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Abstract
Previous implementations of generic rewriting libraries have a
number of limitations: they require the user to either adapt the
datatype on which rewriting is applied, or the rewriting rules are
specified as functions, which makes it hard or impossible to docu-
ment, test, and analyse them. We describe a library that demon-
strates how to overcome these limitations by defining rules in
terms of datatypes, and show how to use a type-indexed datatype
to automatically extend a datatype for syntax trees with a case
for metavariables. We then show how rewrite rules can be imple-
mented without any knowledge of how the datatype is extended
with metavariables. We use Haskell, extended with associated type
synonyms, to implement both type-indexed datatypes and generic
functions. We analyse the performance of our library and compare
it with other approaches to generic rewriting.

Categories and Subject Descriptors D.1.1 [Programming Tech-
niques]: Applicative (Functional) Programming; D.2.13 [Software
Engineering]: Reusable Software—Reusable libraries; D.3.3 [Pro-
gramming Languages]: Language Constructs and Features—Poly-
morphism

General Terms Design, Languages

Keywords datatype-generic programming, term rewriting

1. Introduction
Consider a Haskell datatype Prop for representing expressions of
propositional logic:

data Prop = Var String | T | F | Not Prop
| Prop :∧: Prop | Prop :∨: Prop

Now suppose we wish to simplify such expressions using the law
of contradiction: p ∧ ¬p→ F . We could then encode this rule as a
function and apply it to an expression using a bottom-up traversal
function transform:
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simplify :: Prop→ Prop
simplify prop = transform andContr prop

where
andContr (p :∧: Not q) | p ≡ q = F
andContr p = p

Although this definition is relatively straightforward, encoding
rules as functions has a number of drawbacks. To start with, a
rule is not a concise one-line definition, because we have to pro-
vide a catch-all case in order to avoid pattern-matching failure at
runtime. Second, pattern guards are needed to deal with multiple
occurrences of a variable, cluttering the definition. Lastly, rules
cannot be analysed easily since it is hard to inspect functions.

One way to solve these drawbacks is to design specialized
rewriting functionality. We could, for example, define a datatype to
represent rewriting rules on propositions, and implement some as-
sociated rewriting machinery that supports patterns with metavari-
able occurrences. While the drawbacks mentioned above are
solved, this solution has a serious disadvantage: there is a large
amount of datatype-specific code. If we wanted to use rewriting on,
say, a datatype representing arithmetic expressions, we would have
to define the rewriting functions and the datatype for rules again.

In this paper, we propose a rewriting library that is generic in the
datatype on which rules are applied. Using our library, the example
above can be written as follows:

simplify :: Prop→ Prop
simplify prop = transform (applyRule andContr) prop

where
andContr p = p :∧: Not p : F

The library provides transform, applyRule, and (: ) which are
generic and in this case, instantiated with the type Prop. There is no
constructor for metavariables. Instead, we use ordinary function ab-
straction to make the metavariable p explicit in the rule andContr,
which is now a direct translation of the rule p∧¬p→ F . This rule
description no longer suffers from the drawbacks of the solution
that was based on pattern matching.

Specifically, these are the contributions of our paper:

• Our library implements term rewriting using generic program-
ming techniques within Haskell extended with associated type
synonyms (Chakravarty et al. 2005), as implemented in the
Glasgow Haskell Compiler (GHC). In order to specify rewrite
rules, terms have to be extended with a constructor for metavari-
ables used in rules. This extension is achieved by making the
rule datatype a type-indexed datatype (Hinze et al. 2004). The
rewriting machinery itself is implemented using well-known
generic functions such as map, crush, and zip.
• We present a new technique to specify metalevel information

without the need to modify the domain datatype definitions. We
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use it to make rule specifications in our library user-friendly:
rules are defined using the original term constructors. This
is remarkable because the values of type-indexed datatypes
(which in our library are used to represent terms extended with
metavariables) must be built from different constructors than
those from the user program (Prop, in our example). Thus, we
hide implementation details about the use of type-indexed types
from the library’s users. This technique can also be applied to
other generic programs such as the Zipper (Huet 1997).

