They are covered exhaustively in other sources [99, 92, 95, 90]. This chapter
gives a brief overview of the features &f, and introduces the terminology and notation used in

this thesis. A semantics fovo is given in the next chapter.

2.1 Overview

The syntax ofAx is summarized in Figure 2-1. It has a great deal in common with other calculi
used for reasoning about non-strict languages. The most important commonality is the Uesie of a

construct to capture sharing. It has a few distinguishing features:

e Data structures are created using constructors and examined using case expressions.

Case expressions are used to force or synchronize evaluation.

Arity of functions and of applications is explicitly represented.

Primitives applications are distinguished.

Recursive letrec) and non-recursivdédt) bindings are distinguished.

32

ecE = X Variable

E Ex k>0 Application

Pk Ex k>0 Primitive appl.

Cx Ey, k>0 Constructor appl.
X, — E k>0 Function

casex =E of D
letx=E;inEy X Q_f FV[El]

letrec Bin E

beB = x=E Binding

| B;B Group

| € Empty binding
deD := CiX —E Regular disjunct

| _—E Default

| D;D Disjunct group

| e Empty disjunct
veV == C¥X k>0 Simple constructor

| (M —E)Y; 0<j<k Closure

Figure 2-1: Syntax oA¢

The \¢ calculus formalized here is an outgrowth of previous work onthealculus [17, 18].
The use of theaseconstruct for strict binding (Section 2.8) was inspired by the Core syntax at the
heart of the Glasgow Haskell Compiler [103]. Unlike Cakg,is not explicitly typed. In this sense
Ac is more similar to its precursors. However,\¢ eliminates impure constructs, a central theme
of Ag, and substitutes strict binding usingse in this respect is is equivalent in power to ordinary
calculi. All of these calculi are close relatives of the call-by-ngezhiculus [14], the most widely-
studied lambda calculus with explicit sharing. However, unlike the call-by-need calculus but like

Core, \¢ is designed to cleanly represent actual Haskell programs during compilation.

2.2 Notation

In this and subsequent sections we will use a few convenient shorthands to simplify the notation.
Eager Haskell is lexically scoped, and the usual assumptions about renaming of variables are made
to prevent scope conflicts. The notatinstands for thé-ary vector of variableg;, x5 ...x. The

ith element of such a vector is written We omitk and writeX when arity is clear from context

(for example, the arity of primitive and constructor applications is fixed by the syntax). The vector

33

notation extends to all syntactic elements in the obvious way. We will sometimes want to replace

theith element of such a vector; in this case we write the vector out longhand like so:
X X X — X1 .. B Ux
or we can abbreviate the source vector, wkes arbitrary or is constrained elsewhere:
X — Xp...E' . X

In either case, we understand tiatandx, are placeholders, and< ¢ < k.

Variables scope straightforwardly. The argumentd a A\-expressiomX — e scope over the
bodye. The variablecin the binder of theaseexpressioitasex = e of D scopes over the disjuncts
D, and the variableg of the disjunct bindeCyx xx« — e scope over the right-hand sigée Finally,
the binding for a variabl& in a binding blocKetrec x = e; ; B in e, extends over the entitetrec
expression. Indeed, the order of bindings in a block does not matter (a notion which we formalize

in Figure 3-1), and we will by convention place interesting bindings leftmost in our presentation.

2.3 Functions

We write thek combinator in\¢ as follows:
Aab—a

In general, functions use a version of the familiar lambda notation:
XX, — E

This notation indicates a function efity k; thex; are theargument®f the function and the expres-
sionE is thebodyof the function. Semantically, nested functiox’s — Ay, — E are equivalent to

a single function with combined arity+ j, AX; yj — E. Operationally, however, we treat these two
expressions very differently, and our compiler will produce different code for them. It is for this

reason thah. represents function arity explicitly.

2.4 Application

Function application in\¢ is by juxtaposition as usual:
kab

34

Here we apply the functiokto two argumenta andb. Like functions, application have an associ-

ated arity:
E E,
Again, nested applicatior{$f X;) y;) are semantically equivalent to a single applicatib®; y;), but

imply very different operational readings. In particular, note thiataaty function may bepartially

appliedto fewer thark arguments (sa) yielding a function ok — i arguments.

2.5 Blocks

We can name thk combinator as follows:
k=Xab—a

In general, we can bind any expression:
x=E

We refer to this as hinding for x E is thedefinitionof x; x is bound to E
Bindings are grouped together inbtocks or let-expressions. These are written as follows in
Haskell:
let two=g X x
four = g two two
in g four four
The A¢ notation is similar. However, we usetrec to indicate the possibility that the bindings may
be mutually recursive:
letrect=gf f
f=gtt
intf
The expressionf is theresultof the block. Mutual recursion allows a definition to refer to any of

the variables bound in the same block:
letrecr =k Xxrinr

For pragmatic reasons, it is frequently useful to distinguish non-recursive bindings. Wt tse

indicate a single, non-recursive binding:

35

lett =g xx
inletf =gtt
ingff

As with function arity, the distinction betwedat andletrec has no semantic impact, but affects

details of code generation and manipulation.

2.6 Primitives

Primitive operations are not considered to be function symbols. Instedths distinguished syntax

for a primitive application
intplusa b

All primitive applications aresaturated—i.e. a primitive of arityk is always applied to exactly
arguments. We denoteary primitives with the notatiopy. Particular primitives are distinguished

using superscripts, as m
pL Ex
The Haskell language allows primitives to be partially applied, passed as arguments, and so forth.

Saturating primitive applications is simple: replace every occurrence of prinpi[iwa'th ak-ary

function.
Pk — (A, — Pl %)

This saturation operation is performed by the compiler as it transforms Haskell sourge:into
In practice, many of the primitive operations in Eager Haskell are familiar mathematical func-
tions. We will use infix notation freely to keep sample code clear. Thus we fibiten — 1) +

fib (n — 2) rather tharintplus (fib (intminus n1)) (fib (intminus n2)).

2.7 Algebraic Data Types

In Haskell, algebraic types neatly combine sum and product constructs into a single mechanism.
For example:
data Treea = Node(Treea) o (Treea)

| Leaf
tree = Node(Node Leaf2 Leaf) 5 (Node Leaf7 Leaf)

36

This declaration states that an object of typee« is either aLeaf (which we refer to as a constant
or a nullary constructor), or it is Modewith a left subtree, a datum (of type and a right subtree.
In \c we omitdata declarations, and distinguish constructors by using uppercase (a convention

which is observed in Haskell as well):
t=N(NL2L)5(NL2L)

Instead of explicit data type declarations, we define the functid@g which returns the type of
a constructor ane[r]| which yields the set of constructors of a particular type. We re&@y| as
k[7[Cy]] in the obvious way. Thus[N] = {N,L}.

We use the notatioy to indicate an arbitrary constant. These include the integers, floating-
point numbers, unary algebraic constructors, and the like. Similaglyy constructors are notated

asCy, with particular constants or constructors using superscripts,@{g in
Cl Ex
Like primitive applications, constructor applications are saturated.

We use Haskell's notation for lists and tuples. The empty list is writfemd cons is written as

infix colon (:). Square braces make longer lists more readable:

1:1:2:3:5:[] =1, 1, 2, 3, 5]

2.8 Case Expressions

Thecaseconstruct is the most complex partkf. Consider the followingaseexpression:

casecs = xsof

a:as— revApp asa:ys

- —YS
This caseexpressiorscrutinizeghe discriminant xs It first ensurexsis evaluated (it is a valué/
in Figure 2-1). Second, the resulting value is bound to the naamehird, one of the twalisjuncts
is selected based on the valuexaf Disjuncts are labeled with a single constructor; the final disjunct
may instead be labeled as tthefaultdisjunct using_ (as it is here). liksis a cons cell, it will match
the first disjunct : as it is thenprojected ais bound to the head ofsandasis bound to its tail.
Finally, thebodyof the disjunctyevApp as(a:ys), is executed.

A case expression thus serves four different purposes in the language:

37

Ensuring its discriminant has been evaluated.

Naming the discriminant, with the guarantee that this name is always bound to a value.

Selecting an execution path based on the value of the discriminant.

Fetching fields from objects with algebraic type.

Note that the typing rules of Haskell guarantee that all the constructors which appear in a par-
ticular caseexpression belong to the same type. Only one disjunct may be labeled with a given
constructor. For clarity, we prefer to avoid default disjuncts when a single constructor is missing
from a case expression—thus, we should replace the default disjunct in the above expression with
the empty list:

casecs = xsof
a:as— revApp asa:ys)
[]—ys
In practice, acaseexpression may not perforall of the above functions. Ordinarily we do not

name the discriminant, and thus omit this notation from the case expression:

casexs of
a:as— revApp asa:ys)
[]—ys
When a datatype has a single disjunct, as is the case with tuple types, there is no need to select a

disjunct for execution.

casepair of
(a,) —a
Naturally, not every constructor has fields, and thus fetching is not always necessary (it does not
occur in the[] disjunct inrevApp. Similarly, if a field of a constructor is not required (as in the
above definition), it is replaced with the wildcard patterand is not fetched.

We consider an expression to have terminated when it is a value. Sometimes the compiler must
ensure that a particular expression has been computed, but its actual value does not matter. Every
expression in\¢ is lifted—it admits the possibility of non-termination. We refer to non-terminating
expressions aBottoms notated . A caseexpression with only a default disjunct checks that its

discriminant has terminated:

38

casea of
_—a+1l
We call the resulting expressiontauch (by analogy with the touch operation in the SMT eager
abstract machine [16]). Unlike otheaseexpressions, the discriminant of a touch may have any

type. Theseqoperator in Haskell is represented by a touch operation:

seq a b= casea of
_—b
Touches are inserted by the compiler in order to control program evaluation.
Not every type in Haskell is lifted. Theewtypedeclaration creates an unlifted “wrapper type”;
this type has a single constructor which accepts a single (lifted) component as an argument. As a
result,caseexpressions and constructors for such types can be eliminated from the program. They

are erased after type checking, and are not represented in

2.9 Other syntax

The syntax for\¢ in Figure 2-1 includes a few constructs that have not been described thus far. First,
it defines the notion of galue Values are simple constructor expressions and unsaturated function
applications (closures). Second, our notation separates bindings and disjuncts with a semicolon.
As in Haskell, we omit these semicolons when indentation makes the grouping clear. Finally, it is
convenient to add an empty grouping constretfor example, this allows us to treat a singleton

binding as a binding group. This eliminates a special case from many rules.

39

Chapter 3

The Semantics ofA o

In the Chapter 2 we presented the syntaX@fthe calculus we use as an intermediate representation
for Eager Haskell programs. In this chapter we present a semanticg-forThe semantics of

Ac are equivalent in power to the-calculus, the call-by-need-calculus, or the core calculus of
GHC [103]. Our presentation is unique in several ways. Unlike core, we give small-step reduction
semantics for theaseconstruct. We also include a limited set of extensional conversions. Such
conversions are not included in the call-by-n@edalculus [14], and do not appear to have been

widely studied fodet-based calculi in general.

