Lazy Code Motion

ComP 512
Rice University
Houston, Texas

Spring 2009

“Lazy Code Motion,” J. Knoop, O. Ruthing, & B. Steffen, in PLDI 92

“A Variation of Knoop, Ruthing, and Steffen’s Lazy Code Motion,”
K. Drechsler & M. Stadel, SIGPLAN Notices, 28(5), May 1993

Treatment in Chapter 10 of Engineering a Compiler ...

Copyright 2009, Keith D. Cooper & Linda Torczon, all rights reserved.

Students enrolled in Comp 512 at Rice University have explicit
permission to make copies of these materials for their personal use.

COMP 512, Spring 2009 1

Redundant Expression

An expression is redundant at point p if, on every path to p
1. Itis evaluated before reaching p, and

2. Non of its constitutent values is redefined before p

Example
a< b+c
a<b+c a<—b+c
\/ Some occurrences Of
a<b+c b+c are redundant
a<b+c b<— b+1
a<—b+c

COMP 512, Spring 2009 2

Partially Redundant Expression

An expression is partially redundant at p if it is redundant along
some, but not all, paths reaching p

Example
b<b+1
b<b+1 a<b+c a<b+c a<b+c
a<b+c a<—b+c

Inserting a copy of “a <— b + ¢” after the definition
of b can make it redundant

fully redundant?

COMP 512, Spring 2009 3

Loop Invariant Expression

Another example

X<—y*z

X<—y*z a<b*c
‘ b+c is partially
redundant here

a<b*c a<b*c

Loop invariant expressions are partially redundant
* Partial redundancy elimination performs code motion

* Major part of the work is figuring out where to insert operations

COMP 512, Spring 2009 4

Lazy Code Motion

The concept

* Solve data-flow problems that show opportunities & limits
* Compute INSERT & DELETE sets from solutions

* Linear pass over the code to rewrite it (using INSERT & DELETE)

The history
* Partial redundancy elimination (Morel & Renvoise, CACM, 1979)

* Improvements by Drechsler & Stadel, Joshi & Dhamdhere, Chow,
Knoop, Ruthing & Steffen, Dhamdhere, Sorkin, ...

* All versions of PRE optimize placement '
> Guarantee that no path is lengthened <_| PRE and its descendants

are conservative
* LcCM was invented by Knoop et al. in PLDI, 1992

* We will look at a variation by Drechsler & Stadel
> SIGPLAN Notices 28(5), May 1993

COMP 512, Spring 2009 5

Lazy Code Motion

The intuitions LCM operates on expressions
* Compute available expressions It moves expression

* Compute anticipable expressions evaluations, not assignments

°* From AvAIL & Ant, we can compute an earliest placement for
each expression

* Push expressions down the CFG until it changes behavior

Assumptions
* Uses a lexical notion of identity (not value identity)

® |LOC-style code with unlimited name space

* Consistent, disciplined use of names }

. .) Avoids copies
> ldentical expressions define the same name P

> No other expression defines that name Result serves as proxy

COMP 512, Spring 2009 6

Digression in Chapter 5 of
EAC: “The impact of naming”

Lazy Code Motion

The Name Space
ri +ri—ry, always, with both i<k andj <k (hash to find k)
* Wecanrefertor; +r;byr, (bit-vector sets)

® Variables must be set by copies
> No consistent definition for a variable
> Break the rule for this case, but require r,,, .. < I jostination
> To achieve this, assign register names to variables first

Without this name space
* LcM mustinsert copies to preserve redundant values

* LCM must compute its own map of expressions to unique ids

LCM operates on expressions

COMP 512, Spring 2009 It moves expression evaluations, not assignments |7

Lazy Code Motion

Local Predicates
* DEEXxPR(b) contains expressions defined in b that survive to the
end of b (downward exposed expressions)

e € DEExPR(b) = evaluating e at the end of b produces the same
value for e

* UEEXPR(b) contains expressions defined in b that have upward
exposed arguments (both args) (upward exposed expressions)

e € UEExPR(b) = evaluating e at the start of b produces the
same value for e

* ExPRKILL(b) contains those expressions that have one or more
arguments defined (killed) in b (killed expressions)

e & ExPrRKILL(b) = evaluating e produces the same result at the
start and end of b

COMP 512, Spring 2009 We have seen all three of these previously. 8

Lazy Code Motion

Availability

AVAILIN(N) = ¢ predsn) AVAILOUT(M), n#n,

AvAILOUT(m) = DEEXPR(m) U (AVAILIN(m) N EXPRKILL(M))

Initialize AvAILIN(Nn) to the set of all names, except at n,
Set AvaiLIN(n,) to @
Interpreting AvaiL

* e & AvaiLOuT(b) < evaluating e at end of b produces the same
value for e. AvAaILOuUT tells the compiler how far forward e can
move

* This differs from the way we talk about AVAIL in global
redundancy elimination; the equations, however, are unchanged.

