
EEL: Machine-Independent Executable

James R. I.arus and Eric Schnarr

Computer Sciences Department

University of Wisconsin–Madison

1210 West Dayton St.

Madiscm, WI 53706 USA

{larus,schnarr} @cs.wise.edu

Abstract

EEL (Executable Editing Library) is a library for builliing

tools to analyze and nzodifi an executable (compi[ed) pro-

gram. The systems and languages communities have built

many tools for error detection, fault isolation, architecture

translation, performance measurement, simulation, and

optimization using this approach of modifiing executable.

Currently, howeve~ tools of this sort are difticult and time-

consurning to write and are usually closely tied to a particu-

lar machine and operating system. EEL supports a

machine- and system-independent editing model that

enables tool builders to modijj an executable without being

aware of the details of the underlying architecture or oper-

ating system or being concerned with the consequences of

deleting instructions or adding foreign code.

1 Introduction

A program executable holds instructions and data for a

compiled program. In most situations, executable are

atomic entities that are created, used (executed), and dis-

carded, Sometimes, however, it is convenient or necessary

to look inside one of these entities and observe, measure, or

modify a program’s behavior. Executable editing changes

This work is supponed in part by Wright Laboratory Avionics Directorate,

Au Force Material Command, USAF, under grant #F336 15-94-1-1525 and
ARPA order no. B550, an NSF NYI Award CCR-9357779, NSF Grants

CCR-910 1035 and MIP-9225097, DOE Grant DE-FG02-93ER25 176, and
donations from Digital .l?qmpment Corporation and Sun Microsystems.
The U.S. Government is authorized to reproduc~ and distribute reprints for

Governmental purposes notwithstanding any copyright notation thereon.
The views and conclusions contained herein are those of the authors and

should not be interpreted as necessarily representing the official policies or
endorsements, either expressed or implied, of the Wright Laboratory Avi-
onics Directorate or the U.S. Government.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice anti the
title of the publication and its date appear, and notice is given
that copying is by permission of the Association of Computing
Machinery.To copy otherwise, or to republish, requires
a fee and/or specific permission.
SIGPLAN ‘95La Jolla, CA USA
Q 1995 ACM 0-89791 -697-2/95/0006...$3.50

Editing

executable (compiled) code by removing existing instruc-

tions and adding foreign code that observes or modifies a

program’s execution. It is an effective technique for measur-
ingandmodifying program behavior since executable hold

an entire program (including libraries) 1 and editing them

does not require source code or modification to system tools

such as compilers and linkers.

Executable editing is widely used for three purposes:

emulation, observation, and optimization. An edited execut-

able can emulate features that hardware does not provide.

For example, the Wisconsin Wind Tunnel architecture simu-

lator [19] drives a distributed, discrete-event simulation of a

parallel computer from the logical cycle times of processors

directly executing a parallel program. The underlying hard-

ware (a SPARC processor in a Thinking Machines CM-5)

does not provide a cycle counter or an efficient mechanism

for interleaving computation and simulation. The Wind

Tunnel system edits programs so that they update a cycle

timer and return control at timer expirations. Similarly, one

version of the Blizzard distributed shared-memory system

[20] edits programs to insert fine-grain access tests before

shared loads and stores. These tests permit data sharing at

cache-block granularity, which reduces the false sharing

incurred by page-granularity distributed shared-memory

systems. Another emulation is software fault isolation

(sandboxing) [27], which implements protection domains

by modifying code to prevent it from referencing or trans-

ferring control out of its domain. In the limit, editing can

replace an entire program with instructions for a different

architecture. Translation is used both to migrate legacy code

to new architectures (e.g., Tandem [2] and VAX [21]) and to
run binaries on other systems [12].

Technology trends are increasing opportunities for edit-

ing executable. Machines, both sequential and parallel, are

built almost exclusively from commodity microprocessors,

which offer instructions and memory systems targeted at a

1 This process can also be pet-fo]-med on components of m executable

(objecl files). However, a patent obtained by Pure Software precludes many
uses of object-file modificahon [17].

291

mass market that has no need for semantically-rich protec-

tion or memory models. Although its performance is lower

than hardware’s, executable editing enables research by

allowing new ideas, such as sandboxing or user-level shared

memory [19], to be demonstrated on existing processors

and tested on real applications, Editing can also solve prac-

tical problems raised by new architectures. For example,

good performance on highly-parallel superscalar or VLIW

processors requires instruction scheduling tuned for a par-

ticular implementation. Rescheduling an executable (by

editing) offers an attractive alternative to purchasing, dis-

tributing, managing, and updating binaries. Finally, editing

offers a solution to the instruction-set compatibility issues

[12] that have hindered widespread acceptance of RISC

processors, despite their cost-effective performance. Binary

translation provides machines with the operations necessary

to run the vast amount of software for Intel processors.

Another use of executable editing is program observa-

tion. Profiling and tracing tools, such as MIPS’s pixie [22]

or gpt [4], edit executable to record execution frequencies

or trace memory references. These tools are widely used to

study program or system behavior (e.g., [6,8]) and computer

architecture (e.g., [5, 11,29]). More recently, a tool based on

EEL, Active Memory [16], dramatically lowered the cost of

cache simulation—to a 2-7x slowdown—by inserting

cache-miss tests before a program’s memory references

rather than post-processing an address trace. In addition,

software development tools, such as Pure Software’s F’w’/fY

[13], detect programming errors, such as out-of-bounds

memory references or memory leaks.

Finally, executable editing has also been used for global

register allocation and program optimization [24,25].

Unlike most compilers, which operate on a single file, edit-

ing can manipulate an entire program, which permits h to

perform interprocedural analysis rather than stopping at

procedure boundaries.

Executable editing is conceptually easy, but complex in

practice because of a myriad of architectural and system-

specific details [15]. This complexity reduces the attractive-

ness of the technique by increasing the time and effort

required to produce a robust tool. Ad-hoc systems are

unlikely to employ reliable, general analyses for difficult

constructs, such as indirect jumps. Moreover, differences

among machines and operating systems lead to tools that

are closely tied to one or two platforms and which are diffi-

cult to port to other systems.

