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Abstract Let us consider a more specific example, say functions of the

Free theorems are a charm, allowing the derivation of useful state- YP& Monad p = [u Int] — 4 Int. Here are some:

ments about programs from their (polymorphic) types alone. We f1 = head
show how to reap such theorems not only from polymorphism over
ordinary types, but also from polymorphism over tyjgastructors
restricted byclass constraintsOur prime application area are mon-
ads, which form the probably most popular type constructor class
of Haskell. To demonstrate the broader scope, we also deal with
a transparent way of introducing difference lists into a program, £l
endowed with a neat and general correctness proof.

f2 ms = sequence ms >>= return o sum
f3 = fa o reverse

= return 0

fa(m:ms)=do i —m

) ] ) ) let [ = length ms

Categories and Subject DescriptorsD.1.1 [Programming Tech- if i > | then return (i + 1)

niqued: Applicative (Functional) Programming; D.3.Bfogram- else f4 (drop i ms)

ming Languagds Language Constructs and Features—Polymor-

phism; F.3.1[ogics and Meanings of PrografiS$pecifying and As we see, there is quite a variety of such functions. There can be

Verifying and Reasoning about Programs—Invariants simple selection of one of the monadic computations from the input
list (as in f1), there can be sequencing of these monadic computa-
General Terms Languages, Verification tions (in any order) and some action on the encapsulated values (as

in f> and f3), and the behaviour, in particular the choice which
of the computations from the input list are actually performed,
can even depend on the encapsulated values themselvesfas in
made a bit artificial here). Further possibilities are that some of
; the monadic computations from the input list are performed repeat-
1. Introduction edly, and so on. But still, all these functions also have something
One of the strengths of functional languages like Haskell is an ex- in common. They can onlgombinewhatever monadic computa-
pressive type system. And yet, some of the benefits this should holdtions, and associated effects, they encounter in their input lists, but
for reasoning about programs seem not to be realized to full extent. they cannotntroducenew effects of any concrete monad, not even
For example, Haskell uses monadioggi 1991) to structure pro- of the one they are actually operating on in a particular applica-
grams by separating concering¥gdler1992 Liang et al.1995 and tion instance. This is determined by the function type. For iffan
to safely mingle pure and impure computatioRgyton Jones and  were, on and of its own, to cause any additional effect to happen,
Wadler1993 Launchbury and Peyton Jon&895. A ot of code be it by writing to the output, by introducing additional branching
can be kept independent of a concrete choice of monad. This per-in the nondeterminism monad, or whatever, then it would immedi-

Keywords relational parametricity

tains to standard Prelude functions like ately fail to get the above type parametric opetn a language like
Haskell, should not we be able to profit from this kind of abstrac-
sequence :: Monad p = [ a] — o], tion for reasoning purposes?

If so, what kind of insights can we hope for? One thing to expect
is that in the special case when the concrete computations in an
input list passed to afi :: Monad p = [u Int] — w Int correspond
to pure values (e.g., are values of tyifieInt that do not perform
any actual input or output), then the same should holffofesult
for that input list. This is quite intuitive from the above observation
about f being unable to cause new effects on its own. But what
about more interesting statements, for example the preservation of
certain invariants? Say, we passfta list of stateful computations
and we happen to know that they do depend on, but do not alter
(a certain part of) the state. Is this property preserved throughout
the evaluation of a giverf? Or say the effect encapsulated in
[Copyright notice will appear here once "preprint’ option is removed.] f’s input list is nondeterminism but we would like to simplify

but also to many user-defined functions. This is certainly a boon for
modularity of programs. But also for reasoning?
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the program by restricting the computation to a deterministically (Here,ur, is the instantiation of; :: V. 7 to the typer;, and
chosen representative from each nondeterministic manifold. Under  similarly for v-,. In what follows, we will always leave type
what conditions, and for which kind of representative-selection instantiation implicit.)

functions, is this safe and does not lead to problems like a collapse
of an erstwhile nonempty manifold to an empty one from which no
representative can be chosen at all?

Also, every fixed type constructor is read as an appropriate con-
struction on relations. For example, the list type constructor maps

One could go and study these questions for particular functions gvery relationR : 71 & 72 to the relatior{R] : [r1] « [r2] defined
like the f; to fa given further above. But instead we would like y
to answer them for any function of tyddonad 1. = [ Int] — Rl ={(],[D}u{(a:as,b:bs)|(a,b) € R, (as,bs) € [R]},
w Int in general, without consulting particular function definitions.
And we would not like to restrict to the two or three scenarios
depicted in the previous paragraph. Rather, we want to explore
more abstract settings of which statements like the ones in question Maybe R = {(Nothing, Nothing)} U
above can be seen, and dealt with, as particular instances. And, of {(Just a, Just b) | (a,b) € R},
course, we prefer a generic methodology that applies equally well
to other types than the specific one otonsidered so far in this
introduction. These aims are not arbitrary or far-fetched. Precedent
has been set with the theorems obtained for fregvagler(1989
from relational parametricityReynolds1983. Derivation of such
free theorems, too, is a methodology applying not only to a single
type, works independently of particular function definitions, and
applies to a diverse range of scenarios: from simple algebraic laws
to powerful program transformation&{l et al. 1993, to meta-
theorems about whole classes of algorithivEdgtlander2008H).

