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Foreign function interfaces (FFIs) allow components in different languages to communicate directly

with each other. While FFIs are useful, they often require writing tricky low-level code and include

little or no static safety checking, thus providing a rich source of hard-to-find programming errors.

In this article, we study the problem of enforcing type safety across the OCaml-to-C FFI and

the Java Native Interface (JNI). We present O-Saffire and J-Saffire, a pair of multilingual type

inference systems that ensure C code that uses these FFIs accesses high-level data safely. Our

inference systems use representational types to model C’s low-level view of OCaml and Java values,

and singleton types to track integers, strings, memory offsets, and type tags through C. J-Saffire,

our Java system, uses a polymorphic flow-insensitive, unification-based analysis. Polymorphism

is important because it allows us to precisely model user-defined wrapper functions and the more

than 200 JNI functions. O-Saffire, our OCaml system, uses a monomorphic flow-sensitive analysis

because, while polymorphism is much less important for the OCaml FFI flow-sensitivity is critical

to track conditional branches, which are used when pattern matching OCaml data in C. O-Saffire

also tracks garbage collection information to ensure that local C pointers to the OCaml heap are

registered properly, which is not necessary for the JNI. We have applied O-Saffire and J-Saffire to a

set of benchmarks and found many bugs and questionable coding practices. These results suggest

that static checking of FFIs can be a valuable tool in writing correct multilingual software.
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1. INTRODUCTION

Many programming languages contain a foreign function interface (FFI) that
allows programs to invoke functions written in other languages. FFIs are impor-
tant for high-level languages because they allow programs to access a multitude
of system and user libraries that would be otherwise unavailable. Moreover, dif-
ferent languages make different programming idioms either harder or easier
and have various performance trade-offs, and thus the ability to write multi-
lingual programs has important software engineering benefits.

Unfortunately, FFIs are difficult to use correctly, especially when there
are mismatches between native and foreign type systems, data representa-
tions, and run-time environments. In all of the FFIs we are aware of, there
is little or no consistency checking between foreign and native code [Blume
2001; Finne et al. 1999; Huelsbergen 1996; Leroy 2004; Liang 1999]. As a
consequence, adding an FFI to a safe language potentially provides a rich
source of operations that can violate safety in subtle and difficult-to-find
ways.

In this article, we present O-Saffire and J-Saffire,1 a pair of type inference
systems that ensure type safety across the OCaml FFI and the Java Native
Interface (JNI), respectively. In these FFIs, both of which interface to C, most
of the work is done in C glue code, which translates data between the high-
level language and C, and then invokes other routines, often in system or user
libraries. It is easy to make mistakes in glue code, both because it is low-level
and because the C compiler does not check that glue code accesses high-level
data at the right types. For example, we found OCaml FFI glue code that uses
integers as pointers and vice-versa and JNI glue code that accesses nonexis-
tent classes. These errors can result in silent memory corruption or runtime
exceptions, and they are often extremely difficult to debug.

O-Saffire and J-Saffire detect these kinds of problems by performing
constraint-based type inference on C glue code. The first challenge in analyzing
glue code is tracking types from OCaml or Java through C. In both FFIs, all
high-level types are conflated to a single type in C, either value for OCaml or
jobject for Java. Thus we perform inference by extending these to multilingual
types of the form mt value and jt jobject. Here mt is an OCaml type and jt is
a Java type. O-Saffire and J-Saffire compare the inferred types in glue code to
type information extracted from OCaml or Java and report any inconsistencies
to the user.

As it turns out, C glue code has a richer view of types than is available
in the high-level language. Thus the types mt and jt are actually representa-
tional types that model C’s low-level view of OCaml and Java data. In partic-
ular, OCaml glue code can observe that many high-level types have the same
physical representation. For example, the value of OCaml type unit has the
same representation as the OCaml integer 0, nullary OCaml data construc-
tors are represented using integers, and OCaml records and tuples can be
silently injected into sum types if they have the right dynamic tag. Thus our

1Saffire = Static Analysis of Foreign Function InteRfacEs.
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representational types model OCaml data as tagged unions of primitive and
pointer types of various shapes. JNI glue code cannot manipulate Java objects
directly, but it accesses fields and methods by specifying their names and types
with C strings, and thus JNI glue code can be polymorphic in ways not allowed
in Java except with reflection. Our representational types model Java types
using strings, which may be quantified variables, to label classes, fields, and
methods.

O-Saffire and J-Saffire use similar core ideas but are structured slightly
differently because the OCaml FFI and the JNI provide different data access
mechanisms. OCaml glue code directly manipulates OCaml data using inte-
ger arithmetic and pointer operations and can form pointers into the middle
of OCaml records and tuples. Moreover, since C (unsurprisingly) provides no
linguistic support for pattern matching OCaml data types, C glue code must
explicitly perform dynamic type tag tests. To model these operations, O-Saffire
uses an iterative, intraprocedural, flow-sensitive dataflow analysis to track in-
teger values, represented with singleton types, as well as offset and tag infor-
mation. Our dataflow analysis is fairly simple, which turns out to be sufficient
in practice because most programs use the FFI in a simple way in part to avoid
making mistakes.

The OCaml FFI also gives C low-level control over references to the OCaml
heap, which is managed by the OCaml garbage collector. To avoid memory
corruption, before a C program calls OCaml (which might invoke the garbage
collector), it must notify the OCaml runtime system of any pointers it has to the
OCaml heap. This is easy to forget to do, especially when the OCaml runtime
is called indirectly. O-Saffire uses effects to track functions that may invoke
the OCaml garbage collector, and O-Saffire ensures that pointers to the OCaml
heap are registered as necessary.

In contrast, JNI glue code must invoke special functions to manipulate
jobjects, which are opaque, and pointers to the Java heap are automatically
registered with the garbage collector. JNI functions take as arguments spe-
cially formatted strings that identify class, field, and method names as well
as their types. We have found that JNI glue code uses strings fairly directly,
for example, string constants are passed around the program without manip-
ulating them (e.g., via substring or concatenation). Thus J-Saffire uses flow-
insensitive unification to track string values, which it represents with singleton
types.

We have found that, unlike OCaml glue code, JNI glue code often contains
wrapper functions that group together common operations, and the Java types
used by these functions depend on the strings passed in by callers. Thus repre-
sentational types inferred by J-Saffire can model partially specified Java classes
in which class, field, and method names and type information may depend on
string variables in the program. During type inference, these variables are
resolved to constants and replaced with the structured types they represent.
Moreover, J-Saffire performs polymorphic type inference, including polymor-
phism in types representing string values, which allows J-Saffire to precisely
analyze wrapper functions and directly assign universal type signatures to the
more than 200 functions in the JNI.
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We have proven that restricted versions of O-Saffire and J-Saffire are sound
modulo certain features of C such as out-of-bounds array accesses and type
casting.

We have implemented both O-Saffire and J-Saffire and applied them to a
set of 11 and 12 benchmarks, respectively. In our experiments, we found many
outright errors (24 for O-Saffire and 156 for J-Saffire) and suspicious but non-
fatal programming mistakes (22 for O-Saffire and 124 for J-Saffire). We have
reported all of the errors to developers, and they have been confirmed. Both
O-Saffire and J-Saffire run efficiently in practice and usually take only a few
second for analysis.

As far as we are aware, ours is the first work that attempts to check richer
properties on the foreign language side between two general-purpose program-
ming languages, and we believe that our core ideas are applicable to other FFIs
as well. Our results suggest that multilingual type inference is a beneficial,
practical addition to a language with a foreign function interface.

In summary, the main contributions of this article are the following.

—We develop multilingual, representational types that embed OCaml and Java
type information into C in a way that matches C’s low-level view of high-level
data. As a result, we are able to check that C glue code uses high-level data
and functions at the right type.

—We present multilingual type inference systems O-Saffire and J-Saffire for
the OCaml FFI and the JNI, respectively. Our type systems use singleton
types to track the values of integers and strings through C glue code. We
infer these types either using standard unification, which is sufficient for the
JNI, or using a flow-sensitive dataflow analysis, which tracks integer values,
offset, and tag information for the OCaml FFI. Additionally, O-Saffire uses
effects to ensure that garbage collector invariants are obeyed in the foreign
language, and J-Saffire supports polymorphism for JNI functions and user-
defined wrapper functions.

—We show that restricted versions of O-Saffire and J-Saffire are sound so
that multilingual programs that pass our type systems will not violate type
safety.

—We describe implementations of O-Saffire and J-Saffire, along with experi-
ments in which we apply our implementations to a number of benchmarks.
We found many bugs and questionable coding practices as a result.

O-Saffire and J-Saffire were both presented separately in earlier conference
versions [Furr and Foster 2005a; Furr and Foster 2006b]. The current article
gives a more cohesive presentation of both systems, comparing and contrast-
ing them as they are developed. This article also includes checking versions of
O-Saffire and J-Saffire, which were omitted from the conference papers, and
a more algorithmic presentation of type inference. We include sketches of our
soundness theorems, including a detailed operational semantics; these theo-
rems were only stated without proof and without semantics in the conference
versions. Our discussion of the JNI inference system includes more details on
methods and polymorphism. Finally, we include a new discussion section that
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Fig. 1. OCaml and C source type languages.

explores the relationship between the two systems, discusses the applicability
of these ideas to other FFIs, and sketches future work.

2. BACKGROUND

In a typical use of an FFI, the high-level language invokes a C routine, which
in turn invokes a system or user library routine. The C routine usually con-
tains glue code to manipulate data from the high-level language and translate
between the different data representations of the two languages. Glue code is
structured somewhat differently for OCaml and Java since each provides a dif-
ferent view of foreign data types. OCaml’s FFI exposes a very low-level view of
OCaml types, corresponding to exactly how they are represented in memory. To
use the OCaml FFI, the C programmer must directly manipulate OCaml val-
ues using bit-shifting operations and pointer dereferences. OCaml provides C
macros for these purposes, but their use is not mandatory and does not provide
any safety checking. The JNI, on the other hand, provides a more opaque inter-
face. Java objects are modeled as pointers that must be passed to JNI functions
to be manipulated, and classes, fields, methods are all described using strings.
The JNI includes over 200 functions, and it is easy to call the wrong function
or to make typos in string-valued parameters neither of which produces a com-
piler warning. We begin by discussing how each interface is typically used by a
C programmer.

2.1 The OCaml FFI

Figure 1 shows the basic OCaml and C source language types. OCaml types
include unit and int types, product types (records or tuples), and sum types.
Sums are composed of type constructors S, which may optionally take an argu-
ment. OCaml also includes types for updatable references and functions. Other
OCaml types, such as objects and polymorphic variants, are not supported by
our system; see Section 5.1 for a discussion. C includes types void, int, pointer
types constructed with postfix ∗, and functions. C also includes the type value
to which all OCaml data is assigned.

To invoke a C function called c name, an OCaml program must contain a
declaration of the form

external f : mltype = “c name”

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 4, Article 18, Publication date: July 2008.



18:6 • M. Furr and J. S. Foster

Fig. 2. Example OCaml type.

where mltype is an OCaml function type. When the OCaml program calls f ,
the OCaml runtime invokes the corresponding C function declared as

value c name(value arg1, . . . , value argn);

Although different OCaml types have different physical representations,
there is no protection in C from mistakenly using data at the wrong type. As an
example, consider the OCaml sum type declaration shown in Figure 2(a). This
type has nullary (no-argument) constructors X and Z and nonnullary construc-
tors W and Y.

Each nullary constructor in a sum type is numbered from 0 and is represented
in memory directly as that integer as shown in Figure 2(b). Thus to C functions,
nullary constructors look just like OCaml ints, for example, X:t and 0:int are
identical. Additionally, the value of type unit is also represented by the OCaml
integer 0.

The low-order bit of such unboxed values is always set to 1 to distinguish
them from pointers. C routines use the macro Val int to convert to tagged
integers and Int val to convert back. There are no checks, however, to ensure
that these macros are used correctly or even at all. In particular, in the standard
OCaml distribution, the type value is a typedef (alias) of long. Thus one could
mistakenly apply Int val to a pointer or apply Val int to a value. We found
several examples of these sorts of mistakes in our experiments.

Each nonnullary constructor in a sum type is also numbered separately from
0. These constructors are represented as boxed values or pointers to structured
blocks on the heap. A structured block is an array of value s preceded by a
header that contains, among other things, a tag with the constructor number.
Figure 2(b) shows the representations of W and Y for our example type t. Prod-
ucts that are not part of a sum are represented as structured blocks with tag
0. For example, W (1,2) and (1,2) both have the same representation.

Boxed values are manipulated using the macro Field(x,i), which expands
to *((value*)x+i), that is, it accesses the ith element in the structured block
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Fig. 3. Java and C source type languages.

pointed to by x. There are no checks to prevent a programmer from applying
Field to an unboxed value (notice the type cast in the macro expansion) or
from accessing past the end of a structured block.

OCaml provides several macros for testing tags and for checking boxedness
of a value . We illustrate these tests in Figure 2(c), which contains glue code to
perform pattern matching on a C value x of OCaml type t. The macro Is long()
on line 1 checks whether x is a pointer by examining its low-order bit. If it is
unboxed, Int val() on line 2 is used to extract the tag, and thus, on line 3, we
know x is X, and, on line 5, we know it is Z. Otherwise, we know on line 8 that x
is boxed, and so Tag val() is used to extract the tag from the structured block.
Then on line 10, since x must be constructed from W, we may access the second
field of the structured block, and, on line 13, x is Y, and so we may access its
first field.

Notice that because C has no linguistic support for OCaml pattern matching,
what would be a simple match expression in OCaml has been expanded into
its constituent parts with all of the dynamic tag tests explicitly coded by the
programmer. This is a common phenomenon in FFIs where operations that
have direct syntactic support in one language must be clumsily reproduced in
the other, and we will see a similar phenomenon in the JNI. Analyzing this
kind of pattern-matching code is the principal challenge in type inference for
OCaml glue code.

In addition to using OCaml data at the correct type, C FFI functions that
call the OCaml runtime must notify the garbage collector of any C pointers to
the OCaml heap. To do so, C functions use macros CAMLparam and CAMLlocal
to register parameters and locals, respectively. If a function registers any such
pointers, it must call CAMLreturn upon exiting to release the pointers. We have
found in our experiments that it is easy to forget to use these macros and
discovering these errors with testing is difficult.

2.2 The Java FFI (JNI)

Figure 3 shows the basic Java source language types, along with the C
types used by the FFI. Java includes void and integer types as well as class
types that contain fields and methods. The base C type language is as be-
fore, but this time it is extended to include the type jobject for Java ob-
jects, and jfieldID and jmethodID, which identify fields and methods in the
JNI.
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Unlike the OCaml FFI, which exposes OCaml data representations to C,
users of the JNI do not directly manipulate Java data. However, using the JNI
is still complicated, and it is easy to make many kinds of mistakes. To call a
C function from Java, the programmer first declares a Java method with the
native keyword and no body, for example,

package edu.cs.umd;
class Foo { native void bar(int x, float y); }

When the native method bar is invoked, the Java runtime finds and invokes the
correspondingly-named C function. Unlike OCaml, the C function name is not
up to the programmer but is strictly specified by the JNI. To avoid ambiguity,
the name includes not only the Java method name, but also its enclosing class
and package. If the method is overloaded, then the types of the parameters
are appended to its name using field descriptors, which are discussed in the
following. For our example, assuming bar is overloaded, the corresponding C
function must be

void Java_edu_cs_umd_Foo_bar__IF(jint x, jfloat y);

As this example shows, the C function names can be long and cryptic and are
easy to misspell, and as the JVM dynamically loads C libraries at runtime,
there is no check during compilation or linking to ensure that these names are
correctly specified.

Unlike in the OCaml FFI, Java and C share the same representation for
primitive types such as integers and floating point numbers. Thus C glue code
requires no special support to manipulate them—the types jint and jfloat
used previously are simply typedefs of int and float. In contrast, Java objects,
such as instances of Object, Class, or int[], are all represented with a single
opaque C type jobject, often an alias of void *, and glue code invokes functions
in the JNI to manipulate jobjects. For example, to get the object Point.class,
which represents the class Point, a programmer might write the following C
code:2

jobject pointClass = FindClass("java/awt/Point");

Here the FindClass function looks up a class by name. The resulting object
pointClass is used to access fields and methods as well as create new instances
of class Point. For example, to access a field, the programmer next writes

jfieldID fid = GetFieldID(pointClass, "x", "I");

After this call, fid contains a representation of the location of the field x with
type I (a Java int) in class Point. This last parameter is a terse encoding of Java
types called a field descriptor [Lindholm and Yellin 1997]. Other examples are
F for float, as we saw earlier, [I for array of integers, and Ljava/lang/String;
for class String. Notice this is a slightly different encoding of class names than

2The JNI functions discussed in this section are actually invoked slightly differently and take an

additional parameter as discussed in Section 5.3.
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Fig. 4. JNI wrapper function example.

used by FindClass, which omits the initial L and trailing semicolon. Our imple-
mentation enforces this difference, but we omit it from our formal system for
simplicity.

Finally, to read this field from a Point object p, the programmer writes

jobject p = ...;
int y = GetIntField(p, fid);

The function GetIntField returns an int, and there is one such function for
each primitive type and one function GetObjectField for objects.

Thus we can see that a simple field access that would be written int y = p.x
in Java requires three JNI calls, each corresponding to one internal step of the
JVM: getting the type of the object, finding the offset of the field, and retrieving
its contents. This is similar to what happens with OCaml pattern matching in
C, which is also expanded out into its constituent parts in glue code.