COMP 512, Spring 2009 9

Anticipability is identical to
VeryBusy expressions

Lazy Code Motion
Anticipability
ANTOUT(N) = M e sycesim) ANTIN(M), N not an exit block

ANTIN(m) = UEEXPR (m) U (ANTOUT(m) N EXPRKILL(M))

Initialize ANTOUT(n) to the set of all names, except at exit blocks
Set ANTOUT(Nn) to @, for each exit block n
Interpreting ANTOUT

* e & ANTIN(b) < evaluating e at start of b produces the same value
for e. ANTIN tells the compiler how far backward e can move

* This view shows that anticipability is, in some sense, the inverse
of availablilty (& explains the new interpretation of AvaiL)

COMP 512, Spring 2009 10

Lazy Code Motion

The intuitions

Available expressions

* e c AvAaILOUT(b) = evaluating e at exit of b gives same result
* ecAvaiLin(b) = e is available from every predecessor of b

=> an evaluation at entry of bis redundant

Anticipable expressions

* ec ANTIN(b) = evaluating e at entry of b gives same result
* e& ANTOUT(b) = eis anticipable from every successor of b

= evaluation at exit of b would a later evaluation redundant,
on every path, so exit of bis a profitable place to insert e

COMP 512, Spring 2009 11

Lazy Code Motion

Earliest placement on an edge
/\‘ Can move e to head of j &
EARLIEST(i,j) = ANTIN(j) N AvAiLOuUT(i) N | Itis notredundant from /

and

(ExPRKILL(i) U ANTOUT(i)) Either killed in j or would
not be busy at exit of 7

EARLIEST(Ng,j) = ANTIN(j) N AVAILOUT(Nn) = insert e on the edge

EARLIEST is a predicate

* Computed for edges rather than nodes (placement)
* e c EARLIEST(i,j) if
> It can move to head of j, (ANTIN())

> Itis not available at the end of i and/h(EXPRKILL(i))

> either it cannot move to the head of i or another edge leaving i
prevents its placementini (ANTOUT(i))

COMP 512, Spring 2009 12

Lazy Code Motion

Later (than earliest) placement

LATERIN(]) = Njc preqqy LATER(iL]), =Ny

LATER(i,j) = EARLIEST(i,j) U (LATERIN(i) N UEEXPR(i))

Initialize LATERIN(Nn,) to @

x € LATERIN(k) < every path that reaches k has x € EARLIEST(i,j) for
some edge (i,j) leading to x, and the path from the entry of jto k is
x-clear & does not evaluate x

=> the compiler can move x through k without losing any benefit

X € LATER(i,j) < <i,j> is its earliest placement, or it can be moved
forward from i (LATER(i)) and placement at entry to i does not
anticipate a use in i (moving it across the edge exposes that use)

COMP 512, Spring 2009 Propagate forward until a block kills it (UUEXPR) 3

Lazy Code Motion

Rewriting the code Can go on the edge but not

- inj later pl t
INSERT(i,j) = LATER(i,j) N LATERIN(j) inj = no later placemen

DeLETE(K) = UEEXPR(kK) N LATERIN(K), k = n,

‘\ Upward exposed (so we will
cover it) & not an evaluation

that might be used later

INSERT & DELETE are predicates
Compiler uses them to guide the rewrite step
* x & INSERT(i,j) = insert x at start of j, end of i, or new block

* x & DELETE(k) = delete first evaluation of x in k

If local redundancy elimination has already
been performed, only one copy of x exists.
Otherwise, remove all upward exposed
copies of x *14

COMP 512, Spring 2009

Lazy Code Motion

Edge placement

® x € INSERT(i,j)

E—?i
|

g, [x]

|suces(i)| =1

Three cases

* |succs(i)]=1 = insertatend of i

|preds(j)| =1 |suces(i) > 1

lpreds(j)| > 1

A “Critical” Edge

* | succs(i)| > 1, but |preds(j)| = 1= insert at start of j

* | succs(i)| > 1, & |preds(j)| > 1 = create new block in <i,j> for x

COMP 512, Spring 2009

15

Lazy Code Motion
Example
B1 B2
. DEEXPR r1,r2 r1,r4,r20
By ry <= 1 UEEXPR r1,r2 r4,r20
r2 <« ro + @m NotKilled r17,r18,r20 r2,r17,r18,r20
if ry<r,—B,B;
B,: ...
2 - . B1 B2
F0 <= F47 " T8 Availln 17,18 r1,r2,r17,r18
AvailOut r1,r2,r17,r18 r1,r2,r4,r17,r18,r20
i oot i
Fy<=1y
if ry<r,—B,B; [[12 [13 [22 23 |
By: [Eartiest [,reo [(3 T 3 T 3 1

Critical edge rule will create
landing pad when needed, as
on edge (B,,B,)

COMP 512, Spring 2009

Example is too small to show off Later
Insert(1,2) ={r,}
Delete(2) = {ry}

16

