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Several compiler optimizations, such as data flow analysis, the exploitation of instruction-level
parallelism (ILP), loop transformations, and memory disambiguation, require programs with re-
ducible control flow graphs. However, not all programs satisfy this property. A new method for
transforming irreducible control flow graphs to reducible control flow graphs, called Controlled
Node Splitting (CNS), is presented. CNS duplicates nodes of the control flow graph to obtain
reducible control flow graphs. CNS results in a minimum number of splits and a minimum number
of duplicates. Since the computation time to find the optimal split sequence is large, a heuris-
tic has been developed. The results of this heuristic are close to the optimum. Straightforward
application of node splitting resulted in an average code size increase of 235% per procedure of
our benchmark programs. CNS with the heuristic limits this increase to only 3%. The impact on
the total code size of the complete programs is 13.6% for a straightforward application of node
splitting. However, when CNS is used, with the heuristic the average growth in code size of a
complete program dramatically reduces to 0.2%.

Categories and Subject Descriptors: D.3.4 [Programming Languages]: Processors—compilers;
optimization; E.1 [Data]: Data Structures—graphs

General Terms: Algorithms, Languages
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1. INTRODUCTION

Many compiler optimizations such as data flow analysis, loop transformations, the
exploitation of instruction-level parallelism, and memory disambiguation are sim-
pler, more efficient, or only applicable when the control flow graph of the program
is reducible.

In current computer architectures, improvements can be obtained by the ex-
ploitation of instruction-level parallelism (ILP). ILP is made possible due to higher
transistor densities, which allows the duplication of function units and data paths.
Exploitation of ILP consists of mapping the ILP of the application onto the hard-
ware resources of the target architecture as efficiently as possible. This mapping
is used for Very Long Instruction Word and superscalar architectures. The latter
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are used in most workstations. These architectures may execute multiple opera-
tions per cycle. Efficient usage requires that the compiler fill the instructions with
operations as efficiently as possible. This process is called scheduling. In order to
find sufficient ILP to justify the cost of multiple function units and data paths, a
scheduler should have a larger scope than a single basic block at a time. A basic
block is a sequence of consecutive statements in which the flow of control enters at
the beginning and always leaves at the end. Several scheduling scopes can be found
which go beyond the basic block level [Hoogerbrugge and Corporaal 1994]. The
most general scope currently used is called a region [Bernstein and Rodeh 1991].
A region is a set of basic blocks that corresponds to the body of a natural loop.
Since loops can be nested, regions can also be nested in each other. Like natural
loops, regions have a single entry point (the loop header) and may have multiple ex-
its [Bernstein and Rodeh 1991]. In Hoogerbrugge and Corporaal [1994] a speedup
over 40% is reported when extending the scheduling scope to a region; the problem
of region scheduling is that it requires loops in the control flow graph with a sin-
gle entry point. These flow graphs are called reducible flow graphs. Fortunately,
most control flow graphs are reducible; nevertheless, the problem of irreducible flow
graphs cannot be ignored. To exploit the benefits of region scheduling, irreducible
control flow graphs should be converted to reducible control flow graphs.

Loop transformations require a clear nesting of loops and thus reducible flow
graphs. Exploiting parallelism also requires efficient memory disambiguation. To
accomplish this the nesting of loops must be determined. Since in an irreducible
flow graph the nesting of loops is not clear, memory disambiguation techniques
cannot be applied directly to these loops. To exploit the benefits of memory disam-
biguation, irreducible control flow graphs should be converted to reducible control
flow graphs as well. Another pleasant property of reducible control flow graphs is
the fact that data flow analysis, which is an essential part of any compiler, can be
done more efficiently [Ryder and Paull 1986] without the use of special routines to
handle irreducible flow graphs.

Related Work. The problem of converting irreducible flow graphs to reducible
flow graphs can be tackled at the front-end or at the back-end of the compiler.
In Erosa and Hendren [1994] and Ammarguellat [1992] methods for normalizing the
control flow graph of a program at the front-end are given. These methods rewrite
an intermediate program in a normalized form. During normalization, irreducible
flow graphs are converted to reducible ones. To make a graph reducible, code has
to be duplicated, which results in a larger code size. Since the front-end is unaware
of the precise number of machine instructions needed to translate a piece of code,
it is difficult to minimize the growth of the code size.

Another approach is to convert irreducible flow graphs at the back-end. The
advantage is that when selecting what (machine) code to duplicate one can consider
the resulting code size. Solutions for solving the problem at the back-end are given
in Cocke and Miller [1969], Hecht [1977], Aho et al. [1988], and Cocke [1971]; all
use a technique called node splitting. The solution given by Cocke and Miller [1969]
and Cocke [1971] is very time complex and does not try to minimize the resulting
code size. The method described by Hecht [1977] and Aho et al. [1988] is even more
inefficient in the sense of minimizing the code size, but it requires less analysis.
ACM Transactions on Programming Languages and Systems, Vol. 19, No. 6, November 1997.
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Data flow algorithms prefer reducible flow graphs: the data flow algorithms dis-
cussed in Allen [1972], Hecht [1977], and Tarjan [1981] are only applicable to re-
ducible flow graphs. The Graham-Wegman algorithm [Graham and Wegman 1976]
can handle irreducible flow graphs at the cost of a loss in efficiency. Recently,
algorithms have been proposed for exhaustive and incremental data flow analy-
sis [Sreedhar et al. 1996b]. Although these algorithms can handle irreducible graphs,
their complexity increases when handling them. Solving bidirectional data flow
problems using elimination algorithms also requires reducible graphs [Dhamdhere
and Patil 1993]. In this article a new method for converting irreducible flow graphs
at the back-end is given which is very efficient in terms of the resulting code size.

