
OMake: designing a scalable build process?

Jason Hickey and Aleksey Nogin

Computer Science Department
California Institute of Technology
{jyh,nogin}@cs.caltech.edu

Abstract. Modern software codebases are frequently large, heterogeneous, and
constantly evolving. The languages and tools for software construction, including
code builds and configuration management, have not been well-studied. Devel-
opers are often faced with using 1) older tools (like make) that do not scale well,
2) custom build scripts that tend to be fragile, or 3) proprietary tools that are not
portable.

In this paper, we study the build issue as a domain-specific programming
problem. There are a number of challenges that are unique to the domain of build
systems. We argue that a central goal is compositionality—that is, it should be
possible to specify a software component in isolation and add it to a project with
an assurance that the global specification will not be compromised. The next im-
portant goal is to cover the full range of complexity—from allowing very concise
specifications for the most common cases to providing the flexibility to encom-
pass projects with unusual needs. Dependency analysis, which is a prerequisite
for incremental builds, must be automated in order to achieve compositionality
an reliability; it also spans the full range of complexity.

We develop a language for describing software builds and configuration.
We also develop an implementation (called OMake), that addresses all the above
challenges efficiently and portably. It also provides a number of features that help
streamline the edit/compile development cycle.

OMake is freely available under the GNU General Public License, and is
actively being used in several large projects.

1 Introduction and problem definition

The general objective of a build system is to automate the construction of a software
product from a set of inputs. For example, the product might be an application exe-
cutable, where the inputs are the source files; in this case, the executable is usually
constructed by compiling and linking the source files. The software product might also
have several parts, for example it might be a web site that is to be constructed from a
set of source scripts and document files. The process of generating the product from
the inputs is called building the product; each run is called a build; and the tool used to
manage the build is called a build system.

? This technical report CaltechCSTR:2006.001 is an extended version of the paper accepted to
the Fundamental Approaches to Software Engineering Conference (FASE’06). The conference
paper is Copyright c© Springer-Verlag GmbH Berlin Heidelberg.

http://resolver.caltech.edu/CaltechCSTR:2006.001

2 Jason Hickey and Aleksey Nogin

1.1 Specification of the build process

In general, we will assume that both the inputs and the results of a build are represented
as files. A complete build is usually composed of several steps, including actions like
1) compiling source files, 2) linking object files to construct libraries or executables, 3)
generating documentation, 4) and packaging the results. In the interest of modularity,
and also to allow incremental builds, we would like to specify a build in terms of steps,
where each individual step involves executing a script or application, such as a compiler,
to generate a set of output files from a set of input files. We call the output files targets;
the input files are called dependencies. In some cases we also refer to named tasks as
targets.

We assume that each step can be specified as a build rule with the following parts.

– a set of targets to be built,
– a set of dependencies,
– a set of files, called side-effects, that may be modified during execution of the rule;

the targets are always side-effects of the rule,
– a function or script, called the build commands, that may be called to construct

the targets from the dependencies. We say that a rule is executed when its build
commands are executed.

For the purpose of incremental builds, smaller steps are often preferable.
We further classify the dependencies: explicit dependencies are part of the rule spec-

ification, and implicit dependencies are all other factors that may affect the outcome of
a rule execution. For example, if a dependency file.c contains a line #include ”file.h”, then
file.h is an implicit dependency of the rule if it is not already explicit. Strictly speaking,
the compiler binary is also a dependency.

A build specification for a project defines a set of build rules that form a dependency
graph. The leaves of the graph are the files that do not appear as targets; they correspond
to source files. A target is considered up-to-date if all of the following hold:

1. it has been built at least once, and the most recent rule execution was successful,
2. all of its dependencies are up-to-date,
3. the dependencies and commands have not changed since the previous time it was

built,
4. none of the effects (the side-effects and the target itself) have changed since the

previous time the rule was executed.

Leaf files are always up-to-date, if they exist. The task of a build system is to bring the
desired targets up-to-date by executing a (preferably minimal) set of rules.

This definition of “up-of-date” has several noteworthy properties. First, it does not
refer to such unreliable properties as file timestamps; even a file with a very recent
timestamp may be considered out-of-date if it was produced by something external
to the build system and the build system has no way of knowing for sure whether it
was produced correctly. Second, the definition explicitly states that the target has to
be rebuilt when the corresponding command changes. This means that when a user
updates the build configuration (for example, the compiler flags), the build system will
be required to rebuild all the targets that have to be built differently under the new

OMake: designing a scalable build process 3

configuration (again, regardless of how fresh the timestamps are). Finally, it allows for
not propagating the changes that do not affect the outcome. For example, if a program
myprog depends on file.o, which in turn depends on file.c, then insignificant changes to
file.c (such as a white space or comment change) will cause only file.o to be rebuilt, but
myprog does not have to be rebuilt unless file.o changes too.

1.2 Constraints and requirements

Not every build graph defines a well-formed project. We impose the following con-
straints.

