
Submitted to ICFP’08

Free Theorems Involving Type Constructor Classes
Functional Pearl

Janis Voigtl̈ander
Institut für Theoretische Informatik

Technische Universität Dresden
01062 Dresden, Germany

voigt@tcs.inf.tu-dresden.de

Abstract
Free theorems are a charm, allowing the derivation of useful state-
ments about programs from their (polymorphic) types alone. We
show how to reap such theorems not only from polymorphism over
ordinary types, but also from polymorphism over typeconstructors
restricted byclass constraints. Our prime application area are mon-
ads, which form the probably most popular type constructor class
of Haskell. To demonstrate the broader scope, we also deal with
a transparent way of introducing difference lists into a program,
endowed with a neat and general correctness proof.

Categories and Subject DescriptorsD.1.1 [Programming Tech-
niques]: Applicative (Functional) Programming; D.3.3 [Program-
ming Languages]: Language Constructs and Features—Polymor-
phism; F.3.1 [Logics and Meanings of Programs]: Specifying and
Verifying and Reasoning about Programs—Invariants

General Terms Languages, Verification

Keywords relational parametricity

1. Introduction
One of the strengths of functional languages like Haskell is an ex-
pressive type system. And yet, some of the benefits this should hold
for reasoning about programs seem not to be realized to full extent.
For example, Haskell uses monads (Moggi 1991) to structure pro-
grams by separating concerns (Wadler1992; Liang et al.1995) and
to safely mingle pure and impure computations (Peyton Jones and
Wadler1993; Launchbury and Peyton Jones1995). A lot of code
can be kept independent of a concrete choice of monad. This per-
tains to standard Prelude functions like

sequence :: Monad µ⇒ [µ α]→ µ [α] ,

but also to many user-defined functions. This is certainly a boon for
modularity of programs. But also for reasoning?

[Copyright notice will appear here once ’preprint’ option is removed.]

Let us consider a more specific example, say functions of the
typeMonad µ⇒ [µ Int]→ µ Int. Here are some:

f1 = head

f2 ms = sequence ms >>= return ◦ sum

f3 = f2 ◦ reverse

f4 [] = return 0
f4 (m : ms) = do i← m

let l = length ms
if i > l then return (i+ l)

else f4 (drop i ms)

As we see, there is quite a variety of such functions. There can be
simple selection of one of the monadic computations from the input
list (as inf1), there can be sequencing of these monadic computa-
tions (in any order) and some action on the encapsulated values (as
in f2 and f3), and the behaviour, in particular the choice which
of the computations from the input list are actually performed,
can even depend on the encapsulated values themselves (as inf4,
made a bit artificial here). Further possibilities are that some of
the monadic computations from the input list are performed repeat-
edly, and so on. But still, all these functions also have something
in common. They can onlycombinewhatever monadic computa-
tions, and associated effects, they encounter in their input lists, but
they cannotintroducenew effects of any concrete monad, not even
of the one they are actually operating on in a particular applica-
tion instance. This is determined by the function type. For if anf
were, on and of its own, to cause any additional effect to happen,
be it by writing to the output, by introducing additional branching
in the nondeterminism monad, or whatever, then it would immedi-
ately fail to get the above type parametric overµ. In a language like
Haskell, should not we be able to profit from this kind of abstrac-
tion for reasoning purposes?

If so, what kind of insights can we hope for? One thing to expect
is that in the special case when the concrete computations in an
input list passed to anf :: Monad µ⇒ [µ Int]→ µ Int correspond
to pure values (e.g., are values of typeIO Int that do not perform
any actual input or output), then the same should hold off ’s result
for that input list. This is quite intuitive from the above observation
aboutf being unable to cause new effects on its own. But what
about more interesting statements, for example the preservation of
certain invariants? Say, we pass tof a list of stateful computations
and we happen to know that they do depend on, but do not alter
(a certain part of) the state. Is this property preserved throughout
the evaluation of a givenf? Or say the effect encapsulated in
f ’s input list is nondeterminism but we would like to simplify

1 2008/4/1

the program by restricting the computation to a deterministically
chosen representative from each nondeterministic manifold. Under
what conditions, and for which kind of representative-selection
functions, is this safe and does not lead to problems like a collapse
of an erstwhile nonempty manifold to an empty one from which no
representative can be chosen at all?

One could go and study these questions for particular functions
like the f1 to f4 given further above. But instead we would like
to answer them for any function of typeMonad µ ⇒ [µ Int] →
µ Int in general, without consulting particular function definitions.
And we would not like to restrict to the two or three scenarios
depicted in the previous paragraph. Rather, we want to explore
more abstract settings of which statements like the ones in question
above can be seen, and dealt with, as particular instances. And, of
course, we prefer a generic methodology that applies equally well
to other types than the specific one off considered so far in this
introduction. These aims are not arbitrary or far-fetched. Precedent
has been set with the theorems obtained for free byWadler(1989)
from relational parametricity (Reynolds1983). Derivation of such
free theorems, too, is a methodology applying not only to a single
type, works independently of particular function definitions, and
applies to a diverse range of scenarios: from simple algebraic laws
to powerful program transformations (Gill et al. 1993), to meta-
theorems about whole classes of algorithms (Voigtländer2008b).

Unsurprisingly then, we do build on Reynolds’ and Wadler’s
work. Of course, the framework that is usually considered when
free theorems are derived needs to be extended to deal with types
like Monad µ ⇒ But the ideas needed to do so are there
for the taking. Indeed, both relational parametricity extended for
polymorphism over type constructors rather than over ordinary
types only, as well as relational parametricity extended to take
class constraints into account, are in the folklore. However, these
two strands of possible extension have not been combined before,
and not been used as we do here. Since we are most interested in
demonstrating the prospects gained by that combination, we refrain
from developing the folklore into a full-fledged formal apparatus
that would stand to blur the intuitive ideas. This is not a theoretical
paper. Also on purpose, we do not consider Haskell intricacies, like
those studied byJohann and Voigtländer(2004) andStenger and
Voigtländer(2008), that do affect relational parametricity but in a
way orthogonal to what is of interest here. Instead, we stay with
Reynolds’ and Wadler’s simple model. For the sake of accessibility,
we also stay close to Wadler’s notation.