Overview. In Section 2 reducible and irreducible control flow graphs are de-
fined, and a method for the detection of irreducible flow graphs is discussed. The
principle of node splitting and the conversion method described by Hecht et al.,
which is a straightforward application of node splitting, are given in Section 3. Our
approach, Controlled Node Splitting (CNS), is described in Section 4. All known
conversion methods convert irreducible flow graphs without minimizing the number
of copies. With controlled node splitting it is possible to minimize the number of
copies. Unfortunately, this method requires much CPU time; therefore a heuristic
is developed that reduces the CPU time but still performs close to the optimum.
This heuristic and the algorithms for controlled node splitting are presented. The
results of applying CNS to several benchmarks are given in Section 5. Finally the
conclusions are given in Section 6.

2. IRREDUCIBLE CONTROL FLOW GRAPHS

The flow of control of a program can be described with a control flow graph. A
control flow graph consists of nodes and edges. The nodes represent a sequence of
operations or a basic block, and the edges represent the flow of control.

Definition 2.1. The control flow graph of a program is a triple G = (N,E, s),
where (N,E) is a finite directed graph, with N the collection of nodes and E the
collection of edges. There is a path from the initial node s ∈ N to every node of
the graph.

Figure 1 shows an example of a control flow graph with nodes N = {s, a, b, c, d, e, f},
edges E = {(s, a) , (a, b) , (a, c) , (b, c) , (c, d) , (d, e) , (d, f) , (c, a) , (e, c)}, and initial
node s.

As stated in the introduction, several compiler optimizations require as input a
reducible flow graph. Many definitions for reducible flow graphs are proposed. The
one we adopt is given in Aho et al. [1988] and is based on the partitioning of the
edges of a control flow graph G into two disjoint sets:

(1) The set back edges BE consists of all edges whose heads dominate their tails.

(2) The set forward edges FE consists of all edges that are not back edges; thus
FE = E −BE.

A node u of a flow graph dominates node v, if every path from the initial node s of
the flow graph to v goes through u. The dominance relations of Figure 1 are: node
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Fig. 1. (a) Reducible control flow graph; (b) the graph G = (N,FE, s).

s

a b

Fig. 2. The basic irreducible control flow graph.

s dominates all nodes; node a dominates all nodes except node s; node c domi-
nates nodes c, d, e, f ; and node d dominates nodes d, e, f . Therefore we have
BE = {(c, a) , (e, c)} and FE = {(s, a) , (a, b) , (a, c) , (b, c) , (c, d) , (d, e) , (d, f)}.
The definition of a reducible flow graph is as follows:

Definition 2.2. A flow graphG = (N,E, s) is reducible if and only if its subgraph
G′ = (N,FE, s) is acyclic and every node n ∈ N can be reached from the initial
node s.

The flow graph of Figure 1 is reducible, since G′ = (N,FE, s) is acyclic. The flow
graph of Figure 2 is irreducible. The set of back edges is empty, because neither
node a nor node b dominates the other. FE is equal to {(s, a) , (s, b) , (a, b) , (b, a)},
and G′ = (N,FE, s) is not acyclic.

From Definition 2.2 we can derive that a control flow graph G is irreducible if
the graph G′ = (N,FE, s) contains at least one loop. These loops are called ir-
reducible loops. To remove irreducible loops, they must be detected first. There
are several methods for doing this. Interval analysis as described in Allen [1972]
and Allen and Cocke [1976] is one of them. Another method is described in Sreedhar
et al. [1996a] which uses Tarjan’s interval algorithm. All these methods are equally
applicable. We have chosen the Hecht-Ullman T1-T2 analysis [Hecht and Ullman
1972; Ryder and Paull 1986]. This method is based on two transformations T1 and
T2. These transformations are illustrated in Figure 3 and are defined as follows:

Definition 2.3. Let G = (N,E, s) be a control flow graph, and let u ∈ N . The
transformation T1(u) removes the self–loop edge (u, u) ∈ E, if this edge exists. The

derived graph becomes G′ = T1 (u) = (N,E − {(u, u)} , s). In short, G
T1(u)⇒ G′.

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 6, November 1997.
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Fig. 3. The T1 and T2 transformation.

Definition 2.4. Let G = (N,E, s) be a control flow graph, and let node v 6= s
have a single predecessor u. The transformation T2(v) is the consumption of node
v by node u. The successor edges of node v become successor edges of node u.
The original successor edges of node u are preserved except for the edge to node
v. If I is the set of successor nodes of v, then the derived graph G′ = T2 (v) =

(N − {v} , (E − {(v, n) | n ∈ I} − {(u, v)})∪ {(u, n) | n ∈ I} , s). In short, G
T2(v)⇒

G′.

Definition 2.5. The graph that results when repeatedly applying the T1 and T2
transformations in any possible order to a flow graph, until a flow graph results for
which no application of T1 or T2 is possible, is called the limit flow graph. This
transformation is denoted as T = (T1 | T2)∗.

In Hecht [1977] it is proven that the limit flow graph is unique and independent
of the order in which the transformations are applied.

Theorem 2.6. A flow graph is reducible if and only if the limit flow graph con-
tains a single node.

The proof of this theorem can be found in Hecht and Ullman [1972]. An example
of the application of the T1 and T2 transformations is given in Figure 4. The flow
graph from Figure 1 is reduced to a single node, so we can conclude that this flow
graph is reducible.

If after applying T1 and T2 transformations the resulting flow graph consists of
multiple nodes, the graph is irreducible. The transformations T1 and T2 not only
detect irreducibility, but they also detect the nodes that cause the irreducibility.
Examples of irreducible graphs are given in Figure 5. From Theorem 2.6 it follows
that a flow graph is irreducible if and only if the limit flow graph is not a single
node.1

3. FLOW GRAPH TRANSFORMATION

If a control flow graph appears to be irreducible, a graph transformation technique
can be used to obtain a reducible control flow graph. In the past some methods were
given to solve this problem [Aho et al. 1988; Cocke and Miller 1969; Hecht 1977].
Most methods for converting an irreducible control flow graph are based on a tech-
nique called node splitting. This technique is described in Section 3.1. Section 3.2

1Another definition, which is more intuitive, is that a flow graph is irreducible if it has at least
one loop with multiple loop entries [Hecht and Ullman 1972].
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Fig. 5. Examples of extensions of the basic irreducible control flow graph of Figure 2.

shows how node splitting can be applied straightforwardly to reduce an irreducible
graph.