3.1 Extensionality

Our presentation of¢ begins by focusing ooonversiorrather thameduction We examine conver-

sion because theaseconstruct simultaneously expresses three semantic properties: Projection of
products, extraction of sums (coproducts), and unlifting of lifted data [80, Chap 2]. The equational
theory of \¢ therefore includes extensional expansion rules for these three uses of case.

The purpose of extensionality is to capture observational equivalence: we say twolMerms
and N are observationally equivalent when they behave the same way in all contexts. A calculus is
extensional when convertibility/ = N is congruent to observational equivalence for all terms [22].

We express extensional rules as expansions; the virtues (such as confluence) of expansion rather than

contraction for extensionality have been revisited in recent years [52].

!Note that in a calculus with constants, extensional equivalence usually requires a typed calculus. For gxample,
expansion must guarantee that the expression being expanded is of function type. The limited expansions permitted in
Ac¢ are type-independent; rules suchgawill be meaningless (but harmless) if performed at the wrong type.

40

Identities on bindings

€; B = B unit

By; By = Bi:; By commutative
Bo; (Bl; Bg) = (Bo; Bl); Bo associative
Identities on disjuncts

CiX—Ey;Cy—-E = CX—E redundant
_—Ey ; CL y—-E = _—K default
CiX—E;Cy—E = Cy—E;CX—E independent

Figure 3-1: Syntactic equivalences for terms\n. The usuaky renaming equivalences are as-
sumed. Reduction rules are obtained by reading conversions left to right.

The conversions given in this section do not makeas a whole extensional; there are equiv-
alent terms such a&x — f x andf which are not convertible. Instead, the new rules simplify the
correctness proofs for many widely-used program transformations. They also serve to reinforce the
parallels between the use céiseand constructors in and the use of constructs such as pairing

and projection in othek-calculi.

3.2 Equivalence

We consider terms to be equivalent (writtej when they differ in unimportant ways. In Chapter 2
we noted that the order of bindings letrec expressions does not matter; we formalize this with
the first three rules in Figure 3-1. Similarly, our disjunct syntax is very permissive. The order
of independent disjuncts is unimportant. Unusually, we permit multiple disjuncts with the same
constructor. In this case the first disjunct takes precedence. Similarly, a default disjunct supersedes
the disjuncts which follow it. These equivalences simplify our rules for merging and splitiise
expressions (particularly, andy,, see Section 3.3.3). A compiler, of course, simply erases useless
disjuncts.

We omit a-renaming rules from the figureThroughout this thesis we assume the usual
equivalences hold, and all conversions hold modulo the usual rules prohibiting name capture.
the Eager Haskell compiler, all program identifiers are distinct; renaming occurs wkerieam
is duplicated, for example when a function is instantiated or a new arm is addecht® aresh

names are used when new variables are introduced by naming or expansion.

41

(A% X, — €)Y = (M —ely/x]) Bvar
Pl Vi = pl Vi § axiom schema
A i ‘ _ casey = C| yof
casey = Cl.(y of Cl.(X—e;d = T e_[y/ g Xc (constructor)
casey = C, €of C{ X—e;d = casey=Cj €ofd Xp (mismatch)
casex=vof _—e = letx=vine X4 (discharge)
—e = C{X—>e;—>e 1, (New arm)
e = casex=eof _—X n (lift)
letrecx =e; bin Ig[X] = letrecx=-e; bin Ig[€e] te (instantiate)
x=e; Ig[X = X=-¢; Ig[¢ tp (inst. binding
X = Ig[X = x=Ig[le[X] ¢ (inst. rec.)
Ci X — Ig[x = C X—Ig[C X tq (inst. disj.)
casex = e of Ip[X] = casex=-eof Ip[e| L (inst. case)
casex = e of _ casex=eof (unlift
Ip[casey = x of _ — €] ~ Ip[lety=xin ¢ “
e = letx=-einXx v (name)
letx=1¢ in & = letrecx=¢e in g p (let conv.)
x ¢ FVie]
lg[letrec bin € = letrecbin Ig[€] om (hoist)
FV[Ig[]] N BV[b] =0
letrecbin (casex =gy of - —e) = casex=gof _— letrecbine o; (case hoist)
FV[es] N BV[b] = 0
S casex = g of _ — e] = casex =g of _ — Ye] o (strict hoist)
x ¢ FVIS]]
casex = ey of _ — _ casey=eg of _ — o1 (swap touch)
casey=¢ of _ — e casex=¢g of _ — e
x ¢ FVle] Ay ¢ FV[e]
X, — AY; — e = XX, ¥, —e 7 (Merge))
(ea...q) 1. . & = eq...g T (Merge app)
x=letrecbin e = b;x=e 71 (flatten)
letrec b; in letrec by in e = letrecb;; byine m (Merge let)
FV[b;] N BV[by] = 0
letrecein e = e €4 (drop)
letrecb;; by ine = letrechyine €. (erase)
BV[bi] N FV[letrec by in g = 0

Figure 3-2: Conversion ingc. All conversions hold modulo the usual rules prohibiting nhame cap-
ture.

42

3.3 Conversion

We initially view the A\ calculus as a purely mathematical system. In Figure 3-2 we list the conver-
sions among terms, notated When it comes time to actualgvaluatea Ao program, rather than
manipulate it equationally, we require only a limited subset of the conversions presented here. We
present these rules in Figure 3-12; Chapter 4 is devoted exclusively to various reduction strategies

for Ac. When speaking of evaluation, we view the conversions as left-to-right reduction rules.

3.3.1 Functions

The most fundamental rule in anycalculus is3-reduction. In\¢ we make use of a very minimalist
form, Gvar. Only arguments which are variables can be reduced, and reduction occurs by simply
substituting the parameter variable for the argument variable. Mbbased\-calculi (such as the
call-by-need calculus\g, and Core) make use of thige; rule instead. We can derivée; in A¢
as follows:
(MX—e)e = (Ax—e)(lety=einy) (v)
= lety=ein(Mx—e)y (om)
(
(

= Iety: € in e [y/x] Bvar)
= letx=6ging a)

As we shall see, th@,, rule arises naturally out of the desire to separate the static portions of
reduction { ando) from dynamicg reduction itself.

The Byar rule isunary—we disregard the arity of functions and applications. We include merge
rules(m;, 74), but it should be clear that for the purposegatduction they are unimportant. When
we read)\o operationally, we will restricts,,r to full arity, and r, will be used in taking apart
closures of partial applications. Lambda mergimg optimizes the process of reducing function
applications.

Note that there is ng rule for function application. In an untyped calculus with constants, there
are only two ways to determine that a term must represent a function: either it is actually a lambda
expression, or it is always applied to some arguments. [fvadstract a function, we obtain an

immediates redex:

M —e) = (AXx— (% —e)X) (n)
= MXX...xx—ex/x] (Bua)
= X, —e (@)

Similarly, n-abstracting an application also yields a (nearly) immediatedex:

43

(AX— &y X) e
(A — e X) (lety=eriny)

& € (
(
lety=erin(Ax—exy (om)
(Bvar
(
(

= lety=¢e ingy
& (lety=eriny)
= &€

These limited readings aftherefore have no practical application on their own. They can, however,

be useful when combined with instantiation:

letf =einfe = letf=ein (A x—Ffx)e; (om, v, Bvar)
= letf =ein(Mx—ex e (L)
= (Mx—exe (¢)
= (letf =Xx—exinf)eg (

= letf=XAx—exin(fe) (o
In general, we cam-expand a binding if every occurrence of the bound variable is a function

application.

3.3.2 Primitives

By their nature, primitives require special reduction rules. We leave the set of primitives open-
ended. The main thing to note about thexiom schema is that primitives take values as arguments,

and in a single step produce a value as a result.

3.3.3 Algebraic types

The caseconstruct and constructor application are the fundamental operations for manipulating
algebraic types. There is no specific constructor application rule. Calculi sukh distinguish
between unevaluated and evaluated constructor applications¢ lBny constructor application
can be treated as “evaluated” if its arguments have been named. At thatqasiegxpressions
which depend upon it may be discharded). When viewing\¢ operationally, we will distinguish
evaluated constructor applications by their position in the term.

As noted in Chapter 2, the algebraic types\in actually encompass three concepts at once:
Lifting (distinguishing evaluated and unevaluated terms), pairing and projection, and sum types.
This results in a large number of conversionscaseexpressions. We examine the conversions for

each category separately.

44

Lifting

A caseexpression can be discharged when its discriminant is a v@lye This is the only
rule which erases easeexpression; consequently, termination ofaseexpression is contingent
upon termination of the discriminant, as we would expect. Dischgggepresents elimination of
lifting—the lifted expression is determined to be non-bottom and thus can be erased.

Any expression may safely be touched in place. The lifting (yl¢ describes this possibility.
If the expression isL then the resulting expression will be as well. If the expression can be
converted into a value, then the introdua@asemay be discharged.

The bound variable of easeexpression can be considered toumdifted within the case body.
This is not strictly true: the case instantiation rulepermits the discriminant to be instantiated
before it has terminated. However, tteseexpression as a whole terminates only if the discriminant
does—in which case a copy of the discriminant will terminate as well. This means we can safely
discharge inner touches of the bound variable. We state this as a very restricted form of instantiation

(). We imaginesomevalue being instantiated, causing the discharge of the icems

Pairing

The tuple(x;, x2) corresponds to pairing. Projection is represented by the substitutions performed
in the constructor rule.. The corresponding disjunct instantiation rujerepresents surjective
pairing, the extensional rule for products (akinitéor function spaces). In theaseframework it

is natural to write this rule as an expansion;-€oes the work of. in advance, in the sense that a

disjunctC}. ¥ — ewill only be kept ifx has the fornC} &

Sum types

Similarly, we can represent sum types by using the tdrafisx, andRight x% to represent injection.

The rulesy. andx, perform selection. The rulg, is the extensional axiom for sum, permitting

us to expand aaseexpression to explicitly handle all the constructors of a particular type. In this
case extensionality effectivelgverseghe action of selection, rather than anticipating it. This re-
flects the categorical duality of sum and product—the extensional axioms are oriented in a direction
where they are naturally used for expansion, rather being oriented according to our coreesat of

reduction, and the direction of expansion for sum is opposite that of product.

45

el] == O | A% — Ie[]
‘ pkEl---IEH-'-Ek ‘ IEHE
| CkE1...lg[]...Bx | EEL...Ig[]...Ex
| letreclg]]in E | casex=Ig[]ofD
| letrecBin Ig[] | casex=Eoflp[]
IBH L= X= |EH ‘ |BH; B
Ip[] == CkX—lg[] | Ip[]; D
| ——le[] | D; lIp[]

Figure 3-3: Instantiation contexts i

3.3.4 Binding

Binding is crucial to evaluation it\c. Both £ya and x4 require arguments to be named. As
reduction proceeds nested block structures must be flattened in order to expose new opportunities
for reduction. Most important, variable instances must be instantiated with their definitions.

