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Some occurrences of  
b+c are redundant 

Redundant Expression 

An expression is redundant at point p if, on every path to p 

1.  It is evaluated before reaching p, and 

2.  Non of its constitutent values is redefined before p 

Example 

a ! b + c 

a ! b + c b !  b + 1 
a ! b + c 

a ! b + c 
a !  b + c 
a ! b + c 

* 
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b ! b + 1 
a ! b + c a ! b + c 

a ! b + c 

Inserting a copy of  “a ! b + c” after the definition 
of  b can make it redundant fully redundant? 

Partially Redundant Expression 

An expression is partially redundant at p if it is redundant along 

some, but not all, paths reaching p 

Example 

b ! b + 1 a ! b + c 

a ! b + c 

* 
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Loop Invariant Expression 

Another example 

Loop invariant expressions are partially redundant 

•! Partial redundancy elimination performs code motion 

•! Major part of the work is figuring out where to insert operations 

x ! y * z 

a ! b * c 

b+c is partially  
redundant here 

x ! y * z 
a ! b * c 

a ! b * c 
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Lazy Code Motion 

The concept 

•! Solve data-flow problems that show opportunities & limits 

•! Compute INSERT & DELETE sets from solutions 

•! Linear pass over the code to rewrite it  (using INSERT & DELETE) 

The history 

•! Partial redundancy elimination          (Morel & Renvoise, CACM, 1979) 

•! Improvements by Drechsler & Stadel, Joshi & Dhamdhere, Chow, 
Knoop, Ruthing & Steffen, Dhamdhere, Sorkin, … 

•! All versions of PRE optimize placement 
>! Guarantee that no path is lengthened 

•! LCM was invented by Knoop et al. in PLDI, 1992  

•! We will look at a variation by Drechsler & Stadel  

>! SIGPLAN Notices 28(5), May 1993 

PRE and its descendants 
are conservative 
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Lazy Code Motion 

The intuitions 

•! Compute available expressions 

•! Compute anticipable expressions 

•! From AVAIL & Ant, we can compute an earliest placement for 
each expression 

•! Push expressions down the CFG until it changes behavior 

Assumptions 

•! Uses a lexical notion of identity      (not value identity) 

•! ILOC-style code with unlimited name space 

•! Consistent, disciplined use of names 

>! Identical expressions define the same name 

>! No other expression defines that name 
}Avoids copies 

Result serves as proxy  

LCM operates on expressions 

It moves expression 
evaluations, not assignments 
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Lazy Code Motion 

The Name Space 

•! ri + rj"rk, always, with both i < k and j < k             (hash to find k) 

•! We can refer to ri + rj by rk            (bit-vector sets) 

•! Variables must be set by copies 

>! No consistent definition for a variable 

>! Break the rule for this case, but require rsource < rdestination 

>! To achieve this, assign register names to variables first 

Without this name space 

•! LCM must insert copies to preserve redundant values 

•! LCM must compute its own map of expressions to unique ids 

Digression in Chapter 5 of  
EAC: “The impact of  naming” 

LCM operates on expressions 

It moves expression evaluations, not assignments 

COMP 512, Spring 2009! 8!

Lazy Code Motion 

Local Predicates 

•! DEEXPR(b) contains expressions defined in b that survive to the 
end of b          (downward exposed expressions)   

e # DEEXPR(b) $ evaluating e at the end of b produces the same 
value for e 

•! UEEXPR(b) contains expressions defined in b that have upward 
exposed arguments (both args)         (upward exposed expressions) 

e # UEEXPR(b) $ evaluating e at the start of b produces the 
same value for e 

•! EXPRKILL(b) contains those expressions that have one or more  
arguments defined (killed ) in b                             (killed expressions) 

e % EXPRKILL(b) $ evaluating e produces the same result at the 
start and end of b 

We have seen all three of  these previously. 
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Lazy Code Motion 

Availability 

Initialize AVAILIN(n) to the set of all names, except at n0 

Set AVAILIN(n0) to Ø 

Interpreting AVAIL 

•! e # AVAILOUT(b) & evaluating e at end of b produces the same 

value for e. AVAILOUT tells the compiler how far forward e can 
move 

•! This differs from the way we talk about AVAIL in global 
redundancy elimination; the equations, however, are unchanged. 