Unsurprisingly then, we do build on Reynolds’ and Wadler's }/ - -
work. Of course, the framework that is usually considered when h Vclh—> 72 andl :: ] thatfd(";]ap h1) = map h (f1).
free theorems are derived needs to be extended to deal with types en we want to extend the treatment to t-yp(_e constructor
like Monad ;1 — .... But the ideas needed to do so are there classes, we have to deal with two new aspects: with quantifica-

. : - tion over typeconstructorvariables (rather than just over type
for the taking. Indeed, both relational parametricity extended for . 8 ;
polymorphism over type constructors rather than over ordinary variables) and witttlass constraint§Wadler and Blott1989. For

types only, as well as relational parametricity extended to take both aspects, the required extensions to the interpretation of types

class constraints into account, are in the folklore. However, these as relations appear to be folklore, but have seldomly been spelled

two strands of possible extension have not been combined before °Ut and have not been put to use before as we do in this paper.
Regarding quantification over typeonstructorvariables, the

and not been used as we do here. Since we are most interested in

demonstrating the prospects gained by that combination, we refrain '€ceSSary adaptationis as follows. Just as free type variables are in-
from developing the folklore into a full-fledged formal apparatus terpreted as relations between arbitrarily chosen closed types (and

that would stand to blur the intuitive ideas. This is not a theoretical then quantified over via relation variables), free type constructor

paper. Also on purpose, we do not consider Haskell intricacies, like variables are interpreted as functions on such relations tied to ar-
those studied bylohann and Voiginder(2004 and Stenger and  2itrarily chosen type constructors. Formally, latands, be type
Voigtlander(2008, that do affect relational parametricity but in a ?r'lstructors (O.f k'n? —>t'*).jACreIat|o|n?I actlgnz‘ortheml, degotted
way orthogonal to what is of interest here. Instead, we stay with 7 ‘%1 < K2, IS @ function on relations between closed types

Reynolds’ and Wadler’s simple model. For the sake of accessibility, erj]%? ;QaF everg : 71 < Tli(gfroégE;trgy[ﬁeir&igi)(;;r?hﬁprﬁg tg
we also stay close to Wadler's notation. PR1LTL < K2 T2 Pie, p

everyR : 1 & 72 to

the Maybe type constructor maps every relatioh : 7 < 72 to
the relationMaybe R : Maybe 71 < Maybe 7> defined by

and similarly for other user-definable types.

The key insight of relational parametricidjaReynold51983
now is that any expression over relations that can be built as above,
by interpreting a closed type, denotes the identity relation on that
type.
For the above example, this means that iny Va. [a] — [¢]
satisfies(f, f) € VR. [R] — [R], which by unfolding some
of the above definitions is equivalent to having for every r»,
R :7 & 72,1 =[], andl’ :: [r] that(1,1') € [R] implies
(f 1, f 1) € [R], or, specialised to the function level, for every

2. Free Theorems, in Full Beauty F R = {(Nothing, [])} U

o ] ] . {(Just a,b: bs) | (a,b) € R, bs :: [12]}
The key to deriving free theorems is to interpret types as relations. ) . } i )
For example, given a type signatufe:: [a] — [a], we take the is a relational actiotF : Maybe < []. The relational interpretation
type and replace every quantification over type variables, including of a type quantifying over a type constructor variable is now per-
implicit quantification (note that the typey] — [a], by Haskell formed in an analogous way as explained for quantification over
convention, really meansa. [o] — [a]), by quantification over ~ type (and then, relation) variables at the beginning of this sec-
relation variablesvR. [R] — [R]. Then, there is a systematic way tion. In different formulations and detail, the same basic idea is
of reading such expressions over relations as relations themselvesmentioned or used blfegaras and Shea(996, Kutan (1997),
In particular, Takeuti(2007), andVytiniotis and Weirich(2007).
) . . . Regardingclass constraintsWadler(1989 Section 3.4) directs
* base types liként are read as identity relations, the way by explaining how to treat the type cl&ssin the context
e for relationsk andS, we have of deriving free theorems. The idea is to simply restrict the relations
chosen as interpretation for type variables that are subject to a class
R—8=A{(},9)¥(a,b) € R.(f a,gb) € S}, constraint. Clearly, only relations between types that are instances
and of the class under consideration are allowed. Further restrictions
are obtained from the respective class declaration. Namely, the re-
strictions must precisely ensure that every class method is related
to itself by the relational interpretation of its type. This then guar-
antees that the overall result (i.e., that the relational interpretation
of every closed type is an identity relation) stays intact. The same
VR.FR = {(u,v)|V71,72, R : 11 < T2. (Ury,¥ry) E FR}. approach immediately applies to type constructor classes as well.

e for typesT and 7’ with at most one free variable, say and
a functionF on relations such that every relatiGd between
closed types; and7,, denotedR : 1 < 72, is mapped to a
relationF R : 7[r1/a] < 7'[12/a], we have
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Consider, for example, thdonad class declaration:

class Monad p where
return ;o — U o
(=) s pa— (a—pp)— pup

Since the type ofeturn is Vu. Monad pn = (Va. o — p «),

we expect thafreturn, return) € VF. Monad F = (VR. R —

F R), and similarly for>>=. The constraint Monad F” on a
relational action is now defined in precisely such a way that both
conditions will be fulfilled.