Moreover, while a Java compiler only accepts the code y = p.x if it is type
correct, errors in C glue code, such as typos in the string java/awt/Point, x,
or I, will produce a runtime error. There are also several other places where
mistakes could hide. For example, the programmer must be careful to maintain
the dependence between the type of x and the call to GetIntField. If the type of
x were changed to float, then the call must also be changed to GetFloatField,
something that is easy to overlook. Moreover, since pointClass and p both have
type jobject, either could be passed where the other is expected with no C com-
piler warning, which we have seen happen in our benchmarks. Invoking a Java
method is similar to extracting a field. First the programmer calls GetMethodID,
which accepts a string that encodes a list of parameter types to retrieve a
methodID. Then they call the appropriate dispatch function, Call<Type>Method,
where <type> is the return type of the method. Like the field functions above,
there is one such function for each primitive Java type and one for objects.

One common pattern we have seen in JNI code is wrapper functions that
specialize JNI routines to particular classes, fields, or methods. Figure 4 shows
an example wrapper function my getObjectField that extracts a field of type
Object from an object. This routine invokes the JNI function GetObjectClass,
which returns an object representing the class of its argument (as opposed to
FindClass, which looks up a class by name). The contents of the field are ex-
tracted via a call to GetObjectField, which behaves the same as GetIntField
but returns a Java object. Calling my getObjectField is safe if the first param-
eter has an Object field whose name is given by the second parameter. Thus
this function is parameterized by the object from which to extract the field and
by the name of the field but not its type. Since this wrapper function might
be called multiple times with different objects and different field names, to
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precisely analyze this code we need polymorphism, not only in the types of ob-
jects but also in the values of string parameters. Note that our experience with
OCaml glue code shows that it most often is not polymorphic, and thus our
OCaml FFI type inference system is monomorphic.

Finally, like OCaml, Java is a garbage collected language. However, unlike
OCaml, Java does not require the C programmer to register all local C refer-
ences to Java objects. Instead, since all such references are returned from JNI
function calls, they are automatically registered until the C code returns exe-
cution to the JVM. An early release mechanism is also available. Thus the JNI
provides a layer of safety to the C programmer in exchange for (possibly) less
efficient garbage collection while in C code.

2.3 Saffire

As the previous discussion illustrates, using an FFI correctly requires care-
ful programming, and there is little or no compiler support for preventing
errors. The goal of Saffire is to address this problem by providing compile-
time type checking across these FFIs. In both the OCaml FFI and the JNI,
most of the work occurs in C glue code rather than in the high-level language
and so the focus of Saffire is on analyzing glue code. There are several major
challenges.

—In these FFIs, most or all foreign types are conflated to only one C type, ei-
ther value for OCaml or jobject for Java. Thus our first step is to develop
an extended type system to make the high-level language types available to
our analysis of glue code. In particular, Saffire will infer types of the form
mt value and jt jobject where mt and jt are OCaml and Java types, respec-
tively.

—C glue code can use data in ways either not possible or not common in the
high-level language. For instance, C glue code can freely use the OCaml in-
teger 0 where types unit, int, or an unboxed nullary constructor are expected,
and the pattern-matching code in Figure 2(c) can be applied to any data type
with the same structure even if it has a different name (or, in fact, even if it
has fewer constructors). In the JNI, the wrapper function in Figure 4 can be
applied to any object with the appropriate integer field, which could only be
achieved with reflection within Java. Our solution is to make types mt and
jt richer than source-level types mltype and jtype so that we can model C’s
view of the high-level language types directly.

—Determining how C code uses data from the high-level language requires
tracking detailed information that depends on the particular FFI pro-
gramming idioms. For example, to analyze the pattern-matching code in
Figure 2(c), we need to track the values of integers and model conditional
branches precisely, and to compute the type of Field(x,i), we need to know
the value of pointer offset i. The JNI instead uses strings to find classes,
fields, and methods and tends to use polymorphic wrapper functions more.
Our approach is to use the appropriate style of analysis for each system.
For the OCaml FFI, we use a monomorphic dataflow analysis to track
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Fig. 5. Architecture of O-Saffire and J-Saffire.

integers and pointers, and, for the JNI, we use a polymorphic unification-
based analysis to track strings.

In the next sections, we present two type inference systems, O-Saffire for the
OCaml FFI (Section 3) and J-Saffire for the JNI (Section 4). Figure 5 gives a
overview of the architecture of the systems, which is the same for both. The
input is a program written in OCaml and C or Java and C. We begin by extract-
ing high-level type information from the source code and standard library code,
and we create a database containing all of the high-level language types. (Our
implementation of J-Saffire actually creates this database on demand, but the
concept is the same.) Since OCaml and Java are both type and memory safe,
we know that these types are used correctly in the high-level source code. We
then take the C source code and analyze it, inferring the shapes of the high-
level types used by the C code. Then we compare the inferred types against the
types declared in OCaml and Java in the type repository and issue warnings if
there are any type errors. Note that we need to perform inference rather than
pure checking to account for intermediate functions that are not directly called
from the high-level language. For the OCaml FFI, we also check that pointers
to the OCaml heap are registered with the garbage collector as we perform type
inference.

3. O-SAFFIRE: TYPE INFERENCE FOR THE OCAML FFI

In this section, we present O-Saffire, our multilingual type inference system
for the OCaml FFI. As discussed in Section 2.3, O-Saffire has two phases:
first we extract type information from OCaml, and then we perform type infer-
ence on glue code to find any inconsistencies with the extracted OCaml types.
We begin our presentation with the second phase, first developing our multi-
lingual type language (Section 3.1) and a type checking system for glue code
(Section 3.2), and then proving it sound (Section 3.3). Finally, we present the
type extraction process and give an algorithmic presentation of type inference
(Section 3.4). Sections 5.1 and 5.2 discuss our implementation and experimental
results.
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Fig. 6. Simplified C grammar.

Source Language. Figure 6 presents the C-like language we use for glue
code in our formal system. This language is based on the intermediate repre-
sentation of CIL [Necula et al. 2002] which we used in our implementation. In
this language, expressions e are side-effect free. We include integers n, pointer
dereferences ∗e, as well as the usual arithmetic operators. L-values lval are
the restricted subset of expressions that can appear on the left-hand side of an
assignment, namely, variables x and pointer dereferences.

Expressions include pointer arithmetic e1 +p e2 for computing the address
of offset e2 from the start of the structured block pointed to by e1. In actual
C source code, pointer arithmetic can be distinguished from other forms using
standard C type information. Our type system currently only supports pointer
arithmetic on value types since our focus is on FFI safety not general C type
safety which can be addressed with other techniques [Chandra and Reps 1999;
Necula et al. 2002]. Our formal system allows value s to be treated directly
as pointers, though in C they must first be cast to value * . We also include
the Val int and Int val conversion functions as primitives. Note that we omit
the address-of operation & . Variables whose addresses are taken are treated
as globals by the implementation and uses of & that interact with * can be
eliminated. Finally, the code in our benchmark suite rarely stores foreign data
directly into C struct types, and thus we omit C structures from our formal sys-
tem for simplicity. Implementation details about these heuristics and omitted
C constructs are discussed in Section 5.1.

In our source language, statements s can be associated with a label L, and
sequencing is written with a semicolon. We also have assignment statements
lval := e and lval := f (e, . . . , e), the latter of which stores in lval the result of
invoking function f with the specified arguments. A branch goto L uncondi-
tionally jumps to the statement labeled L; we assume that labels are unique
within a function, and jumping across function boundaries is not allowed. A
conditional branch if e then L jumps to the statement labeled L if the integer
e evaluates to a nonzero number. Loop constructs and switch statements are
omitted because they can be transformed into if and goto statements.
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Fig. 7. OCaml/C multilingual type language.

We include three primitive conditional tests for inspecting a value at run-
time. The conditional if unboxed (x) checks to see whether x is not a pointer,
that is, its low-order bit is 1. The conditional if sum tag (x) tests the runtime tag
of a structured block pointed to by x, and if int tag (x), tests the runtime value
of unboxed variable x. In actual C source code, these tests are made by applying
Is long , Tag val , or Int val , respectively, and then checking the result.

Statements also include return e, which exits the current function and re-
turns the value of e. The special form CAMLreturn is used for returning from a
function and releasing all variables registered with the garbage collector. This
statement should be used in place of return if and only if local variables have
been registered by CAMLprotect, our formalism for CAMLlocal and CAMLparam .
We restrict occurrences of CAMLprotect to the top of a function so that the set
of registered variables is constant throughout the body of a function.

Programs P consist of a sequence of function declarations and definitions
f . We omit global variables, and our implementation forbids (via a warning
message) value s from being stored in them and does not check if they are
correctly registered with the garbage collector. We assume all local variables
are defined at the top level of the function.

3.1 Multilingual Types

We begin our discussion by developing multilingual, representational types to
model C’s view of OCaml data. Figure 7(a) presents the basic flow-insensitive
types in our multilingual type language which integrates and generalizes the
basic OCaml and C types in Figure 1. Our grammar for C types ct embeds
extended OCaml types mt in the type value so that we can track OCaml type
information through C. Additionally, we augment function types with an effect
GC to track which functions may cause a garbage collection as discussed in the
following. Our grammar for OCaml types mt includes type variables α, which
we treat monomorphically and will be solved for in our inference system as well
as function types.

All of the other OCaml types from Figure 1(a)—unit, int, products, sums,
and references—are modeled with a representational type (�, �). In this type,
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� describes the unboxed values the type may represent. For a sum type, �

is an exact value n counting the number of nullary constructors of the sum.
Integers have the same physical representation as nullary constructors but
could have any value so for integers, � is �. In our inference algorithm, � may
also be a variable ψ to be solved for. The � component of a representational
type describes its possible boxed values, if any, that is, it describes the shapes
of the structured blocks the type represents. � is a sequence of products �,
one for each nonnullary constructor of the type. The position of each � in the
sequence corresponds to its constructor tag number, and each � itself contains
the types of the elements of the structured block. For example, the OCaml type
t in Figure 2(a) has representational type

(2, (�, ∅) × (�, ∅) × ∅ + (�, ∅) × ∅ + ∅)

Here, � = 2 since t has two nullary constructors (X and Z), and � contains
two product types, the integer pair type (�, ∅) × (�, ∅) × ∅ for W, and the boxed
integer type (�, ∅) × ∅ for Y.

Notice in Figure 2(c) that our C code to examine a value of type t does not
by itself fully specify the type of x. For example, the type could have another
nullary constructor or a nonnullary constructor that is not checked for. Thus
our grammars for � and � include variables σ and π that range over sums and
products [Rémy 1989] which we use to allow sum and product types to grow
during inference. Only when an inferred type is unified with an OCaml type
can we know its size exactly.

Our type language also annotates each function type with a garbage col-
lection effect GC, which can either be a variable γ (used in inference), gc if
the function may invoke the OCaml runtime (and thus the garbage collector),
or nogc if it definitely will not. GC naturally forms the two-point lattice with
order nogc � gc. Note that we reserve ≤ for the total ordering over the in-
tegers and use � for other partial orders. O-Saffire ensures that all necessary
variables are registered before calling a function with effect gc.

Flow-Sensitive Types. Recall the example code in Figure 2(c) for testing
the tags of a value . In order to analyze such a program, we need to track
information that may differ at each program point, for example, on each of the
branches after a boxedness test, we know whether or not the tested value is
boxed. Thus, O-Saffire extends the basic types ct to types of the form ct{B, I, T },
where B tracks boxedness (i.e., the result of if unboxed ), I tracks an offset into
a structured block, and T tracks the type tag of a structured block or the value
of an integer. In O-Saffire, B, I , and T are flow-sensitive, while ct is flow-
insensitive.

Figure 7(b) gives grammars for B, I , and T , which form lattices with the
orders ⊥ � boxed � � and ⊥ � unboxed � � for B, and ⊥ � n � � for I
and T . In our type rules, � is used for an unknown type, and ⊥ is used for
unreachable code, for example, following an unconditional branch. We extend
arithmetic on integers to offsets I as � aop n = �, ⊥ aop I = ⊥, and similarly
for T . We also extend the lattice orders to types ct{B, I, T } in the natural way.
We define ct{B, I, T } � ct′{B′, I ′, T ′} if ct = ct′, B � B′, I � I ′, and T � T ′.
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We use 
 to denote the least upper bound operator, and we extend 
 to types
ct{B, I, T } similarly. Notice that B, I , and T do not appear in the grammar for
ct in Figure 7, and thus we do not track them for values stored in the heap. In
our experience, this is sufficient in practice.

The meaning of ct{B, I, T } depends on ct. If ct is value, then B represents
whether the data is boxed or unboxed. If B is unboxed, then T represents the
value of the data (which is either an integer or nullary constructor), and I is
always 0. For example, on line 3 of Figure 2(c), x has type ct{unboxed, 0, 0} since
it represents the constructor X. If B is boxed, then T represents the tag of the
structured block and I represents the offset into the block. For example, on line
12 of Figure 2(c), x has type ct{ boxed, 0, 1} since it represents constructor Y.

Otherwise, if ct is int, then B is �, I is 0, and T tracks the value of the
integer, either ⊥ for unreachable code, a known integer n, or an unknown value
�. For example, the C integer 5 has type int{�, 0, 5}. Finally, for all other ct
types, B = T = � and I = 0.

We say that a value is safe if it is either unboxed or a pointer to the first
element of a structured block, and we say that any other ct that is not value is
also safe. In O-Saffire, data with a type where I = 0 is safe. A safe value can be
used directly at its type, and, for boxed types, the header can be checked with
the regular dynamic tag tests. This is not true of a value that points into the
middle of a structured block. O-Saffire only allows offsets into OCaml data to be
calculated locally within a function and so we require that any data passed to
another function or stored in the heap is safe. Since all data passed from OCaml
is safe, this property also holds for functions called directly from OCaml.

3.2 Type Checking Glue Code

We now present O-Saffire’s type checking rules for C glue code. In our type
checking rules, we assume we have concrete multilingual type information for
the program, meaning that types in general have no variables (e.g., sum and
product types all end with ∅). We divide our type rules into those for expressions
and those for statements.

Type Checking for Expressions. Figure 8 give our type checking rules for
expressions. These rules include type environments 
, which map variables to
types ct{B, I, T }, and a protection set P , which contains those variables that
have been registered with the garbage collector by CAMLprotect. Our rules for
expressions prove judgments of the form 
, P � e : ct{B, I, T }, meaning that
in type environment 
 and protection set P , the C expression e has type ct,
boxedness B, offset I , and tag/value T .

We discuss the rules briefly. In all of the rules, we assume that the program
is correct with respect to the standard C types and that full C type and ct
type information is available. Thus some of the rules apply to the same source
construct but are distinguished by the types of subexpressions.

The rule (INT EXP) gives integers the appropriate type, and (VAR EXP) looks
up the type of a variable in the type environment. (AOP EXP) performs the
operation aop on T and T ′ in the types. (VAL DEREF EXP) extracts a field from
a structured block. Here e must have a known tag m and offset n so that we
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Fig. 8. Type checking for C expressions.

can determine the appropriate field type. Notice that the resulting B and T
information is � since they are unknown, but the offset is 0 since we will get back
safe OCaml data. Rule (VAL DEREF BOXED EXP) handles the case when B and T
are �, which occurs when records or tuples are accessed directly without first
testing their boxedness. This rule requires that the type have one, nonnullary
constructor and no nullary constructors. We could similarly add a rule when B
is boxed but T is �, which is included in our implementation, but this adds no
interesting issues.

The rule (C DEREF EXP) checks a C pointer dereference. Notice that B and T
are always � for C pointers. (ADD C EXP) performs pointer arithmetic on C types
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other than value. Note that in order to ensure soundness, we only allow pointer
arithmetic on C pointers with an offset of 0 in our formal system. (VAL ADD EXP)
computes an offset into a structured block. Notice that it must be possible to
safely dereference the resulting pointer as the offset cannot be larger than the
width of the block. While this is not strictly necessary (we could wait until the
actual dereference to enforce the size requirement), it seems like good practice
not to form invalid pointers. We use (VAL ADD BOXED EXP) for computing offsets
into tuples that are not part of sums. Similar to (VAL DEREF BOXED EXP), we allow
B and T to be � but require that the type have one nonnullary constructor and
no nullary constructors.

(VAL INT EXP) and (INT VAL EXP) translate between C and OCaml integers.
When we form an OCaml integer from a C integer, we require T + 1 ≤ �,
meaning that the resulting representational type have at least T + 1 construc-
tors (� is the count of the constructors, which are numbered from 0). Similar to
(VAL DEREF BOXED EXP), (INT VAL UNBOXED EXP) handles the case where a value
is used immediately as an integer without a boxedness test.

Finally, (APP) type checks a function call. Technically, function calls are not
expressions in our grammar, but we put this rule here to make the rules for
statements a bit more compact. To invoke a function, the actual and the formal
types must match. Notice that the Bi and Ti are discarded, but we require that
all actual arguments are safe (Ii = 0). Additionally, we require that GC′ �
GC since if f might call the garbage collector, so might the current function
cur func where the type of cur func is bound in the environment at function
definition.

The last hypothesis of (APP) requires that if this function can call the garbage
collector, then every variable that points into the OCaml heap and is still live
must have been registered with a call to CAMLprotect. Here ValPtrs(
) is the set
of all variables in 
 with a type (�, �) value where |�| > 0, that is, the set of all
variables that are pointers into the OCaml heap. The set live(
) is all variables
live at the program point corresponding to 
. We omit the computation of live
since it is standard.

Type Checking for Statements. Unlike our type rules for expressions, which
have no side effects, our type rules for statements are flow-sensitive, which
we model by allowing the type environment to vary from one statement to an-
other even in the same scope. This allows us to precisely track facts about local
variables. To support branches, our rules use a label environment G, mapping
labels to type environments where G(L) is the environment at the beginning of
statement L.