2. Free Theorems, in Full Beauty
The key to deriving free theorems is to interpret types as relations.
For example, given a type signaturef :: [α] → [α], we take the
type and replace every quantification over type variables, including
implicit quantification (note that the type[α] → [α], by Haskell
convention, really means∀α. [α] → [α]), by quantification over
relation variables:∀R. [R]→ [R]. Then, there is a systematic way
of reading such expressions over relations as relations themselves.
In particular,

• base types likeInt are read as identity relations,

• for relationsR andS, we have

R→ S = {(f, g) | ∀(a, b) ∈ R. (f a, g b) ∈ S} ,

and

• for typesτ andτ ′ with at most one free variable, sayα, and
a functionF on relations such that every relationR between
closed typesτ1 andτ2, denotedR : τ1 ⇔ τ2, is mapped to a
relationF R : τ [τ1/α]⇔ τ ′[τ2/α], we have

∀R.F R = {(u, v) | ∀τ1, τ2,R : τ1 ⇔ τ2. (uτ1 , vτ2) ∈ F R} .

(Here,uτ1 is the instantiation ofu :: ∀α. τ to the typeτ1, and
similarly for vτ2 . In what follows, we will always leave type
instantiation implicit.)

Also, every fixed type constructor is read as an appropriate con-
struction on relations. For example, the list type constructor maps
every relationR : τ1 ⇔ τ2 to the relation[R] : [τ1]⇔ [τ2] defined
by

[R] = {([], [])}∪{(a : as, b : bs) | (a, b) ∈ R, (as, bs) ∈ [R]} ,
the Maybe type constructor maps every relationR : τ1 ⇔ τ2 to
the relationMaybeR : Maybe τ1 ⇔ Maybe τ2 defined by

MaybeR = {(Nothing,Nothing)} ∪
{(Just a, Just b) | (a, b) ∈ R} ,

and similarly for other user-definable types.
The key insight of relational parametricityà laReynolds(1983)

now is that any expression over relations that can be built as above,
by interpreting a closed type, denotes the identity relation on that
type.

For the above example, this means that anyf :: ∀α. [α] → [α]
satisfies(f, f) ∈ ∀R. [R] → [R], which by unfolding some
of the above definitions is equivalent to having for everyτ1, τ2,
R : τ1 ⇔ τ2, l :: [τ1], and l′ :: [τ2] that (l, l′) ∈ [R] implies
(f l, f l′) ∈ [R], or, specialised to the function level, for every
h :: τ1 → τ2 andl :: [τ1] thatf (map h l) = map h (f l).

When we want to extend the treatment to type constructor
classes, we have to deal with two new aspects: with quantifica-
tion over typeconstructor variables (rather than just over type
variables) and withclass constraints(Wadler and Blott1989). For
both aspects, the required extensions to the interpretation of types
as relations appear to be folklore, but have seldomly been spelled
out and have not been put to use before as we do in this paper.

Regarding quantification over typeconstructorvariables, the
necessary adaptation is as follows. Just as free type variables are in-
terpreted as relations between arbitrarily chosen closed types (and
then quantified over via relation variables), free type constructor
variables are interpreted as functions on such relations tied to ar-
bitrarily chosen type constructors. Formally, letκ1 andκ2 be type
constructors (of kind∗ → ∗). A relational actionfor them, denoted
F : κ1 ⇔ κ2, is a functionF on relations between closed types
such that everyR : τ1 ⇔ τ2 (for arbitraryτ1 andτ2) is mapped to
anF R : κ1 τ1 ⇔ κ2 τ2. For example, the functionF that maps
everyR : τ1 ⇔ τ2 to

F R = {(Nothing, [])} ∪
{(Just a, b : bs) | (a, b) ∈ R, bs :: [τ2]}

is a relational actionF : Maybe⇔ []. The relational interpretation
of a type quantifying over a type constructor variable is now per-
formed in an analogous way as explained for quantification over
type (and then, relation) variables at the beginning of this sec-
tion. In different formulations and detail, the same basic idea is
mentioned or used byFegaras and Sheard(1996), Kučan(1997),
Takeuti(2001), andVytiniotis and Weirich(2007).

Regardingclass constraints, Wadler(1989, Section 3.4) directs
the way by explaining how to treat the type classEq in the context
of deriving free theorems. The idea is to simply restrict the relations
chosen as interpretation for type variables that are subject to a class
constraint. Clearly, only relations between types that are instances
of the class under consideration are allowed. Further restrictions
are obtained from the respective class declaration. Namely, the re-
strictions must precisely ensure that every class method is related
to itself by the relational interpretation of its type. This then guar-
antees that the overall result (i.e., that the relational interpretation
of every closed type is an identity relation) stays intact. The same
approach immediately applies to type constructor classes as well.

2 2008/4/1

Consider, for example, theMonad class declaration:

class Monad µ where
return :: α→ µ α
(>>=) :: µ α→ (α→ µ β)→ µ β

Since the type ofreturn is ∀µ. Monad µ ⇒ (∀α. α → µ α),
we expect that(return, return) ∈ ∀F . Monad F ⇒ (∀R. R →
F R), and similarly for>>=. The constraint “Monad F ” on a
relational action is now defined in precisely such a way that both
conditions will be fulfilled.

Definition 1. Let κ1 andκ2 be type constructors that are instances
of Monad and letF : κ1 ⇔ κ2 be a relational action. If

• (returnκ1 , returnκ2) ∈ ∀R.R→ F R and
• ((>>=κ1), (>>=κ2)) ∈ ∀R. ∀S. F R → ((R → F S) →
F S),

thenF is called aMonad-action. (While we have decided to gen-
erally leave type instantiation implicit, we explicitly retain instan-
tiation of type constructors in what follows, except for some exam-
ples.)

For example, given the following standardMonad instance defini-
tions:

instance Monad Maybe where
return a = Just a
Nothing >>= k = Nothing
Just a >>= k = k a

instance Monad [] where
return a = [a]
as >>= k = concat (map k as)

the relational actionF : Maybe⇔ [] given above isnot a Monad-
action, because it is not the case that((>>=Maybe), (>>=[])) ∈
∀R. ∀S. F R → ((R → F S) → F S). To see this, consider
R = S = id Int, m1 = Just 1, m2 = [1, 2], k1 = λi → if i >
1 then Just i else Nothing, andk2 = λi → reverse [2..i].
Clearly,(m1,m2) ∈ F id Int and(k1, k2) ∈ id Int → F id Int, but
(m1 >>=Maybe k1,m2 >>=[] k2) = (Nothing, [2]) /∈ F id Int.