1. The dependency graph must be acyclic.
2. Each target is the target of exactly one rule.
3. If the transitive dependencies of a rule are up-to-date, then executing a rule suc-

cessfully brings the targets of the rule up-to-date.
4. Rules may be executed in parallel if their side-effects do not intersect.

The acyclic requirement is used to help ensure termination of the build. If termination is
not a concern, the acyclic requirement can be relaxed, and the build process becomes a
fixpoint calculation. The second and third requirements are constraints on the program-
mer of the build. In order for the build specification to be robust and maintainable, there
must be exactly one way to build each target, and the command to build it must be cor-
rect. The final requirement is for performance and is not strict. If interferences between
rules are not specified accurately, the build user is limited to serial rule execution.

2 Design requirements

As specified, the build system implementation might appear to be a straightforward
task of providing a solver that takes a dependency graph and executes rules in some
order to bring all targets up-to-date. Indeed, the solver is reasonably straightforward
and algorithmically unsurprising. The interesting issues are on either side of it. First,
how should the dependency graph be specified; and second, how may build commands
be specified and executed portably? Before answering these questions, we introduce the
design requirements.

– There should be a single build specification (perhaps in multiple files) for an entire
project.

– Build specifications must be configurable. In other words, it should be possible
to parameterize them by properties like project requirements and versions, by the
availability of tools, by the target platform, and other properties of the build envi-
ronment.

– The build specification should be stable relative to project evolution. That is, main-
tenance of the build specification should be insignificant relative to the project de-
velopment and maintenance effort.

– Specifications must be compositional. That is, the sub-specifications for the com-
ponents of a project may be expressed independently, and combined without inter-
ference.

4 Jason Hickey and Aleksey Nogin

– The build system should be general, not specific to a particular application domain.
– The system should not require that all dependencies be stated explicitly; instead it

should provide an automated mechanism for discovery of implicit dependencies.

These requirements rule out some naive solutions. For example, requiring that the pro-
grammer provide the full, literal, dependency graph is not possible because for large
projects the specification would be large, repetitive, and difficult to maintain; in addi-
tion the specification would not be parameterizable or configurable.

What is clear is that the language of the build should be general enough to sup-
port specification definitions that are both concise and configurable. One approach is
to use a general-purpose scripting language to construct the dependency graph. This is
the approach taken, for example, in both Cons [10] (which uses Perl) and SCons [8]
(which uses Python). However, the expressive power of these languages often acts to
tempt programmers away from simple declarative specifications. In particular, there is
no guarantee of compositionality in these languages; the build specifications in different
parts of a project may exhibit unforeseen interference unless programmers are strictly
disciplined.

We take the opposite approach, working from the bottom up, including features in
the language only when they satisfy the design requirements. In the next section, we
begin the task with rule specifications, and work towards each of the design goals.

3 Language
3.1 Rule specifications

The primary goal of a build specification is to define a dependency graph, which is
a set of build rules. A build rule has a set of targets, dependencies, side-effects, and
some build commands. For this purpose, the rule syntax used in the ubiquitous Unix
make program1 is ideal. A rule has the following form, where the targets, dependen-
cies, and side-effects are lists of filenames, and the commands define a script to build
the targets from the dependencies (we will use standard “command-line” syntax for
the commands). The notation [· · ·] indicates that the syntactic form is optional—the
brackets are not part of the concrete syntax.

targets: dependencies [:effects: side-effects]
commands

For example, using a standard shell syntax for the commands, the following rule
specifies how to construct a grammar implementation from its specification using the
yacc application.

grammar.h grammar.c: grammar.y :effects: y.tab.c y.tab.h
yacc grammar.y
mv y.tab.c grammar.c
mv y.tab.h grammar.h

We call these explicit rules because the targets, dependencies, and side-effects are
all specified with explicit filenames.

1 Although indentation is not restricted to tabs.

OMake: designing a scalable build process 5

Implicit rules One of the main issues with explicit rules is that they are overly verbose
and repetitive. For example, a project might have many C source files that are all the
be compiled with the cc compiler, and it is inefficient to define a separate rule for each
file. Implicit rules address the issue by defining rule patterns. In an implicit rule, the %
character represents a “wildcard” pattern that stands for an arbitrary string of text. All
occurrences of the wildcard represent the same string throughout a rule (in other words,
the wildcard is universally quantified).

With implicit rules, generic rules can be specified by pattern matching. For the ex-
ample in the previous paragraph, the following implicit rule specifies that the cc com-
piler may be executed to compile any file with suffix .c, producing a file with a .o suffix.

Use cc to compile a .c file, producing a .o file
%.o: %.c

cc -c -o %.o %.c

Rule selection One of the requirements of the dependency graph is that there be ex-
actly one rule for each target. For explicit rules, it is an error for a file to occur as the
target of more than one explicit rule. However, with implicit rules, it is desirable to al-
low multiple potential matches (although at most one rule may be selected for use in
the dependency graph). For example, one might define an implicit rule that specifies
a “default” build action, and then define explicit rules for any special cases where the
default is inadequate.