3.1 Node Splitting

Node splitting is a technique that converts a graph G1 into an equivalent graph G2.
We assign a label to each node of a graph; the label of node xi is denoted label (xi).
Duplication of a node creates a new node with the same label. An equivalence
relation between two flow graphs is derived from Hecht [1977] and given in the
following:
ACM Transactions on Programming Languages and Systems, Vol. 19, No. 6, November 1997.
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Fig. 6. A simple example of applying node splitting to node a.

Definition 3.1.1. If P = (x1, . . . , xk) is a path in a flow graph, then define
Labels(P ) to be a sequence of labels corresponding to this path, i.e., Labels(P ) =
(label (x1) , . . . , label (xk)). Two flow graphs G1 and G2 are equivalent if and only
if, for each path P in G1, there is a path Q in G2 such that Labels (P ) = Labels (Q),
and conversely.

According to this definition the two flow graphs of Figure 6 are equivalent. Note
that all nodes a have the same label(a). Node splitting is defined as follows:

Definition 3.1.2. Node splitting is a transformation of a graph G1 = (N,E, s)
into a graph G2 = (N ′, E′, s) such that a node n ∈ N , having multiple predecessors
pi, is split. For any incoming edge (pi, n) a duplicate ni of n is made, having only
one incoming edge (pi, ni) and the same outgoing edges as n. N ′ is defined as
N ′ = N ∪ {ni} − {n} and E′ = E − {(pi, n) , (n, rj)} ∪ {(pi, ni) , (ni, rj)}, where rj

is a successor node of n. This transformation is denoted as G1
S(n)⇒ G2, where S (n)

is the splitting of node n ∈ N .

The principle of node splitting is illustrated in Figure 6; node a of graph G1 is
split.

Theorem 3.1.3. The equivalence relation between two graphs is preserved under

the transformation G1
S⇒ G2.

Proof. We show that node splitting transforms any graph G1 into an equivalent
split graph G2. Assume graph G1 has a node v with n > 1 predecessors ui and with
m ≥ 0 successors wk, as shown in Figure 7(a). The set of Labels(P ) for all paths
P of a graph G is denoted as LABELS (G). With the label notation all paths of
graph G1 of Figure 7(a) are described with

LABELS (G1) = ∪ni=1∪mk=0 {(label (s) , label (ui) ,
label (v) , label (wk))} .

If node v is split in n copies named vi, the split graph G2 results. The set of all
paths of graph G2 is

LABELS (G2) = ∪ni=1∪mk=0 {(label (s) , label (ui) ,
label (vi) , label (wk))} .

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 6, November 1997.
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Fig. 7. Two equivalent graphs.

This graph is given in Figure 7(b). Since label (vi) = label (v), every path in G2

exists also in G1, and conversely. This leads to the conclusion that the graphs G1

and G2 are equivalent. Since in Figure 7 we split a node with an arbitrary number
of incoming and outgoing edges, we may in general conclude that splitting a node
of any graph results in an equivalent graph. Using the same reasoning it will be
clear that the equivalence relation is transitive. Splitting a finite number of nodes
in either the original graph or any of its equivalent graphs results in a graph that
is equivalent to the original graph.

The name “node splitting” is deceptive because it suggests that the node is split
in different parts, but in fact the node is duplicated.

3.2 Uncontrolled Node Splitting

The node splitting transformation technique can be used to convert an irreducible
control flow graph into a reducible control flow graph. From Hecht [1977] we adopt
Theorem 3.2.1.

Theorem 3.2.1. Let S denote the splitting of a node, and let T denote some
graph reduction transformation (e.g., T = (T1 | T2)∗). Then any control flow
graph can be transformed into a single node by the transformation represented by
the regular expression T (ST)∗.

The proof of the theorem is given in Hecht [1977].
As a result of a T2 transformation, a single node in the limit graph may corre-

spond to multiple nodes in the original graph. Therefore, when a node is split in the
limit graph, its corresponding nodes in the original graph must be split to remove
irreducibility. This relation is illustrated in Figure 8. When G is transformed to
a single node by a sequence of S and T transformations, the same sequence of S
transformations transforms G into a reducible graph G∗. In this way the single
node corresponds to all nodes of G∗.
ACM Transactions on Programming Languages and Systems, Vol. 19, No. 6, November 1997.
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Fig. 8. Relation between the original graph and the reduced graph.

Hecht et al. describe a straightforward application of node splitting to reduce
irreducible control flow graphs. This method arbitrarily selects a node for splitting
from the limit graph if it has multiple predecessors. The selected node is split into
several identical copies, one for each entering edge. This approach has the advantage
that it is rather simple, but it has the disadvantage that it can select nodes that
did not have to be split to make a graph reducible. In Figure 9(a) we see that the
nodes a, b, c, and d are candidate nodes for splitting. In Figure 9(b) node d is
split; the number of nodes reduces after the application of two T2 transformations,
but the graph stays irreducible. Splitting of node a does not make the graph
reducible; see Figure 9(c). Only splitting of node b or c converts the graph into
a reducible control flow graph; see Figure 9(d). To transform the flow graph of
Figure 9(d) into a single node, the following transformation sequence can be used:
T2(b) T2(b′) T1(c) T2(c) T2(d) T1(a) T2(a).

Although this method does inefficient node splitting, it does transform an irre-
ducible control flow graph eventually into a reducible one. The consequence of this
inefficient node splitting is that the number of duplications becomes unnecessarily
large.

4. PRESENTATION OF CONTROLLED NODE SPLITTING

The problem of existing methods is that the resulting code size after converting an
irreducible graph can grow uncontrolled. Controlled Node Splitting (CNS) controls
the number of copies, which results in a smaller growth of the code size. CNS
restricts the set of candidate nodes for splitting. First, we introduce the necessary
terminology.