We noted in Section 2.5 that non-recursive binding blots &re distinguished from recursive
blocks (etrec) primarily for pragmatic reasons. The let conversion rile states thatet can be

converted freely intdetrec; the reverse conversion can be applied if the binding is non-recursive.

Instantiation

All the instantiation rules foA- make use of thnstantiation contextdescribed in Figure 3-3. An
instantiation context describes which occurrences of a variable can be replaced by that variable’s
definition. In\c any variable occurrence which is in scope is a candidate for instantiation. Oper-
ational strategies will substantially restrict the scope of instantiation by restricting the instantiation
context.

The three instantiation rules faaseexpressiong.q, ¢, ¢;) have already been discussed in
Section 3.3.3. There are also three instantiation rulekefoec bindings. This is because there are
three parts of detrec expression which might be candidates for instantiation. Occurrences in the
result expression may be instantiated(by). Occurrences in other bindings may be instantiated
by (vy). Finally, recursive occurrences may be instantiated uéipg in which a definition is
substituted within its own body.

Note no instantiation rule is given fdet expressions. Instantiation of the result is trivial to

derive as follows:

46

let x = letrec b in ein Ig[x] _ letx=letrecbinein
B £ " Ig[letrechin ¢ ¢

= |lg[letrecbin € €
let x = letrec bin ein Ig[X] = letrecb; x=-ein Ig[X| Tf
= letrecb; x=-ein Ig[€| le

letrec b in Ig[e] €e

letrecb;; x=letrechy ineinx = letrecb;inletrechyine
letrecb; ; x=letrechy ineinx = letrecb;; by; x=einx 7y
= letrecb;; by; x=¢eine

= letrech;; byine €e

Figure 3-4: Derivations fos,,, andr,,

letx=einlg[x] = letrecx=-einlg[Xx (p)
= letrecx=-ein Igle (te)
= letx=-ein Ig[€g (p)

Naming

Naming is accomplished using the naming ruldn Figure 3-2, we give a completely unrestricted
form of naming. Naming can be derived by running other conversions backwards:
e = letreceine (€q)
= letrecx=-eine (&)
(

= letrecx=-ein x (i)
= letx=einx (p)

There are a number of reasons to favor the explicit inclusiom iof \c. If we view the rules
as left-to-right reductions, then we must either includer permit reversed instantiatiqn.) and
erasure(e). Reverse instantiation permits us to invent terms from thin air—hardly a model of
evaluation. Instead, we allow naming of preexisting expressions.

Inclusion of a naming axiom also frees us to place particular operational interpretations on nam-
ing, instantiation, and erasure. We would like to view naming as a static process—subexpressions
need only be named once—while instantiation is dynamic. Erasure corresponds to Garbage Collec-

tion and memory management; reduction should make progress even in its absence.

3.3.5 Structural rules

Repeated instantiation and reduction often gives rise to deeply-nested bindings. These bindings can

in turn interfere with evaluation. For this reason, there are a numb&rwdftural ruleswhich ma-

47

letx=Eing] | pcEx...9]...E

g ::’= 0 | SIIE
| letrecbinS§] | casex=g]ofD

Figure 3-5: Strict contexts ing

nipulate binding constructs. The simplest structural rules are the rules for merging nested functions
and application$r;, 7,) which were discussed in Section 3.3.1.

It must be possible to erase bindings which are no longer being used. We state binding erasure
(ec) as a rule on binding blocks; this permits multiple mutually-recursive bindings to be discarded
in a single pass. If every binding in a block can be erased, then the block itself can be eliminated
as well(ey). Erasure allows the elimination of “semantic noise’—bindings left behind by repeated
naming and instantiation steps. As noted in Section 3.3.4, erasure can also be used to model the
actions of a garbage collector.

In order to performByar and x4 reductions, nested bindings must be hoisted out of applications
and constructor arguments. The general hoisting falg) states that detrec contained in an
instantiation context may be hoisted outside that context. Notesthas actually aderivedrule;
it can be described using a mix of instantiation and erasure as shown in Figure 3-4. We include
om in our conversion rules for two reasons. First, flattening is a necessary part of straightforward
left-to-right reduction. Second, we are uncomfortable with a semantics that gives a central semantic
role to erasure, and particularly any reduction strategy that requires erasure. Erasure played just
such a central role in some early call-by-need calculi [73].

Thecaseconstruct also introduces bindings. Becataserequires its discriminant to terminate,
these bindings cannot be hoisted freely. They can, however, be hoistedtiiotrcontextsos):
the arguments of primitives and the discriminantsa$eexpressions (see Figure 3-5). Note that
o also allowscaseto be hoisted from the result part of a block; this simply invertsaherule.

Finally, nested touch operations may be freely interchariged

In anylet-based calculudet-blocks themselves can become highly nested. Such nested blocks
can be flattened out; indeed, terms iletacalculus can be viewed as graphs, in which case the exact
binding structure does not matter at all [15, 13, 10]. We therefore provide (tles;,) to flatten
nested blocks. Again, the merge rulg can be derived as shown in Figure 3-4; again, the proof

relies on reverse erasure.

48

3.4)¢ is badly behaved

The conversions presented in figure 3-2 can be used to justify many common transformations of

Haskell programs. However, when viewed as reductions they are not confluent, nagdoessess

normal forms. Non-confluence is a common propertiebbased calculi with the ruleg and:,—

mutually recursive bindings can be instantiated such that they cannot then be brought back together.

It was problems with non-confluence that led to graph-based vieles efpressions; non-confluent

reductions change expression structure, but do not change the unfoldings an expression generates.
Absence of normal forms is a consequence of the generality of #&malrn; rules. It is possible

to name or lift any expression:

e = letx=einx (v)
= letx=Ilety=einyinx (v)

These rules can be restricted syntactically, restoring normal forms; we will examine such a restric-

tion in the next section. However, the more general versions are useful for proofs (see Chapter 6).

3.5 Canonical forms of\o

The front end of the Eager Haskell compiler translates programs directly into the-failculus,
but in practice it is simpler to manipulate program code if the syntax of the language is restricted in
various ways. In this section we examine various canonical program forms and how programs may

be transformed into those forms.

3.5.1 Full erasure

The erasure ruleg., ¢;4), when used in isolation, form a strongly-normalizing reduction system. It
is easy to see that erasure terminates: Every erasure step makes a term strictly smaller. To see that
erasure is confluent, note erasure cannot make a dead binding live again. Thus, any pair of erasure
reductions can be brought back together in a single step.

Note that the erasure rules fag are not safe for a language with side effects or termination
detection such a&g (and thuspH). The rulee, can freely erase non-terminating computations. In
Eager Haskell these non-terminating computations will be garbage collected dynamically if they are

left unerased by the compiler.

49

nE — (letx=ninx) E
EE...n...Ek — EE...(letx=ninXx)...Ex
pkEi...n...Ex — pkEi...(letx=ninx)...Ex
casex=nofD — casex= (lety=niny)ofD
lety=einn — lety=-einletx=nin x
letrecbin n — letrecbinlet x=nin x
CLX—n — CLX—letx=ninx
_—n — _—letx=ninx
neN == EE, | M,—E
| pcEr | casex=EofD
| CkE

Figure 3-6: Restricted rules for full naming

L == letx=EinL | X
| letrecBinL
E = x | XX
| M —L | Pk X
| casexof D | Ck X
B = x=E | B;B
D = CX —L | D;D
L

Figure 3-7: Fully named form of¢

3.5.2 Fully named form

Many compiler phases—particularly those which perform static analysis or code motion—can be
expressed more smoothly when every program expression is given a nhame. For this we can use
the naming axionv. Because naming is non-normalizing (Section 3.4) we restrict naming contexts
as shown in Figure 3-6. We also prohibit the naming of identifiers (where it would be redundant)
andlet andletrec expressions. Together these restrictions prevent thide from being applied to
any portion of its own right-hand side, thus guaranteeing that naming will terminate. This syntactic
restriction also means that naming redexes are disjoint, insuring confluence.

In conjunction with naming, it is useful to mouet and letrec expressions outwards using
the o,,, rules. This creates a clear separation between ordinary expre&sams binding blocks

L. We can also flatten blocks, 7,) to simplify block structure. However, whek: is used

50

f (letx=einx) — letx=-¢ein

(lety=eyiny) fx(lety=einy)
letx=¢ in
— lety=ein
fxy
f (letx=e;inx) — lety=ein
(lety=eyiny) f(letx=e inx)y
lety =g in
— letx=e¢ein
fxy

Figure 3-8: Order of floating affects order of nesting. Here two possible reduction sequences give
rise to different results.

as an intermediate representation it is useful to preserve the distinction bdbteard letrec.
Consequently, we only flatten blocks on the right-hand sides of bindings
We can derive a flattening rule ftat blocks as follows:
letx= (lety=eine)ine, = letrecy=ey;Xx=¢e ine (p, T¢)
= lety=ginletx=e ine, (p, 7m)

This derived flattening rule has the advantage it does not crdateea from the nestedet expres-
sions. The syntax after naming, lifting, and flattening can be found in Figure 3-7. We cdillthis
named)\¢.

Full code motion usingr,, is guaranteed to terminate. Evesy, reduction moves det or
letrec expression further out; eventually every such block is the resultcakadisjunct, function,
or another block, or is the value of a binding. However, the order in which bindings are floated
outwards affects the order in which they end up nested, as shown in Figure 3-8. Floating order
is semantically irrelevant, but will affect which expressions are evaluated in an eager strategy; we
discuss this further in Chapters 4 and 6. Once code motion is complete, flattening uéamgl the
derived rule given above) is very simple; each usesahoves exactly one block.

For simplicity, we have described the translation to fully named form a rule at a time: first name
(v), then perform code motiofv,,), then flatten(r;). If the rules are applied in exactly this order,
“identity bindings” can be created:

x=lety=einn — x=lety=¢eyinletz=ninz (v)

— y=g;X=letz=ninz (1)
— Yy=&;Z=N;X=12 (7f)

51

Be[] = X — Bg[] B
| PkEi...Be[]...Ec | Be[]E
| C«Ep...Bg[]...Ex | EEi...Bg[]...Ex
| letrecB[]inE | casex=Bg[]of D
| letrecBin Bg[] | casex = E of Bp[]
B[] == O
| x=Bgl[] | B[]; B
Bp[] = CkxX— Bg[] | Bp[]; D
| —— Be[] | D; Bpl]

Figure 3-9: Binding contexts iA¢

Here the bindingk = z could have been avoided by flattening first:
x=lety=einn — y=e;x=n (74)

To avoid introducing identity bindings, we must flatten usingbefore naming and before each

code motiory,,.