We define rule selection by policy. Given a specific target with name T ,

– if T is the target of an explicit rule, that rule is used,
– otherwise, if T matches an implicit rule in scope (we define the concept of scope

in the next section), then the most recently defined implicit rule that matches T is
chosen,

– otherwise, the source file T must exist, and it is a leaf in the dependency graph.

3.2 Variables, scoping, compositionality, and parameterization

Even with implicit rules, there is a great deal of duplication. Many related rules (such as
compiling and linking rules) will want to ensure that they are constructed by the same
application or compiler, with the same options. In addition, it is usually desirable to
allow the specification to be easily reconfigured. The obvious solution here is to intro-
duce variables that represent values that may be used in multiple rules. Once again, we
adopt the standard syntax, using the notation $(· · ·) for variable references, and single-
line definitions using =. For example, the following two rules specify that program p is
generated by compiling and linking two files x.c and y.c. The compiler is defined with
the variable CC, and the options are defined with the CFLAGS variable.

CC = gcc
CFLAGS = -g
%.o: %.c

$(CC) $(CFLAGS) -c -o %.o %.c
p: x.o y.o

$(CC) $(CFLAGS) -o $@ $+

6 Jason Hickey and Aleksey Nogin

For convenience, within the rule commands, the variable $@ is defined as the target
of the rule, and $+ are its explicit dependencies.

Scoping and compositionality Before the introduction of variables, build specifica-
tions were purely declarative and compositional. That is, suppose two developers had
defined build specifications for two sub-projects. We could combine their build specifi-
cations simply by concatenating them. As long as the two did not share targets (which
might violate target uniqueness), the combined specification would be valid and correct
relative to the sub-project specifications.

With variables, the situation changes. Suppose the concatenated specification hap-
pens to share variables, as follows.

Developer 1
CC = cc
CFLAGS = -g
file1.o: file1.c

$(CC) $(CFLAGS) -c file1.c

Developer 2
CC = gcc
CFLAGS = -O6 # (unsafe in general)
file2.o: file2.c

$(CC) $(CFLAGS) -c file2.c

In the concatenated specification, the CC and CFLAGS variables are defined twice—
which value is the right one? Furthermore, it is known that the -O6 option is a bit dan-
gerous with gcc. If the values defined by developer 2 “win,” then the code for developer
1 might be compromised.

So far, we have more-or-less adhered to tradition. The GNU version of make [9]
includes explicit rules, implicit rules, and variables in the form we have described.
However, at this point we take a radical departure. In make/GNUmake, one of the val-
ues would “win,” and for example, CFLAGS would be either -g (debug mode) or -O6
(unsafe-optimizing mode) for the entire project, with unintended consequences for the
other developer.

Our approach is radical to some and natural to others. As we see it, both devel-
opers are right, and the correct interpretation is the pure one (“purity” in the sense of
functional programming). That is, the definition of a variable, like CFLAGS = -O6, is a
definition, not an assignment. Each rule is a closure (another concept from functional
programming) that pairs the rule with its environment. The file file1.c is compiled with
cc -g, and the file file2.c is compiled with gcc -O6.

The choice of pure specifications has two major consequences. As a benefit, speci-
fications are always compositional, because there is no way for one part of a project to
interfere with another by side-effect. In consequence, there is no easy way in general for
a programmer to collect global information through side-effects on a global variable. As
an aside, the pure vs. impure debate has been present for many decades, but we argue
that for build specifications in particular, impure programming is more often by acci-
dent than by intention, and the benefits of compositionality far outweigh the benefits of
shared, mutable state.

3.3 Programming and configurability

At this point, we have explicit rules, implicit rules, and variables. While this might
encompass many applications, it is still insufficient. For example, while implicit rules

OMake: designing a scalable build process 7

e ::= expressions
| text text
| $(v) variables
| $(v e1, . . . ,en) function application
| e1e2 concatenation

s ::= statements
| e shell commands
| v = e variable definitions
| v(v1, . . . ,vn) = {p} function definitions
| v(e1, . . . ,en) function applications
| ife{p1}else{p2} conditionals
| section{p} | export scoping directives
| etargs : edeps

(
:option: eopt

)∗ {p} rule definitions

p ::= programs
| ε empty program

| p
s sequencing (line endings act as sequence separators)

Fig. 1. The build programming language

can be used to describe a great deal of build procedures, they cannot describe rules in
which the dependency names are not literally textually related to the targets. In addition,
build specifications are not easily configurable, because there is no way to state that the
set of build rules depends on compile-time configuration parameters.

To address these issues, we introduce a simple core programming language with
functions, function application, and conditionals.2 The syntax of our language is shown
in Figure 1. It is still modeled on the language for GNU make, with user-defined func-
tions. Here, we use braces {p} to represent block structure as defined by indentation—
that is, the program p must be indented from the enclosing context; the braces do not
appear in the concrete syntax.

The structure of the language is quite simple. A program is a sequence of statements,
and each statement is either a command line to be executed by the shell, or a language
directive such as a variable/function definition, function application, conditional ex-
pression, or rule definition. A rule definition may include options, like the :effects: we
have seen earlier. There are other options as well, including :value: for dependencies on
computed values, rather than files.