We are now ready to derive free theorems involving (poly-
morphism over) type constructor classes. For example, functions
f :: Monad µ ⇒ [µ Int] → µ Int as considered in the introduc-
tion will necessarily always satisfy(f, f) ∈ ∀F . Monad F ⇒
[F id Int] → F id Int, i.e., for every choice of type constructors
κ1 andκ2 that are instances ofMonad, and everyMonad-action
F : κ1 ⇔ κ2, we have(fκ1 , fκ2) ∈ [F id Int] → F id Int. In
the next section we prove several theorems by instantiating theF
here, and provide plenty examples of interesting results obtained
for concrete monads.

3. One Application: Reasoning about Monadic
Programs

For most of this section, we focus on functionsf :: Monad µ ⇒
[µ Int] → µ Int. However, it should be emphasised that results
of the same spirit can be systematically obtained for other types
involving quantification overMonad-restricted type constructor
variables just as well.

As mentioned in the introduction, one first intuitive statement
we naturally expect to hold is that when all the monadic values
supplied tof in the input list are actually pure (not associated with
any proper monadic effect), thenf ’s result value, though of some
monadic type, should also be pure. After all,f itself, being poly-
morphic overµ, cannot introduce effects from any specific monad.
This statement is expected to hold no matter what monad the input
values live in. For example, if the input list consists of computa-

tions in the list monad, defined in the previous section and mod-
elling nondeterminism, but all the concretely passed values actually
correspond to deterministic computations, then we expect thatf ’s
result value also corresponds to a deterministic computation. Simi-
larly, if the input list consists ofIO computations, but we only pass
ones that happen to have no side-effect at all, thenf ’s result, though
living in the IO monad, should also be side-effect-free. To capture
the notion of “purity” independently of any concrete monad, we use
the convention that the pure computations in any monad are those
that may be the result of a call toreturn. Note that this does not
mean that the values in the input list mustsyntacticallybereturn-
calls. Rather, each of them only needs to besemantically equiva-
lent to some such call. The desired statement is now formalised,
and proved, as follows.

Theorem 1. Let f :: Monad µ ⇒ [µ Int] → µ Int, let κ be
an instance ofMonad, and letl :: [κ Int]. If every element in
l is a returnκ-image, then so isfκ l.

Proof. We prove that for everyl′ :: [Int],

fκ (map returnκ l
′) = returnκ (unId (fId (map Id l′))) ,

where
newtype Id α = Id {unId :: α}

instance Monad Id where
return a = Id a
Id a >>= k = k a

To do so, we first show thatF : κ⇔ Id with

F R = return−1
κ ; R ; Id ,

where “;” is relation composition and “−1” gives the inverse of a
function graph, is aMonad-action. Indeed,

• (returnκ, return Id) ∈ ∀R. R → F R, since for everyR and
(a, b) ∈ R, (returnκ a, return Id b) = (returnκ a, Id b) ∈
return−1

κ ; R ; Id, and
• ((>>=κ), (>>=Id)) ∈ ∀R. ∀S. F R → ((R → F S) →
F S), since for everyR, S, (a, b) ∈ R, and(k1, k2) ∈ R →
F S, (returnκ a >>=κ k1, Id b >>=Id k2) = (k1 a, k2 b) ∈
F S. (Note the use of a monad law forκ.)

Hence, by what we derived at the end of the previous section,
(fκ, fId) ∈ [F id Int] → F id Int. Given that we haveF id Int =
return−1

κ ; Id = (returnκ ◦ unId)−1, this implies the claim.

We can now reason for specific monads as follows.

Example 1. Let l :: [[Int]], i.e., l :: [κ Int] for κ = []. We
might be interested in establishing that when every element in
l is (evaluated to) a singleton list, then the result of applying
anyf :: Monad µ⇒ [µ Int]→ µ Int to l will be a singleton
list as well. While this is easy to see forf1, f2, andf3 from
the introduction, it is maybe not so immediately obvious for
thef4 given there. However, Theorem 1 tells us without any
further effort that the statement in question does indeed hold
for f4, and for any otherf of the same type.

Likewise, we obtain the statement about side-effect-free compu-
tations in theIO monad envisaged above. All we rely on then is
that theIO monad, like the list monad, satisfies the monad law that
return a >>= k is k a, as used in the proof of Theorem 1.

3 2008/4/1

A second general statement we are interested in is to deal
with the case that the monadic computations provided as input
are not necessarily pure, but we have a way of discarding the
monadic layer and recovering underlying values. Somewhat akin
to unsafePerformIO :: IO α → α, but for other monads and
hopefully safe. Then, if we are interested only in a thus projected
result value off , can we show that it only depends on likewise
projected input values, i.e., that we can discard any effects from the
monadic computations inf ’s input list when we are not interested
in the effectful part of the output computation? Clearly, it would be
too much to expect this to work for arbitrary “projections”, or even
arbitrary monads. Rather, we need to devise appropriate restrictions
and prove that they suffice. The formal statement turns out to be as
follows.

Theorem 2. Let f :: Monad µ ⇒ [µ Int] → µ Int, let κ be
an instance ofMonad, and letp :: κ α→ α. If

• p ◦ returnκ = id and
• for every choice of closed typesτ and τ ′, m :: κ τ , and
k :: τ → κ τ ′,

p (m >>=κ k) = p (k (p m)) ,

then p ◦ fκ gives the same result for any two lists of
same length whose corresponding elements have the samep-
images, i.e.,p ◦ fκ can be “factored” asg ◦ (map p) for
some suitableg :: [Int]→ Int.

Proof. We prove that for everyl :: [κ Int],

p (fκ l) = unId (fId (map (Id ◦ p) l)) ,

where the type constructorId and itsMonad instance definition
are as in the proof of Theorem1. To do so, we first show that
F : κ⇔ Id with

F R = p ; R ; Id

is aMonad-action. Indeed,

• (returnκ, return Id) ∈ ∀R. R → F R, since for everyR and
(a, b) ∈ R, (returnκ a, b) ∈ p ; R by p (returnκ a) = a, and
• ((>>=κ), (>>=Id)) ∈ ∀R. ∀S. F R → ((R → F S) →
F S), since for everyR, S, (m, b) ∈ p ; R, and(k1, k2) ∈
R → F S, (m >>=κ k1, Id b >>=Id k2) ∈ p ; S ; Id by
p (m >>=κ k1) = p (k1 (p m)) and (k1 (p m), k2 b) ∈
p ; S ; Id (which holds due to(k1, k2) ∈ R → F S and
(p m, b) ∈ R).

Hence,(fκ, fId) ∈ [F id Int] → F id Int. Given that we have
F id Int = p ; Id = Id ◦ p = p ; unId−1, this implies the claim.