EEL (Executable Editing Library) is a new C++ library

that hides much of the complexity and system-specific

detail of editing executable. EEL provides abstractions that

allow a tool to analyze and modify executable programs

without being concerned with particular instruction sets,

executable file formats, or consequences of deleting exist-

ing code and adding foreign code, EEL greatly simplifies

the construction of program measurement, protection, trans-

lation, and debugging tools. EEL differs from other systems

in two major ways: it can edit fully-linked executable, not

just object files, and It emphasizes portability across a wide

range of systems.

Both aspects require new algorithms, which this paper

describes. The first part describes EEL’s machine-indepen-

dent abstractions and the analysis underlying them. The sec-

ond part describes how EEL is parameterized to be ported

easily to new systems. The third part describes some mea-

surements and applications of EEL.

2 Related Work

As the introduction relates, many tools modify executa-

ble to perform a wide range of tasks. However, in most

tools, the application and executable modification are inter-

twined and details of the latter have not been published.

An exception is Srivastava and Wall’s OM system [25],

which is a library, similar to EEL, for modifying object

files, OM internally represents instructions as RTL, which

can be manipulated and translated back into machine

instructions. OM’S RTL and EEL’s instructions serve the

same roles. OM, however, uses relocation information from

object files to analyze a program’s control structure and to

relocate the edited code. EEL, by contrast, directly analyzes

and modifies a program’s instructions, and consequently

can operate on programs without relocation information,

such as fully compiled and linked programs. 1 This facility

comes at a price, as EEL requires more sophisticated pro-

gram analysis and occasionally falls back on run-time code

when static analysis is insufficient. However, this analysis

also permits EEL to provide common functionality across

vastly different systems.

Larus and Ball [15] described the ad-hoc analysis used

by their profiling and tracing tool qpt to instrument execut-

able files. EEL extends the earlier work by providing a gen-

eral library for manipulating executable that is not tied to a

specific application. EEL also shows that many problems

raised in the earlier paper can be handled with more power-

ful program analysis.

ATOM [23] is a system that provides a simple interface

to OM for adding instrumentation to programs. ATOM’s

interface is higher-level and more concise than EEL’s (or

OM’S), which simplifies writing tools, but provides less

control over the instrumentation process. For example,

ATOM does not permit existing instructions to be modified2

and invokes foreign code through a function call. ATOM’s
principle advantage is that foreign code can be written

entirely In a high-level language. Figure 1 contains the EEL

code to implement the same branch-counting application as

discussed by Srivastava and Eustace [23]. The code for the

1. In the near future. EEL WI1l supplement and verify Its analysis with

relocation information. when ava~lable, and WI1l modify thk reformation,
which will permit editing of object files,

2. Newer versions provide a limited facility for changing instructions
(Wall: personal communications).

292

,,,
int main(int argc, char* argv[l)

executable* exec = new executable (argv[ll);

exec->read_contents() ;

routine* r;
FOREACH_ROUTINE (r, exec->routineso)

t
instrument(r) ;

while(!exec->hldden_routlnes ()->iS_emPtY())

{
r = exec-.hldden_routines ()->first() ;

exec->hidden_routines ()->remove(r) ;
instrument(r) ;

exec->routines ()->add(r) ;

addr x
. exec->edited_addr (exec->start_address ()) ;

exec->wrlte_ed~ted_executable (st_cat(argv[ll ,
“count”) ,
x);

return (,0) ;
,

void ir)strument (routine* r)

t
static long num . 0;

cfg’ g . r->control_flow_graph() ;
bb* b;

FOREACH_BB(b, g->blockso)

{
if (1 < b->succo->sizeo)”

edge* e;

FOREACH_EDGE (e, b->succo)

e->add_code_along (incr_count (num)) ;

num +. 1;

J
r->produce_edited_routine () ;
r->delete_control_flow_graph () ;

}

FIGURE 1. Instrumentation routines for a branch
counting tool (see Srivastava and Eustace [23]).

,., ,,

two systems are similar. However, a much larger difference

is apparent in the low-level foreign code (Figure 2).

3 EELAbstractions

EEL provides five major abstractions (C++ class hierar-

chies) that allow a tool to examine and modify an execut-

able: executable, routine, CFG, instruction, and snippet. 1

An executable contains code and data from either an object,

library, or executable file. A tool opens an executable,

examines and modifies its contents, and writes an edited

version. An executable primarily contains routines, the sec-

ond abstraction, but also contains non-executable data. A

tool can examine and modify routines in any order and

place them, and new routines, in the edited executable in
any order. EEL represents a routine’s body with two further

1, EEL also supports interprocedural analysis and call graphs, which are
not described here.

., ,,, ,,, ,,
mach_inst incr_count_code[] =

#include “incr_count bin”

);

long incr_count_Offsets[l =

~include “incr_count oft”

1;

class incr_count_snlppet
: publ~c tagged_code_snippet

t
public :

lncr_count_snippet ()
: tagged_code_snippet(incr_count_code,

sizeof(incr_count_code) ,

NULL ,

NULL,
incr_cOunt_Offsets,
sizeOf(incr_cOunt_Offsets))

1;

code_snippet *
incr_count (long counter_num)

(

‘}

assert(O <= counter_num) ;

tagged_code_snlppet* snippet
. new incr_count_snippeto ;

addr counter_addr = COUNTER_START
+ counter_num * sizeof(long);

SET_SETHI_HI (*snippet->find_lnst (1) ,
counter_addr) ;

SET_SETHI_LOW(*snippet->flnd_inst (2) ,
counter_addr) ;

SET_SETHI_LOW (*snippet->flnd_lnst (3),
counter_addr) ;

return (snippet) ;

i-lGURE 2. Low-level instrumentation for branch
counting on aSPARC processor.

,.., .,

abstractions: control-jlow graphs (CFGS) and instructions.

A CFG is a directed graph whose nodes are basic blocks

(single-entry, single-exit straight-line code sequences) and

whose edges represent control flow between blocks [1].

EEL provides extensive control-flow anddata-flow analysis

for CFGs. Blocks contain asequence of instructions, each

ofwhich is a machine-independent descriptionof amachine

instruction. A tool edits a CFG by deleting instructions or

adding code snippets to blocks and edges. Asnippet encap-

sulates machine-specific foreign code and provides context-

dependent register allocation. EEL modifies calls, branch,

and jumps to ensure that control flows correctly in the

edited program.