Definition 1. Let k1 andk2 be type constructors that are instances
of Monad and letF : k1 < k2 be arelational action. If

o (returny,, returnyg,) € YR. R — F R and
o (>=u,),(>>=4,)) EVR.VS.FR —- (R - FS) —

thenF is called aMonad-action (While we have decided to gen-
erally leave type instantiation implicit, we explicitly retain instan-
tiation of type constructors in what follows, except for some exam-

ples.)

For example, given the following standabnad instance defini-
tions:
instance Monad Maybe where
return a = Just a
Nothing >>= k = Nothing
Justa >=k=ka

instance Monad [| where
return a = [a]
as >>= k = concat (map k as)

the relational actiotF : Maybe <> [] given above isiota Monad-
action, because it is not the case tliat>=maye), (>>=))) €
VR.VS. F R — (R — FS8) — F S). To see this, consider
R =S8 =4, m1 =Justl,me = [1,2], k1 = \i — if ¢ >

1 then Just ¢ else Nothing, andks = A\i — reverse [2..i].
Clearly, (m1,m2) € F idine and(kq1, k2) € idint — F idint, but
(m1 >=Maybe kl,mg >>:[] ]fg) = (Nothing, [2]) ¢ F idint.

We are now ready to derive free theorems involving (poly-
morphism over) type constructor classes. For example, functions
f :: Monad = [u Int] — pu Int as considered in the introduc-
tion will necessarily always satisfyf, f) € VF. Monad F =
[F idine] — F idi, i.e., for every choice of type constructors
k1 and k2 that are instances dflonad, and everyMonad-action
F : k1 & ko, we have(fu,, fuo) € [F idint] — F idine. In
the next section we prove several theorems by instantiating-the
here, and provide plenty examples of interesting results obtained
for concrete monads.

3. One Application: Reasoning about Monadic
Programs

For most of this section, we focus on functiofis: Monad p =

[i Int] — p Int. However, it should be emphasised that results
of the same spirit can be systematically obtained for other types
involving quantification overMonad-restricted type constructor
variables just as well.

As mentioned in the introduction, one first intuitive statement
we naturally expect to hold is that when all the monadic values
supplied tof in the input list are actually pure (not associated with
any proper monadic effect), thefis result value, though of some
monadic type, should also be pure. After dllitself, being poly-
morphic overu, cannot introduce effects from any specific monad.

tions in the list monad, defined in the previous section and mod-
elling nondeterminism, but all the concretely passed values actually
correspond to deterministic computations, then we expectfthat
result value also corresponds to a deterministic computation. Simi-
larly, if the input list consists ofO computations, but we only pass
ones that happen to have no side-effect at all, tfienesult, though
living in the IO monad, should also be side-effect-free. To capture
the notion of “purity” independently of any concrete monad, we use
the convention that the pure computations in any monad are those
that may be the result of a call teturn. Note that this does not
mean that the values in the input list msghtacticallybe return-
calls. Rather, each of them only needs toskenantically equiva-
lent to some such call. The desired statement is now formalised,
and proved, as follows.

Theorem 1. Let f :: Monad u = [u Int] — p Int, letx be
an instance oMonad, and letl :: [« Int]. If every element in
lis areturn.-image, then so ig,. [.

Proof. We prove that for every/ :: [Int],
fr (map return, 1) = return,. (unld (fia (map 1d1'))),

where
newtype Id a« = Id {unld :: o}

instance Monad |d where
return a = Id a
Ida >=k=ka
To do so, we first show thef : k < Id with

FR=return,' ; R ; Id,

where “” is relation composition and™!” gives the inverse of a
function graph, is ¢Monad-action. Indeed,

o (return,, returnig) € VR. R — F R, since for everyR and
(a,b) € R, (return, a, returnig b) = (return, a,ld b) €
return; ' ; R ; Id, and

o ((>=x),(>=u)) EVR.VS. FR - (R —- FS) —
F S), since for evenyR, S, (a,b) € R, and(k1,k2) € R —
F S, (return, a >>= k1,1d b >=iq k2) = (k1 a,k2 ) €
F S. (Note the use of a monad law fer)

Hence, by what we derived at the end of the previous section,
(fiy fia) € [F idine] — F idine. Given that we haveF idi. =
return, ' ; Id = (return, o unld)fl, this implies the claim.

We can now reason for specific monads as follows.