Definition 4.1. A loop in a flow graph is a path (n1, . . . , nk) where n1 is an
immediate successor of nk. The nodes ni do not have to be unique. The set of
nodes contained in the loop is called a loop-set.

In Figure 9(a) {a, b} , {b, c}, and {a, c, b} are loop-sets. The largest possible loop-
set is a strongly connected component.

Definition 4.2. An immediate dominator of a node u, ID(u), is the last domi-
nator on any path from the initial node s of a graph to u, excluding node u itself.

In Figure 1 node a dominates the nodes a, b, c, d, e, and f , but it immediately
dominates only the nodes b and c.

Definition 4.3. A Shared External Dominator set (SED-set) is a subset of a loop-
set L with the properties that it has only elements that share the same immediate
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Fig. 9. Examples of node splitting.

dominator and the immediate dominator is not part of the loop-set L. A SED-set
of a loop-set L is defined as

SED-set(L) = {ni ∈ L|ID (ni) = d, d 6∈ L} .

Definition 4.4. A Maximal Shared External Dominator set (MSED-set) K is
defined as:

SED-set K is maximal⇔ 6∃ SED-set M , K ⊂M and K,M ⊆ L.

The definition says that an MSED-set cannot be a proper subset of another SED-
set. In Figure 5(a) multiple SED-sets can be identified such as {a, b}, {b, c}, and
{a, b, c}. However, there is only one MSED-set: {a, b, c}.

Definition 4.5. Nodes in an SED-set of a flow graph can be classified into three
sets:

—Common Nodes (CN): Nodes that dominate other SED-set(s) and are not reach-
able from the SED-set(s) they dominate.

—Reachable Common nodes (RC): Nodes that dominate other SED-set(s) and are
reachable from the SED-set(s) they dominate.

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 6, November 1997.
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—Normal Nodes (NN): Nodes of an SED-set that are not classified in one of the
preceding classes. These nodes dominate no other SED-sets.

In the initial graph of Figure 10(a) we can identify the MSED-sets {a, b} and
{c, d}. The nodes a, c, and d are elements of the set NN, and node b is an element
of the set RC. If the edge (c, b) were not present, then node b would be an element
of the set CN. Note that loop (b, c) is not an SED-set.

Theorem 4.6. An MSED-set(L) has one node if and only if the corresponding
loop L has a single header and is reducible.

The proof of this theorem can be derived from Hecht [1977]. An example of an
MSED-set that contains only one node is the graph in Figure 4 just before the
transformation T1(a).

In Section 4.1 a description of CNS is given. It treats a method for minimizing
the number of nodes to split. Section 4.2 gives a method for minimizing the number
of copies. The number of copies is not equal to the number of splits because a split
creates a copy for every entering edge. If a node has n entering edges then one split
creates n− 1 copies. To speed up the process for minimizing the number of copies
a heuristic is introduced. The algorithms implementing this heuristic are presented
in Section 4.3.

4.1 Controlled Node Splitting

All nodes of an irreducible limit graph, except the initial node s of the graph, are
possible candidates for node splitting, since they have at least two predecessors.
However, as shown in Section 3.2, not all nodes are equally good candidates for
splitting. CNS minimizes the number of splits. To accomplish this, two restrictions
are made to the set of candidate nodes. These restrictions are as follows:

(1) Only nodes that are elements of an SED-set are candidates for splitting.
(2) Nodes that are elements of RC are not candidates for splitting.

Splitting a node which is not part of an SED-set is inefficient and unnecessary,
since it does not reduce the number of nodes in a loop. These nodes are automati-
cally reduced when all SED-sets are reduced to single nodes. An example of such
a split was shown in Figure 9(b) (the only SED-set in Figure 9(b) is {b, c}). The
first restriction prevents such a splitting.

The second restriction is more complicated. The impact of this restriction is
illustrated in Figure 10. This figure shows two different sequences of node split-
ting. The initial graph of the figure is a graph on which T has been applied. In
Figure 10(a) there are three splits needed and in Figure 10(b) only two. In Fig-
ure 10(a) node b is split; this node, however, is an element of the set RC. Splitting
node b merges the two MSED-sets {a, b} and {c, d}. We prove later that merging
MSED-sets results in more splits to reduce a graph than reducing the MSED-sets
separately.

Node splitting with the preceding restrictions, alternated with T1 and T2 trans-
formations, will eventually result in a single node. This can be seen easily. Every
time a node that is an element of an SED-set is split, it is reduced by the T2
transformation and the number of nodes involved in SED-sets decreases by one.

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 6, November 1997.



1042 · Johan Janssen and Henk Corporaal

s

a b

c d

ss

c d

s

a

c d

s

a b

c d

ss

a b

(a) node splitting sequence of three nodes

(b) node splitting sequence of two nodes

bS( )T cS( )T

cS( )T aS( )T

aS( )T

Fig. 10. Graph with two different split graphs.

Since we are considering flow graphs with a finite number of nodes, a single node
eventually remains.

Theorem 4.1.1. The minimum number of splits needed to reduce an MSED-set
with k nodes is given by

Rsplits = k − 1.

Proof. Every time a node is split and T is applied the number of nodes in
the MSED-set decreases by one. For every predecessor of the node to be split,
a duplicate is made; this has as a consequence that every duplicate has only one
predecessor and all the duplicates can be reduced by the T2 transformation. This
results in an MSED-set with one node less than the original MSED-set. To reduce
the complete MSED-set, all nodes but one of the MSED-set must be split until
there is only one node left. This results in k − 1 splits.

Theorem 4.1.2. The minimum number of splits needed to convert an irreducible
graph, with n MSED-sets, into a reducible graph is given by

Rtotal =
n∑
i=1

(ki − 1),

where Rtotal is the total number of splits, and ki is the number of nodes of MSED-set
i.
ACM Transactions on Programming Languages and Systems, Vol. 19, No. 6, November 1997.
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Proof. The proof consists of multiple parts; first, four related lemmas are
proven.