3.5.3 Binding contexts

All'the named forms ol have a common feature: They driading-centeredather tharexpression-
centered By naming subexpressions we can manipulate bindings E rather than expressions
themselves. This observation is useful in proving the correctness of some of the transformations
outlined in Chapter 6. When manipulating terms in named form, it is frequently useful to refer to a
binding contextather than aexpression contexBinding contexts for the\ calculus as a whole

are given in Figure 3-9.

3.5.4 Named form

Fully named form gives a name &veryprogram expression. This obscures the fact that certain
expressions occur itail positiort as the result of a function or block, or in a case disjunct. If we
restrict naming to instantiation contextgn| and flatten as before we obtain themedform of A¢.

Here arbitrary expressiors are allowed in the result positidndescribed in Figure 3-7. The net
result is that onlynestedsubexpressions are named and hoisted. Named form is useful for program

transformations which do not need to tabulate all the expressions in the program.

52

L == E | letx=EinL | letrecBin L
E = CX | casex=PofD
| XX | A, — L | P
P = X | Co | P P
B = x=E | B:;B
D = CGX—L | _—L | D;D

Figure 3-10: Argument-named form &

3.5.5 Argument-named form

An even weaker form of haming srgument-named forpnshown in Figure 3-10. Unlike named
form, argument-named form does not name primitive expressions or conSgaintstrict contexts

Sp]. Thus, primitive expressions may occur as arguments to other primitive expressions and in
casediscriminants. To convert to argument-named form we simply restrict naming to instantia-
tion contexts which are not of the for@jp|. Motion of the resulting blocks remains unaffected.

Argument-named form is used as the basis for code generation in the Eager Haskell compiler.

3.5.6 Flattened form

In Section 3.5.2 it was noted thkgt-motion is not confluent—Ilifting bindings in a different order
results in a different nesting of the binding structure. By merging nested blocksmisitanfluence

can be restored at the cost of losing information about the recursive structure of the bindings. This
leads to a fully-flattened form ofc. The fully flattened syntax seen during reduction is shown in

Figure 3-11

3.6 Reduction of\o

Not all of the conversions listed in Figure 3-2 are necessary for reductio: gfrograms. In

the next chapter we will restrict our attention to a greatly restricted subsgtpfve call this

subset thelynamic reduction rulesThese rules, shown in Figure 3-12, assume that programs have
been converted to argument-named form (as given in Section 3.5.5), and that they have been fully

flattened (Section 3.5.6). The reductions in Figure 3-12 differ from the conversions in Figure 3-2 in

53

L == E | letrecBin E

E := casePofD | F | P

F = FX, | M — L

P .— x | Vv | P Py
B == x=L | B;B

D = CX—L | _—L | D;D

Figure 3-11: Argument-nameX}- during reduction

a few important ways. The remainder of this section examines those differences.

Instantiation is limited to values and variables which reside on the heap; we do not instantiate
an expression until it has been completely evaluated. The syntax for terms undergoing evaluation,
shown in Figure 3-11, reflects this need and therefore differs slightly from the argument-named
syntax of Figure 3-10. Similarly, instantiation only occurs when a variable’s value is required for
further computation; we therefore restrigto strict contextsS[x|.

The Byar rule is restricted tdull arity applications. This reflects agval/applyapproach to
curried function application: functions expect a particular number of arguments, and the caller must
provide them (possibly with the assistance of the run-time system). We combine naming and lifting

in order to split applications at greater than full arity:

()‘yk — e) Xk X1« X = ((}\Vk — e) Xk)) (I I ¢ (Ta)
_ (Ii(:[;(();k (AVk - e) Xy)
+1---X
_ letx= (Y — €)X (o)
i X X1 X am

When a closure is instantiated into an application, the resulting application must be fldttghed
before it can be further reduced (either By, or by v). This corresponds to fetching the arguments
from the closure in preparation for performing a call or allocating a larger closure.

The rules forcasereduction are largely unchanged. The exception is a dynamic optimization of
the discharge rulg ;. When the bound variable is not used, the binding need not be created, as itis

immediately subject to erasure:

case_=vof _—e = let_=vine (xq)

X=V;y= 9 — X=V;y=9V| tp (instantiate value)

X=12;y=SX — X=2z;y=9Y7 t (instantiate variable)
(AR — €) Vi — x=e[y/X] Bvar

Xy — fXy 7, (Merge app)

(i = © % Ko — W O (spiitapp)

Sip, Vi) — Sp Vi § axiom schema
casey—C,8ofC'X—e;d — casey=C} &ofd Xp (Mismatch)

casey = Cl, y of

casey=C| yof CLXx —e;d — e (constructor)

_—el[y/X
casex=vof _—e — letx=vine (discharge)
case_=vof _—e — e Xd 9
x=letrecbin e — b;x=e 77 (flatten)
letrec b; h; tin main — letrech; tin main e. (garbage coll)

BV[b] N FV[letrec h; tin main = 0

Figure 3-12: General dynamic reduction rules Xor

This reflects the actual behavior of an implementation. A previously-created value is not copied
when scrutinized by @aseexpression. Acaseexpression whose discriminant is, say, a boolean
value may not create that value explicitly; it may instead be manifest in the control flow of the
program itself.

Because function bodies and case disjuncts may contain niested blocks, we must still
use the flattening rule;. Again, the syntax in Figure 3-11 indicates that the right-hand side of a
binding may be detrec during reduction. As we shall see in the next chapter, the flattening rule is
the linchpin of our evaluation strategies. The difference between strict, lazy, and eager evaluation is

determined to a great extent by héstrec blocks are treated by the implementation.

55

Chapter 4

Evaluation strategies for A\~

Between call-by-value and lazy strategies there is an enormous space of possible eager strategies.
The Eager Haskell implementation is simply one point in this space. In this chapter we characterize
the space of eager languages by describing a series of evaluation strategies foc#theulus. The
strategies we use are defined by imposing additional structuke éerms. This additional structure
evokes the structure of a real machine; the strategies we present here are designed to reflect actual

language implementations.

4.1 Overview

A term in the Ao calculus usually has many possible redexes. A reduction strategy narrows the
choice of redexes. The strategies we present in this chapter are under-specified: the strategy may
consider more than one redex to be a candidate for reduction. For example, none of the strategies
we present completely specifies the order of evaluation for primitive arguments. Ambiguities of this
form in a strategy represent places where the implementation has a choice; a particular language
implementation resolves these ambiguities in particular ways. We can study the differences between
particular implementations by examining how they resolve these ambiguities. In this thesis we
refine one strategy—the hybrid lazy/eager strategy—by eliminating ambiguities. The result will be
a semantics for Eager Haskell which reflects the choices made in the language implementation.

We begin our presentation by describing some of the evaluation mechanisms used in functional
languages, and presenting the corresponding notation we will use in our reduction strategies (Sec-
tion 4.2). We then present lazy (Section 4.3.1) and strict (Section 4.3.2) strategigs.fde

use these well-known strategies to define the notion afagerstrategy (Section 4.4), which per-

56

C == letrecH e Tin main Program
H == x=E | HH | € Heap

T == F | TT | € Threads
R === (KYR | (K) Stack

K == x=L;K G Frame

Figure 4-1: Structure of terms during evaluation

forms additional reductions beyond those required by the lazy strategy. A fully eager strategy (Sec-
tion 4.4.1) captures the entire space of non-strict strategies, but does not lend itself to an efficient
implementation.

As a result, we narrow our search to hybrid strategies that mix strict and lazy execution (Sec-
tion 4.4.2). Ordinarily, execution proceeds just as in a strict language. However, the implementation
contains a fallback mechanism to suspend computations in the presence of recursive dependencies.
By measuring the resource consumption of the program and initiating fallback when the stack or

heap become too full, we achieve normalization 4.7.

4.2 Evaluation mechanisms

In order to capture the evaluation mechanisms used by various strategies, we impose additional
structure on the syntax in Figure 3-11. This structure, shown in Figure 4-1, allows us to express our
strategies as simple virtual machines. At any time, we can replace the separators | with

semicolons; and rewrite the stackk) r tok;; r, resulting in an ordinary¢ term.

4.2.1 Term structure

The main progran€ is a binding blocKetrec h e t in mainwhich returns a distinguished value
main The special treatment ofiainis implicit in the Haskell language; the top level of a Haskell
program is a collection of modules, each of which is a collection of bindings. It is only within this
topmost binding block that we use special notation to organize the bindings. It's important to note
that the basic structure of> terms has not otherwise changed.

We divide the program bindings into two parts: the hébpnd the thread$. The separator
¢ between them was chosen simply to make it easy to distinguish the heap from the threads. The
heapH can be thought of as the memory of our abstract machine. It is an unordered collection of

bindings separated by commas.

57

he (X=v;kr |t

x=v,he(kr|t (store)

X=V,he(y=89x;kr |t — x=v,he{y=8v;kr |t 1y (fetch)
zhe(y=89x;Kr ||t — x=zhe{y=957;kr |t tp (indirect)

(X= (A% — &) Vs K1 — (x=e[y/X])Kr Buar (call)

(x= (A% — &) i) T — (x=e[y/X)r Bear (tail cal)
()r = r (return)
letrecb; h e tin main — letrech e tin main e. (garbage coll)

BV[b] N FV[letrech e tin main = ()

Figure 4-2: Structured reduction rules used by every strategy; remaining tyles, (0, x) are
purely local and identical to those in Figure 3-12.

The threads are an unordered collection of stacks separated by the parallel hadkdy one
of strategies, the fully eager strategy (Section 4.4.1), actually makes use of multiple threads, but the
notation will be used again in Chapter 11 to describe multiprocessor hybrid strategies.

A stackR consists of an ordered list of framég . The leftmost frame in a stack is th@pmost
frame A frame is an ordered collection of bindings delimited with angle bracket3 he leftmost
binding in the topmost frame is thgorking term In the fully eager strategy (Section 4.4.1), the
stack always has a single entry. Similarly, in the lazy strategy (Strategy 4.3.1) there is always exactly

one binding per frame.

4.2.2 Starting the program

Initially, the heapH contains all the top level bindings of the program (except the bindingné&n).

There is a single thread whose working term is the top-level bindingéon

letrech e (main=€) in main

4.2.3 Evaluation context

To understand how the term structure works, we must examine the mechanisms used in our reduction
strategies. All our strategies restrict reduction to the working terms in the program. Only the rules
in Figure 4-2 manipulate the structure of the stack and heap. Thus, the local evaluation rules which

carry over from Figure 3-12-=;, v, §, y—are wrapped in the following context:
letrech e (x=0; k)r || tin main

58

These rules correspond to local evaluation and local control flow; they will be implemented in a

very similar manner regardless of reduction strategy.