Besides these contributions, we think our rewriting library is
an elegant example of how to implement type-indexed types in a
lightweight fashion by means of associated type synonyms. Most
examples of type-indexed types (Hinze et al. 2004; Van Noort
2008) have been implemented using a language extension such as
Generic Haskell (Löh 2004). Other examples of lightweight imple-
mentations of type-indexed types have been given by Chakravarty
et al. (2008), and Oliveira and Gibbons (2005).

We are aware of at least one other generic programming library
for rewriting in Haskell. Jansson and Jeuring (2000) implement a
generic rewriting library in PolyP, an extension of Haskell with a
special construct for generic programming. Our library differs in a
number of aspects. First, we use no specific generic-programming
extensions of Haskell. This is a minor improvement, since we ex-
pect that Jansson and Jeuring’s library can easily be translated to
plain Haskell as well. Second, we use a type-indexed data type for
specifying rules. This is a major difference, since it allows us to
generically extend a datatype with metavariables. In Jansson and
Jeuring’s library, a datatype either has to be extended by hand, forc-
ing users to introduce new constructors, or one of the constructors
of the original datatype is reused for metavariables. Neither solu-
tion is very satisfying, since either the rules have to be specified
in the new datatype using different constructor names, or we intro-
duce a safety problem in the library since an object variable might
accidentally be considered to be a metavariable.

This paper is organised as follows. Section 2 continues the dis-
cussion on how to represent rewrite rules, and motivates the design
choices we made in our generic library for term rewriting. We then
present the interface of our library in Section 3 from a user’s per-
spective, followed by a detailed description of the implementation
of our library and the underlying machinery in Section 4. We com-
pare the efficiency or our library to other approaches to term rewrit-
ing in Section 5. Finally, we discuss related work in Section 6, and
we present our conclusions and ongoing research in Section 7.

2. Motivation
There are at least two techniques to implement rule-based rewriting
in Haskell: “rules based on pattern matching” and “rules as values
of datatypes”.

2.1 Rules Based on Pattern Matching
The first technique encodes rewrite rules as Haskell functions, us-
ing pattern matching to check whether the argument term matches
the left-hand side of the rule. If this is the case, then we return the
right-hand side of the rule, or else, we return the term unchanged.
For example, the rule ¬(p ∧ q) → ¬p ∨ ¬q is implemented as
follows:

deMorgan :: Prop→ Prop
deMorgan (Not (p :∧: q)) = Not p :∨: Not q
deMorgan p = p

We have to add a catch-all case, because otherwise a runtime failure
is caused by an argument that does not match the pattern.

Rules containing variables with multiple occurrences in the left-
hand side cannot be encoded as Haskell functions directly. Instead,

such occurrences must be enforced in so-called pattern guards. For
example, p ∨ ¬p→ T is implemented by:

exclMiddle :: Prop→ Prop
exclMiddle (p :∨: Not q) | p ≡ q = T
exclMiddle p = p

Here we have replaced the second occurrence of p with a fresh
variable q, but we have retained the equality constraint as a pattern
guard (p ≡ q). Note that this requires the availability of an equality
function for the type Prop.

In some situations, it is useful to know whether a rule has
been successfully applied or not. We provide this information by
returning the rewriting result in a Maybe value, at the expense of
some additional notational overhead:

exclMiddleM :: Prop→ Maybe Prop
exclMiddleM (p :∨: Not q) | p ≡ q = Just T
exclMiddleM p = Nothing

Still, encoding rules as functions is very convenient because we can
directly use generic traversal combinators that are parameterised by
functions. For example, the Uniplate library (Mitchell and Runci-
man 2007) defines transform,

transform :: Uniplate a⇒ (a→ a)→ a→ a

which applies its argument in a bottom-up fashion, and many other
traversal combinators.