Lemma 4.1.3. All MSED-sets are disjoint; no two MSED-sets share a node.

Proof. If a node is shared by two MSED-sets, then this node must have two
different immediate dominators. This conflicts, however, with the definition of an
immediate dominator as given in Definition 4.2.

Since the MSED-sets are disjoint, the number of splits of the individual MSED-
sets can be added. If, however, splitting nodes results in merging MSED-sets,
this result does not hold any more. We have to prove that CNS does not merge
MSED-sets and that merging MSED-sets does not lead to fewer splits.

Lemma 4.1.4. Splitting a node that is part of an MSED-set and is not in RC
does not result in merging MSED-sets.

Proof. We prove that splitting a node that is an element of RC merges MSED-
sets first. Afterward we prove that the splitting of nodes that are elements of CN
or NN do not merge MSED-sets.

—Splitting an RC node merges two MSED-sets. Consider the graph of Figure 11.
Suppose that subgraphs G1 and G2 are both MSED-sets and that node x is the
immediate dominator of G2. The nodes of both subgraphs form a joined loop
because it is possible to go from G1 to G2 and vice versa. The reason that both
subgraphs do not form a single MSED-set is the fact that they have different
immediate dominators. By splitting a node that is in RC, in this case node x,
and applying T to the complete graph, the immediate dominator of subgraph
G1 also becomes the immediate dominator of subgraph G2. The MSED-sets
are merged, since the subgraphs add up to a single loop and share the same
immediate dominator. This holds also in the general case where x dominates
and is reachable by n MSED-sets.

—Splitting nodes that are not in RC does not merge MSED-sets. There are now
two node types left that are candidates for splitting: these are the nodes of the
sets NN and CN.
—Splitting nodes that are elements of the set NN does not merge MSED-sets.

These nodes do not have edges that go to other MSED-sets; therefore splitting
of these nodes does not affect the edges from one MSED-set to another, and
thus the splitting will never result in merging MSED-sets.
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—Splitting nodes that are elements of the set CN does not merge MSED-sets.
These nodes do not form a loop with the MSED-set they dominate. By splitting
such a node, the nodes of both MSED-sets get the same immediate domina-
tor; but there is no loop between the MSED-sets, and therefore they are not
merged.

Lemma 4.1.5. Reducing two merged MSED-sets results in more splits to reduce
a graph than reducing the MSED-sets separately.

Proof. Suppose MSED-set1 consists of x nodes and that MSED-set2 has y
nodes. Merging them costs one split, since the RC node must be split. Reducing
the resulting MSED-set which has now x− 1 + y nodes costs (x− 1 + y)− 1 splits.
The total number of splits is x − 1 + y. Reducing the two MSED-sets separately
results in (x− 1) + (y − 1) splits. This is one split less than the splits needed when
merging the MSED-sets.

The combination of Lemmas 4.1.4 and 4.1.5 justifies the restriction to prevent
the splitting of nodes that are elements of RC.

Lemma 4.1.6. There always exists a node in an irreducible graph that is a mem-
ber of an MSED-set, but is not an element of RC.

Proof. If all nodes of all MSED-sets are elements of RC, then these nodes
must dominate at least two other nodes because a node cannot dominate its own
dominators. These nodes are also elements of an MSED-set and of RC. The graph
therefore must have an infinite number of nodes. Since we are considering graphs
with a finite number of nodes, a node that is a member of an MSED-set and not
an element of RC must exist.

Since MSED-sets are disjoint, and our algorithm can always find a node that can
be split without merging MSED-sets, Theorem 4.1.2 holds.

Example 4.1.7. The MSED-sets {a, b} and {c, d} can be identified in Figure 10.
They both have two nodes. This results in a minimal number of (2− 1)+(2− 1) = 2
splits needed to reduce the graph.

4.2 Minimizing the Number of Copies

We saw in the previous section that the algorithm minimizes the number of splits,
but this does not result in a minimum number of copied instructions or basic blocks.
The quantity to minimize is denoted by Q; Q (n) means the quantity of node n.
The quantity of a graph G is denoted by Q(G) and defined as

Q(G) =
∑
n∈N

Q(n).

The purpose of CNS is to minimize Q(G∗), where G∗ is the equivalent reducible
representation of G. The following conditions must be satisfied to achieve this
minimum:

(1) The freedom of selecting nodes to split must be as far-reaching as possible.
Notice that the number of splits is also minimized if we prevent the splitting of
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Fig. 13. An irreducible graph with its copy tree.

all nodes that dominate another MSED-set, i.e., prevent the splitting of nodes
that are elements of RC and CN. Nevertheless, this has the disadvantage that
we lose some freedom in selecting nodes. The effect of less freedom is illustrated
in Figure 12. Suppose that the nodes contain a number of instructions and that
we want to minimize the total resulting code size, which means that we would
like to copy as few instructions as possible. The minimal number of copied
instructions, if we prevent splitting nodes that are elements of RC and CN,
is Q (a) + min (Q(c), Q (d)). If we only prevent the splitting of nodes that are
elements of RC, the minimal number of copied instructions is min (Q(a), Q (b))+
min (Q(c), Q (d)). If the number of instructions in node b is fewer than in node
a, then the number of copied instructions is fewer in the latter case. Thus,
keeping the set of candidate nodes as large as possible pays off if one would like
to minimize the copied quantity.

(2) The sequence of splitting nodes must be chosen optimally. There exist multiple
split sequences to solve an irreducible graph. A tree can be built to discover
them all. Figure 13 shows a flow graph and the tree with all possible split
sequences. The nodes of this tree indicate how many copies are introduced
by the split. The edges give the split sequence. The number of copies can be
found by following a path from the root to a leaf and adding the quantities
of the nodes. Suppose that the nodes contain a number of instructions and
that we want to minimize the total resulting code size. This means that we
would like to copy as few instructions as possible. To accomplish this we can
choose from six different split sequences with five different numbers of copies.
The minimum number of copied instructions is min(Q(a+ c), Q(2a+ b), Q(a+
3b), Q(3b+c), Q(b+2c)). The problem is to pick a split sequence that minimizes
the number of copied instructions.