Since type environments are flow-sensitive, some of our type rules need to
constrain type environments to be compatible with each other. Let dom(
) =
dom(
′). Then we define 
 � 
′ if 
(x) � 
′(x) for all x ∈ dom(
), and we define
(
 

′)(x) = 
(x)

′(x) for all x ∈ dom(
). Also, for the fall-through case for an
unconditional branch, our rules need to reset all flow-sensitive information to
⊥ to remove all flow-sensitive constraints from the type environment. This is
required so that the types in the environment will correctly join with those in the
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incoming environment of a subsequent label statement. We define reset(
)(x) =
ct{⊥, ⊥, ⊥}, where 
(x) = ct{B, I, T }.

The top part of Figure 9 gives our type rules for statements, which prove
judgments of the form 
, G, P � s, 
′, meaning that in type environment 
,
label environment G, and protection set P , statement s type checks, and after
s, the new environment is 
′.

(SEQ STMT) is straightforward, and (LBL STMT) and (GOTO STMT) constrain
the type environment G(L) to be compatible with the current environment 
.
(RET STMT) checks that the type of e is the same as the return type of the current
function. We also require that e is safe and that P is empty so that no vari-
ables were registered with the garbage collector. (CAMLRET STMT) is identical
to (RET STMT) except that we require P to be nonempty since it must be paired
with at least one CAMLprotect declaration. In each of (GOTO STMT), (RET STMT),
and (CAMLRET STMT), we use reset to compute a new unconstrained type envi-
ronment following these statements since they are unconditional branches.

(LSET STMT) typechecks writes to memory. We abuse notation slightly and
allow e3 on the right-hand side to be either an expression or a function call,
which is checked with rule (APP) in Figure 8. Notice that since we do not model
such heap writes flow-sensitively, we require that the type of e3 is safe and
that the output type environment is the same as the input environment. In
contrast, (VSET STMT) models writes to local variables, which are treated flow-
sensitively. Again, we abuse notation and allow the right-hand side to be a
function application checked with (APP). We also perform an extra check to
ensure that any variable registered with the garbage collector is safe.

The rule (IF STMT) models a branch on a C integer. (IF UNBOXED STMT) models
one of our three dynamic tag tests. At label L, we know that local variable x
is unboxed, and in the else branch (the fall-through case), we know x is boxed.
We can only apply if unboxed to expressions known to be safe. In particular,
in the else branch, we must know the offset of the boxed data is 0 to allow us
to do further tag tests.

Similarly, in (IF SUM TAG STMT), we set x to have tag n at label L. Notice that
this test is only valid if we already know (e.g., by calling if unboxed ) that x
is boxed and at offset 0 since otherwise the header cannot be read. In the else
branch, nothing more is known about x. In either case, we require that if this
test is performed, then mt must have at least n possible tags. While omitting
this last requirement would not create a runtime error, it may imply a coding
error since the program would be testing for more constructors than are defined
by the type. Therefore our heuristic is to warn about this case by including that
clause in our rules. In (IF INT TAG STMT), variable x is known to have value n at
label L. Analogously with the previous rule, we require x to be unboxed, and
with the constraint n+ 1 ≤ �, we require that x must have at least n+1 nullary
constructors. Our implementation also includes variations on (IF SUM TAG STMT)
and (IF INT TAG STMT) that allow B = � in exchange for stricter constraints on
mt, but we omit these rules since they add no new issues.

The bottom part of Figure 9 gives type rules for declarations and definitions.
For declarations, we use judgments of the form 
, P � s, 
′, P ′, where 
′ and
P ′ are the output environment and protection set. (VAR DECL) binds a local
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Fig. 9. Type checking for C statements, declarations, and definitions.

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 4, Article 18, Publication date: July 2008.



18:20 • M. Furr and J. S. Foster

Fig. 10. Type rules for values and the empty statement.

variable to the environment, and the protection set does not change. Here we
define |·| : ct → ctype to be the operation of removing mt annotations from
ct’s to yield ctypes, defined in the natural way. (CAMLPROTECT DECL) takes a
variable in the environment and adds it to the protection set P .

The last two rules, (FUN DECL) and (FUN DEFN), handle function declarations
and definitions. We again use the |·| operator to check that the source types of
the parameters match the annotated ct types. (FUN DECL) adds the type of f to
the output environment, checking that it matches any previous declarations.
(FUN DEFN) checks the type of a function definition. Note that for simplicity
we assume all functions are declared before use, and we check the type of the
function matches the type previously assigned to it. We also bind cur func to
the type of the current function, and we assume that all parameters are safe,
which is enforced in (APP).

3.3 Soundness

We now sketch a proof of soundness for a slightly simplified version of our mul-
tilingual type checking system that omits function calls, and CAMLprotect and
CAMLreturn. We believe these features can be added without difficulty, though
with more tedium. We omit some details of the proofs, which can be found in
full in a companion technical report [Furr and Foster 2006a].

The first step is to extend our grammar for expressions to include new se-
mantic values: C locations l , OCaml integers {n}, and OCaml locations {l + n},
which represents a pointer to the OCaml heap with base address l and offset
n. We write {l + −1} for the location of the type tag in the header of an OCaml
block. We define the syntactic values v as these three forms plus C integers n:

v ::= l | {n} | {l + n} | n.

As is standard, in our soundness proof, we overload 
 so that in addition to
containing types for variables, it contains types for C locations and OCaml lo-
cations. We also add the empty statement () to our grammar for statements.
The type checking rules for these new forms are given in Figure 10. Rules
(EMPTY STMT), (INT EXP), and (LOC EXP) are as expected. In rule (ML INT EXP),
we assign an OCaml integer {n} a representational type. Note that although
our type system does use � at joins, otherwise the system does not include sub-
sumption. Thus to support preservation, we integrate a notion of subsumption
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into (ML INT EXP) to allow {n} to be assigned a more general type. This rule
requires that {n}’s type have at least n+1 constructors but places no constraint
on the boxed component of the type. Similarly, rule (ML LOC EXP) assigns {l +
n} its type in 
, which must be a representational type that has a tag m where
the mth component of the sum has a product with at least n components. In
our proof, our inductive hypothesis will add additional conditions on 
 so that
{l + n} is consistent with the tag {l + −1}.

Figure 11(a) defines reduction contexts R, which specify the order of evalua-
tion in our semantics. Here, each expression contains a hole [] that shows what
must be evaluated next. Statements such as if unboxed (x) are not present as
they do not contain any subexpressions. We use the notation R[e] to mean the
reduction context R where the hole is replaced by e.

Our operational semantics uses three stores to model updatable references:
SC maps C locations to values, SML maps OCaml locations to values, and V maps
local variables to values. Our small-step operational semantics for expressions
is shown in Figure 11(b), which defines a reduction relation of the form

〈SC, SML, V , e〉 → 〈S′
C, S′

ML, V ′, e′〉.
Here, an expressions e in state SC, SML, and V , reduces to a new expression e′

and yields new stores S′
C, S′

ML, and V ′ following the style of Felleisen and Hieb
[1992]. We define →∗ as the reflexive, transitive closure of →.

We discuss the reduction rules briefly. Rule (o-var) looks up a variable in the
variable store V . (o-ml-add) performs pointer arithmetic on a OCaml location.
Similarly, (o-c-add) performs pointer arithmetic on a C location. However, as
mentioned earlier, we only allow offsets of 0 for C locations in this system.
(o-c-deref) and (o-ml-deref) each dereference a location by looking up its value
in the appropriate store. (o-aop) performs arithmetic on two C integers, and
(o-valint) and (o-intval) convert between C integers and OCaml integers.

Our operational semantics for statements is shown in Figure 11(c). To model
branches, we also include a global statement store D, which maps labels L
to a sequence of statements s. That is, D(L) returns the sequence of state-
ments that would be executed after a jump to L. The rule (o-label) evaluates
to the statement following a label. (o-goto) unconditionally jumps to the label
L, looking up the next statement to execute in D. (o-c-assign), (o-ml-assign),
and (o-var-assign) update a C location, OCaml location, and local variable,
respectively, by modifying the store SC, SML, or V , as appropriate. (o-if) jumps
to label L when n is nonzero, and (o-if2) executes the fall-through statement
otherwise. The remaining conditional rules are similar, jumping to label L when
x has the correct dynamic tag (o-ifsum), the correct integer value (o-ifi), or is
unboxed (o-iflong).

Since 
 contains type information about the stores, we must ensure that
this information correctly types values in the stores. Therefore, we introduce a
notion of compatibility.

Definition 3.1 (Compatibility). 
 is said to be compatible with SC, SML, and
V , written 
 ∼ 〈SC, SML, V 〉, if

(1) dom(
) = dom(SC) ∪ dom(SML) ∪ dom(V );
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Fig. 11. Small-step semantics rules.

(2) for all l ∈ SC, there exists ct such that 
 � l : ct∗{�, 0, �} and 
 � SC(l ) :
ct{�, 0, �};

(3) for all {l +n} ∈ SML, there exist �, �, j , k, m, �0, . . . , � j , and mt0, . . . , mtk
such that
—
 � {l + n} : (�, �) value{ boxed, n, m}
—� = �0 + · · · + � j , m ≤ j
—�m = mt0 × · · · × mtk , n ≤ k
—
 � SML({l + n}) : mtn value{�, 0, �}
— SML({l + −1}) = m;

(4) for all x ∈ V , 
 � V (x) : 
(x).
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This definition first ensures that every location in each of our stores is given
a type by 
. Second, it requires that the types of all C locations correctly cor-
respond to the type of the value to which they point. Third, an OCaml location
{l + n} must have the correct type: it must point to a sum type with at least m
nonnullary constructors, the mth constructor must be a structured block with
header tag m and contain at least n values, and the nth value must have the
same type as the value stored at SML({l + n}). Finally, the value stored in a
variable x must have the same type as x itself.

We begin by showing that given any well-typed expression that is not a
value, one of the reduction rules from Figure 11(b) applies, and the result of the
reduction preserves the type of the expression.

LEMMA 3.2 (PROGRESS AND PRESERVATION FOR EXPRESSIONS). If e is an expres-
sion and 
 � e : ct{B, I, T } and 
 ∼ 〈SC, SML, V 〉, then either e is a value or
there exists e′ such that

(1) 〈SC, SML, V , e〉 → 〈SC, SML, V , e′〉, and
(2) 
 � e′ : ct{B, I, T }.

PROOF SKETCH. Proceed by induction on the structure of e. If e has a subex-
pression that is reduced, then the conclusion holds by induction. Otherwise we
assume all subexpressions are values and proceed by case analysis. If e = x,
then by compatibility of 
 and V , we can apply (o-var) and preservation holds.
If e = ∗e1, we have three possibilities, depending on which type rule applies.
If (C DEREF EXP) applies, then e1 is a C pointer, and by compatibility with SC
we can reduce using (o-c-deref) and preservation holds. Otherwise either
(VAL DEREF EXP) or (VAL DEREF BOXED EXP) applies, and, in both cases, e1 must
be an OCaml location. Thus by compatibility with SML, for both cases we can
reduce using (o-ml-deref), and preservation holds.

If e = e1 +p e2, then one of (ADD C EXP), (VAL ADD EXP), or (VAL ADD BOXED

EXP) must apply. If (ADD C EXP) applies, then e1 is a C location and e2 must be
the integer 0. Therefore, we can take a step with (o-c-add) and preservation is
implied by (LOC EXP). In the other two cases, e1 must be an OCaml location {l +
n}, and e2 must be a C integer. Therefore we can reduce using (o-ml-add), and
the respective type rule and compatibility ensure that the extracted value is of
the right type, implying preservation. If e = e1 aop e2, then the (AOP EXP) must
apply, and so we can reduce using (o-aop) and preservation follows because
the reduction result is an integer.

If e = Val int e1, then (VAL INT EXP) must apply, and we can reduce using
(o-valint), and preservation holds via (ML INT EXP). If e = Int val e1, then we
can reduce using (o-intval), and preservation holds via (INT EXP).

We next show progress and preservation for statements. However, first recall
that typing judgments for statements include label environments G, which map
labels L to type environments 
. Thus, when we branch to a label L, we need to
ensure that the next statement executed (D(L)) is well-typed under the envi-
ronment provided by G (i.e., G(L)). Thus we introduce a notion of compatibility

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 4, Article 18, Publication date: July 2008.



18:24 • M. Furr and J. S. Foster

of G with our statement store D, similar to the ∼ relation defined above:

Definition 3.3 (L-Compatibility). A statement store D is said to L-
compatible with a label environment G, written D ∼L G, if for all L ∈ D,
there exists a 
 such that G(L), G � D(L), 
.

As mentioned before, whenever we branch to a label L, the next statement
to be evaluated is D(L). This is only valid if the statement to which D maps L
is a labeled statement. Formally, the definition is as follows.

Definition 3.4 (Well-Formedness of D). D is said to be well-formed if for all
L ∈ D, D(L) is a statement of the form L : s.

Recall from Section 3.2 that we define 
 � 
′ if 
(x) � 
′(x) for all x ∈
dom(
) ∩ dom(
′). Since compatibility is an important property to preserve in
our progress and preservation lemma for statements, we first present a lemma
that shows that store compatibility follows this relation.

LEMMA 3.5. If 
1 � 
2 and 
1 ∼ 〈SC, SML, V 〉 then 
2 ∼ 〈SC, SML, V 〉.
Several statements in our source language contain a label L which the pro-

gram may branch to. Therefore we first present a lemma that shows that
progress and preservation hold for this common case.

LEMMA 3.6. If 
1 ∼ 〈SC, SML, V 〉 and D ∼L G and D is well-formed and

1 � G(L), then for any statement s such that 
1, G � s, 
2 and

〈SC, SML, V , s〉 → 〈S′
C, S′

ML, V ′, D(L)〉
there exist 
3, s′ such that

(1) 〈SC, SML, V , s〉 → 〈SC, SML, V , L : s′〉,
(2) G(L) ∼ 〈SC, SML, V 〉, and
(3) G(L), G � L : s′, 
3.

Finally, we show progress and preservation for statements. All of our state-
ments will be reduced in one of three ways that correspond to the three pos-
sible conclusions that follow. Either (1) the statement contains a subexpres-
sion which can be reduced, (2) the statement is part of a sequence s1; s2 and
reduces to the second statement, or (3) the statement makes a branch to a
label. Each conclusion is similar in that it ensures that at every step of the
program, (a) it is possible to take a step, (b) the stores are still compatible
with the type environments at that step, and (c) the new statement is still
well-typed.

LEMMA 3.7 (PROGRESS AND PRESERVATION FOR STATEMENTS). If s is a statement
and 
1, G � s, 
2 and 
1 ∼ 〈SC, SML, V 〉 and D ∼L G and D is well-formed,
then either s = () or s = s1; s2 and one of the following must hold.

(1) There exist 
′
1, s′

1 such that
(a) 〈SC, SML, V , s1; s2〉 → 〈SC, SML, V , s′

1; s2〉
(b) 
′

1 ∼ 〈SC, SML, V 〉
(c) 
′

1, G � s′
1; s2, 
2.
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(2) There exist 
′
1, S′

C, S′
ML, V ′ such that

(a) 〈SC, SML, V , s1; s2〉 → 〈S′
C, S′

ML, V ′, s2〉
(b) 
′

1 ∼ 〈S′
C, S′

ML, V ′〉
(c) 
′

1, G � s2, 
2.
(3) There exist 
4, s3 such that

(a) 〈SC, SML, V , s1; s2〉 → 〈SC, SML, V , L : s3〉
(b) G(L) ∼ 〈SC, SML, V 〉
(c) G(L), G � L : s3, 
4.

PROOF SKETCH. Proceed by case analysis on s1. If s1 = L : s′, then we can
reduce using (o-label), and then by (LBL STMT) and Lemma 3.5, we have con-
clusion (1). If s1 = goto L, we can reduce with (o-goto) and by (GOTO STMT) and
Lemma 3.6, we satisfy conclusion (3).

If s1 = e1 := e2, then we have several subcases depending on e1 and e2. If
either e1 or e2 are not a value, then we can show (1) using Lemma 3.2. If e1

and e2 are values, then e1 must be one of x, a C location l , or an OCaml lo-
cation {l + n}. In each case, we will show conclusion (2). If e1 = x, then we
can apply (o-var-assign) to take a step. The type rule (VSET STMT) must ap-
ply and therefore 
 is updated along with V (from (o-var-assign)), which
preserves compatibility. If e1 is a C location l , then we can take a step
with (o-c-assign) and (LSET STMT) implies compatibility with SC. Otherwise,
if e1 is an OCaml location {l + n}, then we can take a step with (o-ml-assign)
and compatibility with SML is again implied by (LSET STMT).

If s1 = if e then L, then we have several subcases depending on e. If e
is not a value, then we can show conclusion (1) using Lemma 3.2. If e is a
value, then it must be an integer n by (IF STMT) and (INT EXP). If n �= 0, then
we can reduce using (o-if), and, using Lemma 3.6, we can show conclusion
(3). Otherwise, if n = 0, we can reduce using (o-if2) and show conclusion
(2).

If s1 = if sum tag (x) == n then L, then the type rule (IF SUM TAG STMT)
applies. Therefore, when we look up x in V , it must be a OCaml location {l + 0}
by compatibility. If the tag is n (i.e., {l + −1} = n), then we can reduce using
(o-ifsum), and, using Lemma 3.6, we can show conclusion (3). Otherwise
{l + −1} �= n, and we can reduce using (o-ifsum2) and show conclusion (2).

If s1 = if int tag (x) == n then L, then the type rule (IF INT TAG STMT)
applies. Therefore when we look up x in V , it must be an OCaml integer {m} by
compatibility. If n = m, then we can reduce using (o-ifi), and, by Lemma 3.6,
we can show conclusion (3). If n �= m, then we can reduce using (o-ifi2) and
show conclusion (2).