These combinators can, for example, be used to remove tauto-
logical statements from a proposition:

removeTaut :: Prop→ Prop
removeTaut = transform exclMiddle

Pattern matching allows for rewrite rules to be encoded more or
less directly as functions. Furthermore, on account of their func-
tional nature, rules can be immediately combined with generic pro-
gramming strategies in order to control their application. However,
having rules as functions raises a number of issues:

• The rules cannot be observed easily because it is not possible to
directly inspect a function in Haskell. There are several reasons
why it would be desirable to observe rules, such as:

Documentation: The rules of a rewriting system can be
pretty printed to generate documentation.

Automated testing: In general, a rule must preserve the se-
mantics of the expression that it rewrites. A way to test this
property is to randomly generate terms and check whether
the rewritten version preserves the semantics. However, a
rule with a complex left-hand side will most likely not
match a randomly generated term, and hence it will not be
tested sufficiently. If the left-hand side of a rule were in-
spectable, we could tweak the generation process in order
to improve the testing coverage.

Inversion: The left-hand side and right-hand side of a rule
could be exchanged, resulting in the inverse of that rule.

Tracing: When a sequence of rewriting steps leads to an
unexpected result, you may want to learn which rules were
applied in which order.

• The lack of nonlinear pattern matching in Haskell can become
a nuisance if the left-hand side of a rule contains many occur-
rences of the same variable.
• It is tedious to have to specify a catch-all case when rules are

encoded as functions. All rule definitions require this extra case.
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• Haskell is not equipped with first-class pattern matching, so the
user cannot write abstractions for commonly occurring struc-
tures in the left-hand side of a rule.

2.2 Rules as Values of Datatypes
Instead of using functions, we use a datatype to encode our rewrite
rules, which makes left-hand sides and right-hand sides observable:

data RuleSpec a = a : a

In the case of propositions, we have to introduce a variation of
the Prop datatype, which has an extra constructor MetaVar for
metavariables:

data EProp = MetaVar String
| EVar String | ET | EF | ENot EProp
| EProp :?: EProp | EProp :>: EProp

This extended datatype EProp is used to define rewrite rules. Of
course, we need to define a rewriting function specific to propo-
sitions that uses rules expressed by value of EProp to transform
expressions:

rewriteProp :: RuleSpec EProp→ Prop→ Prop

Here we do not show the implementation of rewriteProp, but note
that its implementation would be specific to propositions. If we
want to specify rewrite rules that work on different datatype, then
we also have to define new rewrite functions for those datatypes.
With the specific rewrite function for propositions, for instance, we
can use rules on propositions in the following way:

simplifyProp :: Prop→ Prop
simplifyProp = transform (rewriteProp exclMiddle)

where
exclMiddle =

MetaVar "p" :>: ENot (MetaVar "p") : ET

In this definition, another problem becomes apparent. The way in
which rules are specified is very inconvenient, because, rather than
the type Prop, we are required to use the new datatype EProp with
its different constructor names. Furthermore, this definition is not
explicit about which metavariables are used. So, the rewrite func-
tion is responsible for verifying that each metavariable occurring in
the right-hand side side of the rule is actually bound at the left-hand
side.

3. Interface
The interface to our generic rewriting library is presented in Fig-
ure 1. We explain it briefly by means of several examples. We first
specify a few rules to be used with the library:

notTrue :: RuleSpec Prop
andContr :: Prop→ RuleSpec Prop
deMorgan :: Prop→ Prop→ RuleSpec Prop

notTrue = Not T : F
andContr p = p :∧: Not p : F
deMorgan p q = Not (p :∧: q) : Not p :∨: Not q

Rule specifications represent metavariables as function arguments.
For example, the deMorgan rule uses two metavariables, so they are
introduced as function arguments p and q. Rules with no metavari-
ables, such as notTrue, do not take any argument.

Rules must first be transformed to an internal representation
before they can be used for rewriting. Let us first take a look at the
functions rule0, rule1, and rule2. These take a rule specification and
return a rule. Each function handles rules with a specific number
of metavariables. In principle, the user would have to pick the right
function to build a rule, but in practice, it is more convenient to
abstract over the number of metavariables by means of a type class.