Note that no monad laws at all are needed in the above proof. The
same will be true for the other theorems we prove in this section,
except for Theorem5. But first, we consider several example appli-
cations of Theorem 2.

Example 2. Consider the well-known writer, or logging,
monad (specialised here to theString monoid):

newtype Writer α = Writer (α,String)

instance Monad Writer where
return a = Writer (a, “”)
Writer (a, s) >>= k =

Writer (case k a of Writer (a′, s′)→ (a′, s ++ s′))

Assume we are interested in applying anf :: Monad µ ⇒
[µ Int] → µ Int to an l :: [Writer Int], yielding a monadic
result of typeWriter Int. Assume further that for some partic-
ular purpose during reasoning about the overall program, we
are only interested in the actual integer value encapsulated in
that result, as extracted by the following function:

p :: Writer α→ α
p (Writer (a, s)) = a

Intuition suggests that then the value ofp (f l) should not
depend on any logging activity of elements inl. That is, if l
were replaced by anotherl′ :: [Writer Int] encapsulating the
same integer values, put potentially attached with different
logging information, thenp (f l′) should give exactly the
same value. Since the givenp fulfils the required conditions,
Theorem 2 confirms this intuition.

It should also be instructive here to consider a negative example.

Example 3. Recall the list monad defined in the previous
section. It is tempting to usehead :: [α]→ α as an extraction
function and expect that for everyf :: Monad µ⇒ [µ Int]→
µ Int, we can factorhead ◦ f asg ◦ (map head) for some
suitableg :: [Int] → Int. But actually this fails in a subtle
way. Consider, for example, the (for the sake of simplicity,
artificial) function

f5 :: Monad µ⇒ [µ Int]→ µ Int
f5 [] = return 0
f5 (m : ms) = do i← m

f5 (if i > 0 then ms else tail ms)

Then forl = [[1], []] andl′ = [[1, 0], []], both of type[[Int]],
we havemap head l = map head l′, but head (f5 l) 6=
head (f5 l

′). In fact, the left-hand side of this inequation leads
to an “head of empty list”-error, whereas the right-hand side
delivers the value0. Clearly, this means that the supposedg
cannot exist forf5 andhead .

An explanation for the observed failure is provided by
the conditions imposed onp in Theorem 2. It is simply
not true that for everym and k, head (m >>= k) =
head (k (head m)). More concretely, the failure forf5 ob-
served above arises from this equation being violated for
m = [1, 0] andk = λi→ if i > 0 then [] else [0].

Since the previous (counter-)example is a bit peculiar in its reliance
on runtime errors, let us consider a related setting without empty
lists, an example also serving to further emphasise the predictive
power of the conditions onp in Theorem 2.

Example 4. Assume, just for the scope of this example, that
the type constructor[] yields (the types of) nonempty lists
only. Clearly, it becomes an instance ofMonad by just the
same definition as given in Section2. There are now several
choices for a never failing extraction functionp :: [α] → α.
For example,p could behead , could belast , or could be
the function that always returns the element in the middle
position of its input list (and, say, the left one of the two
middle elements in the case of a list of even length). But which
of these candidates are “good” in the sense of providing, for

4 2008/4/1

every f :: Monad µ ⇒ [µ Int] → µ Int, a factorisation
of p ◦ f into g ◦ (map p)? The answer is provided by the
two conditions onp in Theorem2, which specialised to the
(nonempty) list monad require that

• for everya, p [a] = a, and
• for every choice of closed typesτ andτ ′, m :: [τ], and
k :: τ → [τ ′], p (concat (map k m)) = p (k (p m)).

From these conditions it is easy to see that nowp = head
is good (in contrast to the situation in Example3), and so is
p = last , while the proposed “middle extractor” is not. It
does not fulfil the second condition above, roughly because
k does not necessarily map all its inputs to equally long
lists. (A concrete counterexamplef6, of appropriate type, can
easily be produced from this observation.)

Next, we would like to tackle reasoning not about the com-
plete absence of (à la Theorem1), or disregard for (̀a la Theo-
rem2), monadic effects, but about finer nuances. Often, we know
certain computations to realize only some of the potential effects
to which they would be entitled according to the monad they live
in. If, for example, the effect under consideration is nondetermin-
ism à la the standard list monad, then we might know of some
computations in that monad that they realize only none-or-one-
nondeterminism, i.e., never produce more than one answer, but may
produce none at all. Or we might know that they realize only non-
failing-nondeterminism, i.e., always produce at least one answer,
but may produce more than one. Then, we might want to argue that
the respective nature of nondeterminism is preserved when com-
bining such computations using, say, a functionf :: Monad µ ⇒
[µ Int]→ µ Int. This would mean that applying any suchf to any
list of empty-or-singleton lists always gives an empty-or-singleton
list as result, and that applying any suchf to any list of nonempty
lists only gives a nonempty list as result for sure. Or, in the case
of an exception monad (Either String), we might want to establish
that an application off cannot possibly lead to any exceptional
value (error description string) other than those already present
somewhere in its input list. Such “invariants” can often be captured
by identifying a certain “subspace” of the monadic type in ques-
tion that forms itself a monad, or, indeed, by “embedding” another,
“smaller”, monad into the one of interest. Formal counterparts of
the intuition behind the previous sentence and the vague phrases
occurring therein can be found in the following definition and the-
orem, as well as in the subsequent examples.

Definition 2. Let κ1 andκ2 be instances ofMonad and leth ::
κ2 α→ κ1 α. If

• h ◦ returnκ2 = returnκ1 and
• for every choice of closed typesτ and τ ′, m :: κ2 τ , and
k :: τ → κ2 τ

′,

h (m >>=κ2 k) = h m >>=κ1 h ◦ k ,

thenh is called amonad morphism.

Theorem 3. Let f :: Monad µ ⇒ [µ Int] → µ Int, let
h :: κ2 α→ κ1 α be a monad morphism, and letl :: [κ1 Int].
If every element inl is anh-image, then so isfκ1 l.