Functions, simplification, and configuration The use of functions can often signifi-
cantly simplify build specifications. As an example, let’s consider the problem of build-

2 Expressivity is a double-edged sword. The traditional make/GNUmake programs do not in-
clude user-defined functions, most likely because such languages are Turing complete—even
termination is not decidable. However, the loss of completeness in these languages has a
heavy cost, leading many programmers to resort to meta-programming, such as imake [2],
autoconf/automake [6, 7], or other build specification generators.

8 Jason Hickey and Aleksey Nogin

ing a static library from a set of object files. The rules to do this differ slightly between
Win32 and Unix platforms, so we would like to define a function that computes the
appropriate build rule based on the platform. Consider the following program.

Platform-independent library construction
StaticLibrary(target, deps) =

if $(equal $(OSTYPE), Win32)
ofiles = $(addsuffix .obj, $(deps))
$(target).lib: $(ofiles)

lib /Fo$(target).lib $(ofiles)
else

ofiles = $(addsuffix .o, $(deps))
$(target).a: $(ofiles)

rm -f $(target).a
ar cq $(target).a $(ofiles)

An example library with 3 object files
StaticLibrary(mylib, file1 file2 file3)

The StaticLibrary function takes two arguments. The target is the name of the static
library, and the deps are the object files to be included. Both arguments are provided
without suffixes, since the actual file suffixes depend on the platform. The first step
in the function is to determine the platform using a conditional. The OSTYPE variable
defines the name of the platform, and the builtin equal function is used to determine
if the platform is Win32. If so, the library has the .lib suffix, the object files have the
.obj suffix, and the application for constructing the library is called lib. The addsuffix
function is used to append the suffix to each of the names in the deps argument. The
other case is similar.

The construction of a static library is now reduced to a single function call that
specifies only the name of the library and its dependencies, with the usual benefits.
The platform-dependent configuration is now located within a single function, and the
remainder of the build specification can be significantly simplified and need not be
cluttered with platform tests. By defining a general set of such functions in a shared
standard library, we obtain very concise specifications for simple projects.

Scoping and block structure The introduction of block structure imposes a new twist
on scoping. For example, in the previous section the StaticLibrary function defined the
ofiles variable (twice). According to our scoping policy, these two definitions do not
conflict since rules always use the most recent variable definitions in scope. The next
question is whether the ofiles variable remains defined after the StaticLibrary function is
called. Clearly, doing so would be undesirable because it would violate the abstraction
provided by the function.

We adopt the usual scoping policy where each block in the program defines a scope,
scopes are nested, and variables defined in inner scopes are not visible to outer scopes.
Syntactically, blocks are determined by indentation, so for our example, the ofiles vari-
able is not defined after the StaticLibrary function is called, because it is defined within
an inner scope.

OMake: designing a scalable build process 9

The section allows the introduction of a new nested block (with its corresponding
scope), and it is frequently used to isolate variable definitions that are valid in only part
of a project. For example, the following code fragment illustrates the common usage.
The syntax CFLAGS += -g is equivalent to the expression CFLAGS = $(CFLAGS) -g, so
the inner value of CFLAGS is “-O -g”.3

CFLAGS = -O # Pass the “optimizing” flag to the C compiler
· · ·
section

CFLAGS += -g # Also add the “debugging” flag for the following targets
· · ·rules· · ·

CFLAGS has the original value “-O”
· · ·rules· · ·

When combined, purity and strict scoping can be awkward. For example, consider
the following program fragment, where the intent is to define the name of the C compiler
and its default options on a platform-dependent basis.

The compiler and flags are platform-dependent
if $(equal $(OSTYPE), Win32)

CC = cl
CFLAGS = /DWIN32
OSUFFIX = .obj

else
CC = gcc
· · ·

Unfortunately, this program does not work as expected because the variable defini-
tions are not visible outside the conditional. The export directive is designed to export
variable definitions from an inner scope to its enclosing scope, canceling the nested
scoping status of the block. In the example, the problem is solved by placing an export
as the final statement in the branches of the conditional.

if $(equal $(OSTYPE), Win32)
CC = cl
CFLAGS = /DWIN32
OSUFFIX = .obj
export

else
· · ·

3.4 Functions and dynamic scoping

One configuration pattern that arises often is to define the parameters of a project as
variables, using the variables to define the rules that describe how to build the project.
For an example, let’s consider the rules for building applications in Objective Caml [5],
which have the following general form.

3 In our implementation, the system state including environment variables and the current direc-
tory are handled similarly—the extent of modifications is limited to the current scope.

10 Jason Hickey and Aleksey Nogin

OCAMLC = ocamlc # Byte-code compiler
OCAMLCFLAGS = # Compiler options (initially empty)
Compile an OCaml file
%.cmo: %.ml

$(OCAMLC) $(OCAMLCFLAGS) -c %.ml
Link a program
OCamlProgram(target, deps) =

cmofiles = $(addsuffix .cmo, $(deps))
$(target): $(cmofiles)

$(OCAMLC) $(OCAMLCFLAGS) -o $(target) $(cmofiles)

In this definition, we intend these rules to be the default rules. For example, even
though the default compiler options OCAMLCFLAGS are empty, sub-projects should be
able to redefine the variable if they require particular options. This presents a problem
because, as we have stated, rules use the “most recent” definitions for variables, and
these definitions are apparently fixed. Furthermore, the number of parameter variables
can be quite large, and it would be unreasonable to require programmers to memorize
them all.