Finally, if s1 = if unboxed (x) then L, then the type rule (IF UNBOXED STMT)
applies, and x must have an OCaml type (mt value). Therefore when we look
up x in V , it can either be an OCaml integer {n} or an OCaml location {l + 0}
by compatibility. If V (x) = {n} then we can reduce using (o-iflong), and, by
Lemma 3.6, we can show conclusion (3). Otherwise, if V (x) = {l + 0}, we can
reduce using (o-iflong2) and show conclusion (2).

To show soundness, we prove that every statement either diverges or even-
tually reduces to ().
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Fig. 12. Translation rules for OCaml types.

THEOREM 3.8 (SOUNDNESS). If 
 � s, 
′ and 
 ∼ 〈SC, SML, V 〉 and D ∼L G
and D is well-formed, then either 〈SC, SML, V , s〉 diverges or 〈SC, SML, V , s〉 →∗

〈S′
C, S′

ML, V ′, ()〉.
PROOF. By Lemma 3.7, we can continually reduce the statement and

reestablish our compatibly assumptions. Therefore either this process will con-
tinue forever or there exists s′ such that 〈SC, SML, V , s〉 →∗ 〈S′

C, S′
ML, V ′, s′〉,

and, for all s′′, 〈SC, SML, V , s′〉 �→ 〈S′
C, S′

ML, V ′, s′′〉. Since s′ is well typed by
Lemma 3.7, it must be () or else we could apply Lemma 3.7 again and produce
s′′.

3.4 Type Inference

Finally, we present our type inference algorithm. Unlike the type checking
system, we do not assume that we have OCaml types everywhere. Instead,
as described in Figure 5, we assume we are given an OCaml program and an
unannotated C program, and then proceed in two stages. First we convert the
source types of FFI functions as declared in OCaml into our multilingual types.
Then we perform type inference on the C code, beginning in a type environment
containing the converted types, and check for any potential type errors. We
discuss each stage in turn.

Translating OCaml Types to Representational Types. The first stage of our
inference algorithm is to translate each external function type declared in
OCaml into our multilingual types. We only examine OCaml type information
and not code because the OCaml type system ensures there are no type errors.
We then store the converted types in an offline type repository, which is used
during the second stage of our algorithm.

We convert external declarations using the type translation � given in
Figure 12, which translates OCaml function types into representational types.
In this definition, we implicitly assume that mltypen is not constructed with →,
that is, the arity of the translated function type is n − 1. � is defined in terms
of helper function ρ. The function ρ gives unit and int both pure unboxed types
with no � component. Since unit is a singleton type, we know its physical rep-
resentation is the value 0, and we assign it type (1, ∅). This is the same as the
representational type for a degenerate sum type with a single nullary construc-
tor, for example, type t’ = A, which is correct because that one nullary constructor
has the same representation as unit. As we have seen before, int is translated
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Fig. 13. Pattern matching code with inferred types and constraints.

to (�, ∅), making it incompatible with any sum type. The ρ function encodes
mutable references as a boxed type with a single nonnullary constructor of size
1. Regular function types are converted to mt function types.

Finally, sum types are handled by counting the nullary constructors and
mapping each nonnullary constructor to a product type representing its argu-
ments. Rather than give the general case for sums and products, we illustrate
the translation with two sample cases. In the definition of ρ in Figure 12, we
show the translation of a sum type with one nullary constructor and one non-
nullary constructor. Product types are handled by making an appropriate boxed
type with no nullary constructors and a single nonnullary constructor of the ap-
propriate shape.

Consider the following OCaml program, which declares a foreign function:

type s = P of int ref | R | Q
external fML : int → s → unit = “ fC

′′

The � function converts this function type as follows. The first argument of
fC has type int and is thus represented as (�, ∅). The second argument has
type s, which has one nonnullary constructor and two nullary constructors.
The nonnullary constructor takes as its argument an int ref, which corresponds
to the representational type (0, (�, ∅) × ∅ + ∅). Therefore the representational
type for s is (2, (0, (�, ∅) × ∅ + ∅) × ∅ + ∅). Finally, the return type of fC is unit,
which is represented as (1, ∅) as in Figure 12. Therefore, the multilingual type
of this function, which is stored in the type repository, is as follows, where γ is
a fresh variable to be solved for in the next stage of analysis:

fC : (�, ∅) × (2, (0, (�, ∅) × ∅ + ∅) × ∅ + ∅) →γ (1, ∅)

The second stage of our analysis then assigns this signature to the function fC
in the C code and ensures that it is consistent with body of fC.

Type Inference Example. To motivate the discussion of the next phase of
type inference, Figure 13 shows the inference process for the example from
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Figure 2(c), which has been rewritten in our formal language. Assume this code
starts with x initialized to some data passed from OCaml. To enhance readabil-
ity, we omit labels and jumps and instead show control-flow with indentation.
We have annotated the example with the types assigned by our inference rules.
The variable x begins on line 1 with an unknown type α value{�, 0, �}. B and
T are � here because the boxedness and tag of x are unknown at this program
point, and I is set to zero since all data passed from OCaml is safe. Upon seeing
the if unboxed call, α unifies with the representational type (ψ, σ ), where ψ

and σ are variables to be solved for based on the constraints generated in the
remaining code. On the true branch, we give x an unboxed type but still an
unknown tag. Since the flow-insensitive part of x’s type does not change (it is
always α value throughout the function), we elide it from here on in the figure.
Line 4 checks the unboxed constructor for x and adds the constraint 1 ≤ ψ since
x can only be from a sum with at least 1 nullary constructor. Thus on line 5, x
is now fully known and can safely be used as the nullary type constructor X.
Similarly, on line 7, x is known to be the constructor Z, and we generate the
constraint 2 ≤ ψ from the tag test on line 6.

On the false branch of the if unboxed test, our type rules give x a boxed
type with offset 0 (since x is safe). After testing the tag of x against 0 on line
10, we know that x has at least one nonnullary constructor which we enforce
with the constraint σ = π0 + σ ′. On line 11, then, x can be safely treated as
the constructor W (tag 0). Line 12 accesses the second field of x and treats it as
an integer. Therefore we unify π0 with a product with at least two types, the
second of which is the integer type (�, ∅). Similarly, on line 14, we know that x
has constructor Y (tag 1), and, on line 15, we know the constructor has at least
one field, which is an integer. Finally, on line 16, we join the branches together
and lose information about the boxedness or tag of x.

When we solve the unification constraints on α, π0, and π1 and inequality
constraints on ψ , we discover α = (ψ, α1 × (�, ∅) × π ′

0 + (�, ∅) × π ′
1 + σ ′′) with

2 ≤ ψ , which correctly unifies with our original type OCaml type t, which
corresponds to representational type (2, (�, ∅)×(�, ∅)×∅ + (�, ∅)×∅ + ∅). After
unification, we therefore also discover that α1 = (�, ∅) and that π ′

0, π ′
1, and σ ′′ are

all ∅.

Type Inference for Glue Code. The second phase of our inference algo-
rithm infers types for C source code, incorporating the representational types
gathered in the first phase. Recall that our system uses types of the form
ct{B, I, T }, where ct represents the structure of OCaml data and is flow-
insensitive, whereas B, I , and T are flow-sensitive. During inference, O-Saffire
generates constraints on flow-insensitive type structure, and uses dataflow
analysis to infer the flow-sensitive B, I , and T . We generate four kinds of
constraints C:

C ::= τ = τ ′ | T + 1 ≤ � | GC � GC′ | gc � GC′ ⇒ P ⊆ P ′

From left-to-right, we have equality constraints of the form τ = τ ′, where τ

ranges over ct, mt, �, and �; inequality constraints T + 1 ≤ � that give lower
bounds on the number of primitive tags of a representational type; inequality
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Fig. 14. Expression type rules modified for inference.

constraints GC � GC′ among garbage collection effects; and conditional con-
straints gc � GC′ ⇒ P ⊆ P ′, used to check that C pointers to the OCaml heap
are correctly registered with the garbage collector.

Figure 14 shows our type inference rules for expressions, which are almost
the same as the type checking rules in Figure 8, except that they introduce
fresh variables where appropriate. When we apply these rules to an expres-
sion, we view any constraints C listed as side-conditions of the hypotheses as
being generated, and at the end of type inference, we gather all the generated
constraints and solve them.

Figure 14 only lists rules that are different than their type checking coun-
terparts. For example, in the rule (VAL DEREF EXP), the exact number of non-
nullary constructors may not be known, and therefore we generate a constraint
mt = (ψ, π0 + · · · + πm + σ ) to unify mt with a representational type whose sum
component ends in variable σ , and thus may grow during inference. Only when
we unify this type with a known OCaml type will the exact size be fixed. As
another example, in (VAL INT EXP), we generate the constraint T + 1 ≤ ψ to
require that e have at least T + 1 nonnullary constructors.

Note that none of our expression type inference rules allow I = �. This can
occur after a join point when a variable has been used to point to two different
offsets of a block on two separate branches. In practice, if I is ever �, O-Saffire
emits a message warning that it does not have enough information to analyze
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the expression and proceeds to optimistically check the rest of the program in
search of further errors. Examples of this are discussed in Section 5.2.

Unlike our type rules for expressions, our type rules for statements are some-
what nonstandard. They allow the type environment to change from one pro-
gram point to another, and they include a label environment G used to model
jumps. Thus we use dataflow analysis to infer types for statements, and, in lieu
of more traditional type inference judgments, we present statement inference
as a pair of algorithms. We define an algorithm INFERFUNC to perform inference
on a function body by iteratively applying another algorithm INFERSTMT which
infers types for statements. To integrate the expression type inference rules in
Figure 14 into the algorithm, we use the notation INFEREXPR(C, 
, P, e) to mean
the type ct{B, I, T } such that 
, P � e : ct{B, I, T } according to the rules in
Figure 14. Any constraints generated while applying these rules are added to
C as a side effect.

Algorithm 1. INFERFUNC(
, C, f ) – Type inference for C functions

Input: A type environment 
, a constraint set C, and a function f of the form

function ctype0 f (ctype1 x1, . . . , ctypen xn) d1 . . . dm; s1; . . . ; sk

Side effects: Updates constraint set C
1: cti ← η(ctypei) for i ∈ 0..n
2: C ← C ∪ {
( f ) = ct1 × . . . × ctn →γ ct0} where γ fresh

3: 
′ ← 
[xi �→ cti{�, 0, �}, cur func �→ 
( f )]

4: P ← ∅
5: for i ∈ 1..m do
6: switch di

7: case ctypex x = e:

8: ct{B, I, T } ← INFEREXPR(C, 
, P, e)

9: 
′ ← 
′[x �→ ct{B, I, T }]
10: case CAMLprotect(x):

11: P ← P ∪ {x}
12: end switch
13: end for
14: ∀L ∈ body of f , G(L) ← reset(
′)
15: ∀s ∈ body of f , out
[s] ← reset(
′)
16: out
[start] = 
′

17: W ← {s1}
18: while W is not empty do
19: remove a statement s from W
20: in
[s] ← ⊔

p∈pred[s] out
[p]

21: Gold ← G
22: 
new ← INFERSTMT(C, in
[s], P, G, s)

23: if out
[s] �= 
new or G �= Gold then
24: add all successors of s to W
25: out
[s] ← 
new

26: end if
27: end while
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Algorithm 1 defines INFERFUNC(
, C, f ), which takes as input a type environ-
ment 
 (containing its type and the type of other functions in the program), a
constraint set C (added to during inference), and a function definition f , and
performs type inference on the function body. To perform inference on a pro-
gram, we apply this algorithm to each function definition in order, building up
a set of constraints that are solved at the end. In essence, this algorithm takes
the place of the (FUN DEFN) rule in Figure 9. We omit the part of the algorithm
for handling function declarations since it simply adds those declarations to the
current global type environment.

We assume we have access to a control-flow graph for the body of f and that
in the body of the function s1; . . . ; sk each si is not itself a sequence statement
(but may be labeled). We also assume that s1 has a distinguished predecessor
named start. The algorithm INFERFUNC computes a type environment out
[s]
that holds immediately after each statement s.

The algorithm begins on line 1 by translating ctypes, which are present in
the C code, to cts, which include OCaml type information. Since we do not
know the OCaml types yet, we introduce fresh variables everywhere using the
function η:

η(void) = void η(value) = α value α fresh
η(int) = int η(ctype∗) = η(ctype)∗

We do not translate C function types because they are not first class in
our language. Then line 2 adds a constraint that the cts for parameters
and return unify with the existing function type, and line 3 creates an ini-
tial type environment 
′ that includes the formal parameters and the name
cur func.

Next, lines 4–13 handle local variable declarations. Lines 7–9 bind local
variables in 
′, using INFEREXPR to infer types of initializers. Lines 10–11 add
variables to the protection set P . Then line 14 uses reset to initialize the la-
bel environment G to map each label L to the initial type environment with
all of the flow-sensitive elements set to ⊥. Then we initialize the dataflow
facts for each statement in the CFG where the start, an empty node preced-
ing s1, ends in environment 
′. Lastly, we initialize the worklist with the first
statement.

The heart of the algorithm is lines 18–27 which iterate over the worklist.
We remove a statement from the worklist, and then join the type environments
from all predecessors. Line 21 saves a copy of the current label environment G,
and then we call INFERSTMT to infer the output environment 
new after statement
s is executed. As we discuss in the following, this may also update C and G. If
G is updated, or if 
new is different than out
[s], then we place all successors of
s on the worklist and update out
[s].

Algorithm 2 defines INFERSTMT(C, 
, P, G, s) which performs type inference
on a statement s. The other inputs to the algorithm are the constraint set C,
an initial type environment 
, a protection set P , and a label environment G.
The algorithm is a simple case analysis depending on s.
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Algorithm 2. INFERSTMT(C, 
, P, G, s) – Type inference for C statements

Input: An initial type environment 
, a label environment G, a protection set P , a

statement s, and a constraint set C
Output: A type environment that holds at the end of statement s
Side effects: Updates constraint set C, label environment G

1: switch s
2: case L : s′

3: G ← G[L �→ G(L) 
 
]

4: return INFERSTMT(C, G(L), P, G, s′)
5: case goto L
6: G ← G[L �→ G(L) 
 
]

7: return reset(
)

8: case return e or CAMLreturn(e):

9: fail if (s = return e ∧ P �= ∅) ∨ (s = CAMLreturn(e) ∧ P = ∅)

10: ct{B, I, T } ← INFEREXPR(C, 
, P, e)

11: fail if I �= 0

12: 
(cur func) = ct1 × . . . × ctn →GC ct0

13: C ← C ∪ {ct = ct0}
14: return reset(
)

15: case ∗(e1 +p e2) := e3:

16: ct{B, I, T } ← INFEREXPR(C, 
, P, ∗(e1 +p e2))

17: ct′{B′, I ′, T ′} ← INFEREXPR(C, 
, P, e3)

18: fail if (I �= 0 ∨ I ′ �= 0)

19: C ← C ∪ {ct = ct′}
20: return 


21: case x := e
22: ct{B, I, T } ← INFEREXPR(C, 
, P, e)

23: fail if (x ∈ P ∧ I �= 0)

24: return 
[x �→ ct{B, I, T }]
25: case if e then L:

26: INFEREXPR(C, 
, P, e) (C compiler ensures result is int)
27: G ← G[L �→ G(L) 
 
]

28: return 


29: case if unboxed (x) then L:

30: ct{B, I, T } ← INFEREXPR(C, 
, P, x)

31: fail if I �= 0

32: 
′ ← 
[x �→ ct{unboxed, I, T }]
33: G ← G[L �→ G(L) 
 
′]
34: return 
[x �→ ct{ boxed, I, T }]
35: case if sum tag (x) == n then L
36: ct{B, I, T } ← INFEREXPR(C, 
, P, x)

37: fail if I �= 0 or B �= boxed
38: C ← C ∪ {ct = (ψ, π0 + · · · + πn + σ ) value} ψ, πi , σ fresh

39: 
′ ← 
[x �→ ct{ boxed, 0, n}]
40: G ← G[L �→ G(L) 
 
′]
41: return 
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42: case if int tag (x) == n then L
43: ct{B, I, T } ← INFEREXPR(C, 
, P, x)

44: fail if I �= 0 or B �= unboxed
45: C ← C ∪ {ct = (ψ, σ ) value)} ∪ {n + 1 ≤ ψ} ψ, σ fresh

46: 
′ ← 
[x �→ ct{unboxed, 0, n}]
47: G ← G[L �→ G(L) 
 
′]
48: return 


49: end switch

Lines 2–4 infer the type of a labeled statement, checking the inner statement
in environment G(L) where G has been imperatively updated to join the initial
environment 
 with the previous G(L). If G is actually changed by this case,
then Algorithm 1 places the successors of s on the worklist which will cause
them to be visited. Lines 5–7 handle goto , imperatively updating the G and
returning an environment with all flow-sensitive components set to ⊥.

Lines 8–14 handle the two forms of return , ensuring that CAMLreturn is used
if and only if variables have been registered with CAMLprotect (which places the
variables in P ). This case uses INFEREXPR to infer the type of e and generates a
constraint unifying this type with the return type of the function. Note that the
returned value must be safe. Lines 15–20 handle assignment through a pointer,
unifying the types of the left- and right-hand sides on line 19. Line 18 ensures
that only safe data is stored in the heap. Lines 21–24 handle assignment to a
local variable, which updates the type of x in the output type environment and
ensures that, if x has been registered with the garbage collector, then it is safe.

The remaining four cases on lines 25–48 handle branches. In each case, we
update the label environment G by joining the current G(L) with information
determined by the conditional test, if any. The last three cases also require I = 0
so that the tests can be performed safely and update the output environment
to also reflect the conditional. Lastly, the cases for if sum tag and if int tag
require that x is boxed or unboxed, respectively, and add equality constraints
to C to ensure the type of x has the right shape.