Proof. We prove that for everyl′ :: [κ2 Int],

fκ1 (map h l′) = h (fκ2 l
′) . (1)

To do so, we first show thatF : κ1 ⇔ κ2 with

F R = (κ1 R) ; h−1

is aMonad-action. Indeed,

• (returnκ1 , returnκ2) ∈ ∀R. R → F R, since for ev-
ery R and (a, b) ∈ R, (returnκ1 a, h (returnκ2 b)) =
(returnκ1 a, returnκ1 b) ∈ κ1 R by (returnκ1 , returnκ1) ∈
∀R. R → κ1 R (which holds due toreturnκ1 :: ∀α. α →
κ1 α), and
• ((>>=κ1), (>>=κ2)) ∈ ∀R. ∀S. F R → ((R → F S) →
F S), since for everyR, S, (m1,m2) ∈ (κ1 R) ; h−1, and
(k1, k2) ∈ R → ((κ1 S) ; h−1),

(m1 >>=κ1 k1, h (m2 >>=κ2 k2)) =
(m1 >>=κ1 k1, h m2 >>=κ1 h ◦ k2) ∈ κ1 S

by ((>>=κ1), (>>=κ1)) ∈ ∀R. ∀S. κ1 R → ((R →
κ1 S) → κ1 S), (m1, h m2) ∈ κ1 R, and(k1, h ◦ k2) ∈
R → κ1 S.

Hence,(fκ1 , fκ2) ∈ [F id Int] → F id Int. Given that we have
F id Int = (κ1 id Int) ; h−1 = h−1, this implies the claim. (Note
thatκ1 id Int is the relational interpretation of the closed typeκ1 Int,
and thus itself denotesidκ1 Int.)

Using Theorem 3, we can indeed prove the statements mentioned
for the list and exception monads above Definition 2. Here, for di-
version, we instead prove some results about more stateful compu-
tations.

Example 5. Consider the well-known reader monad:

newtype Reader ρ α = Reader (ρ→ α)

instance Monad (Reader ρ) where
return a = Reader (λr → a)
Reader g >>= k =

Reader (λr → case k (g r) of Reader g′ → g′ r)

Assume we are given a list of computations in aReader
monad, but it happens that all present computations depend
only on a certain part of the environment type. For example,
for some closed typesτ1 andτ2, l :: [Reader (τ1, τ2) Int], and
for every elementReader g in l, g (x, y) never depends ony.
We come to expect that the same kind of independence should
then hold for the result of applying anyf :: Monad µ ⇒
[µ Int] → µ Int to l. And indeed this holds by Theorem 3
with the following monad morphism:

h :: Reader τ1 α→ Reader (τ1, τ2) α
h (Reader g) = Reader (g ◦ fst)

It is also possible to connect more different monads, even involving
theIO monad.

Example 6. Let l :: [IO Int] and assume that the only side-
effects that elements inl have consist of writing strings to the
output. We would like to use Theorem 3 to argue that the same
is then true for the result of applying anyf :: Monad µ ⇒
[µ Int] → µ Int to l. To this end, we need to somehow
capture the concept of “writing (potentially empty) strings to
the output as only side-effect of anIO computation” via an
embedding from another monad. Quite naturally, we reuse the
Writer monad from Example2. The embedding function is as

5 2008/4/1

follows:

h :: Writer α→ IO α
h (Writer (a, s)) = putStr s >> return a

What is left to do is to show thath is a monad morphism. But
this follows fromputStr “” = return (), putStr (s ++ s′) =
putStr s >> putStr s′, and monad laws for theIO monad.

Similarly to the above, it would also be possible to show that when
theIO computations inl do only read from the input (via, possibly
repeated, calls togetChar), then the same is true off l. Instead of
exercising this through, we turn to general state transformers.

Example 7. Consider the well-known state monad:

newtype State σ α = State (σ → (α, σ))

instance Monad (State σ) where
return a = State (λs→ (a, s))
State g >>= k =

State (λs→ let (a, s′) = g s in
case k a of State g′ → g′ s′)

Intuitively, this extends the reader monad by not only allowing
a computation to depend on an input state, but also to trans-
form the state to be passed to a subsequent computation. A
natural question now is whether being a specific state trans-
former that actually corresponds to a read-only computation
is an invariant that is preserved when computations are com-
bined. That is, given some closed typeτ andl :: [State τ Int]
such that for every elementState g in l, snd ◦ g = id , is it
the case that for everyf :: Monad µ⇒ [µ Int]→ µ Int, also
f l is of the formState g for someg with snd ◦ g = id? The
positive answer is provided by Theorem3 with the following
monad morphism:

h :: Reader τ α→ State τ α
h (Reader g) = State (λs→ (g s, s))

Similarly to the above, we can show preservation of the invariant
that a computation transforms the state “in the background”, while
the primary result value is independent of the input state. That
is, if for every elementState g in l, there exists ani :: Int
with fst ◦ g = const i, then the same applies tof l. It should
also be possible to transfer the above kind of reasoning to theST
monad (Launchbury and Peyton Jones1995).

As a final statement about our pet type,Monad µ⇒ [µ Int]→
µ Int, we would like to show that we can abstract from some aspects
of the effectful computations in the input list if we are interested
in the effects of the final result only up to the same abstraction.
For conveying between the full effect space and its abstraction, we
again use monad morphisms.

Theorem 4. Let f :: Monad µ ⇒ [µ Int] → µ Int and let
h :: κ2 α → κ1 α be a monad morphism. Thenh ◦ fκ2

gives the same result for any two lists of same length whose
corresponding elements have the sameh-images.

Proof. Let l1, l2 :: [κ2 Int] be such thatmap h l1 = map h l2.
Thenh (fκ2 l1) = h (fκ2 l2) by statement (1) from the proof of
Theorem3.

Example 8. Consider the well-known exception monad:

instance Monad (Either String) where
return a = Right a
Left err >>= k = Left err
Right a >>= k = k a

We would like to argue that if we are only interested in
whether the result off for some input list over the type
Either String Int is an exceptional value or not (and which
ordinary value is encapsulated in the latter case), but do not
care what the concrete error description string is in the for-
mer case, then the answer is independent of the concrete error
description strings potentially appearing in the input list. For-
mally, let l1, l2 :: [Either String Int] be of same length, and
let corresponding elements either be both tagged withLeft
(but not necessarily containing the same strings) or be iden-
tical Right-tagged values. Then for everyf :: Monad µ ⇒
[µ Int]→ µ Int, f l1 andf l2 either are both tagged withLeft
or are identicalRight-tagged values. This holds by Theorem 4
with the following monad morphism:

h :: Either String α→ Maybe α
h (Left err) = Nothing
h (Right a) = Just a

Just to reinforce that our approach is not specific to our pet type
alone, we end this section by giving a theorem obtained for another
type, the one ofsequence, also showing that mixed quantification
over type constructor variables and ordinary type variables can very
well be handled.