-- Rule specifications and rules (ADT)
data RuleSpec a = a : a
type Rule a

-- Build rules from specifications with 0, 1, and 2 metavariables
rule0 :: Rewrite a⇒ RuleSpec a → Rule a

rule1 :: Rewrite a⇒ ( a→ RuleSpec a)→ Rule a

rule2 :: Rewrite a⇒ (a→ a→ RuleSpec a)→ Rule a

-- Build rules from specifications with any number of metavariables
rule :: (Builder r, Rewrite (Target r))⇒ r→ Rule (Target r)

-- Application of rules to terms
rewriteM :: (Rewrite a, Monad m)⇒ Rule a→ a→ m a

rewrite :: Rewrite a ⇒ Rule a→ a→ a

-- Application of rule specifications to terms
applyRule :: (Builder r, Rewrite (Target r))

⇒ r→ Target r→ Target r

Figure 1. Generic rewriting library interface

The library provides an overloaded function rule for building rules
from specifications with any number of metavariables1:

notTrueRule, andContrRule, deMorganRule :: Rule Prop

notTrueRule = rule notTrue
andContrRule = rule andContr
deMorganRule = rule deMorgan

The library defines two rewriting functions, namely rewriteM and
rewrite. The first has a more informative type: if the term does not
match against the rule, the monad is used to notify about the failure.
The second rewriting function always succeeds, and it returns the
term unchanged whenever the rule is not applicable. Both functions
are straightforward to use with built rules. Consider the following
expressions:

rewrite notTrueRule (Not T)
rewrite andContrRule (Var "x" :∧: Not (Var "x"))
rewriteM deMorganRule (T :∧: F)

These expressions evaluate to F, F, and Nothing respectively.
Sometimes, it is more practical to directly apply a rule specifica-
tion, without calling the intermediate compilation step. The func-
tion applyRule can be used for this purpose:

applyRule deMorgan (Not (T :∧: Var "x"))

This expressions evaluates to Not T :∨: Not (Var "x").

3.1 Representing the Structure of Datatypes
To enable generic rewriting on a datatype, a user must describe the
structure of that datatype to the library. This is a process analogous
to that of Scrap Your Boilerplate (Lämmel and Peyton Jones 2003)
and Uniplate. These libraries require datatypes to be instances of
the classes Data and Uniplate respectively.

In our library, the structure of a regular datatype is given by an
instance of the type class Regular. Figure 2 shows the definition of
Regular and the type constructors used to describe type structure.
This type class declares PF, an associated type synonym of kind
∗ → ∗ that abstracts over the immediate subtrees of a datatype and
captures the notion of pattern functor. For example, Figure 3 shows

1 The associated type synonym Target returns the datatype to which the
rule is applied. For example, Target (Prop → RuleSpec Prop) yields
Prop. For more details, see Section 4.4.
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class Functor (PF a)⇒ Regular a where
type PF a :: ∗ → ∗
from :: a → PF a a
to :: PF a a→ a

data K a r = K a
data Id r = Id r
data Unit r = Unit
data (f :+: g) r = Inl (f r) | Inr (g r)
data (f :*: g) r = f r :*: g r

infixr 7 :*:
infixr 6 :+:

Figure 2. Regular type class and view types

instance Regular Prop where
type PF Prop = K String :+: Unit :+: Unit :+: Id

:+: Id :*: Id
:+: Id :*: Id

from (Var s) = Inl (K s)
from T = Inr (Inl Unit)
from F = Inr (Inr (Inl Unit))
from (Not p) = Inr (Inr (Inr (Inl (Id p))))
from (p :∧: q) = Inr (Inr (Inr (Inr (Inl (Id p :*: Id q)))))
from (p :∨: q) = Inr (Inr (Inr (Inr (Inr (Id p :*: Id q)))))
to (Inl (K s)) = (Var s)
to (Inr (Inl Unit)) = T
to (Inr (Inr (Inl Unit))) = F
to (Inr (Inr (Inr (Inl (Id p))))) = (Not p)
to (Inr (Inr (Inr (Inr (Inl (Id p :*: Id q)))))) = (p :∧: q)
to (Inr (Inr (Inr (Inr (Inr (Id p :*: Id q)))))) = (p :∨: q)