Constraint Solving. Algorithm 1 clearly terminates because updates mono-
tonically increase facts about B, I , and T , which are finite height lattices. After
we have applied Algorithm 1 to all of the functions in our program, we are left
with a constraint set C. We solve the equality constraints τ = τ ′ with ordinary
unification. When solving a constraint (�, ·) = (� ′, ·), we require that � and
� ′ are the same, that is, if � = n, then � does not unify with �, as required
by our type rules. Several rules also produce inequality constraints of the form
T + 1 ≤ �. Recall that these ensure that nullary constructors can only be used
with a sum type that is large enough. Thus in this constraint, if T is nega-
tive, we require � = � since negative numbers are never constructors. After
the unification constraints have been solved, we can walk through the list of
T + 1 ≤ � constraints and check whether they are satisfiable.

Finally, we are left with constraints involving garbage collection effects. The
atomic subtyping constraints GC � GC′ can be solved via graph reachability.
We can think of the constraint GC � GC′ as an edge from GC to GC′. Such
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Fig. 15. JNI source language.

edges form a call graph, that is, there is an edge from GC to GC′ if the function
with effect GC is called by the function with effect GC′. To determine whether a
function with effect variable γ may call the garbage collector, we simply check
whether there is a path from gc to γ in this graph, and, using this information,
we ensure that any conditional constraints gc � GC′ ⇒ P ⊆ P ′ from (APP) are
satisfied for gc functions.

4. J-SAFFIRE: TYPE INFERENCE FOR THE JNI

In this section, we present J-Saffire, our multilingual type inference system for
the Java Native Interface (JNI). The overall design of J-Saffire is the same as O-
Saffire, but the systems differ substantially in detail because of differences be-
tween the JNI and the OCaml FFI. First, although we found little use of objects
in the OCaml FFI, objects are critical for the JNI. Indeed, J-Saffire’s main focus
is on inferring representations of Java object types. Second, while the OCaml
FFI uses integer tags and pointer offsets to access OCaml data, in the JNI,
fields, methods, and classes are all described using specially-formatted strings,
and those strings typically do not change during execution. Thus J-Saffire uses
a flow-insensitive analysis to track string values through glue code. Finally, we
found that parametric polymorphism is important for the JNI because it allows
J-Saffire to model user-defined wrapper functions precisely and directly assign
type signatures to the multitude of JNI functions rather than give separate
type rules for each function as O-Saffire does. Thus J-Saffire uses instantiation
constraints discussed later to perform parametric polymorphic type inference.
This last point is especially important for our implementation as we do not
need to handle each JNI function specially but rather simply write down a type
signature for each.

Source Language. In Section 3, we described O-Saffire in terms of a source
language that was very close to C, which was helpful because C language con-
structs (pointer arithmetic, conditional tests, etc.) are directly used to manip-
ulate OCaml data in the OCaml FFI. However, as we saw in Section 2.2, the
JNI is much more opaque, and glue code does almost all of its work by invoking
JNI functions. Thus to make J-Saffire simpler to present and soundness easier
to prove, we describe J-Saffire in terms of the language in Figure 15, which is
the lambda calculus extended with primitive strings “Str” and JNI functions
δ, which are not curried. In our source language, let introduces polymorphism,
and let-bound variables f are annotated with an instantiation site i when they
are used in the program text. JNI functions δ are also polymorphic, and hence
include an instantiation site. We discuss this further in Section 4.2.

We list a few JNI functions as examples. The function FindClass(s) returns
the Class object of the class named by string s. The function GetObjectClass(o)
returns the Class of its argument o. The function GetFieldID(c, f , t) returns
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Fig. 16. JNI wrapper function from Figure 4 in formal language.

a field identifier for the field named f of type t in class c, and similarly
GetMethodID(c, m, t) returns a method identifier for the method named m
of type t in class c. The function GetObjectField(o, fid) returns the object
(i.e., nonprimitive) field identified by fid of object o, and lastly, the function
CallObjectMethodn(o, m, x1, . . . , xn) invokes method m of object o with argu-
ments x1 through xn and returns the object result. In the JNI, CallObjectMethod
is a varargs function, and, in our formalism, we assume we have variations
CallObjectMethodn for each possible arity n.

4.1 Multilingual Types

Like O-Saffire, J-Saffire uses a multilingual type language when performing
type inference on glue code. In the JNI, the key type is jobject , which is the
C type given to all Java objects, and data of this type can only be manipulated
by passing it to JNI functions. Thus our strategy is to extend jobject with a
representational type to model C’s view of Java objects. The JNI also uses field
and method identifiers, which have C types jfieldID and jmethodID , respec-
tively, and so J-Saffire needs to extend those types as well with information on
which fields and methods they represent.

Before we present our multilingual type language formally, consider again
the example wrapper function my getObjectField from Section 2.2, shown in
Figure 16 in our formal language grammar. Recall that this function takes two
arguments, an object, and the name of one of its Object fields, and then returns
that field. Notice that in order to assign this function a type, we need to specify
that the value of the second argument names a field of the first argument; that
field must be a java.lang.Object; and any other fields or methods of the object
type are unconstrained. J-Saffire gives my getObjectField the following type:

{ν; 〈νfield : oret〉 ◦ φ; μ} jobject → str{νfield} → oret jobject

where oret = {“java.lang.Object”; 〈 f1; · · · ; fn〉 ; 〈m1; · · · ; mk〉} is a representa-
tional type describing instances of java.lang.Object. This representational types
has three parts: the class name “java.lang.Object”, the field set 〈 f1; · · · ; fn〉, and
the method set 〈m1; · · · ; mk〉. These latter two sets come from the definition of
Object in Java.

The second parameter is a C string whose contents are represented by the
type variable νfield. We use a variable because, when the function is created,
the actual contents of the string are unknown (and in fact are likely to vary
with different calls to the function). Such variables may be later unified with
a constant string once the contents of the string becomes known, creating a
singleton type. Lastly, the first parameter is a Java object with representational
type {ν;

〈
ν f ield : oret

〉 ◦ φ; μ}. In this type, the class name ν is an unconstrained
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Fig. 17. Java/C multilingual type language.

variable; the field set must contain a field named νfield of type oret, but then may
contain anything else, which is represented by variable φ; and the method set
is unconstrained, as represented by the variable μ. In order to infer this type,
J-Saffire also needs to track intermediate information about cls and fid as well.

Grammar for Java/C Multilingual Types. Our formal multilingual type
grammar is given in Figure 17. Our type language does not include integer or
void types because our source language does not contain any values of these
types. This simplifies the presentation of our system by restricting communi-
cation through the JNI to Java object types. Our implementation (Section 5.3)
does handle primitives.

The type language in Figure 17 has type variables α, singleton string types
str{s}, and (possibly uncurried) function types. The type str{s} is our formalism
for the C type char *. In this type, the string s may be either a type variable ν

to be solved for, or a known constant “Str”. For example, in my getObjectField,
the parameter field is given type str{νfield}, and the parameter obj has a field
named νfield.

The C types ct also include jobject, jfieldID, and jmethodID, extended to
contain Java type information. The type jt jobject represents a Java object
with Java type jt. The types ( f , o)jfieldID and (m, o)jmethodID represent in-
termediate JNI values for extracting field f or method m from object of type
o. We include o so that we can check that this field identifier is used with
an object of the correct type. For example, fid in my getObjectField has type
(νfield : oret, oobj), and thus can be used to extract a field named νfield of type oret
from an instance of type oobj.

Our grammar for Java type jt includes type variables ι, a representational
type o for Java objects, and a class type jt JClass. Representational types o have
the form {s; F ; M }, which represents an instance of the class named s with field
set F and method set M . Our type checking system will implicitly assume that,
if s is a known string in a representational type {s; F ; M }, then F and M match
the field and method information from Java. In a representational type, a field
set is a list of field typings s : jt, which means the field named s has Java
type jt. Notice that s may be a variable or a known string. Similarly, a method
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Fig. 18. Sample JNI type signatures.

set is a list of method typings s : [s′; sig], where s is the method name, s′ is the
method descriptor (a string describing the method argument and return types),
and sig is the method signature. Method signatures sig may be a variable ψ

representing an unknown signature, or (jt1 × · · · jtn) → jt0, where jt1 . . . jtn are
the argument types and jt0 is the return type. Our type checking system will
implicitly assume that the method descriptor, if it is a known string, correctly
describes its associated method signature.

When performing inference, J-Saffire may discover the fields and methods of
an object incrementally, and so we allow these sets to grow with the composition
operator ◦. We say that a set is closed if it is composed with the empty set of
methods ∅, and it is open if it is composed with a variable φ or μ. Since we never
know just from C code whether we have accessed all the fields and methods of
a class, field and method sets become closed only when the class name s is a
known string. This is similar to O-Saffire in which sums � and products � may
grow during inference.

Returning to our last jt type, a class type jt JClass is the type J-Saffire gives
to a Class object that represents the Java type jt. Recall that instances of Class
are essential for using the JNI. For example, when J-Saffire infers a type for
my getObjectField, the local variable cls, which holds the class of obj, is given
the type oobj JClass jobject, where oobj is the representational type for obj.
J-Saffire needs to know what classes instances of Class represent in order to
determine types for fields and methods.

Finally, we include universal polymorphic type schemes σ of the form ∀�ϑ.ct.
Here to reduce notation, we use ϑ to range over any of the variables in our type
system (α, ν, ι, φ, ψ , or μ).

Example JNI Function Types. Given this type grammar, we can precisely
describe the types of the JNI functions. Figure 18 gives polymorphic type
signatures for the functions mentioned in Figure 16. FindClass takes a string
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Fig. 19. Translation rules for Java types.

ν and returns the class object for the class named ν. Note that, although the
field and method sets of the resulting type are universally quantified, our type
checking system requires that representational types are consistent with types
from Java. Hence if ν is instantiated to a known string, then φ and μ will be
constrained appropriately.

GetObjectClass takes an instance object as a parameter and returns the
class of that object. The function GetFieldID takes a class object and two strings
describing a field (ν f ) and its type (ν2) and returns the jfieldID for the field ν f
in that class. Note that the type of the class object and the object type embedded
in the fieldID must be the same. Also, the object type o1 is open because it may
have other fields in addition to ν f . Similarly, GetMethodID returns the methodID
for the named method and type. The signature of the method must match ν2,
the string passed as the second argument. GetObjectField takes an object and
a jfieldID with matching types and extracts the contents of the field described
by the jfieldID. CallObjectMethod is similar, calling the method described by
the jmethodID.

4.2 Type Checking Glue Code and Soundness

Since our source language is close to lambda calculus, type checking for J-Saffire
is fairly standard. The one catch is types of the form {s; F ; M } or [s; sig]. Recall
that, in these types, s is a field descriptor (a class name, in our formalism) or a
method descriptor, respectively. When s is a known string, these types only make
sense if they correspond to the actual classes from Java. We formalize this by
defining a function θ in Figure 19 that translates field and method descriptors
into our multilingual type grammar, assuming we have all of the necessary
class declarations. A field descriptor C is translated to a representational type
with the appropriate field and method sets. Method descriptors, which contain
parentheses to distinguish them from field descriptors, are translated into a
method type with the corresponding signature. Note that we elide the details
of separators between class names in method signatures.

We say that {s; F ; M } or [s; sig] is well-formed if either s is a variable, or if
s = “str” and either {s; F ; M } = θ (str) or [s; sig] = θ (str), respectively. In our
type checking system, we implicitly assume that all types are well-formed.

Figure 20 gives our type checking rules. Like our O-Saffire checking rules,
we assume we have concrete multilingual type information for the program.
The rules (VAR), (LAM), and (APP) are standard. In (STRING), string constants are
given the corresponding singleton string type. Rule (LET) introduces Hindley-
Milner style universal types, which are instantiated by (INST). In (INST), we use t
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Fig. 20. Type checking rules.

to range over the kinds of types variables may be instantiated to (ct, s, jt, F , sig,
and M ), and we implicitly assume that type variables are always instantiated
to the right kind. In the checking system, the index i on an occurrence of f
is not used. Finally, JNI functions are typed using the (DELTA) rule. We write
T (δ) for the type scheme for JNI function δ, for example, as shown in Figure 18.
Since these functions are not curried, (DELTA) combines both (INST) and (APP) to
type check the application of the JNI function.

Soundness. We now sketch a proof of soundness for our type checking sys-
tem. The first step is to extend our language so that we can represent the values
returned by JNI functions. Figure 21(a) shows our source language with values
v called out and with four new kinds of values. object (C) represents an instance
of class C. Here we use a completely opaque representation of the Java ob-
ject which is sufficient because these values may only be manipulated via JNI
functions. class(C) represents an instance of java.lang.Class that is known to
describe class C. fid(F, CF , C) represents a field identifier for a field named F
of type CF inside of class C. Finally, mid(M , SM , C) represents a method identi-
fier for the method with name M and method descriptor SM that resides inside
class C.

Figure 21(b) gives the type checking rules for these four new values. In all
of the type rules, we use θ to return the corresponding representational type
or method type for a given class name. (OBJ) and (CLASS) are straightforward.
In (FID), we write f ∈ o to mean that the field typing f is present in object
description o, and similarly for m ∈ o in (MID).

We give an operational semantics for our language in Figure 22. Part (a) of
this figure defines reduction contexts with the hole [] specifying which subex-
pression to evaluate next. Part (b) defines a reduction relation of the form
R[e] → R[e′], where the expression R[e] evaluates to the expression R[e′], and
we write →∗ for the reflexive, transitive closure of →.

The rules (β) and (let) are standard. The remaining rules describe the be-
havior of JNI functions. Since Java objects are opaque in our system, our
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Fig. 21. Language and type rules with opaque Java values.

Fig. 22. Operational semantics.

operational semantics for JNI functions simply produce new opaque objects
of the right type. The rule (δ-FC) converts a string into the corresponding Java
class object, assuming the class exists in Java. The rule (δ-GOC) returns the
class of an instance object. Rules (δ-GFID) and (δ-GMID) retrieve the field ID
or method ID of a class member, creating the appropriate opaque object. These
rules only apply if the field or method exists in the object’s class, which we
test using θ . (Using θ is not necessary, but it is convenient because it already
can process both field and method descriptors.) Rule (δ-GOF) extracts the field
described by its second argument from its first argument. Notice that the field
must exist in the class, and the class of the field identifier must match the
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object. Similarly, rule (δ-COM) invokes a Java method of arity n from the in-
stance class. That method must exist in the class, and all the arguments must
be of the right type (we do not permit subtyping). Note that, although instances
of java.lang.Class are objects, and hence we could allow a class(C) to be used
wherever an object ( java.lang.Class) is expected, our semantics forbids this for
simplicity.

Finally, we can show soundness by proving progress and preservation. We
begin by presenting the usual substitution lemmas; we omit the proofs of these
lemmas because they are completely standard.

LEMMA 4.1 (SUBSTITUTION). If 
[x �→ ct′] � e : ct and 
 � e′ : ct′ then

 � e[x �→ e′] : ct.

LEMMA 4.2 (POLYMORPHIC SUBSTITUTION). If 
[ f �→ ∀�β.ct′] � e : ct and 
 �
e′ : ct′ and fv(
) ∩ �β = ∅ then 
 � e[ f �→ e′] : ct.

Given these lemmas, we can prove that types are preserved under reduction
in the semantics. Note that, unlike our proof for O-Saffire, for J-Saffire, we
prove progress and preservation separately.

LEMMA 4.3 (PRESERVATION). If 
 � e : ct and e → e′, then 
 � e′ : ct.

PROOF SKETCH. By induction on the structure of e. If a subterm inside of e is
reduced, then we apply induction. Otherwise we proceed by case analysis on
the reduction. For (β), we use the substitution lemma, and, for (let), we use the
polymorphic substitution lemma. Otherwise e = δ(v1, . . . , vn).

If the reduction was (δ-FC), then we have e → class(C), and using the type
of FindClass from Figure 18 with (DELTA), we have

(DELTA)

T (δ) = ∀ν, φ, μ.(str{ν}) → {ν; φ; μ} JClass jobject 
 � “C” : str{“C”}

 � FindClassi(“C”) : {“C”; φ′; μ′} JClass jobject

for some φ′ and μ′. By our assumption of well-formedness, {“C”; φ′; μ′} = θ (C).
And since by (CLASS) we have 
 � class(C) : θ (C) JClass jobject, we then
have 
 � class(C) : {“C”; φ′; μ′} JClass jobject, which is what we wanted to
show.

The other reduction steps are similar. For (δ-GOC), we again use (CLASS)
to show that the class object produced by reduction has the same type as is
returned by the JNI call. For (δ-GFID) and (δ-GMID), we use (FID) and (MID),
respectively. Lastly, for (δ-GOF) and (δ-COM), we use (OBJ) to show that the
object produced by reduction has the type we expect. There is surprisingly little
to show for these last two cases; because we assume we have taken a reduction
step, we need not check anything except the type of the retrieved field or method
result.

Next, we show that for any well typed expression e, one of the reduction rules
can always be applied.

LEMMA 4.4 (PROGRESS). For every closed expression e, if 
 � e : ct, then either
e is a value or there exists an e′ such that e → e′.
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PROOF SKETCH. By induction on the structure of e. If e is a value, then we
are done. If e is an application e1 e2, then we either apply induction or show
that e1 must be a function based on its type, and hence we can take a step
with (β). If e is a let, then we either use induction or take a step with (let).
Otherwise e is of the form δ(e1, . . . , en). If some ei is not a value, we can apply
induction. Otherwise, e is of the form δ(v1, . . . , vn), and we proceed by case
analysis on the JNI function δ. We illustrate two of the cases which are all very
similar.