Theorem 5. Let f :: Monad µ ⇒ [µ α] → µ [α] and let
h :: κ2 α → κ1 α be a monad morphism. Then for every
choice of closed typesτ1 andτ2, g :: τ1 → τ2, l1 :: [κ1 τ1],
and l2 :: [κ2 τ1], map (>>=κ1 returnκ1) l1 = map h l2
implies

fκ1 (map (>>=κ1 returnκ1 ◦ g) l1) >>=κ1 returnκ1

=
h (fκ2 l2) >>=κ1 returnκ1 ◦ map g .

Using the function

fmap :: Monad µ⇒ (α→ β)→ µ α→ µ β
fmap g m = m >>= return ◦ g

and a monad law forκ1, this can be simplified as follows:

fκ1 ◦ map (fmapκ1
g) ◦ map h

=
fmapκ1

(map g) ◦ h ◦ fκ2 .

4. Another Application: Difference Lists,
Transparently

It is a well-known problem that computations over lists sometimes
suffer from a quadratic runtime blow-up due to left-associatively
nested appends. For example, this is the case for flattening a tree of

6 2008/4/1

the type

data Tree α = Leaf α | Node (Tree α) (Tree α)

using the following function:

flatten :: Tree α→ [α]
flatten (Leaf a) = [a]
flatten (Node t1 t2) = flatten t1 ++ flatten t2

An equally well-known solution is to switch to an alternative rep-
resentation of lists as functions, by abstraction over the list end,
often called difference lists. In the formulation ofHughes(1986),
but encapsulated as an explicitly new data type:

newtype DList α = DL {unDL :: [α]→ [α]}

rep :: [α]→ DList α
rep l = DL (l ++)

abs :: DList α→ [α]
abs (DL f) = f []

emptyR :: DList α
emptyR = DL id

consR :: α→ DList α→ DList α
consR a (DL f) = DL ((a :) ◦ f)

appendR :: DList α→ DList α→ DList α
appendR (DL f) (DL g) = DL (f ◦ g)

Then, flattening a tree into a list in the new representation can be
done using the following function:

flatten ′ :: Tree α→ DList α
flatten ′ (Leaf a) = consR a emptyR
flatten ′ (Node t1 t2) = appendR (flatten ′ t1) (flatten ′ t2)

and a more efficient variant of the original function, with its original
type, can be recovered as follows:

flatten :: Tree α→ [α]
flatten = abs ◦ flatten ′

There are two small problems with this approach. One is cor-
rectness. How do we know that the newflatten is equivalent
to the original one? We could try to argue by “distributing”
abs over the definition offlatten ′, using abs emptyR = [],
abs (consR a as) = a : abs as, and

abs (appendR as bs) = abs as ++ abs bs . (2)

But actually the last equation does not hold in general. The rea-
son is that there areas :: DList τ that are not in the image of
rep. Consider, for example,as = DL reverse. Then neither is
as = rep l for any l, nor does (2) hold for everybs. Any argu-
ment “by distributingabs” would thus have to rely on the implicit
assumption that a certain discipline has been exercised when going
from the originalflatten to flatten ′ by replacing[], (:), and(++)
by emptyR, consR, andappendR (and/or applyingrep to explicit
lists). But this implicit assumption is not immediately in reach for
formal grasp. So it would be nice to be able to provide a single,
conclusive correctness statement for transformations like the one
above. One way to do so was presented byVoigtländer(2002), but
it requires a certain restructuring of code that can hamper composi-
tionality and flexibility by introducing abstraction at fixed program
points (via lambda-abstraction and so-calledvanish-combinators).
This also brings us to the second problem with the simple approach
above.

When, and how, should we switch between the original and the
alternative representations of lists during program construction? If

we first write the original version offlatten and only later, after
observing a quadratic runtime overhead, switch manually to the
flatten ′-version, then this is quite cumbersome, in particular when
it has to be done repeatedly for different functions. Of course, we
could decide to always useemptyR, consR, andappendR from
the beginning, to be on the safe side. But actually this is not so safe,
efficiency-wise, because the representation of lists by functions
carries its own (constant-factor) overhead, and if a function does
not use appends in a harmful way, then we do not want to pay
this price. Using the alternative presentation in a particular situation
should be a conscious decision, not a default. And assume that later
on we change the behaviour offlatten, say, to explore only a single
path through the input tree, so that no appends arise. Certainly, we
do not want to have to go and manually switch back to the, now
sufficient, original list representation. The cure to our woes here is
obvious, and has often been applied in similar situations: simply
use overloading. Specifically, we can declare a type constructor
class as follows:

class ListLike δ where
empty :: δ α
cons :: α→ δ α→ δ α
append :: δ α→ δ α→ δ α

and codeflatten in the following form:

flatten :: Tree α→ (∀δ. ListLike δ ⇒ δ α)
flatten (Leaf a) = cons a empty
flatten (Node t1 t2) = append (flatten t1) (flatten t2)

Then, with the obvious instance definitions

instance ListLike [] where
empty = []
cons = (:)
append = (++)

and
instance ListLike DList where

empty = emptyR
cons = consR
append = appendR

we can use the single version offlatten above both to produce
ordinary lists and to produce difference lists. The choice between
the two will be made automatically by the type checker, depending
on the context in which a call toflatten occurs. For example, in

last (flatten t) (3)

the ordinary list representation will be used, due to the input type
of last . Actually, (3) will compile (under GHC 6.6, at least) to ex-
actly the same code aslast (flatten t) for the original definition
of flatten from the very beginning of this section. Any overhead
related to the type class abstraction is simply eliminated by a stan-
dard optimisation. In particular, this means that where the original
representation of lists would have perfectly sufficed, programming
against the abstract interface provided by theListLike class does
no harm either. On the other hand, (3) of course still suffers from
the same quadratic runtime blow-up as with the original definition
of flatten. But now we can switch to the better behaved difference
list representation without touching the code offlatten at all, by
simply using

last (abs (flatten t)) . (4)

Here the (input) type ofabs determinesflatten to useemptyR,
consR, andappendR, leading to linear runtime.

Can we now also answer the correctness question more satis-
factorily? Given the forms of (3) and (4), it is tempting to simply
conjecture thatabs t = t for any t. But this cannot be quite right,
asabs has different input and output types. Also, we have already

7 2008/4/1

observed that somet of abs ’s input type are problematic by not
corresponding to any actual list. The clou now is to only considert
that only use theListLike interface, rather than any specific opera-
tions related toDList as such. That is, we will indeed prove that for
every closed typeτ andt :: ListLike δ ⇒ δ τ ,

abs tDList = t[] .