EEL’s abstractions are similar to those found incompil-

ers, which is not surprising given that both systems manipu-

late programs. Like many recent compilers—such as gcc

[26]—EEL’s internal representation is a register-transfer

293

level (RTL) instruction description [10]. A crucial differ-

ence, however, is that a compiler writer can choose RTL

operations with clean semantics and translate constructs to a

sequence of operations, while each EEL instruction must

capture the semantics of a machine instruction.

The remainder of this section presents these abstractions

in more detail anddescribes theanalysis underlying them.

3.1 Executable

EEL executable objects are an abstraction of executable

files-object, library [, or static and dynamically-linked pro-

grams—that hide differences among file formats. Most

operations are inquiries that return the location or size of a

named entity, such as a routine. A few operations modify a

program’s state by changing a memory location or replacing

or adding a routine. Most editing, however, is performed on

a routine’s control-flow graph, as described below.

Symbol table information in executable files is typically

incomplete or misleading [15], which greatly complicates

accurate analysis of a program. For example, compilers

“hide” routines by not producing debugger symbol table

information or put data tables in the text segment with a

symbol table entry indistinguishable from a routine’s. In

addition, symbol tables commonly record only the starting

point of a routine and do not distinguish multiple entry

points arising from Fortran ENTRY statements or interpro-

cedural jumps. Relocation information, when available, can

refine this information.

EEL uses a more general, but sometimes less precise,

approach and refines a symbol table by analyzing a program

to find data tables, hidden routines, and multiple entry

points. The analysis has several stages:

1. Initially, EEL reads a program’s symbol table and

eliminates all duplicate, temporary, and debugging labels in

the text segment. It also discards labels that are not aligned

on an instruction boundary or that are the target of a branch

or jump (not call!) from the preceding routine (these are

probably internal labels). The remaining labels form the ini-

tial set of routines. Each routine’s initial entry point is its

starting address.

2, If the executable has no symbol table (i.e., is

stripped), the initial set of routines contains only the pro-

gram’s entry point and the first address in the text segment.

In this case, EEL makes an extra pass over the program’s

instructions to find direct subroutine calls. These instruc-

tions’ targets become the initial set of routines.

3. EEL then examines instructions to find jumps out of

a routine or calls on routines not in this initial set. The desti-

nation of these control transfers become entry points to the

routines that contain them. This analysis is conservative. It

may find invalid entries, as for example, when data is inter-

1. EEL cannot yet modify Ilbraries, although the extension 1s stralght-for-
wa~d. When complete. this feature will permh ed]tmg dynamically -hnked
programs by modifying their executable (already working) and dynamic
llbranes.

preted as an instruction, but it does not miss entry points,

which is important to construct accurate CFGS.

4. The key part of the analysis occurs when EEL con-

structs a routine’s control-flow graph. A reachable, but

invalid, instruction in a CFG leads EEL to assume that the

routine contains data. However, unreachable instructions at
the end of a routine comprise another routine, which EEL

records in its symbol table and analyzes. As a side effect,

recognizing a new routine may add entry points to existing

routines.

This analysis refines the initial symbol table and allows

each routine to be identified and processed individually,

with full knowledge of its interprocedural linkages. In a

stripped executable, the analysis finds all routines, but can-

not recreate their names, which makes many tools, such as

program profilers, far less useful.

EEL maintains symbol table information for the edited

program. EEL uses it to produce debugging information for

the edited executable, so that standard tools, such as debug-

gers, work for edited programs.

3.2 Routines

Routines are named objects in a program’s text segment

that contain instructions and data. EEL uses routines in two

roles. First, they hold information about an entity in the text

segment (its name, extent, entry points, etc.), Second, rou-

tines provide the interface to EEL’s control- and data-flow

analysis and editing facility, which is described below.

3.3 Control-Flow Graph

The primary program representation in EEL is a control-

ftow graph (CFG) of a routine. EEL represents a routine as a

CFG, as opposed to a sequence of instructions. for three rea-

sons. First, the initial application of EEL, qpr, required

CFGS to implement efficient profiling and tracing by plac-

ing instrumentation on CFG edges [4], Moreover, previous

experience with simple tools showed that even they could

reduce overhead by using control-flow information to place

instrumentation intelligently. Second, EEL itself uses CFGS

to adjust addresses in branch and jump instructions affected

by editing.

Most important, CFGS provide an architecture-indepen-

dent way of representing control flow. A key question is

how to represent the semantics of instructions on a particu-

lar machine. Unlike compiler intermediate representations,

which are the usual basis for CFGS, machine instructions
can have internal control flow. For example, delayed

branches in many RISC processors execute the subsequent

instruction (in the branch delay slot) before transferring

control. These instructions come in many variants, such as

annulled branches that execute the delay slot only if the

branch is taken. EEL explicitly represents instructions’

internal control flow in a CFG, so that internal and external

control flow are treated uniformly and instructions appear to

have no control flow (i.e., are non-delayed branches).
Figure 3 shows an instruction in an annulled branch’s delay

294

brie, a L1
add %11, %12, %11

l’+
bne,a L1

~

: FIGURE 3. Example of CFG normalization. EEL CFGS
explicitly represent control flow in instructions. In this
case, the add instruction is in the delay slot of ian
annulled conditional branch and executes only if the
branch is taken, so the add instruction appears along
only one CFG edge,

..
slot, which is placed in its own basic block, which is linked

to the appropriate outgoing edge of the branch’s block. This

process can repeat several times if the instruction from the

delay slot is itself a delayed control-transfer. In a rlon-

annulled branch, the delay slot instruction is duplicated

along both edges.

W~th this explicit representation, a tool can add foreign

code before or after almost any instruction without consid-

ering how the code interacts with local control flow, which

means that the tool need not be aware of architectural

details such as delayed branches. However, if left unre-

versed, duplicated delay slot instructions increase a pro-

gram’s size and execution time, so EEL folds instructions

back into unedited delay slots.