Example 1.Let! :: [[Int]], i.e.,l :: [s Int] for k = []. We
might be interested in establishing that when every elemen
l is (evaluated to) a singleton list, then the result of applyi
any f :: Monad p = [u Int] — u Int to ! will be a singleton
list as well. While this is easy to see f¢r, f2, and f5 from
the introduction, it is maybe not so immediately obvious fo
the f4 given there. However, Theorem 1 tells us without any
further effort that the statement in question does indeed hpld
for f4, and for any othe)f of the same type.

tin
ng

=

Likewise, we obtain the statement about side-effect-free compu-
tations in thelO monad envisaged above. All we rely on then is

This statement is expected to hold no matter what monad the inputthat thelO monad, like the list monad, satisfies the monad law that

values live in. For example, if the input list consists of computa-

return a >>= kis k a, as used in the proof of Theorem 1.
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A second general statement we are interested in is to deal
with the case that the monadic computations provided as input
are not necessarily pure, but we have a way of discarding the
monadic layer and recovering underlying values. Somewhat akin
to unsafePerformIO :: 10 a« — «, but for other monads and
hopefully safe. Then, if we are interested only in a thus projected
result value off, can we show that it only depends on likewise
projected input values, i.e., that we can discard any effects from the
monadic computations ifi's input list when we are not interested
in the effectful part of the output computation? Clearly, it would be
too much to expect this to work for arbitrary “projections”, or even
arbitrary monads. Rather, we need to devise appropriate restrictions
and prove that they suffice. The formal statement turns out to be as
follows.

Theorem 2. Let f :: Monad p = [u Int] — p Int, let s be
an instance oMonad, and letp :: k @ — . If

Assume we are interested in applying An: Monad 1 =

[ Int] — p Int to ani :: [Writer Int], yielding a monadic
result of typeWriter Int. Assume further that for some partict
ular purpose during reasoning about the overall program, we
are only interested in the actual integer value encapsulated in
that result, as extracted by the following function:

p :: Writer a — «
p (Writer (a,s)) = a

Intuition suggests that then the value@ff ) should not
depend on any logging activity of elementslinThat is, ifl
were replaced by anothér :: [Writer Int] encapsulating the
same integer values, put potentially attached with differe
logging information, therp (f ') should give exactly the
same value. Since the giverfulfils the required conditions,
Theorem 2 confirms this intuition.

® p o return, = id and

e for every choice of closed typesand7’, m :: s 7, and

It should also be instructive here to consider a negative example.

kT — KT,
p(m >=c k) =p(k(pm)),
then p o f, gives the same result for any two lists @
same length whose corresponding elements have the san

images, i.e.p o f. can be “factored” asg o (map p) for
some suitablg :: [Int] — Int.

D —

Proof. We prove that for every :: [ Int],

p (fx 1) = unld (fia (map (Id o p) 1)),
where the type constructdd and its Monad instance definition
are as in the proof of Theoreth To do so, we first show that
F : k & Id with
FR=p;R;Id
is aMonad-action. Indeed,

o (return,, returnig) € VR. R — F R, since for everyR and
(a,b) € R, (return, a,b) € p ; Rbyp (return, a) = a, and

o ((>=4),(>=u)) EVR.VS.FR - (R — FS) —
F S), since for everyR, S, (m,b) € p; R, and(k1, k) €
R — F S, (m>=,ki,ldb>=4k) € p;S;Idby
p (m >= ki) = p (k1 (p m)) and (k1 (p m), k2 b) €
p; S ; Id (which holds due toki,k2) € R — F S and
(pm,b) € R).

7]

Example 3. Recall the list monad defined in the previou
section. Itis tempting to useead :: [a] — « as an extraction
function and expect that for evefy:: Monad 1 = [u Int] —

w Int, we can factothead o f asg o (map head) for some

suitableg :: [Int] — Int. But actually this fails in a subtle
way. Consider, for example, the (for the sake of simplicit
artificial) function

y

f5 :: Monad p = [ Int] — pInt
5] = return 0
fs (m:ms)=do i —m
f5 (if i > 0 then ms else tail ms)

Then forl = [[1],[]] andi’ = [[1, 0], []], both of type][[Int]],
we havemap head | = map head I', but head (fs 1) #
head (fs1'). Infact, the left-hand side of this inequation lead
to an “head of empty list"-error, whereas the right-hand si
delivers the valu@. Clearly, this means that the supposed
cannot exist forfs andhead.

An explanation for the observed failure is provided b
the conditions imposed op in Theorem 2. It is simply
not true that for everym and k, head (m >= k)
head (k (head m)). More concretely, the failure fofs ob-
served above arises from this equation being violated
m = [1,0] andk = X\i — if ¢ > 0 then [] else [0].

for

Hence,(fx, fu) € [F idii] — F idine. Given that we have
Fidne=p;ld=1Id o p=p;unld™!, this implies the claim.

Note that no monad laws at all are needed in the above proof. The
same will be true for the other theorems we prove in this section,
except for Theorerh. But first, we consider several example appli-

Since the previous (counter-)example is a bit peculiar in its reliance
on runtime errors, let us consider a related setting without empty
lists, an example also serving to further emphasise the predictive
power of the conditions op in Theorem 2.

cations of Theorem 2.

Example 2. Consider the well-known writer, or logging,
monad (specialised here to theing monoid):

newtype Writer & = Writer (o, String)

instance Monad Writer where
return a = Writer (a,"")
Writer (a,s) >=k =
Writer (case k a of Writer (a’,s") — (a’, s # ')

Example 4. Assume, just for the scope of this example, th
the type constructof] yields (the types of) nonempty lists
only. Clearly, it becomes an instance Monad by just the

same definition as given in Secti@n There are now several
choices for a never failing extraction functipn:: [a] — «a.