Since the polymorphism overδ in the type oft is so important, we
follow Voigtländer(2008a) and make it an explicit requirement in
a function that we will use instead ofabs for switching from the
original to the alternative representation of lists:

improve :: (∀δ. ListLike δ ⇒ δ α)→ [α]
improve t = abs t

Now, when we observe the problematic runtime overhead in (3),
we can replace it by

last (improve (flatten t)) .

That this does not change the semantics of the program is estab-
lished by the following theorem, which provides the sought-after
general correctness statement.

Theorem 6. Let t :: ListLike δ ⇒ δ τ for some closed typeτ .
Then

improve t = t[] .

Proof. We prove
unDL tDList [] = t[] , (5)

which by the definitions ofimprove andabs is equivalent to the
claim. To do so, we first show thatF : DList⇔ [] with

F R = unDL ; ([R]→ [R]) ; (++)−1

is a ListLike-action, where the latter concept is defined as any
relational actionF : κ1 ⇔ κ2 for type constructorsκ1 andκ2

that are instances ofListLike such that

• (emptyκ1
, emptyκ2

) ∈ ∀R. F R,
• (consκ1 , consκ2) ∈ ∀R.R→ (F R → F R), and
• (appendκ1

, appendκ2
) ∈ ∀R. F R → (F R → F R).

Indeed,

• (emptyR, []) ∈ ∀R. F R, since for everyR and (l1, l2) ∈
[R], (unDL emptyR l1, [] ++ l2) = (l1, l2) ∈ [R],
• (consR, (:)) ∈ ∀R. R → (F R → F R), since for everyR,

(a, b) ∈ R, (f, bs) ∈ ([R] → [R]) ; (++)−1, and(l1, l2) ∈
[R],

(unDL (consR a (DL f)) l1, (b : bs) ++ l2) =
(a : f l1, b : bs ++ l2) ∈ [R]

by (a, b) ∈ R and(f l1, bs ++ l2) ∈ [R] (which holds due to
(f, (bs ++)) ∈ [R]→ [R] and(l1, l2) ∈ [R]), and
• (appendR, (++)) ∈ ∀R. F R → (F R → F R), since for

everyR, (f, as) ∈ ([R] → [R]) ; (++)−1, (g, bs) ∈ ([R] →
[R]) ; (++)−1, and(l1, l2) ∈ [R],

(unDL (appendR (DL f) (DL g)) l1, (as ++ bs) ++ l2) =
(f (g l1), as ++ (bs ++ l2)) ∈ [R]

by (f, (as ++)) ∈ [R]→ [R], (g, (bs ++)) ∈ [R]→ [R], and
(l1, l2) ∈ [R].

Hence, (tDList, t[]) ∈ F idτ . Given that we haveF idτ =
unDL ; ([idτ] → [idτ]) ; (++)−1 = unDL ; (++)−1, this implies
unDL tDList = (t[] ++), and thus (5).

Note that theListLike-actionF : DList ⇔ [] used in the above
proof is the same as

F R = (DListR) ; rep−1 ,

given thatDListR = unDL ; ([R]→ [R]) ; DL. This connection
suggests the following more general theorem, which can actually
be proved much like above.

Theorem 7. Let t :: ListLike δ ⇒ δ τ for some closed type
τ , letκ1 andκ2 be instances ofListLike, and leth :: κ2 α→
κ1 α. If

• h emptyκ2
= emptyκ1

,
• for every closed typeτ , a :: τ , and as :: κ2 τ ,
h (consκ2 a as) = consκ1 a (h as), and
• for every closed typeτ and as, bs :: κ2 τ ,
h (appendκ2

as bs) = appendκ1
(h as) (h bs),

then

h tκ2 = tκ1 .

Theorem 6 is a special case of this by settingκ1 = DList, κ2 = [],
andh = rep, and observing that

• rep [] = emptyR,

• for every closed typeτ , a :: τ , andas :: [τ], rep (a : as) =
consR a (rep as),

• for every closed typeτ and as, bs :: [τ], rep (as ++ bs) =
appendR (rep as) (rep bs), and

• abs ◦ rep = id ,

all of which hold by easy calculations. One key observation here
is that the third of the above observations does actually hold, in
contrast to its faulty “dual” (2) considered earlier in this section.

Of course, free theorems can now also be derived for other types
than those considered in Theorems 6 and 7. For example, for every
closed typeτ , f :: ListLike δ ⇒ δ τ → δ τ , andh as in Theorem 7,
we get that:

fκ1 ◦ h = h ◦ fκ2 .
To apply the reasoning approach presented here to the generic
setting ofVoigtländer(2008a) would first require to extend it to
multi-parametertype (constructor) classes, which are not currently
part of the Haskell standard.

5. Discussion and Related Work
Of course, statements like that of Theorem 7 are not an entirely
new revelation. That statement can be read as a typical fusion
law for compatible morphisms between algebras over the signature
described by theListLike class declaration. (For a givenτ , consider
ListLike δ ⇒ δ τ as the corresponding initial algebra,κ1 τ and
κ2 τ as two further algebras, and the operation·κi of instantiating
a t :: ListLike δ ⇒ δ τ to atκi :: κi τ as initial algebra morphism,
or catamorphism. Then the conditions onh in Theorem 7 make it an
algebra morphism and the theorem’s conclusion, also expressible as
h ◦ ·κ2 = ·κ1 , is “just” that of the standard catamorphism fusion
law.) But being able to derive such statements directly from the
types in the language, based on its built-in abstraction facilities,
immediately as well for more complicated types (likeListLike δ ⇒
δ τ → δ τ instead ofListLike δ ⇒ δ τ), and all this without
going through category-theoretic hoops, is new and unique to our
approach (for higher-order polymorphism).

There has been quite some interest recently in enhancing the
state of the art in reasoning about monadic programs.Filinski and

8 2008/4/1

Støvring(2007) study induction principles for effectful data types.
These principles are used for reasoning about functions on data
types involvingspecificmonadic effects (rather than about func-
tions that are parametric over some monad), and based on the func-
tions’ defining equations(rather than based on their types only),
and thus are orthogonal to our free theorems. But for their ex-
ample applications to formal models of backtracking, Filinski and
Støvring also use a form of relational reasoning very close to the
one appearing in our invocation of relational parametricity. In par-
ticular, our Definition1 corresponds to their Definition 3.3.1 They
also use monad morphisms (not to be confused with their monad-
algebra morphisms, or rigid functions, playing the key role in their
induction principles). The scope of their relational reasoning is dif-
ferent, though. They use it for establishing the observational equiv-
alence of different implementations of the same monadic effect.
This is, of course, one of the classical uses of relational parametric-
ity: representation independence in different realizations of an ab-
stract data type. But it is onlyonepossible use, and our treatment of
full polymorphism opens the door to other uses also in connection
with monadic programs. Rather than only relating different, but se-
mantically equivalent, implementations of the same monadic effect
(as hard-wired into Filinski and Støvring’s Definition 3.5), we ac-
tually connect monads embodying different effects. This leads to
applications not previously in reach, such as our reasoning about
preservation of invariants. It is worth pointing out thatFilinski
(2007) does use monad morphisms for “subeffecting”, but only for
the discussion of hierarchies inside each one of two competing im-
plementations of the same set of monadic effects; the relational rea-
soning is then orthogonal to these hierarchies and again can only
lead to statements about observational equivalence of the two re-
alizations overall, rather than to more nuanced statements about
programs in one of them as such.