The solution here is to use a definition of “most recent” as the most recent dynamic
definition, not the most recent static one. That is, we adopt the use of dynamic scoping,
rather than static scoping. With dynamic scoping, users of a build library need only be
aware of the variables that need to be specialized. For example, the following code-
fragment illustrates the temporary redefinition of the OCAMLFLAGS variable. In this
case, the OCamlProgram is called in a context where the “-g” options has been added to
OCAMLCFLAGS.

· · ·
section

Compile the program with “-g” flag
OCAMLCFLAGS += -g
OCamlProgram(myprog, file1 file2 file3)

3.5 Automated dependency analysis

One of our design objectives is that it should be possible to automate the inference of
implicit dependencies. There are several reasons, but the most important is that rule
re-use becomes much more difficult when every rule is required to state all of its depen-
dencies explicitly.

Implicit dependencies arise through many factors, including references to files in
source code or applications, and they may change frequently as a project is developed.
Traditionally, programmers have used ad-hoc meta-programming techniques, using a
tool/compiler to generate the set of implicit dependencies, and then grafting them into
the build specification textually.

In fact, the tools for dependency analysis already exist in many cases, and it takes
very little for the build system to support them. To illustrate, the following program
fragment specifies a rule for dependency analysis of C program files. The .SCANNER
target is a directive, in this case indicating that the implicit dependencies of an object
file can be extracted by compiling the C source file with the -MM option.

OMake: designing a scalable build process 11

.SCANNER: scan-%.c: %.c
$(CC) $(CFLAGS) -MM %.c

%.o: %.c :scanner: scan-%.c
$(CC) $(CFLAGS) -c -o %.o %.c

The target of a scanner rule, in this case scan-%.c, is called a scanner-target, and
represents the dependencies generated by the build commands. The command itself
prints the dependencies (for one or more targets) to its standard output in make format.

Given a normal rule with targets targets and scanner dependencies deps, the com-
plete set of dependencies is the union of the explicit dependencies, the dependencies
generated by the scanner rules for each individual dependency, as well as the scanner
targets themselves, or

explicit-dependencies ∪ deps ∪
⋃

d∈deps
scanned-dependencies(targets,d).

3.6 Managing subprojects

Our final design goal is that there must be a single build specification for an entire
project. In most software projects, the software codebase is divided among several sub-
directories, often, but not necessarily, along the lines of the software components. Sim-
ilarly, it is impractical for the build specification to be placed in a single file—instead it
is more desirable to partition the specification along directory lines.

We adopt guidelines as follows. Each project must have a single directory, called
the “root directory” (this is usually the root directory of the project). The root directory
contains a file named OMakeroot that defines the build specification. Each build file may
contain references to other directories of the project using a rule of the form .SUBDIRS:
dir1, . . . ,dirn, where each subdirectory dir1, . . . ,dirn defines its own build specification
in a file named OMakefile.

Semantically, a .SUBDIRS directive acts as program inclusion in a nested scope.
That is, variables and rule definitions are passed down to subdirectories, but definitions
within a subdirectory are not propagated back to the parent. This prevents interference
between the build specifications in separate subdirectories, and preserves composition-
ality. In addition, the ability to inherit values means that parent directories can define
default behavior that can be specialized within the subdirectories.

3.7 Language summary

At this point, it is worthwhile to revisit the design goals to see whether we have achieved
our objectives. One of our primary objectives is compositionality, which we help ensure
through the use of a pure language with well-defined scoping rules (even parts of the
system state are treated purely). While it is possible for a programmer to achieve inter-
ference externally, for example through the filesystem, the risk of inadvertent interfer-
ence is greatly reduced.

Another of our goals is configurability and generality. In this case, although the
language is designed specifically for builds, it is general enough to cover a wide range
of tasks. The expressivity and simplicity of the language also help in maintaining the

12 Jason Hickey and Aleksey Nogin

build system. We have developed several large projects using a variety of build systems
including GNU make, Cons, and SCons. In our experience, specifications based on
the designs presented here are significantly more concise and easier to maintain. In
addition, the .SUBDIRS approach to linking subprojects (also a feature of the Cons and
SCons systems), has been enormously helpful for constructing simple, maintainable
build specifications.

Finally, automated inference of implicit dependencies is important for ensuring con-
sistency and accuracy of builds. Our approach allows the leveraging of existing depen-
dency analyzers. In addition, the fact that the .SCANNER rules have the same properties
as the normal build rules allows the use of the full build specification machinery, leading
to concise, simple, yet flexible, and powerful dependency analysis.