EEL marks some CFG edges and blocks as uneditable, to

simplify the process of producing executable code from an

edited CFG. Most uneditable blocks and edges transfer con-

trol out of the current routine (e.g., the delay slot after a

call), which would require interprocedural editing to place

foreign code in another routine. Although 15–20% of edges

and blocks are uneditable, it is usually easy to find an alter-

native location to edit (e.g., before the call).

Because EEL builds CFGS a single routine at a time, it

treats subroutine calls specially. EEL uses a distinguished,

zero-length basic block—after the block containing the

call’s delayed instruction—as a placeholder for the control

transfer and possible side-effects of the subroutine’s body.

In general, when control flow cannot be completely ana-
lyzed, run-time code ensures that control passes to the cor-

rect edited instruction [15]. EEL can perform several

standard CFG analyses: dominators, natural loops, live reg-

isters, and slicing [1,28]. EEL uses them to improve the pre-

cision of control analysis and to reduce the need for run-

time mechanisms. These analyses also provide an analytic

basis for building tools.

Consider, for example, indirect jumps. Most indirect

jumps occur in case statements, in which they jump through

a dispatch table of addresses. EEL finds this type of table-

in an architecture and compiler-independent manner—by

computing a backward slice [14,28] from the jump instruc-

tion’s registers. Although at the time of slicing, the CFG is

incomplete, a path from the routine’s entry to the jump must

compute the dispatch table’s address (or the jump would fail

along the path). After finding the table’s address, EEL

builds a precise CFG for the indirect jump and subsequently

modifies the table to point to edited locations. The same

slice also can find the address used in the common idiom of

an indirect jump to a literal value. If a slice fails to find a

dispatch table or literal address, EEL marks the CFG as

incomplete and inserts code to translate the jump’s target

address at run time.

Fortunately, EEL’s slicing makes run-time translation a

rare occurrence. We measured the frequency of unanalyz-

able indirect jumps in the SPEC92 benchmarks. On SunOS

4.1.3 using gcc version 2.6.2 and the Sun Fortran compiler,

EEL found no unanalyzable indirect jumps among the 1,325

indirect jumps (and 1,027,148 instructions in 11,975 rou-

tines). On Solaris 2.4 using the SunPro compilers (version

SC3.O.1), EEL found 138 unanalyzable indirect jumps

among the 1,244 indirect jumps (and 1,185,018 instructions

in 16,613 routines). All 138 indirect jumps resulted from

optimizing a call in a return statement by popping the cur-

rent stack frame and jumping to the callee. Six of these

jumps occurred in compiled C code and the remainder were

in the Fortran library. None of these jumps affect EEL, since

EEL’s CFG are intraprocedural.

3.3.1 Editing CFGS

A tool edits a routine’s CFG by deleting instructions,

adding new code before or after any instruction, or adding

code along a control-flow graph edge. A snippet

(Section 3.5) contains the new code. EEL accumulates edits

without changing the CFG. In general, this batch style of

editing works well since tools operate on the original CFG

and need not see changes as they occur. Snippet call-backs

(Section 3.5), which provide a final chance to modify an

edit, easily handled the few exceptions.

After a tool edits a CFG, EEL produces a new version of

the routine that incorporates the changes. Producing an

edited routine involves laying out its blocks and snippets to

minimize unnecessary jumps and adjusting displacements

and addresses in control-transfer instructions—or occasion-

ally replacing these instructions by snippets containing
instructions with a longer span.

3.4 Instructions

EEL instructions are abstractions of RISC-like machine

instructions. They divide instructions in functional catego-

ries and provide operations to inquire about semantics. The

categories include memory references (loads and stores),
control transfers (calls, returns, system calls, jumps, and

branches), computations, and invalid (data). The categories

are common to many machines, so a tool can analyze EEL

295

.,
// Compute a backward address slice with
respect

// to register R, from PC.

bool instruction ::backward_slice (bb’ b,
addr PC,
int_reg r)

if (is_easyo I I is_hardo)
// .~lreacfy Ln earner slice

return (true) ;

else if (writes o->is_member(r))

// .W2dlfies register R

{

if (! fp_reads o->is_emptY())

// Do not trace floating point ops

mark_as_impossible (b, PC) ;

else if (reads o->is_emptY())

,// Easy instruction reads nothing

mark_as_easy(b, PC) :

else

// Harti instruction reacis registers.

mark_as_hard(b, Pc) ;
int_reg read_reg;

I/ Continue slicing them

FOREACH_REG (read_reg, readso)

{
b->backward_slice (pc, read_reg);

return (true) ;

return (false) ;

FIGURE 4. Operation on instructions. This code com-
putes abackward address slice for instructions thatdo
not read memory or call routines (these are analyzedby
other functions). It demonstrates how EEL instructions
hide architectural detad, but still permit a tool to analyze
a program. EEL’s abstractions are in bold.

instructionsin place ofthe underlying machine instructions.

These categories cover simple RISC machines (e.g., MIPS

and SPARC). Since categories are C++ classes, EEL can

derive new ones that span boundaries. For example, the

autoincrement load in HP’s PA-RISC machines is both a

memory reference and a computation. Combining classes,

unfortunately, is unlikely to synthesize the semantics of

CISC instructions, suchas string edits. These instructions,

however, are also difficult to analyze and instrument

because oftheirdynamic behavior and internal control flow.

The best representation may be a sequence of simpler

instructions [25],

EEL provides many inquiries about an instruction’s

effect on a program’s state (i.e., which registers it reads and
writes, how it changes the program counter, or what its

operation is). These inquiries provide enough information

to analyze many aspects of a program, For example,

Figure 4 contains code from @ that computes a backward

address slice for address tracing [14]. Because it operates on

EEL instructions, this code is similar to the original algo-

rithmand independentof an underlying machine.

To improve efficiency, EEL allocates only one instruc-

tion to represent all instances of a particular machine

1!

!!