4.2.4 Function calls: manipulating the stack
TheGyar rules and the return rule manipulate the stack, and therefore operate on the stack as a whole:
letrech e O || tin main
An ordinary full-arity function call pushes a frame:
letrech o (x= (AXx — €) Vi; K)r || tin main
— letrech o (x==e[y/X]) (k)r || tin main (call)
The body of the function is instantiated and pushed onto the stack. When the topmost frame be-
comes empty, it is popped (erased) and conetlrns
letrech e () (k)r | tin main
= letrech e (k)r || tinmain (return)
The bindings in a framék) represent the flow of control in a function. When we call, the frame
is left on the stack, and evaluation resumes with the next binding when we return. Section 5.4
describes the realization of function calls in Eager Haskell.

When a function call is the last binding in a frame, we can perform tail-call optimization, trans-
ferring control directly from the current function to the new function without enlarging the stack.
This is the purpose of the tail call rule:

letrech e (x= (A\X; — €) Vi) r || tin main
— letrech e (x=-e[y/X])r || tin main (tail call)

As noted in Section 3.6j4, is restricted (dynamically) to full arity applications. Partial applica-

tion of a function will perform allocation (see Section 4.2.7); oversaturated application will invoke

the run-time system, which can split the function application in two (split app). Implementation

techniques for curried function application are described in Section 5.5.

425 Results

We do not permit the stack to become completely empty. Instead, the lazy and hybrid strategies pro-
vide a special rulequtermos} for handling this last stack frame. This rule represents the outermost
level of control in the program, which is usually mediated by the run-time system. We consider

execution to be complete whemainhas been bound to a value:

59

letrech e (main=v) || tin main

This is the simplest rule governing the outermost frame, and is shared by all the strategies in this

chapter. In Section 4.6 we discuss termination rules for multithreaded evaluation.

4.2.6 Deadlock

Under any strategy, if a program reaches a state where there are no redexes, buhahéees

not been bound to a value, then the programdessdlockedWe assume programs are well-typed,

and deadlock therefore cannot be causece lgyapplying a number to arguments. In the presen-
tation of each strategy we will describe how deadlock can occur and how it can be detected by an

implementation. Deadlock is equivalent to divergent (

4.2.7 Storing and fetching values

When the active term binds a value, it cannot be reduced any further. It is removed from the frame
and stored onto the heap:
letrech e (x=v; k)r || tin main

= letrecx=v,h e (kyr || tin main (store)
Recall that values include constants and constructor applications (both of which are represented in
Eager Haskell by tagged heap objects; see Section 5.3}laadres(function applications at less
than full arity; the Eager Haskell realization of closures is described in Section 5.5 and Section 6.3).
In each case the store rule corresponds to allocating spageifmf storingv into that space.

Instantiation corresponds to fetching values previously stored to the heap. An actual implemen-
tation fetches a value only when it is needed. We therefore restrict fetches to strict contexts in the
active term:

letrecx=v, h e (y=S[x]; k) r || tin main
— letrecx=v, h e (y=9v|; k) r || tin main (fetch)
In the Eager Haskell implementation, a fetch operation corresponds to fetching the tag of an object

on the heap, or fetching the contents of a boxed number; see Section 5.3.

4.2.8 Placing non-values on the heap

Every strategy presented in this chapter except for call-by-value permits non-values to reside on the

heap. This has substantial impact on the language implementation: values and non-values must be

60

represented in a way that allows them to be distinguished. As we will see in Section 4.5, this richer
heap structure adds power to the language. It is important to remember that that power has a cost:
extra tagging and boxing of values may be required when they are stored, and extra checking will be
required before a variable can be fetched. Different tagging methods are compared in Section 5.3.
Bindings on the heap of the forgn= z areindirections Indirections are created when a term

contains a variable in result position:

b=Cy7b, i=(M—x), he(y=ib)r
— b=Cy7b, i=(Ax—Xx), he(y=Db)r (tail call)
= b=Cy7b, i=(AX—X), y=b, her (store indirection)
— b=Cy7b, i=(A\x—x), he(y=Cy7b)r (fetch)
= b=Cy7b, i=(AX—X), y=Cy7b, h er (store)

In the first pair of reductions, we allocate an indirection frpto b; in the second we must instead

copy the entire structure &k Indirections represent a substantial space savings when many reduc-
tions of this sort occur. Moreover, it is possible for the garbage collector to remove indirections;
they therefore represent only a transient space overhead. However, the cost is increased implemen-
tation complexity: heap accesses must detect and handle indirections correctly (Section 5.8 explains

the handling of indirections in Eager Haskell).

4.2.9 Placing computations on the heap

The lazy and hybrid strategies also place computations in the heap. For example, the hybrid strate-
gies contain the following rule:
he(Xx=e;kr
= x=-¢ h e (kr (suspend)
In practice,e is represented by a data structure containing (at minimum) a code pointer and ref-
erences to the free variables @f A computation cannot be loaded; instead, its value must be

computed. This is done by pushing it onto the stack:

e he (y=8x;kr
(x=¢€) (y=S8x; kyr (force)

An actual implementation will restore the state saved during suspension, then execute the code to
computee. The binding is not actuallyemovedfrom the heap. Instead we indicates being
evaluated by overwriting the heap binding with a special “empty” value. Whene has been

computed, the heap binding is overwritten with the resulting value. Control then returns to the

61

forcing computation; in this respect, forcig= e is similar to calling the functioxx = f X. The
implementation details of creating and forcing suspensions and thunks are described in Sections 5.6
and 5.7.

4.2.10 Garbage collection

The garbage collection rule deserves a quick mention. We only garbage collect bindings which

are found in the heap. One strategy presented in this chapter, the fully eager strategy of Section 4.4.1,
keeps unevaluated bindings outside the heap; this specifically prevents them from being garbage
collected. Any dead binding in the heap may be subject to garbage collection. The actual garbage

collection techniques used in Eager Haskell are described in Section 5.9.

4.3 Reduction strategies

All the strategies we describe have a few common features. First, all reduction occurs in the working
term of some thread. Second, no reduction will be permitted insigdgressions or case disjuncts.

Our strategies will be distinguished by a few main features:
e How a nestedetrec block is flattened.
e When or if a computation can be suspended and copied to the heap.
e When or if a computation can be forced, moving it from the heap back to the stack.
e When or if a new thread must be created.
As we shall see, these elements capture the behavior of strict, lazy, and eager functional language

implementations.

4.3.1 Alazy strategy
Any lazy strategy must have two important properties:
¢ Only bindings whose value is required to obtain the value of the root should be reduced.

e It mustpreserve sharing-bindings outside\ expressions must be reduced at most once (note
that this reduction is nadptimat redexes inside\ are duplicated freely when instantiation

occurs).

62

h e (x=letrecbineg)r — b, he (Xx=¢)r 7 (allocate)

he(x=e€(y=9x)r (force)
e¢varneg¢V

x=e h e (y=9x)r

X=Vy,her (store indirection)

=y
L]
—~
x
I
=
-
Il

y=e h e (x=Yy) X=y, he(y=e¢) (outermost)

Figure 4-3: Reduction rules for lazy strategy (See also Figures 4-2 and 3-12)

Rules for a lazy strategy are given in Figure 4-3. Wheleteec block is encountered, the
bindings are allocateflr;) as suspended computations (thunks) on the heap (in our notation the
semicolons separating bindings must also be replaced by commas). When a variable is required, its
value isdemandedif the value is not yet available, it must be forced. Every frame contains a single
binding; as a result all function calls are tail calls, and only forcing a variable will cause the stack to
grow.

A special case occurs when the outermost binding is rewritten to an indirection. In this case,
the rewritten binding replaces the indirection on the stack (store and force). This guarantees that
reduction will continue until the outermost binding has actually been fully evaluated.

Deadlock occurs in the lazy strategy when a variable which resides on the stack is a candidate
for instantiation. For example:

y=4xx, he (x=y+1)r

— he{y=4xx) (x=y+1)r (force)
deadlock

We noted in Section 4.2.9 that a binding is overwritten with a special value when itis forced. In lazy
languages, this special value is traditionally known as a “black hole”. The implementation detects

deadlock by naoticing thatis a black hole as we attempt to evalugte

4.3.2 A strict strategy

The strict strategy has three important characteristics:
e Only values may be stored in the heap.
¢ Bindings are executed in the order in which they occur in the program text.

e All variable references in the active term must refer to values on the heap.

63

he (x=letrecbine;kir — he (b;x=¢€;Kkr 7¢ (enter block)

Figure 4-4: Additional reduction rule for strict strategy (See also Figures 4-2 and 3-12)

These restrictions on evaluation permit the strict strategy to be implemented very efficiently. A
variable reference is assumed to refer to a value—no checking is required to verify that this is the
case. Contrast this with the lazy strategy in the previous section: a variable may refer to a value, a
thunk, an indirection, or a black hole. None of the extra mechanisms for suspending and resuming
computations need to exist in a strict language.

As a result, the strict strategy forc given in Figure 4-4 is very simple—just one rule for
flatteningletrec blocks so that bindings are evaluated in program order. The drawback to this
strategy is that we must restrist itself: The only recursive references permittedeatrec blocks
are between functions. It is invalid to reference a binding which has not yet been evaluated.

Note that while the strict strategy executes a given program in order, the compiler still has a
great deal of liberty in ordering program bindings. The process of canonicalization itself, which
transformed an arbitrary- program into argument-named form, is not fully specified. By varying
the order in which function arguments are named and lifted, for example, different execution orders
will result. Furthermore, the compiler is always free to reorder bindings when the results of doing

so cannot be observed.

4.4 Eagerness

We call a strategyeagerif there are infinitely many programs for which the strategy performs
Bvar, 9, OF x4 reductions which would not have been performed by the lazy strategy. Some eager
strategies are trivial: the compiler for a lazy language may introduce eagerness statically when
analysis shows that it is safe to do so [36]. In this chapter, we focus on strategies which permit
unlimited eagerness—that is, the use of eager evaluation is not constrained to expressions with
particular static properties. The call-by-value strategy is clearly eagéetrex-bound variable

is evaluated even if it is never referenced. In the remainder of this chapter we examine several
eager strategies for non-strict languages. In Chapter 8, we will introduce simple static constraints
to handle dynamic error conditions. By default, however, expressions will continue to be eagerly

evaluated.

64

hex=letreching ||t — hex=¢ | bt 7t (Spawn)

X=V,het (store value)
X=y,het (store indirection)

hex=v]|t
hex=y|t

Figure 4-5: A fully eager strategy (See also Figures 4-2 and 3-12)

4.4.1 Afully eager strategy

In order to construct a maximally eager strategy, we should attempt to compute every single binding
in the program eagerly. We can do so by running these bindings in parallel. Every binding is
evaluated in a separate thread. Every call will therefore be a tail call, and there is consequently no
need for a stack or continuations. Tlhidly eagerstrategy is captured in Figure 4-5. The eagerness

of the model can be seen by comparing the spawn rule to the enter block rule in the strict strategy
(Figure 4-4). Both rules immediately begin evaluating the bindings of the block; the strict strategy
does so one at a time, whereas the lazy strategy evaluates every binding in parallel.