4 Implementation: the OMake build system

We have implemented a build tool, called OMake, that follows the design requirements
stated in the previous section. OMake is freely available at the OMake home page http:
//omake.metaprl.org/ under the GNU General Public License, and is actively being
used in several large projects.

The OMake system has four major components. The first of them is a compiler that
translates OMake specifications from the source language to an intermediate represen-
tation (IR). The second part is the interpreter capable of evaluating OMake programs in
their intermediate representation form. The third part of the system is the build manager
that keeps track of targets, dependencies and build rules (in their explicit and implicit
forms). The build manager is also responsible for instantiating the implicit rules when
needed and scheduling the build commands for execution. Finally, the fourth compo-
nent of the build system is the shell interpreter that is responsible for executing individ-
ual build commands, spawning external processes as necessary, and passing the control
back to the IR interpreter for commands that are to be executed internally.

4.1 Compiler

When performing a build, the OMake systems begins by reading the specification files,
starting with the OMakeroot file. Each file that is part of the project specification is
parsed and the code is transformed into an intermediate representation (IR). The trans-
lation process is straightforward; the IR is a slightly simplified, slightly more explicit
version of the source language; there is little difference between the two. For every
specification file, the resulting IR is cached on disk; this allows skipping the parsing
and compilation of that file on subsequent executions of OMake (provided the given file
does not change, of course).

4.2 Interpreter

Once a specification file is read and its IR is generated (or loaded from the cache), the
OMake interpreter evaluates the IR. For the most part, the interpreter implementation
is fairly straightforward. One of the least trivial parts of the interpreter is its handling

http://omake.metaprl.org/
http://omake.metaprl.org/

OMake: designing a scalable build process 13

of the variable environments. The variable environment data structure is implemented
as a functional immutable lookup table where updates operate by partially copying the
table. Each time a rule (whether implicit or explicit) is encountered during evaluation,
the interpreter passes the rule and the current variable environment to the build manager
as a closure. The rule itself is not evaluated immediately. Thus, many versions of the
environment will be saved by the build manager. This approach is made cost-effective
through the use of functional data structures and extensive sharing.

4.3 Build manager

Once the build specification has been evaluated, control is passed to the build manager,
which now has a complete collection of build rules. This is not yet a dependency graph
because some of the rules are implicit, and automated dependency analysis has not yet
been performed. The build manager is responsible for building the dependency tree
and making sure that the goal targets4 are brought up-to-date. Note that it is not always
possible to fully discover the dependency tree before the build process starts—it may be
the case that in order to discover the full set of implicit dependencies the build manager
will need to execute a number of .SCANNER rules and those rules may in turn depend
on targets that need to be built first. Because of this, the build manager constructs the
dependency tree in parallel with the main build process.

The build manager works by keeping a worklist of targets that need to be brought
up-to-date, each marked with a state specifying how far along the build process for
the particular target has progressed. The complete description of the state machine is
given in Appendix A. One noteworthy feature of the build manager is that it computes
(by invoking the IR interpreter) the rule body text only when the rule is ready to be
executed. If a rule body contains a function call $(f · · ·), the user can be assured that f
will be called only after all the rule dependencies are brought up-to-date, so f may refer
to a dependency file for further information on how to build the target if necessary.

For each project, the build manager maintains a database where it stores information
about each rule that was successfully executed, including the full set of dependencies,
the commands text, side-effects, and targets. On successive runs, the database is used
to determine which targets are already up-to-date.

4.4 The shell interpreter

For portability, and a degree of efficiency, OMake includes a built-in command inter-
preter (this shell can be used both as part of the build system and also as a standalone
command interpreter). For the most part, this is a straightforward task, involving stan-
dard methods for process creation and management. However, one of our primary goals
is to provide transparent portability—OMake should behave similarly on all platforms,
and Win32 in particular is problematic. Among the difficulties are the lack of a fork sys-
tem call, signals, process control, and terminal management. As a result, we developed
a compatibility library that emulates most of these features. The use of functional, im-
mutable data structures allows us to emulate the fork system call using threads without
the need for address space duplication.

4 If the goal targets are not specified on the command line, the .DEFAULT target is the goal.

14 Jason Hickey and Aleksey Nogin

4.5 Built-in functions and standard library

OMake provides a broad set of functions for string and string arrays manipulation, in-
put/output, including functions that mirror the Unix standard IO library.

In addition, OMake provides a set of higher-level functions that can be used in order
to make a project work correctly on platforms like Win32 that do not provide Unix-style
file processing tools. The toolset includes functions that mirror the core functionality of
the Unix programs grep, sed, awk, and test.

As mentioned in Section 3.3, OMake includes a shared standard library of variables,
functions and implicit rules that can be used to significantly simplify the build speci-
fications for commonly used languages. Using the standard library, simple projects in
languages like C, OCaml, and LATEX can often be specified with just a few lines of code,
sometimes as little as one line.

