
Lazy Code Motion

COMP 512
Rice University
Houston, Texas

Spring 2009

Copyright 2009, Keith D. Cooper & Linda Torczon, all rights reserved.

Students enrolled in Comp 512 at Rice University have explicit
permission to make copies of these materials for their personal use.

“Lazy Code Motion,” J. Knoop, O. Ruthing, & B. Steffen, in PLDI 92

“A Variation of Knoop, Ruthing, and Steffen’s Lazy Code Motion,”
K. Drechsler & M. Stadel, SIGPLAN Notices, 28(5), May 1993

Treatment in Chapter 10 of Engineering a Compiler …

1!COMP 512, Spring 2009!

COMP 512, Spring 2009! 2!

Some occurrences of
b+c are redundant

Redundant Expression

An expression is redundant at point p if, on every path to p

1. It is evaluated before reaching p, and

2. Non of its constitutent values is redefined before p

Example

a ! b + c

a ! b + c b ! b + 1
a ! b + c

a ! b + c
a ! b + c
a ! b + c

*

COMP 512, Spring 2009! 3!

b ! b + 1
a ! b + c a ! b + c

a ! b + c

Inserting a copy of “a ! b + c” after the definition
of b can make it redundant fully redundant?

Partially Redundant Expression

An expression is partially redundant at p if it is redundant along

some, but not all, paths reaching p

Example

b ! b + 1 a ! b + c

a ! b + c

*

COMP 512, Spring 2009! 4!

Loop Invariant Expression

Another example

Loop invariant expressions are partially redundant

•! Partial redundancy elimination performs code motion

•! Major part of the work is figuring out where to insert operations

x ! y * z

a ! b * c

b+c is partially
redundant here

x ! y * z
a ! b * c

a ! b * c

COMP 512, Spring 2009! 5!

Lazy Code Motion

The concept

•! Solve data-flow problems that show opportunities & limits

•! Compute INSERT & DELETE sets from solutions

•! Linear pass over the code to rewrite it (using INSERT & DELETE)

The history

•! Partial redundancy elimination (Morel & Renvoise, CACM, 1979)

•! Improvements by Drechsler & Stadel, Joshi & Dhamdhere, Chow,
Knoop, Ruthing & Steffen, Dhamdhere, Sorkin, …

•! All versions of PRE optimize placement
>! Guarantee that no path is lengthened

•! LCM was invented by Knoop et al. in PLDI, 1992

•! We will look at a variation by Drechsler & Stadel

>! SIGPLAN Notices 28(5), May 1993

PRE and its descendants
are conservative

COMP 512, Spring 2009! 6!

Lazy Code Motion

The intuitions

•! Compute available expressions

•! Compute anticipable expressions

•! From AVAIL & Ant, we can compute an earliest placement for
each expression

•! Push expressions down the CFG until it changes behavior

Assumptions

•! Uses a lexical notion of identity (not value identity)

•! ILOC-style code with unlimited name space

•! Consistent, disciplined use of names

>! Identical expressions define the same name

>! No other expression defines that name
}Avoids copies

Result serves as proxy

LCM operates on expressions

It moves expression
evaluations, not assignments

COMP 512, Spring 2009! 7!

Lazy Code Motion

The Name Space

•! ri + rj"rk, always, with both i < k and j < k (hash to find k)

•! We can refer to ri + rj by rk (bit-vector sets)

•! Variables must be set by copies

>! No consistent definition for a variable

>! Break the rule for this case, but require rsource < rdestination

>! To achieve this, assign register names to variables first

Without this name space

•! LCM must insert copies to preserve redundant values

•! LCM must compute its own map of expressions to unique ids

Digression in Chapter 5 of
EAC: “The impact of naming”

LCM operates on expressions

It moves expression evaluations, not assignments

COMP 512, Spring 2009! 8!

Lazy Code Motion

Local Predicates

•! DEEXPR(b) contains expressions defined in b that survive to the
end of b (downward exposed expressions)

e # DEEXPR(b) $ evaluating e at the end of b produces the same
value for e

•! UEEXPR(b) contains expressions defined in b that have upward
exposed arguments (both args) (upward exposed expressions)

e # UEEXPR(b) $ evaluating e at the start of b produces the
same value for e

•! EXPRKILL(b) contains those expressions that have one or more
arguments defined (killed) in b (killed expressions)

e % EXPRKILL(b) $ evaluating e produces the same result at the
start and end of b

We have seen all three of these previously.

COMP 512, Spring 2009! 9!

Lazy Code Motion

Availability

Initialize AVAILIN(n) to the set of all names, except at n0

Set AVAILIN(n0) to Ø

Interpreting AVAIL

•! e # AVAILOUT(b) & evaluating e at end of b produces the same

value for e. AVAILOUT tells the compiler how far forward e can
move

•! This differs from the way we talk about AVAIL in global
redundancy elimination; the equations, however, are unchanged.

AVAILIN(n) = 'm! preds(n) AVAILOUT(m), n ! n0

AVAILOUT(m) = DEEXPR(m) ((AVAILIN(m) ' EXPRKILL(m))

COMP 512, Spring 2009! 10!