Theorem 4.2.1. Minimizing the Q(G∗) of an irreducible graph that is converted
ACM Transactions on Programming Languages and Systems, Vol. 19, No. 6, November 1997.
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Fig. 14. The influence on the number of copies by splitting an RC node.

to a reducible graph requires a minimum number of splits. In short,

Q(G∗) is minimal ⇒ # splits to produce G∗ is minimal.

Proof. Suppose all nodes of a limit flow graph, except the initial node s, are
candidates for splitting; then nodes that are not in an MSED-set, and nodes that
are elements of RC are also candidates. Splitting a node of one of these categories
results in a number of splits that is greater than the minimal number of splits. If we
can prove that splitting these nodes always results in a Q(G∗) that is greater than
the one we obtain if we exclude these nodes, then we have proven that a minimum
number of splits is required in order to minimize Q(G∗).

—Splitting a node that is not in an MSED-set cannot result in the minimum Q(G∗).
As seen in the previous section, splitting of nodes that are not in an MSED-
set does not make a graph more reducible, since splitting these nodes does not
decrease the number of nodes in an MSED-set. This means that the MSED-set
still needs the same number of splits.

—Splitting nodes that are elements of RC cannot result in the minimum Q(G∗).
Consider the graph of Figure 14. In this figure the subgraph G has at least one
MSED-set; otherwise the graph would not be irreducible. Figure 14(a) shows the
reduction of a graph in the case where splitting of an RC node is not allowed, and
Figure 14(b) shows the case where splitting of such a node is allowed. The node
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g is the reduced subgraph G, and the notation sa in a node means that node s
has consumed a copy of node a. The resulting quantity of the node is the sum
of the quantities of nodes s and a. As we can see, the resulting total quantity of
the split sequence of Figure 14(a) is Q(s) +Q(a) +Q(g), and the resulting total
quantity of the reduced graph of Figure 14(b) is Q(s) + 2Q(a) +Q(g). Without
loss of generality we can conclude that splitting a node that is in RC never can
lead to the minimum total quantity.

As one can easily see, the more nodes in MSED-sets the larger the tree. This will
increase the number of possible split sequences. It takes much time to compute all
possibilities; therefore, a heuristic is constructed that picks a node ni to split with
the smallest H (ni) as defined by

H (ni) = Q(ni) ∗ (# predecessor nodes− 1).

The results of this heuristic, compared to the best possible split sequence, are given
in Section 5.

4.3 Algorithms

The method described in the previous sections detects an irreducible control flow
graph and converts it to a reducible control flow graph. In this section the algorithm
for this method is given. The algorithm consists of three parts: the T1 and T2
transformations, the selection of a candidate node, and the splitting of a node.

Algorithm 4.3.1 (Controlled Node Splitting).

Input : The control flow graph G of the procedure.
Output : The reducible control flow graph G∗ of the procedure.
Method :

(1) Copy G to G′

(2) Apply repeatedly T1-T2 transformations to G′

(3) while G′ has more than one node do
(4) Node selection
(5) Split candidate node in both G and G′

(6) Apply repeatedly T1-T2 transformations to G′

(7) endwhile
(8) return G∗ = G

Algorithm 4.3.1 expects as input a control flow graph. The structure of this
flow graph is copied to a flow graph of nodes G′; see line (1). Now we have two
flow graphs: a flow graph of basic blocks and a flow graph of nodes. This means
that initially every node represents a basic block. Every duplicate introduced by
splitting a node in G′ initiates the duplication of basic blocks in node G. Due to
the T2 transformation a node can correspond to multiple basic blocks; all these
corresponding basic blocks must be duplicated. In line (2) the T1 and T2 trans-
formations are applied until the graph G′ does not change any more. Note that
the dominator relations of the remaining nodes are not changed, and therefore no
recomputing is required. If the graph of nodes is reduced to a single node, the graph
is reducible, and no splitting is needed. However, if multiple nodes remain, node
splitting must be applied. First, a node for splitting is selected (4). This is done
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with Algorithm 4.3.2, which is discussed next. The selected node is then split (5)
as defined in Definition 3.1.2. In the graph of basic blocks, the corresponding basic
blocks are copied also. After splitting, the T1 and T2 transformations are applied
again on the graph of nodes (6). When there is still more than one node left the
process starts over again. The algorithm terminates if the graph of nodes is reduced
to a single node, and thus the graph of basic blocks is converted to a reducible flow
graph. This graph G∗ is returned. At this point the dominator relations of the flow
graph of basic blocks must be recomputed, since new basic blocks are inserted.2

Algorithm 4.3.2 (Node Selection).

Input : The control flow graph of nodes.
Output : A node for splitting.
Method :

(1) min = ∞
(2) for all nodes n do
(3) if n in an SED-set and n not in RC then
(4) Calculate H(n)
(5) if H(n) < min
(6) min = H(n)
(7) candidate node = n
(8) endif
(9) endif
(10) endfor
(11) return candidate node

Algorithm 4.3.2 selects a node for splitting. Initially every node is a candidate. A
node is rejected if it does not fulfill the restrictions (3), as discussed in Section 4.1.
For all nodes that fulfill these restrictions the heuristic H(n) is calculated (4). The
node that minimizes H(n) is selected for splitting.

5. RESULTS

The goal of our experiments is to measure the quality of controlled node splitting
in the sense of minimizing the number of copies. In the experiments four methods
for node splitting are used:

—Optimal Node Splitting (ONS). This method computes the best possible node
split sequence with respect to the quantity to minimize. This algorithm, however,
requires a lot of computation time (up to several days on an HP735 workstation).

—Uncontrolled Node Splitting (UCNS). This is a straightforward application of
node splitting; no restrictions are made to the set of nodes that are candidates
for splitting. This method is described in Hecht [1977].