For examplep could behead, could belast, or could be

the function that always returns the element in the midg
position of its input list (and, say, the left one of the tw|
middle elements in the case of a list of even length). But whi
of these candidates are “good” in the sense of providing,

I
o}
ch
for

e
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every f :: Monad u = [u Int] — p Int, a factorisation
of p o finto g o (map p)? The answer is provided by the
two conditions orp in Theorem?2, which specialised to the
(nonempty) list monad require that

o for everya, p [a] = a, and
e for every choice of closed typesandr’, m :: [r], and
k1 — [7'], p (concat (map k m)) = p (k (p m)).

From these conditions it is easy to see that nows head
is good (in contrast to the situation in Exam@g and so is
p = last, while the proposed “middle extractor” is not. |
does not fulfil the second condition above, roughly becad
k does not necessarily map all its inputs to equally long
lists. (A concrete counterexampfe, of appropriate type, can
easily be produced from this observation.)

Next, we would like to tackle reasoning not about the com-
plete absence ofa(la Theoreml), or disregard for § la Theo-
rem 2), monadic effects, but about finer nuances. Often, we know
certain computations to realize only some of the potential effects
to which they would be entitled according to the monad they live

To do so, we first show thdf : k1 < ko With

FR=(miR);h "

is aMonad-action. Indeed,

o (returny,, return,,) € VYR. R — F R, since for ev-

ery R and (a,b) € R, (return., a,h (return,., b))
(return,, a, return., b) € k1 R by (return,,, return,, ) €
VR. R — k1 R (which holds due taeturn., :: Va. a —
k1 ), and

o (>=u,),(>>=x,)) EVR.VS.FR - (R - FS) —

F S), since for everyR, S, (m1,m2) € (k1 R) ; h™*, and

(k1,k2) € R — ((k1 8) 5 A1),
(m1 >>=4, k1,h (ma2 >=, k2)) =
(m1 >>=x, ki,hme >=,, hoks) €k S
by ((>=x,),(>=x,)) € VR.VS. k1 R — ((R —

K1 S) — K1 S), (m1,h mg) € k1 R, and(kl,h o kg) S
R — k1 S.

Hence,(fx:, fro) € [F idine] — F idine. Given that we have

idine = (51 idint) ; h~1 = A1, this implies the claim. (Note

thatx idi is the relational interpretation of the closed typeint,
and thus itself denote., int.)

in. If, for example, the effect under consideration is nondetermin- Using Theorem 3, we can indeed prove the statements mentioned
ism a la the standard list monad, then we might know of some fqr the |ist and exception monads above Definition 2. Here, for di-

computations in that monad that they realize only none-or-one- yersijon, we instead prove some results about more stateful compu-
nondeterminism, i.e., never produce more than one answer, but maytions.

produce none at all. Or we might know that they realize only non-

failing-nondeterminism, i.e., always produce at least one answer,
but may produce more than one. Then, we might want to argue that
the respective nature of nondeterminism is preserved when com-|
bining such computations using, say, a functjonr Monad p =

[ Int] — w Int. This would mean that applying any sugho any

list of empty-or-singleton lists always gives an empty-or-singleton
list as result, and that applying any sutho any list of nonempty
lists only gives a nonempty list as result for sure. Or, in the case
of an exception monadE(ther String), we might want to establish
that an application off cannot possibly lead to any exceptional
value (error description string) other than those already present
somewhere in its input list. Such “invariants” can often be captured
by identifying a certain “subspace” of the monadic type in ques-
tion that forms itself a monad, or, indeed, by “embedding” another,
“smaller”, monad into the one of interest. Formal counterparts of
the intuition behind the previous sentence and the vague phrases
occurring therein can be found in the following definition and the-
orem, as well as in the subsequent examples.

Definition 2. Let k1 and k2 be instances oMonad and leth ::
Ko o — K1 a. lf

® ho return,, = return,, and

Example 5. Consider the well-known reader monad:
newtype Reader p « = Reader (p — «)

instance Monad (Reader p) where
return a = Reader (Ar — a)
Reader g >=k =
Reader (A\r — case k (g ) of Reader g’ — ¢’ 1)

Assume we are given a list of computations inRaader
monad, but it happens that all present computations dep
only on a certain part of the environment type. For examp|
for some closed types andr, [ :: [Reader (11, 72) Int], and
for every elemenReader g in I, g (x,y) never depends on
We come to expect that the same kind of independence sh
then hold for the result of applying anf :: Monad p =
[ Int] — p Inttol. And indeed this holds by Theorem 3
with the following monad morphism:

h :: Reader 71 o — Reader (71,72)
h (Reader g) = Reader (g o fst)

e for every choice of closed types and 7', m :: w2 7, and

kT — kot

h(m >=., k)=hm >=,, hok,

end
le,

puld

Itis also possible to connect more different monads, even involving
thelO monad.

thenh is called anonad morphism

Theorem 3.Let f :: Monad o = [u Int] — p Int, let
h :: k2 o — k1 a be amonad morphism, and let: [k1 Int].
If every element ihis anh-image, then so ig., I.