If δ = FindClass, then by assumption we have

(DELTA)

T (δ) = ∀ν, φ, μ.(str{ν}) → {ν; φ; μ} JClass jobject 
 � v : str{s}

 � FindClassi(v) : {s; φ′; μ′} JClass jobject

for some φ′ and μ′. Since v is a value, it must be of the form “C”, and thus
s = “C” by (STRING). But then by our well-formedness assumption, {s; φ′; μ′} =
{“C”; φ′; μ′} = θ (C), and hence C must be a valid Java class. But then we can
take a step using (δ-FC).

If δ = GetObjectField, then by assumption we have

(DELTA)

T (δ) = ∀νi , ν f , φi , μi . (o1 jobject × ( f , o1)jfieldID) → o2 jobject

o1 = {ν1; 〈 f 〉 ◦ φ1; μ1}
f = ν f : o2 o2 = {ν2; φ2; μ2} 
 � v1 : o′

1 jobject 
 � v2 : ( f ′, o′
1)jfieldID


 � GetObjectFieldi(v1, v2) : o4

Since the vi are values, we have v1 = object (C) and v2 = fid(F, CF , C′), for some
C, F , CF , and C′. By (OBJ), we have o′

1 = θ (C), and by (FID), we have o′
1 = θ (C′),

and thus C = C′. Then also (FID), we have “F” : θ (CF ) ∈ θ (C), and thus class C
has a field F of type CF . Therefore we can take a step with (δ-GOF).

Finally, we state our soundness theorem:

THEOREM 4.5 (SOUNDNESS). If 
 � e : ct, then there exists a value v such that
e →∗ v and 
 � v : ct.

PROOF. The result follows directly from Lemma 4.3 and 4.4.

Full proof details are available in a companion technical report [Furr and Foster
2006a].

4.3 Type Inference for the JNI

Since our type system for the JNI is flow-insensitive, we use conventional
notation to present our inference algorithm. Figure 23 shows our type infer-
ence rules. We perform type inference by applying these rules to our program
and generating a set of constraints which are given in the hypotheses of the
rules. We then solve the constraints to find a valid typing for the program, if
any.

We discuss the rules briefly. Rule (VAR) is the same as the checking rule. In
rule (LAM), we create a fresh variable for the domain of the function type, and in
rule (APP), we generate an equality constraint to ensure the function’s domain
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Fig. 23. Type rules modified for inference.

type matches its actual argument type. Notice that, as was the case in the type
checking system, we require equality of types and have no subsumption. Thus
we could fail to unify two Java objects when one object is a subtype of the other.
We did not find this to be a problem in practice, however (see Section 5.3). Rule
(STRING) gives a singleton string type to the expression.

In our type checking system for the JNI, we introduce polymorphism when
typing the expression let f = e1 in e2. To infer a type for this expression, we
would normally first infer a type for e1, then generalize its type to a type scheme
∀�ϑ.ct, which we would then bind to f while typing e2. However, while this ap-
proach is possible to use for C, in our experience it is awkward in practice. C
code is not structured as nested let blocks. Instead, function definitions in C
are all at the top level and may call each other arbitrarily, assuming appro-
priate prototypes are supplied to satisfy the compiler’s declaration-before-use
requirement. Using the standard approach to let-polymorphism, we would need
to discover the dependencies between functions and then visit the functions in
the program in the appropriate order.

Instead, we take an approach based on semiunification [Henglein 1993;
Fähndrich et al. 2000], which we think is a more elegant solution and is easier
in practice. In rule (LET), we represent a polymorphic type as a pair (ct, �ϑ),
where ct is the base type and �ϑ is the set of variables that may not be quanti-

fied. For comparison, the pair (ct, �ϑ) represents the type scheme ∀−→
ϑ ′ .ct, where

ϑ ′ = fv(ct) − ϑ . The key feature of this new version of (LET) is that, in practice,
we need not know the full type of the expression e1 (whose type is generalized)3

when we form this pair. We could initially pick its type to be a fresh variable
which we then equate with the actual type of e1 later on during typing, and
inference would still proceed correctly.

In rule (INST), we need to instantiate a polymorphic type (ct, �ϑ). Since in prac-
tice we may not know the type of ct yet, we generate instantiation constraints

3In practice, the only place we generalize a type is at function boundaries, and therefore implicitly

enforce the value restriction required for soundness in the presence of mutation.
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Fig. 24. Polymorphism example.

relating the base type to this particular instance which occurs at instantiation
site i. Instantiation constraints have the form a �i b, where a and b range
over ct, jt, etc. This constraint says that there must exist a substitution Si such
that Si(a) = b. Thus in rule (INST), we generate a constraint ct �i α to re-
quire that there is some substitution Si such that Si(ct) = α. We also need to
ensure that nonquantifiable variables are not instantiated, which we enforce
with the self-instantiation constraint �ϑ �i �ϑ . This constrains the substitution
Si to rename every variable in ϑ to itself, that is, to not rename �ϑ . Note that
two constraints a �i b and c � j d do not interact if i �= j .

The last rule, (DELTA), simply combines (INST) and (APP) to apply a JNI func-
tion to its arguments at instantiation site i. Here we assume that T maps each
JNI function to a plain type in which all variables are quantified, and hence we
write its type as just (ct1, . . . , ctn) → ct instead of pairing it with ∅, and we do
not generate a self-instantiation constraint.

A full discussion of this style of polymorphic type inference is beyond the
scope of this article and can be found elsewhere [Henglein 1993]. However,
we illustrate the basic idea with the simple program shown in the left box in
Figure 24. Note that we have numbered the instantiation sites, and we assume
we have added pairs to the language for the sake of exposition. The program
begins with the introduction of the lambda-bound variable y , which has type β

as shown. The variable y is free in the scope of the enclosed let, and thus cannot
be quantified. Therefore we assign f the type (α → α × β, {β}) with (LET), also
as shown.

Within the body of the let, we use (INST) and (APP) for each function appli-
cation, generating the constraints shown in the middle box of the figure. At
instantiation site 1, we generate the constraints α → α × β �1 str{“s”} → γ

and β �1 β. (We’ve simplified away an extra equality constraint here.) Then
at instantiation site 2, we require that this second instance of f instantiate to
type γ → η, where η is a fresh variable, so that it takes as input the output of
the first application of f .

To solve these constraints, we need to find substitutions S1 and S2 for the
instantiation sites and solve any implied equality constraints. We describe our
formal algorithm for this later, and here we reason informally. The results are
shown in the right box of the figure. First, we observe that instantiation 1
replaces α with str{“s”} and β with itself, giving us S1 as shown. Then since
S1(α × β) = γ , we can conclude that γ has the form str{“s”} × β. Next we
observe that instantiation 2 replaces α with γ , and thus it replaces α with
str{“s”}×β. And as before, S2(β) = β by the self-instantiation constraint. Then
since S2(α × β) = η, we have (str{“s”} × β) × β = η.
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In our implementation, we do not keep track of the set f v(
) for functions.
Since C does not have nested functions, we simply issue warnings at any uses
of global variables of type jobject or global structures containing fields of
type jobject. In general, we have found that programmers use few globals
when interacting with the JNI. When encountering a global of type char *, our
implementation does track their contents and therefore they cannot be used in
JNI function calls as special strings. We also do not check for global variables
of type jfieldID or jmethodID in our current implementation.

Constraint Resolution. Our type inference rules generate unification con-
straints (rule (APP)) and instantiation constraints (rules (INST) and (DELTA)). To
solve these constraints, we use a variant of Fähndrich et al.’s worklist algorithm
for semi-unification [Fähndrich et al. 2000].

To simplify the constraint resolution rules we present in the following, when-
ever we refer to field and method sets we always assume they have been flat-
tened so that they are composed with either ∅ or a variable. Also, during the
process of unification, unknown strings ν will be replaced by known constant
strings str{“Str”}. As this happens, we need to ensure that our object types are
still well-formed. In particular, if we ever form a type {“C”; F ; M }, we check
that F and M are the correct field and method sets for class C, and if we form
a method signature [“SM ”; sig], we ensure that sig matches method descrip-
tor SM .

To improve our error reporting, we also enforce a finer well-formedness con-
dition on representational types whose class names are not known. In partic-
ular, we require that, in a field set, any two fields with the same name must
have the same type.4 Formally, for a field f = s : jt, we define fname( f ) = s
and ftype( f ) = jt. Then a field set 〈 f1; · · · ; fn〉 is well-formed if fname( fi) =
fname( f j ) ⇒ ftype( fi) = ftype( f j ) for all i, j , where the = on fname is syntac-
tic equality. In other words, “s” = “t” if s = t, and ν = ν ′ if ν and ν ′ are the
same variable. Whenever we replace a ν by a constant string during constraint
resolution, we recheck well-formedness and generate any implied equality con-
straints. Methods, however, unlike fields, may be overloaded in Java, and so we
do not apply the above well-formedness condition to method sets.

We express constraint solving in terms of rewrite rules, shown in Figure 25.
Given a set of constraints C, we apply these rules exhaustively, replacing the
left-hand side with the right-hand side until we reach a fixpoint. Technically,
because we use semi-unification, this algorithm may not terminate, but we have
not found a case of this in practice. The complete list of rewrite rules is long
and mostly straightforward, and so Figure 25 contains only the interesting
cases. The exhaustive set of rules may be found in our companion technical
report [Furr and Foster 2006a].

In Figure 25, the (Closure) rule unifies two terms b and c when they are both
instantiations of the same variable a at the same instantiation site. This rule
enforces the property that substitution Si must replace variable a consistently

4Although an overloaded field via inheritance is possible, their manipulation in C is not supported

by our system and was not observed in our benchmarks.
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Fig. 25. Selected constraint rewrite rules.

[Henglein 1993]. The rule (Obj InEq) applies the usual semi-unification rule
for constructed types. Since the substitution Si renames the left-hand side to
yield the right-hand side in a constraint �i, the right-hand side must have the
same shape. Thus in (Obj Ineq), we unify jt with {ν; φ; μ}, where ν, φ, and μ

are fresh variables, and then propagate the semi-unification constraint to the
components.

In (FieldSet InEq), we instantiate one field set to another. For each field
typing fi in the field set on the left-hand side of the constraint, we make a new
typing f ′

i with free variables. Then we unify F ′ with a new field set containing
the f ′

i composed with a fresh variable φ, and then propagate the instantiation
constraint to produce F �i φ and fi �i f ′

i for all i. If it turns out that this creates
any duplicate field in the field set F ′, then our well-formedness condition will
later unify them.

(MethSet InEq) behaves similarly to (FieldSet InEq) except it creates fresh
method signatures m′

i and propagates the constraints to them. Recall that we
do not have a well-formedness condition on method names. To understand why,
suppose an open method set 〈x : ι → ι〉 ◦ μ is unified with a closed method set
〈x : Obj1 → Obj1; x : Obj2 → Obj2〉 ◦ ∅. Since the method x is overloaded, we
do not know if ι should unify with Obj1 or Obj2. Therefore, if this occurs during
unification, J-Saffire emits a warning and removes the constraint. However,
our unification algorithm does allow method sets with multiple copies of the
same method signature to unify as long as they contain no free type variables.
We could also unify return types of methods with otherwise equal signatures
but do not do so in our current implementation.

The last four rules handle strings. (Str Resolve) replaces a string variable by
a constant, which triggers a well-formedness check on all types. In particular,
for representational types {s; F ; M }, if s becomes a known constant, we unify F
and M with the corresponding field and method sets and similarly for [s; sig].
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We also ensure that the same name appears at most once in a field set. (In
practice, only those representational types and field sets that may be affected
are verified.) (Str Sub) replaces one string variable by another, and again, we
check well-formedness. (Str Eq) and (Str Neq) unify string constants.

The remainder of the rewrite rules (not shown) either replace type variables
with terms, match up field or method sets, or match up type constructors and
propagate constraints recursively to the constructor parameters.

Example. We illustrate our type inference system on the my getObjectField
function from Figure 16. We begin by assigning each parameter a fresh type:

obj : αobj field : αfield

The second line of the function calls the GetObjectClass function. After look-
ing up its type in the environment (shown in Figure 18 with quantified type
variables ν, φ, and μ) and assigning its return type the fresh type αcls, we add
the following constraints for the function call using (DELTA):

{ν; φ; μ} jobject �1 αobj
{ν; φ; μ} JClass jobject �1 αcls

In order for a substitution to map the type variables on the left-hand side of
the constraint, the type on the right-hand side must have the same shape as
the type on the left. Therefore, our constraint rewrite rules first unify αobj and
αcls with fresh types of the correct shape, and then propagate the instantiation
constraints to the new types:

αobj = {ν2; φ2; μ2} jobject αcls = {ν3; φ3; μ3} JClass jobject
ν �1 ν2 ν �1 ν3

φ �1 φ2 φ �1 φ3

μ �1 μ2 μ �1 μ3

ν2, φ2, μ2 fresh ν3, φ3, μ3 fresh

Then rule (Closure) in Figure 25 generates the constraints ν2 = ν3, φ2 = φ3,
and μ2 = μ3 to require that the substitution corresponding to this call is con-
sistent. Next, my getObjectField calls GetFieldID, and after applying our type
inference and constraint rewrite rules, we discover (among other things):

α f ield = str{νfield} νfield fresh
φ2 = 〈ν f ield : {“java.lang.Object”; . . . }〉 ◦ φ4 φ4 fresh

The last call to GetObjectField generates several new constraints, but they
do not affect the types. Thus after my getObjectField has been analyzed, it is
given the type

{ν2; 〈ν f ield : {“java.lang.Object”; . . . }〉 ◦ φ4; μ2} jobject → str{νfield}
→ {“java.lang.Object”; . . . } jobject

In other words, this function accepts any object as the first parameter as long
as it has a field with type java.lang.Object whose name is given by the second
parameter exactly as intended.
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5. IMPLEMENTATIONS

Next we describe our implementations of O-Saffire and J-Saffire as well as the
results of applying them to a variety of benchmarks. Section 6 compares and
contrasts the two systems.

5.1 O-Saffire

Our implementation of O-Saffire consists of two separate tools, one for OCaml
and one for C. The first tool uses the camlp4 preprocessor to analyze OCaml
source programs, extract the type signatures of any foreign functions, and then
apply the type translation function � discussed in Section 3.4. Because ul-
timately C foreign functions will see the physical representations of OCaml
types, O-Saffire resolves all types to a concrete form. In particular, type aliases
are replaced by their base types, and opaque types are replaced by the concrete
types they hide when available. If the concrete type is not available, the opaque
type is assigned a fresh type variable, and O-Saffire simply checks to ensure
it is used consistently. As each OCaml source file is analyzed, O-Saffire incre-
mentally updates a central type repository with the newly extracted type in-
formation, beginning with a pregenerated repository from the standard OCaml
library.

The second tool, built using CIL [Necula et al. 2002], performs the bulk of
the analysis. This part of O-Saffire takes as input the central type repository
and a set of C source programs to which it applies the type inference algo-
rithm from Section 3.4. In order to analyze constructs such as if unboxed ,
O-Saffire uses syntactic pattern matching to identify tag and boxedness tests
in the code. In particular, O-Saffire recognizes comparisons if ((e & 1) == 0)
and its negation as tests for boxedness. O-Saffire also recognizes several pat-
terns for checking the value of a primitive type or a tag, including if(e == n)
and if (e-1) (a comparison to zero). Other patterns O-Saffire recognizes in-
clude tests if(Int val(e) == 0), if (e == Val unit), if (e == Val true),
and if (e != Val int(0)). Programmers often use this last test to check for a
nonempty list or a supplied option value. All of these patterns are also recog-
nized when prefixed by the unary negation (!) operator.

One feature of C that we have not fully discussed is the address-of operator.
Our implementation models address-of in different ways, depending on the us-
age. Any local variable with an integer type (or local structure with a integer
field) that has its address computed is given the type int{�, 0, �} everywhere.
This conservatively models the fact that the variable may be updated arbitrar-
ily through other aliases. It has been our experience that variables used for
indexing into value types rarely have their address taken so this usually does
not affect our analysis. Similarly, we produce a warning for any variable of type
value whose address is taken (or any variable containing a field of type value )
as well as for any global variable of type value .

Recall that, in our formal system, we do not allow pointer arithmetic on
C pointer types. In our implementation, we allow potentially unsafe pointer
arithmetic for non-value types as our focus is on FFI safety, not general C type
safety, which could be addressed with other techniques [Chandra and Reps
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1999; Necula et al. 2002]. We also treat function pointers conservatively. When
encountering a call through a C function pointer, O-Saffire currently issues a
warning and does not generate typing constraints on the parameters or return
type.

Sometimes it is useful to pass C data and pointers to OCaml. For example,
glue code for a windowing library might want to return pointers representing
windows or buttons to OCaml. There are two main ways to accomplish this. C
pointers can be safely passed directly to OCaml because the OCaml garbage
collector does not follow pointers to memory outside its own heap. Alternately,
pointers can be passed in custom blocks that encapsulate C data and include
pointers to routines for deallocation, comparison, serialization, and hashing,
which will be used appropriately by the OCaml runtime. In either case, it is up
to the programmer to ensure that such data is not treated as OCaml data or
vice-versa.

O-Saffire supports these behaviors with a very simple heuristic. If a value
is cast directly to a C pointer type, our analysis unifies the type of the OCaml
value with a custom type, and therefore ensures that the OCaml value is always
used as a C pointer. However, we do not distinguish between two different C
types so long as they are both pointers. Since a programmer can easily cast
one pointer type to another arbitrarily in C, enforcing a stronger heuristic at
the language boundary did not seem beneficial. On the other hand, O-Saffire
issues a warning at a cast of a value type directly to a primitive type (such as
an integer) since that is most likely an error in our experience. Our heuristic
for other casts is to ignore all casts between C types that do not involve value .