The fully eager strategy is extremely general—we can at any time choose to evaluate any thread
or threads. This freedom of choice means that we can, for example, simulate lazy evaluation simply
by keeping track of the “currently needed” thread and focusing all effort on evaluating that thread.
Indeed, we can simulate any non-strict strategy by choosing which bindings are actually evaluated.

The generality of the fully eager strategy is also its downfall. Note that any thread in the system
may becomélocked This happens when a variable requires instantiation, but the binding for that
variable is still being computed in another thread. No reductions on that thread can be performed.
An actual implementation could quickly become swamped by partially-completed computations
which are awaiting results. A reasonable implementation must distinguish between threads which
are blocked and threads which are not blocked.

The fully eager strategy has another failing: it breaks computations up into tiny, short-lived
threads. Thread state must be allocated and tracked dynamically. Switching to an arbitrary thread
requires arbitrary control flow. The combination of dynamic resource usage and unconstrained
control flow are a disaster for a modern architecture, where temporal and spatial locality are vital to
efficient execution. An efficient eager strategy must impose structure on the threads so that there is

a clear way to manage control flow and resource allocation.

65

he (x=letrechbine;kir — he (b;x=¢e;Kkr 7¢ (enter block)

he(Xx=e;kr = X=ehe(kr (suspend)
he(X=y;kr = X=y,he(kr (store indirection)
x=¢e he (y=98x;kr = he(x=e(y=9x;Kkr (force)

e¢varneg¢V

y=e h e (x=Yy) Xx=Yy,he(y=¢) (outermost)

Figure 4-6: Hybrid eager and lazy strategy (Compare Figures 4-3 and 4-4)

4.4.2 The hybrid strategy

Both strict and lazy languages solve this problem in a similar fashion: A stack of frames is used to
group together related bindings. A stack provides a systematic and well-understood way to manage
both control flow and local storage. It is therefore worthwhile to seek a stack-based eager strategy.
(The actual implementation of the stack is described in Section 5.2.3.)

One natural course is to combine elements of the strategies we understand well—the lazy strat-
egy and the strict strategy. This results in the hybrid strategy found in Figure 4-6. Most of the rules
are identical to rules for either the lazy or the strict calculus. Bindings are started in program order,
so the enter rule is identical to the rule in the strict strategy (Figure 4-4). Demand-driven evaluation
(evaluate) works just as in the lazy strategy (Figure 4-3). However, if no suspension exists on the
heap for variablg/ in x = Sy] theny is pending and resides somewhere in the stack. In this case
we must create a suspension foon the heap and continue executing the work on the stack (the
implementation of suspension is described in Section 5.6).

We might expect the suspension rule to require that the variablecur in a strict context
Sly]. Doing so would yield a “minimally lazy” hybrid strategy—suspension would occur only when
absolutely required by non-strictness. Unfortunately, this makes our strategy sensitive to the order
of bindings in the program text; we examine this inconsistency in the next section.

The suspend rule for Eager Haskell contains no such restriction. Indeed, the active term may
be suspended any time for any reason, even if it is possible to evaluate it immediately. This
extra flexibility captures a large and interesting range of implementation choices. For example, by
immediately suspending the bindingsipon entering a block, we obtain exactly the effect of the

allocate rule in the lazy strategy.

66

4.5 How strategies treat the heap

One crucial difference between the strategies discussed thus far is their treatment of the heap. Con-
sider an instantiation context= Sy]. Under the strict strategy, has been computed amaust
reside somewhere on the heap (see Section 4.3.2). Under the fully eager strategy, uncomputed
values lieoutsidethe heap in the thread pool (Figure 4-5). Under the hybrid and lazy strategies,
uncomputed values may reside on the stack (completely empty data structures; see Seation 5.3)
in the heap.

The ability to place uncomputed bindings on the heap adds power to the language; the hybrid
and lazy strategies will successfully execute some programs which do not terminate under the fully

eager strategy. Consider the following example:

letrec forever x = casex of _ — forever x
const xy = X
y = forever z
z = constS5y

inz

In the strict strategy, we cannot execute this program at all—it contains the mutually-recursive value
bindingsy andz. In the lazy strategy, we evaluatenhich callsconst Sinceconstignores its second
argument, it does not matter thatefers to a non-terminating computatioz-s reduced to 5 and
the binding fory can be garbage collected.

In the fully eager strategy, we attempt to evaluate the binding.farhis evaluation blocks or
suspends becaufareverrequires the value af The bindingzis computed and discargs At this
point, the binding fowy still exists as an independent thread. This thread can be run forever; more
important, its execution resources can never be reclaimed. In contrast, the hybrid strategy creates
a suspension foy on the heap. This suspension is ignored by the calbiwst and can simply be
garbage collected.

Under the hybrid strategy, there is a choice when evaluating this example. When the binding
for yis encountered, it may be suspended; in this case the bindizgvitireventually be evaluated
andy discarded exactly as with the lazy strategy. If, however, the binding i®run eagerly, then
execution will suspend because the valuezfisrrequired. Againz will be run, this time discarding
the newly-created suspension. In either case, the net effect is the same: Execyitosbaindoned,
and the storage required for the suspension can be reclaimea baseliscarded it.

However, consider what happens under the hybrid strategy if we reverse the ongdandf

67

zin the above example. Kis evaluated first, it yields 5. The strategy may then choose tg run
forever without suspending: simply reversing the order of two bindings has changed the termination
behavior of the program. The general suspension rule permits us to suspend and eventually garbage
collect the already-discarded computatioryoHowever, the strategy of Figure 4-6 does not give a

policy for applying this rule.

4.6 Other Eager Strategies

The eager strategies implemented in Id ahtido not display the sensitivity to evaluation order
which is possible in the hybrid strategy. This is because they define program termination in a
stronger way (see Section 4.2.5). We consider a hybrid program to have terminated when we obtain
a value formain Both Id andpH require thaeverycomputation terminate. This condition is easy

to express in the fully eager strategy: A program terminates when there are no longer any threads
to be run. In the example, the binding fpmusteventually be run, and as a result the program will
neverterminate.

Naturally, the evaluation strategies used in |d phidnake their own set of tradeoffs in the name
of efficiency. Briefly, every program binding has an associétedtion which is either empty or
full. Empty locations correspond to the bindings in the thread pool under the fully eager strategy. An
empty location has an associatdefer listwhich lists bindings which have suspended awaiting the
location’s value. When a location becomes full, these bindings are re-started. In this way, threads
which certainly cannot make progress are distinguished from those which may potentially contain
useful work. A formalization of the defer-list strategy can be found in Appendix A; it requires
additional notation to describe the structure of defer lists.

The hybrid approach is demand-driven, whereas the defer list approach is producer-driven. Both
techniques have advantages and drawbacks. The defer list approach keeps computations alive (on
defer lists) even if their results are never required. The problem of scheduling in the presence
of defer lists is in general a murky one; when a defer list is re-started, it is unclear when it is
appropriate to run the newly re-started computations. However, there will never be any attempt to
run a suspended computation.

The hybrid strategy, on the other hand, can immediately discard the resources associated with
useless computations. There is no question when to schedule formerly suspended computations—

they should be run when their values are demanded. However, it is possible to re-start a suspension

68

he(x=8y]; ko;y=e; ki)r = x=98y],h e (k; y=e; ki)r (suspend)

ne (x=Sy)i ko diy=eikyn = o S0 (euspend)

he (x=FfX;kr = x=fX he(kr (thunk)
he Xx=fXr = x=fX her (tail thunk)
y=e h e (x=9y]; kr = y=ex=9y,he (kir (no-force)

e¢varneg¢V

he (x=FfX;kr = he (x=fX;kr (call exception
Ir| > stacknax

y=e h e (x=9y]; kr =y=ehe (x=9y;kr (force ex.)
Ir| > stacknax N e¢ var Ae¢ V

he (X=v;kr = x=V,he (kr (heap ex.)
e(|hl, |r]) > resourceax

he (x=¢) = h e (x=¢) (outer end)
resourceax < f(|h|, resourcgax)

letrecb, h e r in main — letrech e rin main e (gC)

BV[b] " FV[letrec h e rin main = ()
resourceax — g(|bl, |h|, resourceax)

Figure 4-7: Reduction in the presence of exceptions. Underlines indicate fallback is in progress.
Compare to Figure 4-6.

(on demand) only to immediately discover that a value upon which it depends remains unavailable.

4.7 Resource-bounded Computation

Any eager strategy presenting the same language semantics as lazy evaluation must stop the exe-
cution of runaway computations suchfaseverfrom Section 4.5. Efficiency demands that these
computations be cut short before they use an inordinate amount of time and space. This leads us
naturally to the idea ofesource-bounded computatiolimit the amount of time and space which
can be used by a computation, and use suspension to fall back and shut down computations when
those resource bounds are exceeded.

We view the fallback process as a form of exception mechanism. This idea is formalized in
Figure 4-7. When multiple rules apply to a given term, the rules in Figure 4-7 take precedence

over those in Figure 4-2. Ordinarily, computation proceeds eagerly; computations suspend only

69

when a required variable resides on the heap (due to non-strictness). This is expressed as two rules
(suspend)—one when the relevant variable is bound in the same stack frame, the second when the
variable is bound deeper in the stack.

When resource bounds are reached, an exception is signaledalinaatk begins, indicated
by underlining the stack. During fallback, we disallow stack growth. This means that subsequent
function calls must suspend (the thunk rules) and that computations which would usually require
evaluation of a heap value must themselves suspend rather than forcing the computation on the heap
(the no-force rule).

In order to bound the time and space used by a computation, we must check resource bounds
in three places (the actual implementation of this policy is described in Section 5.9.4). First, the
amount of stack which is used must be bounded; thus, we check stack usage at every function
call and every evaluate. If usage exceeds the bound on stack gstay,y then an exception is
signaled. Second, the total space usage must be bounded. This is checked at every allocation point;
the monotonic functior adjusts for the fact that heap and stack usage may be accounted for in
different ways.

Finally, we must bound the total time used by any computation. These rules do not measure
time directly. Instead, we note that the heap grows steadily as evaluation progresses. Thus, space
usage and time usage are closely correlated. The only exception to this is when garbage collection
occurs: here the heap may shrink once again. Thus, we compute a new resourceeBourod, o«
each time we garbage collect. The bound is a funcgjari the current bound, the current space
usage, and the amount of garbage collected.

Exceptional execution guarantees that the stack must shrink. When it is empty exceptional
execution ends, and the program resumes ordinary eager execution once more. At this point the
resource bounds are reset based on the resources currently in use by the suspended program. Note
that suspended computations are re-started in a demand-driven fashion: the exception ends with a
single computation on the stack, and the forcing mechanisms is used to evaluate suspensions as they

are required.