5 Related Work

On Unix systems, the make program [3], originally designed by Feldman in 1979, is
the ubiquitous build system, especially for open source projects. There are at least two
reasons why make retains its popularity. First, the model is extremely simple. Build
operations are specified as a set of rules in a Makefile, where each rule describes how
to build a target file from a set of dependencies using a sequence of shell commands.
Second, make does not require any particular project style, nor is it tied to any partic-
ular programming language. make adapts itself to new project architectures and new
programming languages with alacrity.

Since 1979, software projects have grown tremendously in size, and new versions of
make have been developed, notably GNU make [9]. The usual model with large projects
is to split a project into multiple subdirectories, each with its own Makefile describing
how to build files in that subdirectory. Although this is adequate in many cases, there are
several issues with regard to scalability. First, dependency analysis is based on times-
tamps. When a file is modified in any way, it may cause large portions of the project
to be rebuilt even if the modification was innocuous (for example, a change to a com-
ment). Second, dependency information is local to each Makefile in each subdirectory.
One result of this is that the subdirectories must be built in a specific order, and the
graph of dependencies between subdirectories must be acyclic. A third problem is that
each Makefile may have to duplicate a substantial portion of code also used in other
Makefiles (for example, one of the main features of the imake utility [2] is automated
code duplication).

A number of tools address some of these limitations. The Jam build system [11]
addresses the problem of cross-directory dependencies, by performing a global depen-
dency analysis and automating it so that dependency information is always up-to-date.
The Odin system [1] provides a truly global environment by using a single cache for
each user. In addition, Odin provides extensive support for build variants based on the
concept of a derived object that couples properties with a file name.

The Cons tool [10], written in Perl, the SCons tool [8], written in Python, go further
by adding configurable dependency scanners and adopting the use of MD5 digests in-
stead of file timestamps. In both Cons and SCons, the build system is closely integrated

OMake: designing a scalable build process 15

with the implementation language. That is, in order to use these tools effectively, one
must write build specifications in Perl (for Cons), or Python (for SCons). One advan-
tage is that the use of a general-purpose programming language can reduce the amount
of code duplication. However, there are also disadvantages of these tools when com-
pared with the make model. In make, there is a clear separation between the language
of Makefiles and the implementation language (C). The make language was designed
specifically for specifying builds—it is clear and concise, it is widely used, and it is
easy to understand. The make language is better suited for build specifications than the
Perl or Python languages.

The Ant build system [4] takes another approach, where the build specification is
written declaratively as an XML specification. The Ant system allows extensions writ-
ten in Java.

We believe that one of the principal features that distinguishes OMake from all of
the above systems is the use of a language that is Turing complete, yet preserves com-
positionality of build specifications. In addition, the language preserves the basic spirit,
model, and syntax of make, preserving its strengths while addressing limitations of scal-
ability and reliability.

6 Future directions

While we are very satisfied with the convenience provided by the OMake tool, there are
a number of further enhancements that we are hoping to explore in the future.

One of them is support for fixpoint builds (where certain dependency cycles are
allowed). Examples of projects that could benefit from this feature include building
self-hosting compilers (when a new version of a compiler is built using an older binary,
one often wants to arrive at a fixpoint) and LATEX compilation (one may need to re-run
latex several times if the .aux file is changing).

In addition, we are investigating the use of modular namespaces as a means of
further improving scalability.

While OMake has some initial support for distributing builds over several different
computers, it will probably require additional work before it is fully usable.

Acknowledgements

The authors would like to thank the OMake user community at omake@metaprl.org
for discussion and support for the OMake project. The authors would also like to thank
the anonymous reviewers for their comments and suggestions.

References

1. Geoffrey M. Clemm. The Odin System. Morristown, New Jersey, 1994.
2. Paul Dubois. Software Portability with Imake, Second Edition. O’Reilly, 1996.
3. Stuart I. Feldman. Make-a program for maintaining computer programs. Software - Practice

and Experience, 9(4):255–265, 1979.

16 Jason Hickey and Aleksey Nogin

4. Steve Holzner. Ant: The Definitive Guide. O’Reilly, 2nd edition, 2005.
5. Xavier Leroy. The Objective Caml system release 1.07. INRIA, France, May 1997.
6. David MacKenzie, Ben Elliston, and Akim Demaille. Autoconf: Creating Automatic Con-

figuration Scripts. Free Software Foundation, November 2003. http://www.gnu.org/

software/autoconf/manual/index.html.
7. David MacKenzie and Tom Tromey. GNU Automake. Free Software Foundation, September

2003. http://www.gnu.org/software/automake/manual/index.html.
8. Scons: A software construction tool. Home page http://www.scons.org/.
9. Richard M. Stallman, Roland McGrath, and Paul Smith. GNU Make: A Program for Di-

recting Recompilation. Free Software Foundation, July 2002. http://www.gnu.org/

software/make/manual/index.html.
10. Rajesh Vaidheeswarran. Cons: A Make replacement. Home page http://www.dsmit.

com/cons/.
11. Laura Wingerd and Christipher Seiwald. Constructing a large product with Jam. In ICSE ’97:

Proceedings of the SCM-7 Workshop on System Configuration Management, pages 36–48,
London, UK, 1997. Springer-Verlag.