Figure 3. Complete Regular instance for Prop

the complete definition of the Regular instance for Prop. The as-
sociated type synonym PF corresponds to PolyP’s type constructor
FunctorOf (Jansson and Jeuring 1997; Norell and Jansson 2004).
Its instantiation follows directly from the definition of a datatype.
Choice amongst constructors is encoded by nested sum types (:+:);
therefore, five sums are used above to encode six constructors. A
constructor with no arguments is encoded by Unit; this is the case
for the second and third constructors (T and F). Constructor argu-
ments that are recursive occurrences (such as that for Not) are en-
coded by Id. Other constructor arguments are encoded by K, and,
hence, the argument of Var is encoded in that way. Finally, con-
structors with more than one argument (like (:∧:) and (:∨:)) are
encoded by nested product types (:*:).

The two class methods of Regular, from and to, relate datatype
values with the structural representation of those values. Together,
they establish a so-called embedding-projection pair: i.e., they
should satisfy to ◦ from = id and from ◦ to v id (Hinze 2000).
More specifically, from transforms the top-level constructor into a
structure value, while leaving the immediate subtrees unchanged.
The function to performs the transformation in the opposite direc-
tion.

We want to stress here that, although the instance declaration for
Prop may seem quite verbose, it follows directly and mechanically
from the structure of the datatype. Defining instances of Regular
could easily be done automatically, for example by using Template
Haskell (Sheard and Peyton Jones 2002). Moreover, all that needs
to be done to use the generic rewriting library on a datatype is
declaring it an instance of Regular of Rewrite (see Section 4.5).

class Functor f where
fmap :: (a→ b)→ f a→ f b

instance Functor Id where
fmap f (Id r) = Id (f r)

instance Functor (K a) where
fmap (K x) = K x

instance Functor Unit where
fmap Unit = Unit

instance (Functor f, Functor g)⇒ Functor (f :+: g) where
fmap f (Inl x) = Inl (fmap f x)
fmap f (Inr y) = Inr (fmap f y)

instance (Functor f, Functor g)⇒ Functor (f :*: g) where
fmap f (x :*: y) = fmap f x :*: fmap f y

Figure 4. fmap definitions

4. Implementation
In this section, we describe the implementation of the library. We
proceed as follows. First, we explain how generic functionality is
implemented for datatypes that are instances of Regular. In par-
ticular, we explain how to implement map, crush, and zip generi-
cally over pattern functors. Next, we present the implementation of
generic rewriting using these functions. Finally, we describe how to
support rule specifications that use the original datatype construc-
tors.

4.1 Generic Functions
Generic functions are defined once and can be used on any datatype
that is an instance of Regular. The definition of a generic function
is given by induction on the types used to describe the structure of a
pattern functor. In our library, generic function definitions are given
using type classes.

4.1.1 Generic Map
Mapping over the elements of a pattern functor is defined by means
of the Functor type class, as given in Figure 4. Here, the interesting
case is the transformation of pattern functor elements, which are
stored in the Id constructors. Note that this is a well-known way to
implement generic functions, derived from how generic functions
are implemented in PolyP.

Now, using fmap, we define the compos operator of Bringert and
Ranta (2006), which applies a function to the immediate subtrees
of a value. A pattern functor abstracts precisely over those subtrees,
so we use Regular to define compos generically:

compos :: Regular a⇒ (a→ a)→ a→ a
compos f = to ◦ fmap f ◦ from

The function compos transforms the a argument into a value of the
pattern functor, so that it can apply f to the immediate subtrees using
fmap. The version of compos given here is equivalent to PolyP’s
mapChildren (Jansson and Jeuring 1998); we could also define
monadic or applicative variants of this operator by generalising
generic mapping in a similar fashion.