70

Chapter 5

Run-time Structure

Data representation is vital to efficient compilation of a non-strict language. This chapter examines
some of the tradeoffs inherent in various data representation choices. The tagged data representation
used by the Eager Haskell compiler is described, and its advantages and potential drawbacks are
noted. The chosen structure leads to a natural division of responsibility between compiled code and
the Eager Haskell language runtime. This division is outlined, and the structure of the run-time

system is described.

5.1 Overview

Our choice of data representation is affected by several factors. Recall from Section 4.2.9 that
non-strict languages must distinguigiluesfrom computationsPolymorphically-typed languages
must represent data in a uniform manner when it is used in a polymorphic context [64] unless they
can eliminate polymorphism statically [129, 82]. In a higher-order language we must also represent
function closures and curried partial applications in some fashion. In addition, any language which
supportsprecisegarbage collection must provide a way for the garbage collector to identify heap
references, and must establish some invariants on heap usage. Finally, if we wish to run our pro-
grams in parallel we must establish the conventions by which multiple threads may access the heap.
All these choices constrain our data representation and thus influence the structure of the code we
generate.

In this chapter we review data representation strategies used elsewhere and present the strategy
used by the Eager Haskell compiler. We use a tagged, boxed representation for all program data.

Tags are represented as simple integer values rather than pointers to descriptors in order to simplify

71

the primary control flow of the program.

5.2 Driving assumptions

An modern architecture is optimized to make particular coding idioms run extremely fast. A lan-

guage implementation should, whenever possible, generate code with these idioms in mind. Simi-
larly, compilers are often designed to ensure that particular source-language idioms produce efficient
code. We begin by outlining the assumptions we make about modern architectures and about the
behavior of Eager Haskell programs; the remainder of the chapter describes in detail how these

assumptions will guide our implementation.

5.2.1 Architectures reward locality

Modern architectures provide a multilevel memory hierarchy which rewards applications which
exhibit temporal and spatial locality. We assume the existence of multiple levels of caches, including
separate instruction and data caches for the most recently-accessed portions of memory. At higher
levels of the memory hierarchy, a program with a large address space will incur overhead for misses
in the translation lookaside buffer (TLB) when translating virtual addresses to physical addresses.
When address spaces become very large, portions of memory will be paged to disk. For such large

address spaces, a program with poor locality will quickly slow to a crawl.

5.2.2 Branches should be predictable

In order to optimize control flow for the common case, we take advantage of the features of modern
processors, particularly branch prediction. We assume that indirect branches to unknown code are
unpredictable, and thus expensive. For this reason we avoid using function pointers as part of
ordinary control flow.

Similarly, we use branch prediction hints (provided by recent versions of gcc) to indicate that
particular execution paths are common or rare. This also causes the C compiler to segregate rarely-
executed basic blocks from the main control flow of a function. This improves the instruction cache

performance of our programs.

72

5.2.3 Compiling to C will produce better code

The Eager Haskell compiler generates gcc code. The techniques and tradeoffs involved in compil-
ing high-level languages to C have been examined in great detail elsewhere [31, 93, 42, 48, 24, 65].
The most compelling argument for compiling via gcc is the maturity and portability of the com-
piler. In order to generate high-quality machine code, a compiler must incorporate an instruction
scheduler, a register allocator, and a good-quality code generator and peephole optimizer. It requires
an enormous amount of effort to match gcc even on a single architecture. For example, the most
mature optimizing compiler for Haskell, GHC, includes a native code generator for Intel machines.
However, GHC generates faster code (at the cost of extra compile time) by compiling via gcc.

We choose gcc rather than another C compiler for two reasons. First, gcc is available on every
popular machine architecture. Second, gcc provides support for a number of language extensions
which make the task of mapping Haskell to C much easier. Many compilers make use of gcc'’s
ability to map global variables to machine registers [31, 93, 48]. Recent versions of gcc can compile
arbitrary tail recursion; previous compilers often resorted to complex trickery to avoid running out
of stack [93, 31]. Finally, the provision of branch prediction annotations makes it much easier for
the Eager Haskell compiler to express and exploit the assumptions made in the previous section.

Compiling to C rather than generating machine code does place a burden on the run-time system.
An allocation-intensive language such as Eager Haskell requires a precise garbage collector, and
must therefore maintainghadow stackontaining the live pointers in a computation. This shadow
stack is treated as a root by the garbage collector. This increases overhead in two ways. First, an
additional machine register is required to maintain the shadow stack pointer. Second, the compiler
must explicitly generate code to save and restore shadow stack entries. The C register allocator is
also making decisions about which variables will reside in registers and which must be kept on the

stack. Inevitably these decisions do not coincide and extra memory operations result.

5.2.4 Non-strictness is rare

The most important assumption made by the Eager Haskell compiler is that non-strictness is rarely
used even in non-strict programs. Most of the time programs can be run eagerly, in exactly the order
given, and without requiring suspension. This assumption is certainly true of Id programs [116],
and motivated Shaw’s stripped down parallel implementation of a subset of Id [120]. Occasionally

non-strict semantics will actually require suspension; occasionally resource bounds will be reached

73

and execution will suspend. However, we focus our energies on making ordinary, non-suspensive

execution as fast as possible while still permitting non-strictness and suspension to occur.

5.2.5 Values are common

A corollary to the presumed rarity of suspension is a second assumption: most of the time an Eager
Haskell program manipulates values. It must be easy and fast to distinguish a value from a non-
value, and tests which make this distinction should be biased to favor values. When a suspended
computation or an indirection is encountered, the implementation should take pains to make sure
future computations can use the desired value directly.

In order to optimize control flow for the common case, we use branch prediction hints to indicate
that suspension is rare. We avoid the use of indirect branches when checking whether a particular
object has been evaluated. This stands in stark contrast to both GHC and hbc; in both cases objects
are tagged with a function pointer which, when called, evaluates the object. As a result, every single
casestatement (at least in GHC) involves an indirect branch—even if the data involved has already
been evaluated.

The GRIN project makes the same set of architectural assumptions, but takes a very different
approach to compiling lazy languages [55]. Constructors and thunks are treated uniformly as integer
tags. Whole-program control flow analysis reveals which tags reach partedainstructions
(equivalent tacaseexpressions in Eager Haskell), and these are checked for explicitly. Boquist then
uses the same whole-program analysis to perform interprocedural register allocation [29]. However,
the techniques used in GRIN require whole-program compilation and a native code generator; we

ruled out both approaches in designing the Eager Haskell compiler.

5.3 Tagged data

In order to support non-strict execution, all data in Eager Haskefiggedand boxed Boxing

means that all data—even primitive values such as characters and floating-point numbers—is allo-
cated on the heap. This has a measurable runtime cost—the cost of allocating additional storage
for primitive data, initializing it, and garbage collecting it, and the cost of fetching primitive data
from memory when it is required. Tagging means that all heap data is prefixed by a tag, which in
Eager Haskell is a pavkTag (ident, sizg. The size is used by the garbage collector. Tdent

distinguishes the following things:

74

NUM /1

43

I nteger

Figure 5-1: Boxed representation of numbers in Eager Haskell. Not®thdiles have a word of

NUM/3
0

- 3:14159

Double-precision float

Multiple
precision
bignum

padding after the tag so that the data will be doubleword-aligned.

NUM/ k+1

+-k

k limbs

TN

e The various disjuncts of an algebraic data type (which contain pointers).

e Function closures and partial applications (Section 5.4).

e Values containing non-pointer dataf, Double Intege, shown in Figure 5-1.

¢ Indirections (Section 5.8).
e Barrier indirections used for enforcing heap invariants (Section 5.9.2).

e Completely empty data structures, which are currently under computation; they will eventu-
ally be filled in with a value or a suspension. This is the representation used for computations

which reside in the stack in our strategies (Section 4.2.9).

e Thunks: suspended function calls due to an exception (Section 5.7).

e Suspensiongaseexpressions whose data was unavailable (Section 5.6).

We order the identifiers so that values are positive and non-values (including indirections) are nega-
tive. The compiled code deals only with values; all non-values are handled by the run-time system.
Tagged, boxed memory is not the only possible data representation in a non-strict language.
Some hardware, such as the Monsoon dataflow machine (the primary target of the Id compiler),
provides support for type-tagged memory. This can be exploited to distinguish pointers from non-
pointers, or to distinguish empty objects and values. A closely related technique is to tag the data
itself. This technique has long been a staple of Lisp systems, and is used by emacs [68], Caml
Light [65, 118], and gofer and hugs [58]. Typically, particular settings of the low-order bits of a
machine word incorporate limited type information, at the minimum indicating whether the word

should be interpreted as an integer or a pointer. The current implementatibruges an interesting

75

variation of this technique, in which pointers are encoded as valid double-precision IEEE NaNs (not
a numbers) [31]. This provides a contiguous integer range and allows the use of unboxed floating-
point numbers; it also yields a large enough address range to allow pointers to be accompanied
by type information. However, theH object representation requires a 64-bit machine architecture

in order realize full performance, and the memory consumption of pointer-intensive programs is
doubled.

Using tagged values rather than tagged memory has certain attractions. Both tagging techniques
impose overhead to tag and untag data; however, shifting and masking value tags can be done in a
machine register; tagged memory requires additional memory operations. If we use tagged values,
small integers and nullary constructors—both very common—need not be stored in separate, tagged
memory locations. The Eager Haskell garbage collector mitigates this cost by redirecting references
to nullary constructor and small integers so that they point to a fixed table.

The biggest drawback to using tagged values is that they usually require tagged memory as well.
There simply aren’t enough free bits in a pointer word to distinguish all possible object sizes and
constructor tags that might exist within a single algebraic datatype. As a result, most pointers refer
to tagged memory (Lisp systems typically reserve a special pointer tag for cons cells so that this
common case does not require tagging). At the same time, tagging techniques impose additional
constraints on the ranges of values. This can prove especially difficult when interacting with libraries
that assume (for example) that 32-bit integers are available.

In a system using integer tags, object sizes and layouts are limited by the way information is
encoded in the tag. Instead of tagging objects with a simple integer, we can tag them with a pointer
to adescriptor A descriptor can be shared by many objects, and is usually generated statically.
As a result, the descriptor can be much larger than one or two machine words. Using a descriptor
permits pointer and non-pointer data to be commingled in essentially arbitrary fashion.

Some descriptors—most notably those used in GHC and in hbc—can be thoughdativas
tags One entry of the descriptor table is a function; in GHC and hbc this is the function which
forces a thunk. Thus, forcing a thunk is a matter of entering the code stored in the descriptor. This
technique can be extended to other portions of the system. For example, including a pointer to
a garbage collection routine in every descriptor makes it easy to use unusual garbage collection
techniques for particular heap objects [93, 140].