1’
2*

3*

INCR_COUNT records a basic block or edge by

incrementing its counter in the count array.

sethl Oxl, %gb ! upper bits of &counter
Id [%1o(OX1) + %g6], %g7! load counter

add %g7, 1, %g7 ! increment
st %g7, [%1o(OX1) + %g6] ! store counter

code_snippe~ *
routine: :incr_counter_code

t
assert(O <. cOunter_num)

long cOunter_num)

tagged_code_snippet’ snippet
. new incr_cOunt_snlppeto ;

addr counter_addr = PROFILE_COUNTER_START
+ cOunter_num * sizeof(counter) ;

SET_SETHI_HI (*sn~ppet->flnd_lnst (l),
counter_addr) ;

SET_SETHI_LOW (*snippet->find_inst (2),

counter_addr) ;
SET_SETHI_LOW (*snippet->find_inst (3) ,

counter_addr) ;

return (sn~ppet) ;

FIGURE 5. Sample code snippet (for the SPARC).
Above the line is the snippet’s body, which contains
instructions to increment a profile counter. Labels before
each line (e.g., “1*“) name instructions that are custom-
ized for each counter. Below the line is qptcode that
inserts acounter’s address.

instruction. Typically, this optimization reduces the number

of allocated EEL instructions by a factor of four.

3.5 Code Snippets
Acode snippet encapsulates foreign code that is addedto

an executable. On one hand, EEL provides some system-

independence for snippets since it allocates registers for

them. On the other hand, snippets are the one point at which

a tool is machine specific, since the code in a snippet is

crafted for a machine. This is not a serious drawback, since

thecode isoften short andcarefully written forefficiency. A

programmer writes a snippet’s body in assembly language

or ahigh-level language compiled to assembly language, in

which case the snippet can be machine-independent,

Figure 5 shows a sample snippet.

When a tool creates a snippet, it specifies the instruc-

tions, two sets of registers, and a call-back function (all,
except the first, may be omitted). The first set contains reg-

isters used in the snippet that need to be assigned unused

registers. EEL finds the live registers at the point at which

the snippet is inserted and assigns dead (unused) registers to

the snippet. IfEEL cannot find enough dead registers, it
wraps the snippet with code to spill registers to the stack.

Sometimes, a snippet must use a particular register—for

example, to record its value or to execute a subroutine

call—and EEL should not spill or assign it. The second set

specifies registers that cannot be used, even if free. This

296

technique of register scavenging [15] is a way of utilizing

unused registers in snippets. 1

The final parameter to a snippet is a call-back procedure,

which is invoked after register allocation, but before the

instructions are placed in the modified program. The call -

back procedure is passed the register-allocated instructions,

their starting address in memory, and details of the reg,tster

assignment. The call-back may modify the instructions (but

cannot change their length). This mechanism has been used

to adjust instruction displacements when an instruction’s

final location is known, record addresses for subsequent

backpatching, and adjust code that records the stack pointer

to discount the effects of EEL’s spill code.

4 System-Dependent EEL

Beneath the machine-independent portions of EEL are

system- and architecture-specific components that manipu-

late executable files and machine instructions. The first

piece is a library to read and write Unix executable files.

EEL currently uses the GNU tyld library [7], which is also

used by the GNU assembler, linker, and debugger (gdb)

The second piece is an EEL-specific library to parse,

decode, analyze, and modify binary instructions. Previous

experience argued against implementing these routines, by

hand. A surprising number of bugs in qpt arose in machine-

specific binary instruction manipulations. These bugs were

of two types: improperly decoding or extracting an instruc-

tion field or omitting a particular instance from an analysis.

EEL alleviates these problems by generating this low-level

code from a concise, high-level machine description.

The tool spcww transforms a file of annotated C++ func-

tions and a machine description into machine-specific code

for analyzing and manipulating binary instructions. The

code in the file defines the interface and functionality of

EEL’s machine-specific library (see Figure 6). The annota-

tions identify points at which spawn needs to insert code.

derived from a machine’s description, to decode and manipu-

late a particular machine’s instructions.

For example, consider the function in Figure 6, which

creates an EEL instruction corresponding to a machine

instruction. The function examines an instruction, to deter-

mine the class of the corresponding EEL instruction. The

code for a particular class of instruction calls the EEL

instruction constructor, passing it the machine instruction

and some values extracted from instruction fields.

Spawn’s annotations (in bold) specify instruction classes

and attributes. Spawn processes the code and replaces {he

annotations with machine-specific code to dispatch on an

instruction’s type and to extract and modify instruction

fields. For example, in the memory-referencing instructions,

spawn replaces the annotation { {WIDTH} } by the number

1. 1[is not, however, a way of fttxmg a registel across the entire program
for the t’oreIgn code, Lotet’ releases of EEL will provide a mechani~m to
free a register.

//
// Return the EEL instruction corresponding to

// the machine instruction INST In executable
!/ EXEC at address PC.
!/

instruction’
mach_lns t_ma~e_inscruction (executable’ exec’,

macbl_inst* Inst,
addr PC J

{{ INST inst AT PC CATEGORY

CALL DIRECT::

return new call_ instruct ion(inst) ; ;
JUMP DIRECT::

return new jump_instruction (inst) ; ;

BRANCH DIRECT::

return new branch_instructlon (Inst) ; ;

JUMP:: {

if (mach_inst_do_op (inst, OP_ICALL))
return new

lndirect_call_instruction (inst) ;

If (mach_inst_do_op (inst, OP_RET))
return new return_instruction (inst) ;

if ({{IS LITERAL}} && {{READ 1}} == O)
return new jump_instruction (lnst) ;

return new indirect_jump_instruction (inst) ;

};;
LOAD STORE::

return new

memory_load_store_instruction (inst,
{{WIDTH}});;

LOAD ::
return new

memory_load_instruction (inst, {{WIDTH}}) ;;

STORE ::

return new
memoz-y_store_lnstmctlon (inst, {{WIDTH}]) ;:

SYSTEM:: {
If ((*lnst & TRAP_COND) .= TA

&& IMM(*lnst) == ST_SYSCALL) (

mdch_lnst *i = lnst - 1;

return new

sY~tem—call_lnstructiOn (inst,
{{INST i LITVAL}});

} else return new
system_call_instruction (inst, –1) ;

};;
vALID: :

return new computatlon_lnstructiOn(inst) ;;

ANY::

return new invalid_instruction (inst) ;;

})

f

FIGURE 6. EEL machine-specific code. This function
builds an EEL instruction corresponding to a machine
instruction. Spawn replace annotations (in bold) in the
C++ code with machine-specific code thatdispatcheson
different instruction types and extracts or modifies
instruction fields.