Swierstra(200x) proposes to code against modularly assembled
freemonads, where the assembling takes place by building coprod-
ucts of signature functors corresponding to the term languages of
free monads. The associated type signatures are able to convey
some of the information captured by our approach. For example,
a monadic typeTerm PutStr Int can be used to describe com-
putations whose only possible side-effect is that of writing strings
to the output. Passing a list of values of that type to a function
f :: Monad µ ⇒ [µ Int] → µ Int clearly results in a value of
type Term PutStr Int as well. Thus, if it is guaranteed (note the
proof obligation) that “execution” of such a term value, on a kind
of virtual machine (Swierstra and Altenkirch2007) or in the actual
IO monad, does indeed have no other side effect than potential out-
put, then one gets a statement in the spirit of our Example6. On
the other hand, statements like the one in our Example8 (also, say,
reformulated for exceptions in theIO monad) are not in reach with
that approach alone. Moreover, Swierstra’s approach to “subeffect-
ing” depends very much on syntax, essentially on term language
inclusion along with proof obligations on the execution functions
from terms to some semantic space. This would make obtaining
statements roughly analogous to our Examples5 and7 extremely
cumbersome. And ultimately, depending on syntactic inclusion is
too strong a restriction in any case. For example,putStr “” is se-
mantically equivalent toreturn (), and thus without visible side-
effect. But nevertheless, any computation syntactically containing
a call toputStr would of necessity be assigned a type in a monad
Term g with g “containing” (with respect to Swierstra’s functor-
level relation:≺:) the functorPutStr, even when that call’s argu-
ment would eventually evaluate to the empty string. Thus, such a

1 It is unclear whether Filinski and Støvring are aware that it can be traced
back to the treatment of a type class constraint byWadler (1989, Sec-
tion 3.4).

computation would be banned from the input list in a statement
like the one we give below Example6. It is not so with our more
semantical approach.

References
L. Fegaras and T. Sheard. Revisiting catamorphisms over datatypes with

embedded functions (or, Programs from outer space). InPrinciples
of Programming Languages, Proceedings, pages 284–294. ACM Press,
1996.

A. Filinski. On the relations between monadic semantics.Theoretical
Computer Science, 375(1–3):41–75, 2007.

A. Filinski and K. Støvring. Inductive reasoning about effectful data types.
In International Conference on Functional Programming, Proceedings,
pages 97–110. ACM Press, 2007.

A. Gill, J. Launchbury, and S.L. Peyton Jones. A short cut to deforesta-
tion. In Functional Programming Languages and Computer Architec-
ture, Proceedings, pages 223–232. ACM Press, 1993.

R.J.M. Hughes. A novel representation of lists and its application to
the function “reverse”.Information Processing Letters, 22(3):141–144,
1986.

P. Johann and J. Voigtländer. Free theorems in the presence of seq. InPrin-
ciples of Programming Languages, Proceedings, pages 99–110. ACM
Press, 2004.

J. Kǔcan. Metatheorems about Convertibility in Typed Lambda Calculi:
Applications to CPS Transform and “Free Theorems”. PhD thesis,
Massachusetts Institute of Technology, 1997.

J. Launchbury and S.L. Peyton Jones. State in Haskell.Lisp and Symbolic
Computation, 8(4):293–341, 1995.

S. Liang, P. Hudak, and M.P. Jones. Monad transformers and modular
interpreters. InPrinciples of Programming Languages, Proceedings,
pages 333–343. ACM Press, 1995.

E. Moggi. Notions of computation and monads.Information and Compu-
tation, 93(1):55–92, 1991.

S.L. Peyton Jones and P. Wadler. Imperative functional programming.
In Principles of Programming Languages, Proceedings, pages 71–84.
ACM Press, 1993.

J.C. Reynolds. Types, abstraction and parametric polymorphism. InInfor-
mation Processing, Proceedings, pages 513–523. Elsevier, 1983.

F. Stenger and J. Voigtländer. Parametricity for Haskell with imprecise
error semantics. Submitted toInternational Conference on Functional
Programming, 2008.

W. Swierstra. Data types̀a la carte.Journal of Functional Programming, to
appear, 200x.

W. Swierstra and T. Altenkirch. Beauty in the beast — A functional
semantics for the awkward squad. InHaskell Workshop, Proceedings,
pages 25–36. ACM Press, 2007.

I. Takeuti. The theory of parametricity in lambda cube. Draft, 2001.

J. Voigtländer. Concatenate, reverse and map vanish for free. InInter-
national Conference on Functional Programming, Proceedings, pages
14–25. ACM Press, 2002.

J. Voigtländer. Asymptotic improvement of computations over free mon-
ads. InMathematics of Program Construction, Proceedings, LNCS.
Springer-Verlag, 2008a. To appear.

J. Voigtländer. Much ado about two: A pearl on parallel prefix computation.
In Principles of Programming Languages, Proceedings, pages 29–35.
ACM Press, 2008b.

D. Vytiniotis and S. Weirich. Type-safe cast does no harm. Draft, 2007.

P. Wadler. Theorems for free! InFunctional Programming Languages and
Computer Architecture, Proceedings, pages 347–359. ACM Press, 1989.

P. Wadler. The essence of functional programming (Invited talk). In
Principles of Programming Languages, Proceedings, pages 1–14. ACM
Press, 1992.

P. Wadler and S. Blott. How to make ad-hoc polymorphism less ad hoc.
In Principles of Programming Languages, Proceedings, pages 60–76,
1989.

9 2008/4/1

	1 Introduction
	2 Free Theorems, in Full Beauty
	3 One Application: Reasoning about Monadic Programs
	4 Another Application: Difference Lists, Transparently
	5 Discussion and Related Work