We model C structs in one of two ways. Any struct s stored on the C stack
(i.e., a local or parameter) is expanded one level so that all of its fields are treated
as local variables (e.g., s.f1, s.f2, etc). If an OCaml value is stored in or read
from a heap-allocated struct, we emit a warning, which only occurred twice
in our benchmarks. In general, we found that C struct types rarely contain
OCaml data.

In addition to the types we have described so far, OCaml also includes objects,
polymorphic variants, and universally quantified types. O-Saffire treats object
types in the same way as opaque types with no subtyping between different
object types. We have not seen objects used in FFI C code. O-Saffire does not
handle polymorphic variants, which are used in FFI code, and this leads to some
false positives in our experiments. Unlike traditional sum types which use a
sequentially numbered tag in the header of a structured block, polymorphic
variants store a hash of their constructor name as the first element of the
block. This is particularly difficult to handle because we have seen FFI code
use binary search to select the proper tag for the block, and our analysis is not
sophisticated enough to support this style of tag test.

O-Saffire translates universally quantified type variables to the representa-
tional type (ψ, π + σ ), where ψ, π and σ are fresh variables with the constraint
1 ≤ ψ . Since a polymorphic type could be either boxed or unboxed, this prevents
a C function from using the polymorphic type directly as an integer or a boxed
type without at least performing a boxedness test. Our current implementation
also cannot infer universally quantified types for C helper functions that are
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Fig. 26. Experimental results.

polymorphic in OCaml value parameters. Unlike JNI glue code, such OCaml
glue functions appear to be rare in practice; we only saw 4 such functions in
our benchmark suite. We could extend our implementation to use the same
technique discussed in Section 4.3 to infer polymorphic signatures, but instead
we take a heuristic approach. In O-Saffire, the programmer can annotate func-
tions to indicate that calling them should yield no constraints between formal
and actual arguments, and we added such annotations for the 4 polymorphic
functions we found.

Finally, a common technique for error handling in C glue code is to raise an
OCaml exception, and when this occurs, the OCaml runtime pops the entire
C function stack and returns control to OCaml. However, in order to throw an
exception, the exception itself must be allocated on the OCaml heap. Thus it
is safe for a function not to register its local references to data on the OCaml
heap, and then allocate and throw an exception. To avoid false positives in this
situation, our implementation tracks functions which never return and assigns
them the effect nogc since all C references are no longer live when such a
function is called.

5.2 OCaml Experiments

We ran O-Saffire on several programs that utilize the OCaml foreign function
interface. The programs we looked at are actually glue libraries that provide
an OCaml API for system and third-party libraries. All of the programs we
analyzed were from a tested, released version, though we believe O-Saffire is
also useful during development.

Figure 26 gives a summary of our benchmarks and results. For each pro-
gram, we list the lines of C code, OCaml code, and number of external OCaml
function declarations. The fifth column gives the running time in seconds (five-
run average) for our C code analysis on an AMD Athlon 4600 processor with
4GB of memory. Recall from Section 3.4 that we do not directly analyze OCaml
function bodies. The cost of extracting OCaml types is negligible and therefore
omitted. The running time only contains the time spent in our analysis, which
begins once CIL has constructed the AST of the program. All of the running
times are very fast. The slowest benchmark is lablgtk, which takes significantly

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 4, Article 18, Publication date: July 2008.



Checking Type Safety of Foreign Function Calls • 18:51

more time than the others. We believe this is due to the large number of global
variables pulled in to the code via system headers which slows down operations
on type environments.

The next three columns list the number of errors found, the number of warn-
ings for questionable programming practice, and the number of false positives,
that is, warnings for code that appears to be correct. The last column shows the
number of places where the implementation warned that it did not have precise
flow-sensitive information (see the following). The total number of warnings is-
sued by O-Saffire is the sum of these four columns.

We found 24 outright errors in the benchmarks. One source of errors was for-
getting to register C references to the OCaml heap before invoking the OCaml
runtime. This accounts for one error in each of ftplib, lablgl, and lablgtk. Sim-
ilarly, the one error in each of ocaml-mad and ocaml-vorbis was registering a
local parameter with the garbage collector but then forgetting to release it, thus
possibly leaking memory or causing subtle memory corruption.

The 19 remaining errors are type mismatches between the C code and the
OCaml code. For instance, 5 of the lablgtk errors and all ocaml-glpk and ocaml-
ssl errors were due to using Val int instead of Int val or vice-versa. Another
error was due to one FFI function mistreating an optional argument as a regular
argument. In particular, the function directly accessed the option block as if it
were the contents of the option type rather than the option type itself. Thus,
the C code will most likely violate type safety.

Another lablgtk error was due to a C pointer of type t being initialized as
the value (t*)Val unit which is unsafe—recall that Val Unit is represented as
the OCaml integer 0, which is stored with a tag in memory as the value 1. This
mistake is particularly dangerous because on one program path, the variable
is passed to a gtk library function that expects either a valid pointer or NULL,
but Val Unit is neither of those. The remaining two gtk errors were due to a
type mismatch between OCaml and the C. The OCaml source code contained
a declaration type t = {len: int}, defining the type t to be a record with a single
element. However, the C code manipulated data with this type as if it had
a second field containing a C pointer which it does not. The remaining lablgl
errors were similar cases in which data was described with one shape in OCaml
and manipulated with a different shape in C.

In addition to the 24 errors, O-Saffire reported 22 warnings corresponding
to questionable coding practices. A common mistake was declaring the last
parameter in an OCaml signature as type unit even though the corresponding
C function omits that parameter in its declaration:

OCaml : external f : int → unit → unit = “f”
C : value f(value x);

While this does not usually cause problems on most systems, it is not good
practice since the trailing unit parameter is placed on the stack. The warnings
reported for ftplib, ocaml-glpk, ocaml-ssl, lablgl, and lablgtk were all due to this
case.

The warning in gz is an interesting abuse of the OCaml type system. The gz
program contains an FFI function to seek (set the file position) on file streams,
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which either have type input channel or output channel. However, instead of
taking a sum type as a parameter to allow both kinds of arguments, the function
is declared with a polymorphic type as its parameter.

OCaml : external seek : int → ’ a → unit = “seek”
C : value seek(value pos, value chan) {

FILE *strm = Field(chan,0);

fseek(strm,...);

}
Clearly using chan in this way is very dangerous because OCaml will allow any
argument to be passed to this function, including unboxed integers. In this case,
however, only the right types are passed to the function, and it is encapsulated
so no other code can access it, and therefore we classify this as questionable
programming practice rather than an error.

O-Saffire also reported a number of false positives, that is, warnings for
code that seems correct. One source of false positives is polymorphic variants
which we do not handle. The other main source of false positives is due to
pointer arithmetic disguised as integer arithmetic. Recall that the type value
is actually a typedef for long. Therefore if v is an OCaml value that has been
unified with a C pointer type, then both ((t∗)v + 1) and (t∗)(v + sizeof(t)) are
equivalent. However, our system will not type check the second case because
direct arithmetic is being performed on a value type.

Finally, in several of the benchmarks, there are a number of places where
O-Saffire issued a warning because it does not have precise enough information
to compute a type. For instance, this may occur when computing the type of
e1 +p e2 if e2 has the type int{�, 0, �} since the analysis cannot determine the
new offset. Fifty-four of the imprecision messages occurred when the type of
an expression included B, I, or T as � when a more precise type was needed
during inference. We also classify as imprecision warnings those that are for
occurrences of global value types, uses of function pointers, and occurrences
of C struct types containing value types stored in the heap. However, these
cases occurred only 10, 8, and 2 times, respectively. One interesting direction for
future work would be eliminating these warnings and instead adding runtime
checks to the C code.

We have reported the O-Saffire results to the authors of the programs in
our benchmark suite and confirmed that all of the errors reported were in fact
previously unknown bugs.

5.3 J-Saffire

Similarly to O-Saffire, our implementation of J-Saffire is composed of two tools.
The first tool is a lightweight Java compiler wrapper that intercepts calls to
javac and records the class path so that the second tool can retrieve class files
automatically. The wrapper itself does not perform any code analysis. Note
that this is different from O-Saffire, which could eagerly translate OCaml types
because only types occurring in external declarations could be used in C. The
JNI, however, allows C code to look up Java classes dynamically via FindClass.
Thus the second tool in J-Saffire translates Java types and applies our type
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inference algorithm to C code, issuing warnings whenever it finds a type error.
This part of J-Saffire uses CIL to parse C source code and the OCaml JavaLib
[Cannasse 2004] to extract Java type information from compiled class files.

In addition to the type jobject, the JNI contains several primitive types,
including void and int, which we did not model in our formal system. To
model these additional types, our implementation has slightly richer handling
of field and method descriptors. In the JNI, these descriptors may include class
names, which we included in our formalism, or strings such as I and V to rep-
resent primitives int and void. Thus in our implementation, we introduce a
new type constructor JTStr{ν}, which is a place holder for the jt type described
by ν. When ν is unified with a constant string, the type JTStr{ν} is immediately
replaced with the concrete type it describes. This was not necessary in our for-
malism because we could use a representational type {ν; φ; μ} instead but that
type would only represent an object and not a primitive.

Another type that we omitted from our formal system is Java arrays. In Java,
arrays are a subtype of Object, and so we model them in our implementation
as a Java class with a unique name. We represent the array contents as a field
in this object so that its type is available when the array is dereferenced.

The JNI also contains a number of typedefs (aliases) for more specific object
types such as jstring for Java Strings. These are all aliases of jobject, and so
their use is not required by the JNI, and they do not result in any more checking
by the C compiler. J-Saffire does not require their use either, but, since they
are a form of documentation, we enforce their intended meaning, for instance,
values of type jstring are assigned a type corresponding to String. We found
14 examples in our benchmarks where programmers used the wrong alias. The
JNI also defines types jvoid and jint, representing Java voids and integers, as
aliases of the C types void and int, respectively. J-Saffire does not distinguish
between the C name and its j-prefixed counterpart. Our implementation also
forbids casting between jobject (or one of its typedefs) to any other C type and
produces a warning if this occurs.

Rather than being called directly, JNI functions are actually stored in
a table that is passed as an extra argument (typically named env) to ev-
ery C function called from Java, and this table is in turn passed to every
JNI function. For example, the FindClass function is actually called with
(*env)->FindClass(env,...). J-Saffire extracts FFI function names via syn-
tactic pattern matching, and we assume that the table is the same everywhere.
J-Saffire ignores calls to function pointers that are not part of the JNI and
issues a warning whenever it encounters one.

The JNI functions for invoking Java methods must take a variable num-
ber of arguments since they may be used to invoke methods with any number
of parameters. J-Saffire handles the commonly used interface, which is JNI
functions declared to be varargs using the ... convention in C. However, the
JNI provides two other calling mechanisms that we do not model; passing argu-
ments as an array and passing arguments using the special va list structure.
We issue warnings if either is used.

Although our formal type system is flow-insensitive, J-Saffire treats the
types of local variables flow-sensitively. Each assignment updates the type of a
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Fig. 27. Experimental results.

variable in the environment, and we add a unification constraint to vari-
ables of the same name at join points in the control flow graph similar to
O-Saffire.

Lastly, J-Saffire models strings in a very simple way to match how they are
used in practice in C glue code. We currently ignore string operations like strcat
or destructive updates via array operations. We also assume that strings are
always initialized before they are used since most compilers produce a warning
when this is not the case.

5.4 JNI Experiments

We ran J-Saffire on a suite of 12 benchmarks that use the JNI. Figure 27 shows
our results. The first 7 programs are taken from the Java-Gnome project [Java-
Gnome Developers 2005] and the remaining programs are unrelated. The last
program is a development Java 1.6 compiler, code-named Mustang (we used
build 61). All benchmarks except pgpjava and Mustang are glue code libraries
that connect Java to an external C library. For each program, Figure 27 lists
the number of lines of C code and Java code and the number of native methods.
Next we list the analysis time in seconds (average of 5 runs) and the number of
messages reported by J-Saffire, manually divided into the same four categories
as the O-Saffire experiments. The running time includes the C code analysis
(including extracting Java types from class files) but not the parsing of C code
or the compilation time. The measurements were performed on an AMD Athlon
4600 processor with 4GB of RAM. In a prior conference version [Furr and Foster
2006b], we reported the number of messages for Mustang to be much lower. We
have since discovered that we had not reported the imprecision messages for
this benchmark and have also fixed a few bugs in the implementation which
have changed some of our results.

J-Saffire reported 156 errors which are programming mistakes that may
cause a program to crash or to emit an unexpected exception. Surprisingly,
the most common error was declaring a C function with the wrong arity, which
accounted for 68 errors (30 in libgtk and 38 in libgnome). All C functions
called from Java must start with one parameter for the JNI environment and
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a second parameter for the invoking object or class. In many cases, the second
parameter was omitted in the call, and hence any subsequent arguments would
be retrieved from the wrong stack location which could easily cause a program
crash.

Fifty-six of the errors were due to mistakes made during a software rewrite.
Programs that use the JNI typically use one of two techniques to pass C pointers
(e.g., GUI window objects) through Java: they either pass the pointer directly
as an integer or they embed the pointer as a private integer field inside a Java
object. Several of the libraries in the Java-Gnome project appear to be switching
from the integer technique to the object technique, which requires changing
Java declarations in parallel with C declarations, an error-prone process. J-
Saffire detected many cases when a Java native method specified an Object
parameter but the corresponding C function specified an integer parameter
or vice-versa. This accounted for 4 errors in libgnome, 25 in libgtk, and 27 in
libgtkhtml.

Type mismatches accounted for 18 of the remaining errors. Six errors oc-
curred because a native Java method was declared with a String argument,
but the C code took a byte array argument. In general, Java strings must be
translated to C strings using special JNI functions, and hence this is a type
error. Another type error occurred because one C function passed a (nonar-
ray) Java object to another C function expecting a Java array. Since both of
these are represented with the type jobject in C, the C compiler did not
catch this error. The one error in Mustang occurred when the C source code
did not properly distinguish between the types int and long in a C function
signature. If used on a big-endian 64-bit machine, the C function would ac-
cess only the higher 32 bits of the value on the stack, creating a runtime error
[Furr and Foster 2005b].

Finally, 14 errors were due to incorrect namings. 11 of these errors (9 in jnet-
filter and 2 in libgtk) were caused by calls to FindClass with an incorrect string.
Ironically, all 9 jnetfilter errors occurred in code that was supposed to construct
a Java exception to throw, but, since the string did not properly identify the
exception class, the JVM would throw a ClassNotFound exception instead. The
remaining 3 errors were due to giving incorrect names to C functions corre-
sponding to Java native methods. As mentioned in Section 2.2, such functions
must be given long names following a particular naming scheme, and it is easy
to get this wrong.

Most of the errors we found are easy to trigger with a small amount of code. In
cases such as incorrectly-named functions, errors would likely be immediately
apparent as soon as the native method is called. Clearly, many of the errors are
in code that has not been tested very much, most likely the parts of libraries
that have not yet been used by Java programmers.

J-Saffire also produced 124 warnings, which are suspicious programming
practices that do not actually cause runtime errors. One warning arose
when a programmer called the function FindClass with a field descriptor
of the form Ljava/lang/String; rather than a fully qualified class name
java/lang/String. Technically this is an error [Liang 1999], but the Sun JVM
we tested allows both versions so we only consider this a warning.
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Thirteen of the warnings were due to using an inappropriate type alias for
a JNI type such as declaring an arbitrary object with the type jstring. Since
these aliases are just typedefs for jobject, their misuse will not cause any ill
effects, but this is a poor practice.

Finally, 110 warnings were due to the declaration of C functions that appear
to implement a specific native method (because they have specially formatted
names) but do not correspond to any native Java method. In many cases, there
was a native method in the Java code, but it had been commented out or moved
without deleting the C code. This will not cause any runtime errors, but it seems
helpful to notify the programmer about this dead code.

J-Saffire also produced 140 false positives, which are warnings about cor-
rect code. Twenty-seven of the Mustang false positives, 34 of the libgtk false
positives, and all of the false positives from the rest of the benchmarks were
due to subtyping inside of C code, which our analysis does not model precisely
because it uses unification. The remaining 2 false positives in libgtk and 31 of
the Mustang messages occurred when an object of type jt JClass unified with
an instance of java.lang.Class. This is safe in the JNI, but, since we use a richer
representation of classes in J-Saffire, these two types are incompatible in our
system. Of the remaining false positives (all in Mustang), 32 occurred because
the type of Java object returned by a function was selected using a switch state-
ment that tested the contents of a string. These occurred in internal functions
of Mustang that directly manipulate Java objects so it is no surprise that our
analysis was unable to handle this style of code.

Finally, J-Saffire emitted 2642 imprecision warnings, which occurred when
the analysis was unable to analyze a particular program point. The vast major-
ity of these cases were in Mustang. Thirty-six of the imprecision warnings (of
which 14 are from Mustang) were due to unification failures with partially spec-
ified methods that could not be resolved. There were 707 messages (of which
701 were from Mustang) that were due to code using parts of the JNI API that
our analysis does not model, such as using an alternative calling convention
of passing method arguments packed in an array. The remaining messages all
came from Mustang; 115 of these were due to expressions that our analysis was
unable to handle such as directly manipulating the jobject struct type, which
is assumed to be opaque in our system. The other 1784 messages were due to
the use of function pointers which J-Saffire does not model. The Java compiler
appears to be atypical in the style of JNI code it uses since the other benchmarks
reported few if any such warnings (which is not surprising). Therefore, we did
not investigate adding support for these features in our initial implementation,
but this may be worth exploring in a future version.

We have reported the results to the authors of the programs in our benchmark
suite for J-Saffire and confirmed that all of the errors reported were in fact
previously unknown bugs.