Proof. We prove that for every :: [2 Int],

Jy (map h l/) =h (fuy ll)' 1)

Example 6. Let [ :: [IO Int] and assume that the only side
effects that elements inhave consist of writing strings to the
output. We would like to use Theorem 3 to argue that the sa|
is then true for the result of applying arfy:: Monad p© =
[t Int] — p Int to l. To this end, we need to somehoy
capture the concept of “writing (potentially empty) strings {
the output as only side-effect of 4@ computation” via an
embedding from another monad. Quite naturally, we reuse
Writer monad from Exampl@. The embedding function is as

me

o <

the
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follows:

h :: Writer a — 10
h (Writer (a, s)) = putStr s >> return a

What is left to do is to show thdt is a monad morphism. But
this follows fromputStr " = return (), putStr (s 4 s') =
putStr s >> putStr s’, and monad laws for th€D monad.

Similarly to the above, it would also be possible to show that when
thelO computations iri do only read from the input (via, possibly
repeated, calls tgetChar), then the same is true ¢fl. Instead of
exercising this through, we turn to general state transformers.

Example 7. Consider the well-known state monad:

newtype State o a = State (0 — (o, 0))

instance Monad (State o) where
return a = State (As — (a, s))
Stateg >=k =
State (As — let (a,s’) =g sin

case k a of State g’ — ¢’ s’

S

)

Intuitively, this extends the reader monad by not only allowir
a computation to depend on an input state, but also to trg
form the state to be passed to a subsequent computation.
natural question now is whether being a specific state trans-
former that actually corresponds to a read-only computat
is an invariant that is preserved when computations are cq
bined. That is, given some closed typand! :: [State T Int]
such that for every elemeState g in [, snd o g = id, is it
the case that for every :: Monad 1 = [i Int] — p Int, also
f lis of the formState g for someg with snd o g = id? The
positive answer is provided by Theoreéhwith the following
monad morphism:

h :: Reader 7 @ — State 7 «
h (Reader g) = State (As — (g s, s))

Similarly to the above, we can show preservation of the invariant
that a computation transforms the state “in the background”, while
the primary result value is independent of the input state. That
is, if for every elementState g in [, there exists an :: Int
with fst o ¢ = const i, then the same applies tb!. It should
also be possible to transfer the above kind of reasoning t6The
monad [aunchbury and Peyton Jon£895.

As a final statement about our pet typéonad p = [u Int] —
w1 Int, we would like to show that we can abstract from some aspects
of the effectful computations in the input list if we are interested
in the effects of the final result only up to the same abstraction.
For conveying between the full effect space and its abstraction, we
again use monad morphisms.

Theorem 4. Let f :: Monad v = [ Int] — p Int and let
h 1 k2 o — k1 o be a monad morphism. Théno f.,
gives the same result for any two lists of same length wh
corresponding elements have the sdienages.

pse

Proof. Letly,ls :: [k2 Int] be such thatnap h 1 = map h ls.
Thenh (fx, 11) = h (fx, l2) by statement) from the proof of
Theorems.

Example 8. Consider the well-known exception monad:

instance Monad (Either String) where
return a = Right a
Left err >>= k = Left err
Righta >=k=ka

We would like to argue that if we are only interested i
whether the result off for some input list over the type
Either String Int is an exceptional value or not (and whic
ordinary value is encapsulated in the latter case), but do ot
care what the concrete error description string is in the for-
mer case, then the answer is independent of the concrete error
description strings potentially appearing in the input list. Far-
mally, letl,l> :: [Either String Int] be of same length, and
let corresponding elements either be both tagged wétf
(but not necessarily containing the same strings) or be id
tical Right-tagged values. Then for evelfy:: Monad p =
[1Int] — wInt, f 11 andf I; either are both tagged witheft
or are identicaRight-tagged values. This holds by Theorem
with the following monad morphism:

=

4%
3

=

h :: Either String a — Maybe «
h (Left err) = Nothing
h (Right a) = Justa

Just to reinforce that our approach is not specific to our pet type
alone, we end this section by giving a theorem obtained for another
type, the one ofequence, also showing that mixed quantification
over type constructor variables and ordinary type variables can very
well be handled.

Theorem 5. Let f :: Monad ¢t = [p o] — p o] and let
h 1 ko @ — k1 o be a monad morphism. Then for evern

<

choice of closed types and 7z, g :: 71 — 72, 11 it [k1 T1],
andly :: [k T1], map (5>=u, returng,) i = map hla
implies

Sy (map (>>=,, returne, o g) l1) >=,, return,,

h (fiy l2) >>=., return., o mapg.
Using the function
fmap = Monad p = (a — 3) > pa— uf
fmap gm = m >>= return o g
and a monad law fok, this can be simplified as follows:

fry © map (fmap,., g) o map h

fmap,., (map g) o ho fu,.