Generic compos can be used, for example, to implement the
bottom-up traversal transform, used in the introduction:

transform :: Regular a⇒ (a→ a)→ a→ a
transform f = f ◦ compos (transform f)

4.1.2 Generic Crush
A crush is a useful fold-like operation on pattern functors. It com-
bines all the a values within pattern-functor value into a b-value
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class Crush f where
crush :: (a→ b→ b)→ b→ f a→ b

instance Crush Id where
crush (⊕) e (Id x) = x⊕ e

instance Crush (K a) where
crush e = e

instance Crush Unit where
crush e = e

instance (Crush a, Crush b)⇒ Crush (a :+: b) where
crush (⊕) e (Inl x) = crush (⊕) e x
crush (⊕) e (Inr y) = crush (⊕) e y

instance (Crush a, Crush b)⇒ Crush (a :*: b) where
crush (⊕) e (x :*: y) = crush (⊕) (crush (⊕) e y) x

Figure 5. crush definitions

using a binary operator (⊕) and an initial b-value e. The definition
of crush is given in Figure 5.

A common use of crush is collecting all recursive elements of a
pattern-functor value:

flatten :: Crush f⇒ f a→ [a ]
flatten = crush (:) [ ]

If a datatype is an instance of Regular, we obtain the immediate
recursive occurrences of a value by means of children:

children :: (Regular a, Crush (PF a))⇒ a→ [a ]
children = flatten ◦ from

4.1.3 Generic Zip
Generic zip over pattern functors is crucial to the implementation of
rewriting. Figure 6 shows the definition of generic zip over pattern
functors, fzipM, which takes a function that combines the a and b
values that are stored in the pattern functor structures. It traverses
both structures in parallel and merges all occurrences of a and b
values along the way. The function has a monadic type because the
structures may not match in the case of sums (which corresponds
to different constructors) and constant types (because of different
values stored in K). However, the monadic type also allows the
merging function to fail or to use state, for example.

There are some useful variants of fzipM, such as a zip that uses
a non-monadic merging function:

fzip :: (Zip f, Monad m)
⇒ (a→ b→ c)→ f a→ f b→ m (f c)

fzip f = fzipM (λx y→ return (f x y))

and a partial generic zip that does not have a monadic return type:

fzip′ :: Zip f⇒ (a→ b→ c)→ f a→ f b→ f c
fzip′ f x y =

case fzip f x y of
Just res → res
Nothing→ error "fzip’: structure mismatch"

4.2 Generic Rewriting
Now that we have defined basic generic functions, we continue
with defining the basic rewriting machinery. Rules consist of a left-
hand side and a right-hand side which are combined using the infix
constructor (: ):

data RuleSpec a = a : a

lhs, rhs :: RuleSpec a→ a

lhs (x : ) = x
rhs ( : y) = y

class Zip f where
fzipM :: Monad m⇒ (a→ b→ m c)→ f a→ f b→ m (f c)

instance Zip Id where
fzipM f (Id x) (Id y) = liftM Id (f x y)

instance Eq a⇒ Zip (K a) where
fzipM (K x) (K y)
| x ≡ y = return (K x)
| otherwise = fail "fzipM: structure mismatch"

instance Zip Unit where
fzipM Unit Unit = return Unit

instance (Zip a, Zip b)⇒ Zip (a :+: b) where
fzipM f (Inl x) (Inl y) = liftM Inl (fzipM f x y)
fzipM f (Inr x) (Inr y) = liftM Inr (fzipM f x y)
fzipM = fail "fzipM: structure mismatch"

instance (Zip a, Zip b)⇒ Zip (a :*: b) where
fzipM f (x1 :*: y1) (x2 :*: y2) =

liftM2 (:*:) (fzipM f x1 x2) (fzipM f y1 y2)

Figure 6. fzipM definitions

4.2.1 Schemes
What is the type of rules that rewrite Prop-values? The type
RuleSpec Prop is a poor choice, because such rules cannot contain
metavariables. Our solution is to define a type that adds a metavari-
able case to a datatype. For this purpose, we define a type-indexed
type SchemeOf for schemes. A scheme extends its argument with a
metavariable constructor. Now, the type of rules that rewrite Prop-
values is RuleSpec (SchemeOf Prop). We define a type syn-
onym Rule such that this type can be written more concisely as
Rule Prop:

type Rule a = RuleSpec (SchemeOf a)