. . .

ofbytesofaccessed memory. Spawn is currently unaware of

a system’s subroutine and system call conventions [3], so

these instructions require additional processing to distin-

,guish overloaded instruction uses. For example, the code in

the figure resolves the SPARC’S three overload uses of a
jump instruction.

Spawn derives its machine-specific information from a

machine description, which specifies both instruction syn-

297

tax (i.e., encoding) and semantics. The syntax description is

silmilar to the one in Ramsey’s retargetable debugger [18]

and NJ Machine Code Toolkit. SPCNWZextends Ramsey’s

work by expressing instructions’ semantics with a simple

register-transfer description of instruction semantics [9].

Spcwvn descriptions are concise and easily derived from

processor architecture manuals. They first describe registers

and instruction fields by specifying their width and, for reg-

isters, a type for use in semantic expressions. Each instruc-

tion is described by a pattern that identifies its binary

encoding and a semantic expression that describes its opera-

tion and internal control flow.

Spawn, borrowing from Ramsey, directly supports the

common convention of expressing instruction encodings as

a matrix of instruction names. Spawn’s concise instruction

encoding encourages complete specification of an instruc-

tion set, which allows spawn-generated code to reliably

detect invalid instructions and enables EEL’s control-flow

analysis to distinguish data from instructions by detecting

where control passes to an invalid instruction.

Figure 7 shows a portion of spawn’s SPARC description.

To make a description concise, similar instructions are

gl-ouped together and described by a common semantic

function (which can be parameterized for small differences

among instructions). For example, this figure contains the

semantics of many SPARC control-transfer instructions.

The function branch describes all conditional branches. It

consists of an expression parameterized by a condition code

register (i e., integer or floating point) and a branch test.

When these arguments are bound, the expression describes

a particular branch instruction’s semantics. The description

also contains minimal timing information: the semicolon in

the function’s body indicates that the first statement exe-

cutes before the second statement (which overlaps the next

instruction’s execution). Immediately below its description,

this function is applied to the integer condition codes (PSR)

and a vector of test conditions, yielding a vector of fully

instantiated semantic functions. The semantic statements

(sem) binds each function to the corresponding instruction
(whose encoding was defined previously).

Spawn extracts much information about a machine’s

instructions and registers from a machine description. It

determines a classification for each instruction (jump, call,

store, invalid, etc.). It finds registers that each instruction

reads and writes and literal values in instruction fields. It

finds the number of registers in each register set and their

width and type. It even generates C++ code to replicate the

computation in most instructions, such as computing the

target address of a jump or load and the result of an add.

Machine descriptions of this type are far more concise

than hand-written code to manipulate instructions. For

example, the SPARC description is 145 non-comment, non-

blank lines and the mostly machine-independent annotated

C++ file is 504 lines. The handwritten equivalent is 2,268

lines (spawn produces a file 6,178 lines long). For compari-

// Instruction field de finltlons:
/,/

instruct lon (32] fields

0p 30:31, 0P2 22:24, 0P3 19:24, OpC 5:13,
rd 25:29, rsl 14:18, rs2 0:4, iflag 13:13,

simm13 0:12, imm22 0:21, disp22 0:21,

disp30 0:29, cond 25:28, aflag 2’3 :29,

asi 5:12

// General purpose register set
//
register integer (32} R[35]

alias integer {32) PSR is R[32]

alias integer {32} FSR is R[33]

register integer {32} PC

// Control-transfer instruction syntax:

//
pat
[bn be ble bl bleu bcs bneg bvs

ba bne bg bge bgu bcc bpos bvc
fbn fbne fblg fbul fbl fbug fbg f bu
fba fbe fbue fbge fbuge fble fbul e fbo
cbn cb123 cb12 cb13 cbl cb23 cb2 cb3
cba cbO cb03 cb02 cb023 cbOl cbO13 cbO12

1s OP() && op2=[ObO10 Obl10 Oblll]

&& cond=[O. .l5]

1/ Control-transfer instruction semantics:

II
val disp is (integer [32])disp30

val branch is

\r. \op. (t:=pc+disp;
op r ? pc:. t : aflag=l ? annul)

sem [brie be bg ble bge bl bgu
bleu bcc bcs bpos bneg bvc bvs]

is branch PSR @ [Jne ‘e ‘g ~le /ge ,1 Jgu
‘leu ‘cc ‘CS ‘pos ‘neg ‘VC ‘VS]

sem [fbu fbg fbug fbl fbul fblg fbne fbe

fbue fbge fbuge fble fbule fbo]
is branch FSR @ [’u ‘g ‘ug ‘1 ‘u1 ‘lg ‘ne ‘be

‘ ue ‘ ge ‘uge ‘ble ‘ule ‘o]

sem call is
t:=pc+ (# (lnteger{32})dlsp30<<2) , R[151:=Pc;

pc:=t
sem jmpl 1s t:=addr, R[rd] :=pc; pc:=t

FIGURE7. Portion of spawn’s SPARC description. The
first part defines resources suchas registers andinstruc-
tionfields. The middle part defines the encoding (syntax)
of some control-transfer instructions. The final part
defines these instructions’ semantics. In this description,
the keyword “val” introduces a (function) binding. The
statements started by ‘(sem” define the semantics of
instructions in their first argument by the corresponding
semantic function in their second argument. A comma
separates operations that can execute in parallel, A
semicolon separates sequential operations.

298

son, a spawn description of the MIPS R2000 architecture is

128 lines and the Digital Alpha architecture is 138 lines.

5 Experience

EEL currently runs on workstations with SPARC proces-

sors, under SunOS and Solaris (an older version also ran on

MIPS under Ultrix). We rewrote qpt to use this library. In

the process, qpt dropped from 14,500 non-comment, non-

blank lines of C code to 6,276 lines of C++ code, of which

975 lines are system-dependent manipulations of snippets

(which contain 116 lines of assembly code). More impor-
tantly, the new qpt is far easier to understand and modify

and contains several machine-specific optimization that

were too cumbersome to implement in the old system.

Program Size

Tool (bytes) 7Run Time (sec.)