6. DISCUSSION AND FUTURE WORK

We have presented two type inference systems for checking type safety of pro-
grams that use the OCaml FFI and the JNI. Our inference systems rely on

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 4, Article 18, Publication date: July 2008.



Checking Type Safety of Foreign Function Calls • 18:57

two key ideas. The first is to refine the types given to high-level data in C glue
code. Instead of the single conflated type assigned by the FFI, our analyses use
multilingual representational types that model C’s view of OCaml and Java
data. The other key idea of our analyses is to use singleton types to track val-
ues through C glue code in order to determine how high-level data is being
accessed by the glue code.

The need for value tracking is a fundamental part of FFI analysis because
it allows us to model FFI operations precisely. In the high-level language, op-
erations like pattern matching and field access are distinguished syntactically
using constructs that contain non-first-class identifiers. For example, in Java,
a field access is written e. f , where e is an arbitrary expression but f is an
identifier for a field. C glue code cannot simply use C’s corresponding field ac-
cess operator for Java data because the C compiler does not have object layout
information. Thus instead in the JNI, object fields are accessed via a series of
function calls in which the field name is passed as a string. This makes field
names first class in C glue code which means that, in order to determine what
fields are accessed by a JNI operation, we need to track string values. We simi-
larly needed to track integer values in glue code for the OCaml FFI in order to
track manipulations of sum and product types.

We found that we were able to determine string and integer values with
sufficient precision using fairly simple analyses—a flow-insensitive, context-
sensitive analysis for strings in the JNI and a flow-sensitive, context-insensitive
analysis for integers and offsets in the OCaml FFI. We suspect these analyses
were sufficient because glue code seems complicated on the surface, and, since
programmers are naturally worried about making mistakes in this code, they
use the FFI in a simple way.

Despite this, it is not surprising that programmers still make type errors
in glue code. In both FFIs, type violations can succeed silently. This is almost
always the case in the OCaml FFI, while in the JNI some kinds of type errors
result in runtime exceptions. Thus programmers are left to rely on testing
to find bugs which can cover only a limited number of executions. Another
approach programmers could take is to wrap high-level data in C types and
use C’s type system to enforce type safety. Although this would be possible
(e.g., making one C struct for each kind of high-level data), we did not find
any code that tried this, perhaps because it may be too complicated given the
perceived benefit, and it would require updating each time a type signature
changed.

We also found that, although in many ways the OCaml FFI and the JNI are
similar, their different design decisions resulted in different kinds of mistakes
by programmers. In particular, in the OCaml FFI, programmers need to remem-
ber to explicitly register pointers to the OCaml heap, while the JNI automati-
cally registers such pointers. As a result OCaml programs can introduce bugs
by forgetting to register pointers, although they can also reduce overhead by
not bothering to register pointers that will be dead before the garbage collector
is invoked.

Aside from these fundamental design choices, even seemingly trivial FFI
design decisions have consequences. For example, the poor choice of names for
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the OCaml FFI macros Val int and Int val (do you remember which is which?)
leads to mistakes, whereas in the JNI there is no such confusion because C
and Java integers have the same representation. On the other hand, the JNI’s
baroque naming convention for native functions results in many errors, whereas
we found no cases where the OCaml FFI programmer mismatched function
names between C and OCaml. In general, writing programs that use an FFI
is just like any other software engineering task: if the programmer has an
opportunity to make a mistake because of something slightly complicated or
confusing, he will make that mistake at times.

6.1 Future Improvements to O-Saffire and J-Saffire

There are several aspects of the OCaml and Java FFIs that our systems do not
currently handle. Both FFIs include array types that can be accessed by C code,
but our analyses do not perform bounds checks. One approach to this problem
is inserting dynamic checks at runtime [Tan et al. 2006]. In our experiments,
we found a number of false positives in O-Saffire due to polymorphic variants
and, in J-Saffire, due to the lack of subtyping on jobjects. We believe that both
of these could be addressed with more sophisticated analyses.

Our analyses also do not model control flow via exceptions. In the OCaml
FFI, an exception unwinds both the OCaml and the C stack to the point of the
closest handler. Thus the C programmer must be careful to free any C resources
in use when an exception is raised. In the JNI, exceptions unwind only the Java
stack up to the last native method or the last handler, whichever comes first.
Thus JNI glue code must be careful to always check for exceptions after calling
almost any JNI function. We leave enforcement of these requirements to future
work.

Finally, our analyses also do not track foreign data stored in global C vari-
ables. In both OCaml and Java, if a foreign data reference is stored in a global,
the glue code must register that reference as a global root to the garbage col-
lector. Similarly, when the global variable is overwritten or becomes dead, the
programmer must explicitly remove the global root. Currently O-Saffire and
J-Saffire simply issue warnings when they see global variables that may hold
foreign data and do not attempt to track the contents of the global. To verify
that global references are handled correctly would likely require a new global
analysis, including constructing a multilingual call graph to track the lifetimes
of objects through the entire program.

6.2 Future Work for Other FFIs

We believe that our basic approach can also be applied to other FFIs. One
interesting target is the Haskell FFI [Jones 2001], which is somewhat different
than the OCaml or Java FFI. In the Haskell FFI, all glue code is written in
Haskell rather than C. The programmer imports foreign (typically C) functions
into the Haskell namespace, giving them Haskell type signatures. Assuming
these are correctly specified, Haskell’s type system will then enforce type safety
at native calls. However, just as manipulating high-level types in C code is
cumbersome in the OCaml FFI and the JNI, manipulating C types in Haskell
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is also messy and error-prone. For instance, to access a field of a C struct, the
programmer must use the low-level, type-unsafe function peekByteOff, which
extracts a field at a given numeric offset. While an FFI preprocessor can help
automate many of these low-level calls, we believe our approach could also
ensure that Haskell accesses C data safely.

Another possible target is dynamically typed languages such as Python,
which has an FFI to C. To analyze such a program, we would most likely need to
use a soft typing system [Wright and Cartwright 1994] to infer types for Python
data. One challenge for Python is that it uses reference counting for memory
management, and thus C glue code must explicitly increment and decrement
counts for references to Python data. As this is easy to do incorrectly, we suspect
an analysis to look for these kind of bugs would find many mistakes.

Finally, another kind of code that has the same flavor as FFIs is code that
uses reflection. Reflection APIs typically treat data as foreign until its type
has been examined at which point it can be cast to a native type. For example,
Java’s reflection API looks very similar to the JNI except that objects accessed
by reflection are instances of Object rather than the completely opaque type
jobject. In Java’s reflection API, class, field and method names are looked up
using strings, intermediate field values are stored in a nonparameterized Field
class, and result types must be explicitly downcast from Object to the correct
type. We believe that our singleton type system could be used to track strings
through Java reflective code, and we could then statically ensure that many
uses of reflection are type safe. We leave this as an open problem for future
work.

7. RELATED WORK

Most languages include a foreign function interface, typically to C, since it
runs on many platforms. For languages whose semantics and runtime systems
are close to C, foreign function interfaces can be fairly straightforward. For
languages that are further from C, FFIs are more complicated, and there are
many interesting design points with different trade-offs [Blume 2001; Finne
et al. 1999; Huelsbergen 1996; Leroy 2004; Liang 1999; Jones 2001]. For ex-
ample, Blume [2001] proposes a system allowing arbitrary C data types to be
accessed by ML. Fisher et al. [2001] have developed a framework that supports
exploration of many different foreign interface policies that free the program-
mer from having to write glue code to translate between data representations.
While various interfaces allow more or less code to be written natively (and
there is a general trend towards more native code rather than glue code), the
problem of validating usage of the interface on the foreign language side still
remains.

In work concurrent with ours, Tan et al. [2006] present a system that inserts
dynamic checks into C glue code to ensure that the JNI is used safely. Because
the checks are performed at runtime, their system can only verify type and
memory safety of particular program executions. However, they are also able
to check for more kinds of errors than our static system, such as out of bounds
array accesses.
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Our technique of tracking pointer offsets for the OCaml-to-C FFI bears some
resemblance to systems that use physical type checking for C [Chandra and
Reps 1999; Necula et al. 2002] in that both must be concerned with detailed
memory representations. However, our system is considerably simpler than
full-fledged physical type checking systems because OCaml data given type
value is typically only used in restricted ways.

Our string-tracking mechanism for code that uses the JNI is relatively
simple, supporting polymorphism but treating strings themselves as opaque.
Recently several researchers have developed more sophisticated techniques to
track strings in programs [Christensen et al. 2003; DeLine and Fähndrich 2004;
Gould et al. 2004; Thiemann 2005]. These systems include support for modeling
string manipulation routines because one of their goals is to check that dynam-
ically generated SQL queries are well-formed. For purposes of checking clients
of the JNI, we have found that our simple tracking of strings as constants is
sufficient.

Nishimura [1998] presents an object calculus that can statically infer kinded
types for first-class method names which is similar to our inference of Java
object types for the JNI. Nishimura’s system has similar restrictions to ours
such as not supporting inheritance or overloaded methods. Our work differs in
that we are typing C code and must analyze the value of C strings instead of
working with a pure object calculus, and we have implemented our system and
applied it to a number of benchmarks.

Trifonov and Shao [1999] use effects to reason about the safety of inter-
facing multiple safe languages with different runtime resource requirements
in the same address space. Their focus is on ensuring that code fragments in
the various languages have access to necessary resources while preserving the
languages’ semantics, which differs from our goal of checking types and GC
properties in FFIs.

Matthews and Findler [2007] study the semantics of mixing the typed and
untyped lambda calculus to better reason about their interaction. They focus
on high-level properties such as ensuring soundness of the typed language in
the presence of foreign values, while our focus is on detecting errors in low-level
glue code.

There are a number of alternatives to using FFIs directly. One technique
is to use automatic interface generators to produce glue code. SWIG [Beazley
1996] generates glue code based on an interface specification file. This has
the advantage of eliminating the need for custom glue code (and thus elimi-
nating safety violations), but it exposes all of the low-level types to the high-
level language, creating a possibly awkward interface. Exu [Bubba et al. 2001]
provides programmers with a lightweight system for automatically gener-
ating JNI-to-C++ glue code for the common cases. Mockingbird [Auerbach
et al. 1999] is a system for automatically finding matchings between two
types written in different languages and generating the appropriate glue
code. Our benchmark suite contained custom glue code that was generated by
hand.

In addition to the JNI, there has been significant work on other approaches
to object-oriented language interoperation, such as COM [Gray et al. 1998],
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SOM [Hamilton 1996] and CORBA [Object Management Group 2004]. Barrett
[1998] proposes the PolySPIN system as an alternative to CORBA. All of these
systems check for errors mainly at runtime, though, in some cases, interface
generators can be used to provide some compile-time checking. Grechanik et al.
[2004] present a framework called ROOF that allows many different languages
to interact using a common syntax. This system includes both runtime and
static type checking for code that uses ROOF. It is unclear whether ROOF
supports polymorphism and whether it can infer types for glue code in isolation.

Another approach to avoiding foreign function interfaces is to compile all pro-
grams to a common intermediate representations. For example, the Microsoft
common-language runtime (CLR) [Hamilton 2003; Meijer et al. 2001] provides
interoperation by being the target of compilers for different languages, and the
CLR includes a strong static type system. While this solution avoids some of
the difficulties that can arise with FFIs, it does not solve the issue of interfacing
with programs in non-CLR languages or with unmanaged (unsafe) CLR code.

8. CONCLUSION

We have presented O-Saffire and J-Saffire, a pair of multilingual type inference
systems for checking the type safety of programs that use the OCaml-to-C FFI
and the JNI, respectively. Both systems focus their analysis efforts on C glue
code, ensuring that it obeys the high-level language types. Since these FFIs
conflate almost all high-level types to a single C type to perform inference, we
use extended multilingual types that embed the high-level types into C types.
O-Saffire and J-Saffire use representational types to capture C’s view of high-
level data. In O-Saffire, our representational types model a union of unboxed
and boxed data, which covers integers, updatable references, data types, and
the unit type. Then during type inference we use an intraprocedural dataflow
analysis algorithm to track the currently known information about a represen-
tational type, which allows us to analyze the C code equivalent of OCaml pattern
matching. In J-Saffire, representational types model an object as an instance
of a class with a given name, which may be a string variable, and with a subset
of its fields and methods, the names and types of which could also be unknown
string variables. Since strings tend to be used fairly simply in JNI glue code,
J-Saffire uses unification to track strings but includes a polymorphic inference
component to model wrapper functions precisely even allowing functions to be
polymorphic in the values of string arguments. O-Saffire also uses effects to
track garbage collection information and ensure that C pointers to the OCaml
heap are registered with the garbage collector. We applied our implementations
of O-Saffire and J-Saffire to a number of benchmarks, finding many errors and
suspicious coding practices. Our results suggest that our static checking system
can be an important part of ensuring that foreign function interfaces are used
correctly.
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FÄHNDRICH, M., REHOF, J., AND DAS, M. 2000. Scalable context-sensitive flow analysis using instan-

tiation constraints. In Proceedings of the ACM Conference on Programming Language Design and
Implementation. Vancouver B.C., Canada.

FELLEISEN, M. AND HIEB, R. 1992. The revised report on the syntactic theories of sequential control

and state. Theor. Comput. Sci. 103, 2, 235–271.

FINNE, S., LEIJEN, D., MEIJER, E., AND JONES, S. P. 1999. Calling hell from heaven and heaven

from hell. In Proceedings of the 4th ACM SIGPLAN International Conference on Functional
Programming. Paris, France, 114–125.

FISHER, K., PUCELLA, R., AND REPPY, J. 2001. A framework for interoperability. In Proceedings of
the 1st International Workshop on Multilanguage Infrastructure and Interoperability (BABEL’01).
Firenze, Italy.

FURR, M. AND FOSTER, J. S. 2005a. Checking type safety of foreign function calls. In Proceedings of
the ACM Conference on Programming Language Design and Implementation. Chicago, IL. 62–72.

FURR, M. AND FOSTER, J. S. 2005b. Java SE 6 ”Mustang” bug 6362203. http://bugs.sun.com/

bugdatabase/view_bug.do?bug_id=6362203.

FURR, M. AND FOSTER, J. S. 2006a. Checking type safety of foreign function calls. Tech. rep. CS-

TR-4845, Computer Science Department, University of Maryland.

FURR, M. AND FOSTER, J. S. 2006b. Polymorphic type inference for the JNI. In Proceedings of the
15th European Symposium on Programming. Vienna, Austria. To appear.

GOULD, C., SU, Z., AND DEVANBU, P. 2004. Static Checking of Dynamically Generated Queries in

Database Applications. In Proceedings of the 26th International Conference on Software Engi-
neering (ICSE’04). Edinburgh, 645–654.

GRAY, D. N., HOTCHKISS, J., LAFORGE, S., SHALIT, A., AND WEINBERG, T. 1998. Modern languages and

Microsoft’s component object model. Comm. ACM 41, 5, 55–65.

GRECHANIK, M., BATORY, D., AND PERRY, D. E. 2004. Design of large-scale polylingual systems. In

Proceedings of the 26th International Conference on Software Engineering (ICSE’04). Scot and.

357–366.

HAMILTON, J. 1996. Interlanguage object sharing with SOM. In Proceedings of the Usenix Annual
Technical Conference. San Diego, CA.

HAMILTON, J. 2003. Language integration in the common language runtime. ACM SIGPLAN
Notices 38, 2, 19–28.

HENGLEIN, F. 1993. Type inference with polymorphic recursion. ACM Trans. Program. Lang.
Syst. 15, 2, 253–289.

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 4, Article 18, Publication date: July 2008.



Checking Type Safety of Foreign Function Calls • 18:63

HUELSBERGEN, L. 1996. A portable C interface for standard ML of New Jersey. http://www.smlnj.

org//doc/SMLNJ-C/smlnj-c.ps.

JAVA-GNOME DEVELOPERS. 2005. Java bindings for the gnome and gtk libraries. http://

java-gnome.sourceforge.net.

JONES, S. P. 2001. Tackling the awkward squad: Monadic input/output, concurrency, exceptions,

and foreign-language calls in Haskell. In Engineernig Theories of Software Construction, T. Hoare,

M. Broy, and R. Steinbruggen, Eds. IOS Press, 47–96.

LEROY, X. 2004. The Objective Caml system. Release 3.08, http://caml.inria.fr/distrib/

ocaml-3.08/ocaml-3.08-refman.pdf.

LIANG, S. 1999. The Java Native Interface: Programmer’s Guide and Specification. Addison-

Wesley.

LINDHOLM, T. AND YELLIN, F. 1997. The Java Virtual Machine Specification. Addison-Wesley.

MATTHEWS, J. AND FINDLER, R. B. 2007. Operational semantics for multi-language programs. In

Proceedings of the 34th Annual ACM Symposium on Principles of Programming Languages. Nice,

France, 3–10.

MEIJER, E., PERRY, N., AND VAN YZENDOORN, A. 2001. Scripting .NET using Mondrian. In Proceed-
ings of the 15th European Conference on Object-Oriented Programming (ECOOP’01). Budapest,

Hungary.

NECULA, G., MCPEAK, S., RAHUL, S. P., AND WEIMER, W. 2002. CIL: Intermediate language and

tools for analysis and transformation of C programs. In Proceedings of the 11th International
Conference on Computer Construction. Grenoble, France.

NECULA, G., MCPEAK, S., AND WEIMER, W. 2002. CCured: Type-safe retrofitting of legacy code.

In Proceedings of the 29th Annual ACM Symposium on Principles of Programming Languages.

Portland, OR. 128–139.

NISHIMURA, S. 1998. Static typing for dynamic messages. In Proceedings of the 25th Annual ACM
Symposium on Principles of Programming Languages. San Diego, CA.

Object Management Group 2004. Common object request broker architecture: Core specification,

Version 3.0.3. Object Management Group.
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