4. Another Application: Difference Lists,
Transparently

It is a well-known problem that computations over lists sometimes
suffer from a quadratic runtime blow-up due to left-associatively
nested appends. For example, this is the case for flattening a tree of
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the type
data Tree a = Leaf a | Node (Tree o) (Tree &)
using the following function:

flatten :: Tree & — [&]
flatten (Leaf a) [a]
flatten (Node t1 t2) = flatten t1 H flatten to

An equally well-known solution is to switch to an alternative rep-
resentation of lists as functions, by abstraction over the list end,
often called difference lists. In the formulation dfighes(1986),

but encapsulated as an explicitly new data type:

newtype DList = DL {unDL :: [a] — [a]}

rep :: [a] — DList «
rep | = DL (I #)

abs :: DList a — [¢

abs (DL f) = f []

emptyR :: DList o
emptyR = DL id

consR :: a« — DList &« — DList «

consRa (DL f) =DL ((a:) o f)

appendR :: DList o — DList @« — DList «
appendR (DL f) (DL g) = DL (f o g)

Then, flattening a tree into a list in the new representation can be

done using the following function:

flatten’ :: Tree « — DList «
flatten’ (Leaf a) = consR a emptyR
flatten’ (Node t1 t2) = appendR (flatten’ t1) (flatten’ t2)

and a more efficient variant of the original function, with its original
type, can be recovered as follows:

flatten :: Tree o« — [0
flatten = abs o flatten’

There are two small problems with this approach. One is cor-
rectness. How do we know that the neffatten is equivalent

to the original one? We could try to argue by “distributing”
abs over the definition offlatten’, using abs emptyR = [],

abs (consR a as) = a : abs as, and

abs (appendR as bs) = abs as H abs bs. 2)

But actually the last equation does not hold in general. The rea-
son is that there ares :: DList 7 that are not in the image of
rep. Consider, for examplegs = DL reverse. Then neither is

as = rep | for anyl, nor does (2) hold for everys. Any argu-
ment “by distributingabs” would thus have to rely on the implicit
assumption that a certain discipline has been exercised when goin
from the originalfiatten to flatten’ by replacing|], (:), and(+)

by emptyR, consR, andappendR (and/or applyingep to explicit
lists). But this implicit assumption is not immediately in reach for
formal grasp. So it would be nice to be able to provide a single,

conclusive correctness statement for transformations like the one

above. One way to do so was presented/bigitiander(2002), but

it requires a certain restructuring of code that can hamper composi-

tionality and flexibility by introducing abstraction at fixed program
points (via lambda-abstraction and so-callegish-combinators).

This also brings us to the second problem with the simple approach

above.
When, and how, should we switch between the original and the
alternative representations of lists during program construction? If

we first write the original version oflatten and only later, after
observing a quadratic runtime overhead, switch manually to the
flatten'-version, then this is quite cumbersome, in particular when
it has to be done repeatedly for different functions. Of course, we
could decide to always usenptyR, consR, and appendR from

the beginning, to be on the safe side. But actually this is not so safe,
efficiency-wise, because the representation of lists by functions
carries its own (constant-factor) overhead, and if a function does
not use appends in a harmful way, then we do not want to pay
this price. Using the alternative presentation in a particular situation
should be a conscious decision, not a default. And assume that later
on we change the behaviour fitten, say, to explore only a single
path through the input tree, so that no appends arise. Certainly, we
do not want to have to go and manually switch back to the, now
sufficient, original list representation. The cure to our woes here is
obvious, and has often been applied in similar situations: simply
use overloading. Specifically, we can declare a type constructor
class as follows:

class ListLike § where
empty :: 0 «
cons a—0a— 0o
append 20 — da — 0«

and codeflatten in the following form:

flatten :: Tree a« — (V4. ListLike 6 = ¢ )
flatten (Leaf a) = cons a empty
flatten (Node t1 t2) = append (flatten t1) (flatten t2)

Then, with the obvious instance definitions

instance ListLike [] where
empty =[]
cons = (:)
append = (+)

and
instance ListLike DList where
empty = emptyR
cons = consRk
append = appendR

we can use the single version fitiiten above both to produce
ordinary lists and to produce difference lists. The choice between
the two will be made automatically by the type checker, depending
on the context in which a call tatten occurs. For example, in

last (flatten t) (3)

the ordinary list representation will be used, due to the input type
of last. Actually, (3) will compile (under GHC 6.6, at least) to ex-
actly the same code dast (flatten t) for the original definition

of flatten from the very beginning of this section. Any overhead
related to the type class abstraction is simply eliminated by a stan-
dard optimisation. In particular, this means that where the original
representation of lists would have perfectly sufficed, programming

%hgainst the abstract interface provided by HigLike class does

no harm either. On the other hand, (3) of course still suffers from
the same quadratic runtime blow-up as with the original definition
of flatten. But now we can switch to the better behaved difference
list representation without touching the codefbitien at all, by
simply using

last (abs (flatten t)) . 4)

Here the (input) type ofibs determinesflatten to useemptyR,
consR, andappendR, leading to linear runtime.

Can we now also answer the correctness question more satis-
factorily? Given the forms of (3) and (4), it is tempting to simply
conjecture thatbs t = ¢ for anyt. But this cannot be quite right,
asabs has different input and output types. Also, we have already
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observed that someof abs’s input type are problematic by not
corresponding to any actual list. The clou now is to only consider
that only use theistLike interface, rather than any specific opera-
tions related tdList as such. That is, we will indeed prove that for
every closed type andt :: ListLike 6 = 6 7,

abs tpList = t[] .