AVAILIN(n) = 'm! preds(n) AVAILOUT(m),    n ! n0 

AVAILOUT(m) = DEEXPR(m) ( (AVAILIN(m) ' EXPRKILL(m)) 
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Lazy Code Motion 

Anticipability 

Initialize ANTOUT(n) to the set of all names, except at exit blocks 

Set ANTOUT(n) to Ø, for each exit block n 

Interpreting ANTOUT 

•! e # ANTIN(b) & evaluating e at start of b produces the same value 

for e. ANTIN tells the compiler how far backward e can move 

•! This view shows that anticipability is, in some sense, the inverse 

of availablilty (& explains the new interpretation of AVAIL) 

ANTOUT(n) = 'm! succs(n) ANTIN(m),    n not an exit block 

ANTIN(m) = UEEXPR (m) ( (ANTOUT(m) ' EXPRKILL(m)) 

Anticipability is identical to 
VeryBusy expressions 
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Lazy Code Motion 

The intuitions 

Available expressions 

•! e # AVAILOUT(b ) $ evaluating e at exit of b gives same result 

•! e # AVAILIn(b )   $  e  is available from every predecessor of b  

 $ an evaluation at entry of b is redundant 

Anticipable expressions 

•! e # ANTIN(b )     $ evaluating e at entry of b gives same result  

•! e # ANTOUT(b ) $ e is anticipable from every successor of b  

 $ evaluation at exit of b would a later evaluation redundant,  
   on every path, so exit of b is a profitable place to insert e 

COMP 512, Spring 2009! 12!

Lazy Code Motion 

Earliest placement on an edge 

EARLIEST is a predicate 

•! Computed for edges rather than nodes               (placement ) 

•! e # EARLIEST(i,j) if  

>! It can move to head of j,                                                      (ANTIN(j)) 

>! It is not available at the end of i and              (EXPRKILL(i)) 

>! either it cannot move to the head of i or another edge leaving i 
prevents its placement in i                                            (ANTOUT(i)) 

EARLIEST(i,j) = ANTIN(j) ' AVAILOUT(i) '  

          (EXPRKILL(i) ( ANTOUT(i)) 

EARLIEST(n0,j) = ANTIN(j) ' AVAILOUT(n0) $ insert e on the edge  

Can move e  to head of  j & 
it is not redundant from i 

Either killed in i  or would 
not be busy at exit of  i  

and 
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Later (than earliest) placement 

Initialize LATERIN(n0) to Ø 

x # LATERIN(k) & every path that reaches k has x # EARLIEST(i,j) for 
some edge (i,j) leading to x, and the path from the entry of j to k is 

x-clear & does not evaluate x  

 $ the compiler can move x through k without losing any benefit 

x # LATER(i,j) & <i,j> is its earliest placement, or it can be moved 
forward from i (LATER(i)) and placement at entry to i does not 

anticipate a use in i (moving it across the edge exposes that use) 

Lazy Code Motion 

LATERIN(j) = 'i! pred(j) LATER(i,j),    j ! n0 

LATER(i,j) = EARLIEST(i,j) ( (LATERIN(i) ' UEEXPR(i)) 

Propagate forward until a block kills it        (UUEXPR) 
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Lazy Code Motion 

Rewriting the code 

INSERT & DELETE are predicates 

Compiler uses them to guide the rewrite step 

•! x # INSERT(i,j) $ insert x at start of j, end of i, or new block 

•! x # DELETE(k) $ delete first evaluation of x in k 

INSERT(i,j) = LATER(i,j) ' LATERIN(j)  

DELETE(k) = UEEXPR(k) ' LATERIN(k), k ! n0 

If  local redundancy elimination has already 
been performed, only one copy of  x exists.  
Otherwise, remove all upward exposed 

copies of  x  * 

Can go on the edge but not 
in j $ no later placement 

Upward exposed (so we will 
cover it) & not an evaluation 
that might be used later 
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Lazy Code Motion 

Edge placement  

•! x # INSERT(i,j) 

Three cases 

•! |succs(i)| = 1 $ insert at end of i 

•! | succs(i)| > 1, but |preds(j)| = 1$ insert at start of j 

•! | succs(i)| > 1, & |preds(j)| > 1 $ create new block in <i,j> for x 

Bi 

Bj 

|succs(i)| = 1 

x 

|preds(j)| = 1 

Bi 

Bj Bk 
x 

|succs(i) > 1 

|preds(j)| > 1 

Bi 

Bj Bk 

Bh 

x 

A “Critical” Edge 
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Lazy Code Motion 

Example 

B1:  r1 ! 1 
 r2 ! r0 + @m 
 if  r1< r2 " B2,B3 

B2:  … 
 r20 ! r17 * r18 
 ... 
 r4 ! r1 + 1 
 r1 ! r4 

 if  r1 < r2 " B2,B3 

B3:  ... 

B1 

B2 

B3 

B1 B2

A v a i l I n r17,r18 r1,r2,r17,r18

Ava i l Ou t r1,r2,r17,r18 r1,r2,r4,r17,r18,r20

An t I n { } r20

AntOut { } { }

1,2 1,3 2,2 2,3

E a r l i e s t r20 { } { } { }

Example is too small to show off  Later 

 Insert(1,2) = { r20 } 

 Delete(2) = { r20 } 

Critical edge rule will create 
landing pad when needed, as 
on edge (B1,B2) 