Version (text & data)

+

(user + system)

qpt 246,784 4.4

I Crr)t-02 II 164,864 I 3.5 I

I qPt2 H 950,240 I 19.0 ‘1
qpt2 -02 810,976 8.4

qpt2 -ND 868,320 18.0

qpt2 -02 -ND 720,864 7.7 +

TABLE 1. Comparison of qptand qpt2. qpt is the original
program profiler. qpt2 is a new profiler, based on EEL, that
uses the same algorithms. Both tools instrumented a small
program, spire, that consists of 320,536 bytes of text and
data. Programs were compiled with gcc (g++) versicm
2.6.3 and run on a SPARCstation 20/61, with a 60Mhz
SuperSPARC processor and local disk. Times are best of
three runs. Base versions were compiled without
optimization. The -02 versions were compiled at that
optimization level, The -ND versions were compiled
without assert statements (qpt contains no asserts).

EEL consists of 13,960 non-comment, non-blank lines of

C++ code, of which 1,501 lines are system-dependent

manipulations of snippets (which contain 114 lines of

assembly code), 410 lines are executable-format specific,

and 2,268 are (handwritten) architecture-specific code.

Unfortunately, this reduction in a tool’s program length and

complexity comes at the cost of increased tool size and exe-

cution time. Table 1 shows the size and running time of the

old (qpt) and new (qpt2) versions, compiled several ways.

Without optimization, the new version runs 4.3 times

slower. Optimization, however, narrows the gap to 2.4 times

slower. It is worth noting that qpr2’s performance is still

acceptable, These measurements used the hand-written

machine specific code, even though the spawn-generated

code ran at the same speed.

The time gap is attributable to inefficiencies introduced

by C++ and the style in which EEL is written. Turning on

optimization narrows the gap because at -02, g++ produces

much better code and inlines member functions, which

greatly reduces the overhead of EEL’s abstract datatypes.

Better compilers should further reduce the C++ penalty.

EEL, because of its object-oriented programming style

and its explicit program representations, allocates many

more objects (317,494 vs. 84,655) than the old code, which

itself increases execution time. In particular, EEL’s CFGS

are larger (26,9 12 vs. 15,441 blocks 1), which disproportion-

ately increases execution time because many CFG algo-

rithms are non-linear.

To date, we have used EEL to build four other tools.

Alvin Lebeck and David Wood built Active Memory [16],

which is a platform for efficiently simulating memory sys-

tems. It inserts a quick test before load and store instruc-

tions to check the state of the accessed location, Different

states invoke handlers to perform tasks such as cache simu-

lation. Active Memory exploits EEL’s ability to insert for-

eign code efficiently and to add many routines (another

program, in fact) to an executable. Steven Reinhardt built a

direct-execution architectural simulator called Elsie. Elsie

replaces loads, stores, and system calls in a program with

simulator calls (using EEL) and then loads the edited exe-

cutable into the simulator. Sashikanth Chandrasekaran is

rewriting the Wisconsin Wind Tunnel architectural simula-

tor [19] using EEL. We also used EEL to re-implement

Blizzard-S’s fine-grain access control [20]. The old version

of Blizzard-S used code from qpt to insert access-control

tests. The new version greatly improves performance with

several optimization that would have been difficult to

implement in the old system. For example, one optimization

exploits EEL’s live register analysis to insert a faster test

sequence when condition codes are not live. In spite of

these optimization, the new version consists of roughly

1,300 lines of code (exclusive of EEL), while the old ver-

sion contains approximately 2,800 lines (exclusive of qpt-

specific code).

6 Conclusions

EEL is a library that aids programmers in writing porta-

ble tools to edit executable programs. Tools to modify exe-

cutable have proven their value in many areas. However,

these tools are difficult and expensive to develop and usu-

ally are specific to an architecture and operating-system,

EEL addresses these problems by providing a mostly archi-

tecture- and entirely system-independent set of operations

to read, analyze, and modify code in an executable file. EEL

itself is highly portable because of its extensive program

analysis and because its machine-specific portion is derived

from a concise machine description. EEL does not solve all

problems in executable editing (self-modifying code and

unrestricted indirect jumps and calls are open problems) but

I The two programs use slightly different definitions of o basic block
(EEL’s blocks end at calls). However, a more important difference is EEL’s
12,774 delay slot blocks, 920 CFG entry/exit blocks, and 1,94’2 call surro-
gate blocks, none of which exist in the old code

it simplifies the analysis and manipulations of most pro-

grams.

For an EEL programmer’s manual and information on

the status of EEL, check:

http://m .cs. wise. edu/-larue elehkmlml

Acknowledgments

Norman Ramsey and Mary Fernandez kindly provided

copies of their machine descriptions and information on

their toolkit. Amitabh Srivastava, Tom Ball, Trishul

Chilimbi. Mark Hill, Alvin Lebeck, Anne Rogers, Brad

Richards. David Wall, and David Wood provided helpful

comments on drafts of this paper. Sashikanth Chandraseka-

ran, Babak Falsafi. Alvin Lebeck, and Steve Reinhardt and

other members of the Wisconsin Wind Tunnel project

bravely used a new tool and contributed many helpful sug-

gestions.

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[[2]

[13]

[14]

Alfred V Aho, Ravi Sethi, and Jeffrey D. Unman. Cmpi[err:

Principles. Techiqaes, and Took. Addison-Wesley, 1985.

Krmty Andrews and Duane Sand. Migrating a CISC Computer
Fatnily onto RISC via Object Code Translation. In Proceedings of
the Flftlt In terrrat[ona[Conje t’etwe on Arch tecrut’a 1 Support fo?
.PW,qrmnung Languages md Opermrg S.wem (ASPLOS W,

pages 213–222, October 1992

Mark W. Badey and Jack W Davidson A Formal Model mrd

Speclficatlon Language for Procedure Calling Conventions [n
Co@ren(e Record c,j’ POPL ’95- 22rrd ACM SIGPL4N-SIGA CT

Symposium on Pr~ncip/e~ {/fPr~~,qr[//~~/7li/1,qL.angwges. pages 298–
310, January 1995

Thonms Ball and James R. Larus Ophmally Profdmg and Tracing
Progmms. ACM Trwsactwns ort Progmnmmg b~~m~e.! and

.$,vmms, 16(4).13 19-1360, July 1994.