Lazy Code Motion

Anticipability

Initialize ANTOUT(n) to the set of all names, except at exit blocks

Set ANTOUT(n) to Ø, for each exit block n

Interpreting ANTOUT

•! e # ANTIN(b) & evaluating e at start of b produces the same value

for e. ANTIN tells the compiler how far backward e can move

•! This view shows that anticipability is, in some sense, the inverse

of availablilty (& explains the new interpretation of AVAIL)

ANTOUT(n) = 'm! succs(n) ANTIN(m), n not an exit block

ANTIN(m) = UEEXPR (m) ((ANTOUT(m) ' EXPRKILL(m))

Anticipability is identical to
VeryBusy expressions

COMP 512, Spring 2009! 11!

Lazy Code Motion

The intuitions

Available expressions

•! e # AVAILOUT(b) $ evaluating e at exit of b gives same result

•! e # AVAILIn(b) $ e is available from every predecessor of b

 $ an evaluation at entry of b is redundant

Anticipable expressions

•! e # ANTIN(b) $ evaluating e at entry of b gives same result

•! e # ANTOUT(b) $ e is anticipable from every successor of b

 $ evaluation at exit of b would a later evaluation redundant,
 on every path, so exit of b is a profitable place to insert e

COMP 512, Spring 2009! 12!

Lazy Code Motion

Earliest placement on an edge

EARLIEST is a predicate

•! Computed for edges rather than nodes (placement)

•! e # EARLIEST(i,j) if

>! It can move to head of j, (ANTIN(j))

>! It is not available at the end of i and (EXPRKILL(i))

>! either it cannot move to the head of i or another edge leaving i
prevents its placement in i (ANTOUT(i))

EARLIEST(i,j) = ANTIN(j) ' AVAILOUT(i) '

 (EXPRKILL(i) (ANTOUT(i))

EARLIEST(n0,j) = ANTIN(j) ' AVAILOUT(n0) $ insert e on the edge

Can move e to head of j &
it is not redundant from i

Either killed in i or would
not be busy at exit of i

and

COMP 512, Spring 2009! 13!

Later (than earliest) placement

Initialize LATERIN(n0) to Ø

x # LATERIN(k) & every path that reaches k has x # EARLIEST(i,j) for
some edge (i,j) leading to x, and the path from the entry of j to k is

x-clear & does not evaluate x

 $ the compiler can move x through k without losing any benefit

x # LATER(i,j) & <i,j> is its earliest placement, or it can be moved
forward from i (LATER(i)) and placement at entry to i does not

anticipate a use in i (moving it across the edge exposes that use)

Lazy Code Motion

LATERIN(j) = 'i! pred(j) LATER(i,j), j ! n0

LATER(i,j) = EARLIEST(i,j) ((LATERIN(i) ' UEEXPR(i))

Propagate forward until a block kills it (UUEXPR)

COMP 512, Spring 2009! 14!

Lazy Code Motion

Rewriting the code

INSERT & DELETE are predicates

Compiler uses them to guide the rewrite step

•! x # INSERT(i,j) $ insert x at start of j, end of i, or new block

•! x # DELETE(k) $ delete first evaluation of x in k

INSERT(i,j) = LATER(i,j) ' LATERIN(j)

DELETE(k) = UEEXPR(k) ' LATERIN(k), k ! n0

If local redundancy elimination has already
been performed, only one copy of x exists.
Otherwise, remove all upward exposed

copies of x *

Can go on the edge but not
in j $ no later placement

Upward exposed (so we will
cover it) & not an evaluation
that might be used later

COMP 512, Spring 2009! 15!

Lazy Code Motion

Edge placement

•! x # INSERT(i,j)

Three cases

•! |succs(i)| = 1 $ insert at end of i

•! | succs(i)| > 1, but |preds(j)| = 1$ insert at start of j

•! | succs(i)| > 1, & |preds(j)| > 1 $ create new block in <i,j> for x

Bi

Bj

|succs(i)| = 1

x

|preds(j)| = 1

Bi

Bj Bk
x

|succs(i) > 1

|preds(j)| > 1

Bi

Bj Bk

Bh

x

A “Critical” Edge

COMP 512, Spring 2009! 16!

Lazy Code Motion

Example

B1: r1 ! 1
 r2 ! r0 + @m
 if r1< r2 " B2,B3

B2: …
 r20 ! r17 * r18
 ...
 r4 ! r1 + 1
 r1 ! r4

 if r1 < r2 " B2,B3

B3: ...

B1

B2

B3

B1 B2

A v a i l I n r17,r18 r1,r2,r17,r18

Ava i l Ou t r1,r2,r17,r18 r1,r2,r4,r17,r18,r20

An t I n { } r20

AntOut { } { }

1,2 1,3 2,2 2,3

E a r l i e s t r20 { } { } { }

Example is too small to show off Later

 Insert(1,2) = { r20 }

 Delete(2) = { r20 }

Critical edge rule will create
landing pad when needed, as
on edge (B1,B2)