A Build manager state machine

The OMake build manager works according to the following algorithm:

0. Add the initial target(s) to the Idle worklist.
– The initial target(s) are taken from the omake command line.
– If the command line does not specify any targets explicitly, the default .DE-

FAULT phony target is used.
1. If the Idle worklist is nonempty, then pick a target from it and find the rule for

building it:
(a) If there is an explicit rule with the given target, use that.
(b) Otherwise try finding an implicit rule capable of building the target:

– One of the target patterns of the rule matches the desired target;
– Each of the explicitly specified dependencies (including those given in

form of a pattern as well) is buildable — namely, it either exists, or can
in turn be built using either en explicit or an appropriate implicit rule.

If one is found, then create an appropriate instance of the rule and use that.
(c) Otherwise, check whether the file already exists. If so, move it to the Succeeded

worklist, and go back to step 1.
(d) Otherwise, report an error condition—the build process requires a target for

which no applicable rule is present.
Once an appropriate rule is found, move the target from Idle worklist to the Initial
one and go back to step 1.

2. If the Initial worklist is nonempty, then pick a target from it. For each dependency
of the target,
(a) If it is not already known, then add it to the Idle worklist;
(b) If it is a .SCANNER dependency and is already in the Succeeded worklist, then

incorporate the computed dependencies.
Afterwards check, whether any of the dependencies (either explicit or computed)
are not yet in the Succeeded worklist. If so, move the current target to the Blocked
worklist. Otherwise move it to the Ready worklist. In both cases, go back to step 1.

http://www.gnu.org/software/autoconf/manual/index.html
http://www.gnu.org/software/autoconf/manual/index.html
http://www.gnu.org/software/automake/manual/index.html
http://www.scons.org/
http://www.gnu.org/software/make/manual/index.html
http://www.gnu.org/software/make/manual/index.html
http://www.dsmit.com/cons/
http://www.dsmit.com/cons/

OMake: designing a scalable build process 17

3. If the Ready worklist is nonempty, then pick a target from it.

(a) Call the interpreter to compute the commands needed to execute the corre-
sponding rule. Note that we have delayed this until now since it may be the
case that even computing the rule commands requires that some of the depen-
dencies are up-to-date.

(b) Check whether we have ever executed this rule before (possibly in a previous
build). If so, check whether anything (dependencies, targets, side-effects, com-
mands) has changed since then. If not, then move the target to the Succeeded
worklist and go to step 5.

(c) If step 3b did not succeed, then
i. Instruct the shell interpreter to execute the rule commands;

ii. Move the target to the Running worklist.
iii. If we are running a parallelized build and have not yet reached the limit

on the maximal number of jobs running in parallel, then run the job in the
background and go to step 1, otherwise go to step 4.

4. If the Running worklist is nonempty then wait until the shell interpreter notifies
us that one of the previously started jobs has terminated and determine whether it
succeeded or not.

(a) If it failed, then move the corresponding target to the Failed worklist. Unless
OMake was instructed to keep going on failures (OMake understands the same
-k option that make does), report this failure as a fatal error and terminate the
build process.

(b) Otherwise,
i. Take a digest of all the dependencies, side-effects and rule commands and

save it in the cache, so that in future invocations of the rule, the tool would
know when it is permissible to skip the re-execution of the rule (as ex-
plained in step 3b);

ii. Move the target to the Succeeded worklist and go to step 5.

5. When a target is moved to the Succeeded worklist (either in step 3b or 4(b)ii), then
do the following:

(a) If the target is a .SCANNER one, then
– Parse the output of the rule, collecting the generated dependencies;
– Save the parsed dependencies for later use;
– For each of the targets dependent on this, add the computed dependencies

to the dependency set of that target.
(b) Move all the targets depending on this one to the Initial worklist and go back to

step 1.

6. If the Failed worklist is nonempty, and the build process has arrived to this step,
then we are stuck. Report all failed targets to the user and abort the build.

7. If the Blocked worklist is nonempty, and the build process has arrived to this step,
then there is a circular dependency. Report the problem to the user and abort the
build process.

8. If the build process has arrived to this step, the build is successful and complete!

18 Jason Hickey and Aleksey Nogin

In step 3b, in order to test whether a file has changed, OMake computes the MD5
digest5 of the file. As an optimization, if the stat information (inode, size, modification
time, etc) has not changed, OMake assumes that the file has not changed as well, and
avoid recomputing the digest.

5 We use MD5 because it is readily available. The choice of a digest function is not significant
here—any digest function with a sufficiently low probability of accidental collisions would
work.

	OMake: designing a scalable build process
	Jason Hickey and Aleksey Nogin
	Introduction and problem definition
	Specification of the build process
	Constraints and requirements

	Design requirements
	Language
	Rule specifications
	Variables, scoping, compositionality, and parameterization
	Programming and configurability
	Functions and dynamic scoping
	Automated dependency analysis
	Managing subprojects
	Language summary

	Implementation: the OMake build system
	Compiler
	Interpreter
	Build manager
	The shell interpreter
	Built-in functions and standard library

	Related Work
	Future directions
	Build manager state machine