Amta Borg, R. E. Kessler, and David W. Wall. Generation and

Analysls of Very Long Address Traces. In Proceeding of fhe 17//1

Annual fnrernatmal Symposium on C[)t?z~?llterArc/zitectlLre, pages
270–28 1, May 1990.

Brad Calder, Dirk Grunwald, and Benjamin Zom. Quantifying Be-
havioral Differences Between C and C++ Programs. Journal of

Pro~ramnun# Lwxuaws, 1995 To appear.

Steve Chamberlain hbbfd: The Binary Fde Descriptor Library,
Cygnus Support. bfd version 30 edition, Aprd 1991.

J. Bradley Chen and Brian N Bershad The Impact of Operating
System Structure on Memory System Performance [n Proceed-

wgs of the Fourteenth A ChJ SVMPO.H’UHZoil @eratiw $’.$teln
Pr~nc~p/es (SOSP}, pages 120–1 33, 1993.

Jack W. Davidson and Christopher W. Fraser. Code Selection
through Object Code Optimization ACM Transac tiorrs on Pr[}-
~rmming Languages and Systems, 6(4):505-526, October 1984

Jack W. Davidson and Christopher W. Fraser Register Allocation
and Exhaustwe Peephole Optlmlzatlon. Sofnwtre Pmcrtce & Er-
penence, 14(9),857–865, September]994

Amer Diwan, David Tarditl, and Eliot Moss. Memory Subsystem
Performance of Programs Using Copying Garbage Collection. in
Cmzference Re<:ord of the Twenty-Fret Annual ACM SYnzposwn
w Prmctples of Pwgra//u~unS Lw%w,qes, pages I – 14, January

1994.

Ton] R. Halfhill Emulation” RISC’S Secret Weapon. B,we, pages
I 19– 130, April 1994

Reed Hastings and Bob Joyce. Purify’ Fast DetectIon of Memory
Leaks and Access Errors. In Proceedm$y or the Winrer U’sem’
Conference, pages I–12, January 1992

James R Lm’us. Abstract Execution: A Techmque for Efficiently

[15]

[16]

[17]

[18]

[19]

p)]

[21]

[22]

[23]

[25]

[26]

[27]

[28]

[29]

Tracing Programs. Sojhtwe Practi[e & E.tperlence. 20(12): [241-
1258, December 1990.

James R. Larus and Thomas Ball. Rewrit}ng Executable Files to
Measure Progratn Behawor. .htrwre Practice & E.tperlence,
‘24(2): 197–2 18, February 1994.

Alvin R Lebeck and David A Wood. Active Memory’ A New Ab-
straction for Menlory-Systenl Simulation 10 Proceedings of rhe

1995 ACM Stgmetr[cs Conference on Memlrewen r und Modelinx

@ Cowpwer Sysfems, May 1995. To appear

Prwe Software. United States Patent 5.193,180, March 1993.

Norman Ramsey and David Hanson. A Retargetable Debugger. In
Proceedings (~ the SYGPLAN ’92 Cmjererrce on Progranznunx

Lmzguage Dest,qt and ~nzplerrtentc~tmn (PLDI), pages 22–31, June

1992.

Steven K. Reinhardt, Mark D. Hall, James R. Larus, Alvin R. Leb-
eck, James C. Lewis, and Dawd A. Wood The Wisconsin Wind

Tunnel: Vmcral Prototyping of Parallel Computers. In Proceedin~s

(fl the 1993 ACM St#metr/c.~ Cntrference on Measurement and

Modehng of Cmpurer Sysrem, p%es 48-60, May 1993.
Ioanms Schoinas. Babak Falsafi, Alvin R. Lebeck, Steven K Re-

inhardt, James R. Larus, and David A Wood. Fine-grain Access

Control for Distributed Shared Memory In Proceedings @ fhe

Si.Yt/z/nterrrariow! Co?ljerem e on Archirecrurc[[.$upporfjor pro-
granmin~ Languages and Operaring System (ASPLOS VI), pages

297–307, October 1994.

Richard L. Sites, Anton Chernoff, Matthew B. Kirk, Marrrrce P.
Marks, and Scott G Robinson. Binary Translation. Comrnwzica-

tions oj rhe ACM. 36(2):69–81. February 1993

Michael D. Smith. Tracing with pixie. Memo from Center for In-
teg~ated Systems, Stanford Univ, April 1991.

Amitabh Srivastava and Alan Eustace. ATOM A System for
Building Customized Program Analysls Tools In Prweed/rzg.r of
the SIGPLAN ’94 Cm~erenc’e on Progrwfmlin,y Lorrgaage De.rt~n
cald /))t/~/e//ze/lrttri~JrT(PLDI), pages 196–’205.June 1994

Amltabh Sr~vastava and David Wall Link-Tune Optimlzatlon of
Address Calculation on a 64-bit Architecture, In Proceedut#s of

tk SIGPLAN ’94 Conferem:e m Pro:rantmwg L{lltgll(lge De.!lgn

and [)fi~~let]le[lr<{rtc~)~(t’LDl), pages 49–60, June 1994.

Amltabh Srlvastava and Dawd W. Wall. A practical system for in-
termodrde code optimization at hnk-time. Journal @ Progrwn-

rrung Languages, 1(1): l–l 8, March 1993.

Richard M. Stallman Usins and Porrm$ GNU CC. Free Software

Foundation, October 1993. For GCC Version 2.5

Robert Wahbe, Steven Lucco, Thomas E. Anderson, and Susan L.

Graham Efficient Software-Based Fault Isolation. [n Proceedwtgs

(If the Fourteenth ACM Symposium on Operatwtg Systenz Princ-
iples (SOSP), pages 203–2 16, December 1993.

Mark Welser. Program Slicing. IEEE Transacts on Software
En#meenn~, SE-10(4):352-357. July 1984.

Cheryl A. Wiecek. A CaseStudy of VAX- 11 Instruction Set Usage
for Compiler Execution. in ProceedmHs nj SYYWL~iUnt on Arc/~i-
tectaral Support forPro,grarnrning Lmgwtges and Operations Sys-

fem. pages 177–184, April 1982.

300