In a strongly typed language, it is possible to dispense with tagging entirely [5, 4]; if the garbage

collector knows the type of every root, then it is simple to determine the types of all reachable

76

objects. However, callers must pass type information whenever a polymorphic function is invoked
in order to determine the types of objects referenced from the stack. Moreover, in a language with
algebraic data types tags are still required to distinguish the different constructors in a type. As a
result, type-based garbage collection is seldom worthwhile.

On a system with a large address space, it is often possible to use a BiBoP (big bag of pages)
allocator to segregate objects with different tags [144]. Memory is divided into fixed-size chunks
(often one or more virtual memory pages in size); each chunk contains objects of a single size or with
a single tag. The data structure used to manage chunks contains appropriate tagging information.
We reject this approach in Eager Haskell for several reasons. First, an object can have many tags
over its lifespan due to suspension; this would require a cheap method for migrating objects between
pages. Second, Eager Haskell is extremely allocation-intensive; as a result, allocation must be
cheap. The BiBoP technique requires separate allocation state for every possible tag used by the
program.

The BiBoP techniqués a good method for structuring a high-level allocator such as the shared
multigenerational heap used in Eager Haskell. Here object tags are preserved, and the allocator
segregatesomeobjects simply for convenience. For example, by segregating objects of similar
size a mark-sweep allocator can use a single bitmap for marking and allocation [28]. Similarly,
pointer-free objects can be segregated from objects which must be traced by the collector, reducing

page faults during collection [60].

5.4 Function structure

Having decided to compile Eager Haskell programs to C, another fundamental decision must be
made: How to map Haskell functions to C functions. This is a tricky decision for any language with
a substantially different control structure from C itself.

By choosing to compile Eager Haskell to C, we are obliged to have idiomatic Haskell programs
compile to idiomatic C whenever possible. For example, we treat nested primitive expressions
as single units for the purpose of code generation (see Section 3.5.5), allowing the C compiler to
generate the best possible code for them. We therefore map each Eager Haskell function to a single
C function. Weavoid turning individual Haskell bindings into functions because we subvert the C
compiler’s ability to do register allocation, branch prediction and the like.

We also assume that larger functions are (within reason) better. Haskell functions tend to be very

77

small; C functions are generally much larger. As we note in Section 6.4, truly enormous functions
strain the resources of the C compiler, and the Eager Haskell compiler takes steps to break such
functions into smaller pieces at logical boundaries in the control flow.

There are a number of calling conventions that may be adopted. The shadow stack can be
maintained either as a separate data structure, or each function can have alocal array of shadow stack
entries which are then linked together, embedding the shadow stack in the C stack. Eager Haskell
function arguments can be passed either as C arguments or they can be pushed on the shadow
stack. Simple tests confirm that maintaining a separate shadow stack is substantially more efficient.
Surprisingly, even in the absence of a garbage collector using the shadow stack for parameter passing
was approximately as efficient as using the C calling conventions. Garbage collection requires
spilling arguments to the shadow stack and further shifts the balance.

When code suspends, we must somehow package up the point in the function body where exe-
cution should resume. We take our cue from Cilk [37], and give every function a set of numbered
entry points The entry point is passed as an argument to the function. Entry point zero is the dis-
tinguished entry point indicating the beginning of the function. If the entry point is nonzero, we
perform an indexed jump to the resumption point in the function. Simple functions will have only
one or two entry points, and their control flow is simplified to reflect that fact.

The Cilk implementation contains an additional refinement of the entrypoint technique: two
copies of every parallel function are generated. 3log clonepasses arguments on a shadow stack
(the steal stackand uses entrypoints. Thast cloneuses the ordinary C calling conventions and
is specialized with respect to the initial entry point. Ordinary function calls use the fast clone; the
slow clone is used only after work stealing or suspension. A quick off-the-cuff experiment with this
technique in Eager Haskell revealed that the resulting code ran substantially slower. Again, alloca-
tion and nested function call require arguments to be spilled to the shadow stack where they can be
found by the garbage collector. By placing resumption points at existing control flow boundaries
the cost of checking the entry point can be minimized, and increased instruction cache miss rates in
the 2-clone code appear to dominate.

There are numerous other techniques for mapping source functions to C procedures. Scheme
48 [61] generates its interpreter by partially evaluating a simple scheme-like language called pre-
scheme. Multiple scheme procedures are coalesced into a single C procedure; much of the inter-
preter collapses into a single function. Grouping functions in this way allows tail-recursive functions

to be transformed naturally into loops, and permits calling conventions to be tailored to the context

78

Function
Partial Known Statically
Application | application non-closure | unknown
Partial Rare Uncommon | Uncommon
Full Arity Common Most common| Common
Oversaturated Least common Uncommon | Uncommon

Table 5.1: Different cases of curried function application and their presumed frequency. Here Least
common< Rare< Uncommon< Common< Most common.

in which functions are actually used. However, Eager Haskell code is currently rather bulky, and
this technique would subvert function splitting and result in unmanageably large C functions.

GHC chooses to place each thunk in a separate C function [93]. This fits in naturally with the
lazy execution model: athunk is entered and executed independently of the containing function. The
resulting functions are knitted together by post-processing the assembly output of the C compiler.

ThepH [31] and Mercury [48] compilers had a notion of entrypoints similar to the Eager Haskell
compiler; however, they rely on a non-portable feature of gcc (taking the address of labels). This
results in slightly faster code, but modern versions of the trick are not sufficiently robust for produc-

tion use.

5.5 Currying

Currying is popular in Haskell, and curried functions must be represented in an efficient manner.
However, C isnot curried. Many ML implementations make tradeoffs in the efficiency of curried
function application in favor of speeding up tupled application [7]; in Haskell such a tradeoff would
generally be unacceptable. We make two key assumptions about the function calls in Eager Haskell
programs: Most function calls invoke a known function, and most function calls occur at (exactly)
full arity. Thus currying and higher-order function calls, while frequently used, still only account for
a small proportion of calls overall. We also assume that a function is ordinarily only curried once;
the resulting partial application is likely to be applied to all of its missing arguments. Semantically
(see Figure 3-12), the merge app rule will usually be followed by an immegdigteand we will
rarely need the split app rule.

The simplest implementation of currying statically transforms a function welhguments into
n functions each taking a single argument and returning a function. We would write this &s

follows:

79

AXg X1 Xo X3 — € = AXg — AX] — AXg — AX3 — €

This can be mapped very naturally to C, as every function call occurs at full arity. However, it
does the worst possible job of the common case: a full-arity application efergument function
generates — 1 closures. The Id compiler [133] uses a similar technique, but adds a second “full ar-
ity” entrypoint to every function. This makes full-arity applications of uncurried functions efficient;
full-arity applications of existing partial applications are still inefficient.

Techniques exist to statically eliminate currying [47]. In practice, these techniques require
whole-program analysis. The analyses also tend to err on the side of the “most-curried” version
of each function. Additional closures result, and full-arity application suffers.

Instead of statically compiling away currying, extant Haskell compilers generate code designed
to deal with curried function application while making full-arity application as fast as possible.
There are two basic approaches to compiling curryingetred-applyapproach and theush-enter
approach. In examining these two techniques, we identify the function being applied as a partial
application, a statically known function which has not been partially applied, or a statically unknown
function. We identify a call site (dynamically) as a full-arity application, a partial application, or
an over-saturated (more than full arity) application (note that we cannot know statically whether
an application of an unknown function will be at partial arity, full arity, or oversaturated, so this
distinction will need to be made at run time in these cases). Together, these give rise to nine different
cases of function application, summarized in Table 5.1. Both techniques will group some of the nine
cases together, and will move functionality required for the less common cases into the run-time

system.

5.5.1 The eval-apply approach

In Eager Haskell we use the eval-apply approach to compile partial application. The compiler
generates code for a function assuming it is being invoked at full arity. It is the caller’s responsibility
to create and unpack partial applications. This means that full arity application of a known function
can use a simple, fast calling convention (such as the regular C convention). Because there are
generally many more call sites than functions in a program, all calls to statically unknown functions
are handled in the run-time system. The eval-apply technique is summarized in Table 5.2. In
particular, no special treatment is given to oversaturated function applications. An oversaturated

application is treated as a full arity application yielding a partial application or an unknown function.

80

Function
Partial Known Statically
Application application non-closure unknown
Partial merge (,), store static store store stack
Full Arity copy closure), Bvar direct call (Byar) Bvar
Oversaturated merge (), split (), Gvar, apply | split statically ¢) | split (), Gvar, apply

Table 5.2: The eval-apply approach to partial application used in Eager Haskell. Rule names refer
to rules in Figures 3-12 and 4-2.

Partial applications build elosure In Eager Haskell a closure looks just like an ordinary data
structure—see Figure 5-2. The tag indicates the object size (as usual) and the remaining arity of the
closure. The first field is the function pointer. The remaining fields (if any) are the arguments to
which the function has been applied. This means that closurdtabraf we apply a function of
n arguments ta@ arguments, then apply the resulting closurg arguments, we will construct two
closures—one of sizeéand the second of size+ j. Closures are also required for functions with
free variables; this is discussed in more detail in Section 6.3.

All three cases of known function application can be handled at compile time. Oversaturated
applications of known functions are split into a full-arity application and an unknown application.
Full arity applications result in a simple function call. Partial applications allocate and fill in the
closure directly.

Any function call involving a closure is handled by a run-time system function c&kseral
Apply. We represent unknown functions as closuresGsoeralApplyhandles both the “Partial
Ap” and “Unknown” cases in Table 5.2. FinallgeneralApplyensures that the closure has been
computed. If this check were not done@eneralApplyit would need to be done at the site of every

unknown function application.

> Arity/1 code Arity / 4 code
Arg 3 —— for —— for
Arg 2 function Arg 3 function
Arg 1l Arg 2
Stack Arg L
State on entering the Apply function Resulting partial application

Figure 5-2: Partial application of a simple closure.

81

Function
Partial Known Statically
Application application non-closure unknown
Partial | Copy, call, revert | Direct call, revert | Call, revert
Full Arity Copy, call Direct call Call
Oversaturated Copy, call, unwind| Direct call, unwind| Call, unwind

Table 5.3: The push-enter approach to partial application used in GHC.

Compiled code invoke&eneral Applyby pushing function arguments onto the shadow stack as
usual. The closure is then pushed on top of them. The entrypoint pasSeshéval Applyindicates
the number of arguments which have been pusli&eheralApplyis therefore the only function
which is called with a nonzero entry point from user code. This allows a single function to handle

every possible case of function application.

5.5.2 The push-enter approach

The push-enter approach is used in GHC and hbc, and is described in detail in books on functional
programming implementation [92, 99]. It differs from the eval-apply approach in two important
respects. First, oversaturated applications are handled by a special return convention which avoids
creating an intermediate closure for partial applications in tail position. Second, as a result of this
return convention a function can be invoked at any arity; the burden of arity checking is shifted from
the caller to the callee. This requires the use of a co