—Controlled Node Splitting (CNS). This method is node splitting with the restric-
tions discussed in Section 4.1.

2The algorithms for the T1 and T2 transformations and for node splitting are quite straightforward
and are not given here.
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Table I. The Number of Copied Basic Blocks

Procedure(Program) Basic ONS UCNS CNS CNSH
Blocks

atof generic(a68) 93 1 (1%) 33.7 (36%) 3.0 (3%) 1.0 (1%)
equals(a68) 13 1 (8%) 5.5 (42%) 5.5 (42%) 1.0 (8%)
lex(bison) 142 4 (3%) 165.3 (116%) 24.3 (17%) 4.0 (3%)
output program(bison) 14 2 (14%) 9.7 (69%) 9.7 (69%) 2.0 (14%)
copy definition(bison) 119 2 (2%) 417.0 (350%) 27.7 (23%) 2.0 (2%)
copy guard(bison) 190 4 (2%) 2273.5 (1197%) 133.4 (70%) 4.0 (2%)
copy action(bison) 183 2 (1%) 636.2 (348%) 27.7 (15%) 2.0 (1%)
next file(expand) 17 1 (6%) 5.0 (29%) 5.0 (29%) 1.0 (6%)
re compile pattern(gawk) 787 1 (0%) 1202.7 (153%) 47.5 (6%) 1.0 (0%)
interp(gs) 202 5 (2%) 120.3 (60%) 93.0 (46%) 5.0 (2%)
sreadhex(gs) 33 10 (30%) 22.5 (68%) 13.0 (39%) 10.0 (30%)
gs type1 interpret(gs) 173 4 (2%) 165.3 (96%) 165.3 (96%) 4.0 (2%)
s LZWD read buf(gs) 45 14 (31%) 21.0 (47%) 21.0 (47%) 14.0 (31%)
copy block(gzip) 17 2 (12%) 2.5 (15%) 2.5 (15%) 2.0 (12%)
compile program(sed) 145 1 (1%) 80.1 (55%) 60.0 (41%) 1.0 (1%)
re search 2(sed) 486 20 (4%) 1328.7 (273%) 50.0 (10%) 21.0 (4%)
squeeze filter(tr) 33 8 (2%) 16.3 (49%) 15.5 (47%) 8.0 (24%)

Total 2692 82 (3.0%) 6505.3 (241.7%) 704.1 (26.2%) 83 (3.1%)

—Controlled Node Splitting with Heuristic (CNSH). This is the same method as
CNS, but now heuristic H(n) is used to select a node from the set of candidate
nodes.

The algorithms are applied to a selective group of benchmarks. These bench-
marks are procedures with an irreducible control flow graph and are obtained from
the real-world programs: a68, bison, expand, gawk, gs, gzip, sed, tr. The programs
are compiled with the GCC compiler, ported to an RISC architecture.3 The number
of copies of two different quantities is considered: in Table I the number of copied
basic blocks is listed, and in Table II the number of copied instructions is listed.
The reported results of the methods UCNS, CNS, and CNSH are the averages of
all possible split sequences.

The first column in Tables I and II lists the procedure name, with the program
name within parentheses. The second column gives the number of basic blocks or
instructions of the procedure before an algorithm is applied. The other columns
give the number of copies that result from the algorithms; both the absolute number
of copies and a percentage that indicates the growth of the quantity with respect
to the original quantity are given.

From the results of the ONS method we may conclude that node splitting does
not have to lead to an excessive number of copies and that CNS outperforms UCNS.
UCNS can lead to an enormous amount of copies; the average percentage of growth
in basic blocks is 241.7%, and in code size it is 235.5%. CNS performs better, a
growth of 26.2% for basic blocks and 30.1% for the number of instructions, but
there is still a big gap with the optimal case. When using the heuristic, controlled
node splitting performs very close to the optimum. The average growth in basic

3We used an RISC-like MOVE architecture. The MOVE project [Corporaal 1997; Hoogerbrugge
and Corporaal 1994] researches the generation of application-specific processors (ASPs) by means
of Transport Triggered Architectures (TTA).
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Table II. The Number of Copied Instructions

Procedure(Program) Insn ONS UCNS CNS CNSH

atof generic(a68) 550 2 (0%) 186.2 (34%) 10.5 (2%) 2.0 (0%)
equals(a68) 84 1 (1%) 37.5 (45%) 37.5 (45%) 1.0 (1%)
lex(bison) 529 18 (3%) 577.3 (109%) 94.0 (18%) 18.0 (3%)
output program(bison) 59 9 (15%) 41.5 (70%) 41.5 (70%) 9.0 (15%)
copy definition(bison) 539 9 (2%) 1870.0 (347%) 122.5 (23%) 9.0 (2%)
copy guard(bison) 880 18 (2%) 10408.2 (1183%) 603.3 (69%) 18.0 (2%)
copy action(bison) 858 9 (1%) 2961.4 (345%) 122.5 (14%) 9.0 (1%)
next file(expand) 64 1 (2%) 16.5 (26%) 16.5 (26%) 1.0 (2%)
re compile pattern(gawk) 2746 1 (0%) 4106.9 (150%) 218.5 (8%) 1.0 (0%)
interp(gs) 969 20 (2%) 588.1 (61%) 442.5 (46%) 20.0 (2%)
sreadhex(gs) 150 47 (31%) 79.7 (53%) 58.0 (39%) 47.0 (31%)
gs type1 interpret(gs) 1175 19 (2%) 1063.8 (90%) 1063.8 (90%) 19.0 (2%)
s LZWD read buf(gs) 228 62 (27%) 95.0 (42%) 95.0 (42%) 62.0 (27%)
copy block(gzip) 88 4 (5%) 7.5 (9%) 7.5 (9%) 4.0 (5%)
compile program(sed) 693 2 (0%) 391.4 (56%) 267.5 (39%) 2.0 (0%)
re search 2(sed) 1857 91 (5%) 4803.7 (259%) 227.5 (12%) 93.0 (5%)
squeeze filter(tr) 119 22 (18%) 57.0 (48%) 55.5 (47%) 22.0 (18%)

Total 11588 335 (2.9%) 27291.7 (235.5%) 3484.1 (30.1%) 337 (2.9%)

blocks for the methods CNSH and ONS is respectively 3.1% and 3.0%. The code
size increase is 2.9% for both methods. Comparing the results of ONS and CNSH
leads to the conclusion that CNSH performs very close to the optimum. In our
experiments there was only one procedure with a very small difference.