Since the polymorphism ovérin the type oft is so important, we
follow Voigtlander(20083 and make it an explicit requirement in
a function that we will use instead abs for switching from the
original to the alternative representation of lists:

improve :: (Vé. ListLike § = § o) — [
improve t = abs t

Now, when we observe the problematic runtime overhead)n (
we can replace it by

last (improve (flatten t)).

That this does not change the semantics of the program is estab
lished by the following theorem, which provides the sought-after
general correctness statement.

Theorem 6. Lett :: ListLike § = § 7 for some closed type.
Then

improve t =t .

Proof. We prove
unDL tDList H = t[] y (5)

which by the definitions ofmprove and abs is equivalent to the
claim. To do so, we first show th&t : DList < [] with

FR=unDL; ([R] = [R]) ; (4+) "
is a ListLike-action, where the latter concept is defined as any

relational actionF : k1 < ko for type constructors; and k2
that are instances dfistLike such that

* (empty, ,empty, ) € VR. F R,
® (consu,, consg,) EVR. R — (FR—FR),and
* (append,  ,append, ) EVR.F R — (F R — FR).

Indeed,

e (emptyR,[]) € VR. F R, since for everyR and (I1,12) €
[R], (unDL emptyR I1,[] # l2) = (l1,12) € [R],

e (consR,(:)) e YR.R — (F R — F R), since for everyR,
(1) € R, (f,09) € (R] = 7)) (4) 7, and(ly,Iz) €

(unDL (consR a (DL f)) L1, (b: bs) H l2) =
(a: fli,b:bs # l2) € [R]

by (a,b) € Rand(f l1, bs 4 l2) € [R] (which holds due to
(f, (bs 4#)) € [R] — [R] and(l1,12) € [R]), and
® (appendR, (#)) € VR. F R — (F R — F R), since for
everyR, (f, as) € ([R] — [R]) ; (4+) 7", (g, bs) € ([R] —
[R]) ; (+) 7", and(ly,12) € [R],
(unDL (appendR (DL f) (DL g)) l1, (as H bs) 4 l2) =
(f (gh), as 4 (bs 4 12)) € [R]
by (f, (as +)) € [R] — [R], (9, (bs 4)) € [R] — [R], and
(l1,l2) S [R]
Hence, (toList, t) € F id.. Given that we haveF id, =
unDL ; ([id-] — [id-]) ; ()" = unDL ; (+)~", this implies
unDL tprist = (t[] %), and thus (5)

Note that thelListLike-action F : DList < [] used in the above
proof is the same as
FR=(DListR) ; rep” ",

given thatDList R = unDL ; ([R] — [R]) ; DL. This connection
suggests the following more general theorem, which can actually
be proved much like above.

Theorem 7. Lett :: ListLike § = ¢ 7 for some closed type
7, let k1 and ks be instances dfistLike, and leth :: ko o —
k1 o If

® h empty,, = empty, ,

e for every closed typer, a T, and as Ko T,
h (consk, a as) = consx, a (h as), and
e for every closed typer and as,bs Ko T,

h (append,., as bs) = append,., (h as) (h bs),

then

2

Pty =t .

Theorem 6 is a special case of this by setting= DList, k2
andh = rep, and observing that

e rep [| = emptyR,

e for every closed type, a ::
consR a (rep as),

T,andas ::

[7], rep (a : as)

e for every closed type- and as, bs ::
appendR (rep as) (rep bs), and

[], rep (as + bs)

® abs o rep = id,

all of which hold by easy calculations. One key observation here
is that the third of the above observations does actually hold, in
contrast to its faulty “dual”%) considered earlier in this section.

Of course, free theorems can now also be derived for other types
than those considered in Theorems 6 and 7. For example, for every
closed typer, f :: ListLike § = § 7 — & 7, andh as in Theorem 7,
we get that:

feooh=ho fu,.
To apply the reasoning approach presented here to the generic
setting ofVoigtlander(20083 would first require to extend it to
multi-parametettype (constructor) classes, which are not currently
part of the Haskell standard.

5. Discussion and Related Work

Of course, statements like that of Theorem 7 are not an entirely
new revelation. That statement can be read as a typical fusion
law for compatible morphisms between algebras over the signature
described by theistLike class declaration. (For a givefconsider
ListLike § = ¢ 7 as the corresponding initial algebra, = and
ko T as two further algebras, and the operatipnof instantiating
at :: ListLike § = ¢ T to at,, :: k; T as initial algebra morphism,
or catamorphism. Then the conditions/oim Theorem 7 make it an
algebra morphism and the theorem’s conclusion, also expressible as
h o -y = -, IS “just” that of the standard catamorphism fusion
law.) But being able to derive such statements directly from the
types in the language, based on its built-in abstraction facilities,
immediately as well for more complicated types (IlistLike 6 =
6 T — ¢ 7 instead ofListLike § = § 7), and all this without
going through category-theoretic hoops, is new and unique to our
approach (for higher-order polymorphism).

There has been quite some interest recently in enhancing the
state of the art in reasoning about monadic progrdafitsiski and
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