The time it takes to transform a graph into a single node is small for UCNS,
CNS, and CNSH. Usually it took only a few milliseconds on a HP735 workstation.
The difference in execution time between the three methods is negligible. This was
to be expected, since UCNS does no flow graph analysis but copies many more
nodes than needed; CNS analyzes the flow graph, but copies fewer nodes; finally,
CNSH also analyzes the flow graph and computes a heuristic, but copies only a
few nodes. Apparently, analyzing the graph takes approximately the same time as
splitting extra nodes. Computing the optimal split sequence (ONS) takes a lot of
computation time, usually hours, because it has to check all possible split sequences
to find the best solution. The flow graph of benchmark lex consisted, after applying
T, of 13 nodes. This limit flow graph has two MSED–sets of three nodes each; this
results ideally in four splits. However, ONS in the worst case needs 12! (≈ 108)
split/transformation sequences to find the best solution.

The results in Tables I and II show a substantial improvement when using CNSH.
Nevertheless, the question is what is the impact when using a simpler method such
as UCNS on the code size of the complete program. If the impact is small then why
bother, except for the theoretical aspects? In Tables III and IV, the effects for the
complete code expansion are shown. All procedures of benchmarks that have an
irreducible control flow graph are converted to procedures with a reducible control
flow graph. In Table III we show the impact in basic blocks and in Table IV the
impact on the code size. The first column of both tables lists the program name; the
second column lists the total number of basic blocks or instructions; the remaining
columns list the increase in basic blocks or in instructions for each method.

As can be seen from the tables, the impact of node splitting can be substantial in
terms of the number of basic blocks or instructions. For UCNS the average increase
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Table III. The Increase of Basic Blocks per Program

Program Basic ONS UCNS CNS CNSH
Blocks

a68 3972 2 (0%) 39.2 ( 1%) 8.5 (0%) 2.0 (0%)
bison 4441 14 (0%) 3501.7 (79%) 222.8 (5%) 14.0 (0%)
expand 1226 1 (0%) 5.0 ( 0%) 5.0 (0%) 1.0 (0%)
gawk 8342 13 (0%) 1252.4 (15%) 63.5 (1%) 13.0 (0%)
gs 16514 47 (0%) 405.3 ( 2%) 326.3 (2%) 47.0 (0%)
gzip 3244 2 (0%) 2.5 ( 0%) 2.5 (0%) 2.0 (0%)
sed 3823 21 (1%) 1408.8 (37%) 110.0 (3%) 22.0 (1%)
tr 1554 8 (1%) 16.3 ( 1%) 15.5 (1%) 8.0 (1%)

Total 43116 108 (0.3%) 6631.2 (15.4%) 754.1 (1.7%) 109.0 (0.3%)

Table IV. The Increase of Instructions per Program

Program Insn ONS UCNS CNS CNSH

a68 19527 3 (0%) 223.7 (1%) 48.0 (0%) 3.0 (0%)
bison 19689 63 (0%) 15858.4 (80%) 983.8 (5%) 63.0 (0%)
expand 4949 1 (0%) 16.5 (0%) 16.5 (0%) 1.0 (0%)
gawk 36445 56 (0%) 4356.1 (12%) 285.0 (1%) 56.0 (0%)
gs 85824 210 (0%) 2169.7 (3%) 1804.1 (2%) 210.0 (0%)
gzip 14620 4 (0%) 7.5 (0%) 7.5 (0%) 4.0 (0%)
sed 17489 93 (1%) 5195.1 (30%) 495.0 (3%) 95.0 (1%)
tr 6530 22 (0%) 57.0 (1%) 55.5 (1%) 22.0 (0%)

Total 205073 452 (0.2%) 27884.0 (13.6%) 3695.4 (1.8%) 454.0 (0.2%)

in basic blocks is 15.4%, and in instructions it is 13.6%. For the program bison the
code size even increases 80%. When using controlled node splitting the increases are
smaller and quite acceptable. CNSH results as expected in the smallest increases
for both quantities. These results show the importance of a clever transformation
of irreducible control flow graphs.

6. CONCLUSIONS

A method is presented that transforms an irreducible control flow graph to a re-
ducible control flow graph. The method is based on node splitting. To achieve the
minimum number of splits the set of possible candidate nodes is limited to nodes
with specific properties. Since splitting of these nodes can result in a minimum re-
sulting code size, the algorithm can be used to prevent uncontrolled growth of the
code size. Because the computation time to determine the optimum split sequence
is large, a heuristic has been developed.

The method with the heuristic is called controlled node splitting with heuristic.
This method is applied to a set of procedures that contain irreducible control flow
graphs. The results are compared with the results of the other methods; these
methods are uncontrolled node splitting and controlled node splitting. From our
experiments it follows that uncontrolled node splitting can lead to an enormous
number of copies; the average growth in code size per procedure is 235.5%. Con-
trolled node splitting performs better (30.1%), but there is still a big gap with
the optimal case. We observed that the average number of copies when using con-
trolled node splitting with heuristic is very close to that of the optimum; the average
growth in code size per procedure is only 2.9%.

We also looked at the impact on the total code size of the benchmarks containing
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procedures with irreducible control flow graphs. The same methods as for the
analysis per procedure were used. For CNSH the impact on the total code size is
very small, only 0.2% on average. The impact of UCNS is, however, surprisingly
large: an average code size growth of 13.6% with a maximum for bison of 80%.
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