The process of obtaining SchemeOf a for a given type a can be
depicted as follows:

a
SchemeOf−−−−−→ SchemeOf a

PF

???y x???Fix

PF a −−−−→
Ext

Ext (PF a)

To define SchemeOf a, we assume that a is an instance of Regular
and, hence, has an associated pattern functor PF a. Furthermore,
we extend the pattern functor with a case for metavariables. The
type of schemes of a is then defined as the fixed point of the now
extended pattern functor.

To extend a pattern functor with a case for metavariables, it is, in
essence, enough to introduce a sum to encode the choice between
the extra metavariable case and a value from the original pattern
functor:

type Ext f = K MetaVar :+: f

However, Ext extends a type with metavariables on the top-level
only, whereas ee also have to allow metavariables to occur in
subterms. In other words, the pattern functor has to be extended
recursively. To this end, we introduce a type synonym Scheme that
encodes the recursive structure of schemes by means of a type-level
fixed-point operator Fix:

newtype Fix f = In{out :: f (Fix f)}
type Scheme f = Fix (Ext f)

A scheme for a given regular type is now defined in terms of the
type-indexed type PF:

type SchemeOf a = Scheme (PF a)
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Our use of type-indexed types is simpler than in other applications
such as the Zipper, because there are no types defined by induction
on the pattern functor.

It remains to define the type MetaVar. In our library, metavari-
ables are defined by Int-values:

type MetaVar = Int

The choice for Int is rather arbitrary, and other representations
could be used as well. In Sections 4.3 and 4.4 we show that the
use of MetaVar-values can be made internal to the library and that
the concrete representation of metavariables need not be exposed
to the user.

To easily construct Scheme-values we define two helper func-
tions, which construct a metavariable, or a pattern functor value,
respectively.

metaVar :: MetaVar→ Scheme f
metaVar = In ◦ Inl ◦ K
pf :: f (Scheme f)→ Scheme f
pf = In ◦ Inr

Rewriting functions are often defined by case analysis on values of
type Scheme. Therefore, we use a view on Scheme to conveniently
distinguish metavariables from pattern functor values.

data SchemeView f = MetaVar MetaVar | PF (f (Scheme f))

schemeView :: Scheme f→ SchemeView f
schemeView (In (Inl (K x))) = MetaVar x
schemeView (In (Inr r)) = PF r

We also define a function to embed a-values into their extended
counterparts.

toScheme :: Regular a⇒ a→ SchemeOf a
toScheme = pf ◦ fmap toScheme ◦ from

Finally, we define a fold on Scheme values that applies its argument
functions to either a metavariable or a pattern functor value.

foldScheme :: Functor f
⇒ (MetaVar→ a)→ (f a→ a)→ Scheme f→ a

foldScheme f g scheme =
case schemeView scheme of

MetaVar x→ f x
PF r → g (fmap (foldScheme f g) r)

4.2.2 Basic Rewriting
When rewriting a term with a given rule, the left-hand side of the
rule is matched to the term, resulting in a substitution mapping
metavariables to terms:

type Subst a = Map MetaVar (a, SchemeOf a)

We store both the original term a and the corresponding scheme
SchemeOf a for efficiency reasons. This approach prevents the
matched subterm from being converted multiple times since the
right-hand side of a rule can contain multiple occurrences of a
metavariable. Instead, each occurrence is instantiated just by se-
lecting the second component from the substitution.

A substitution is obtained by the function match, which is
passed a scheme and a value of the original type:

match :: (Regular a, Crush (PF a), Zip (PF a), Monad m)
⇒ SchemeOf a→ a→ m (Subst a)

match scheme term =
case schemeView scheme of

MetaVar x→
return (singleton x (term, toScheme term))

PF r →
fzip (, ) r (from term) >>=
crush matchOne (return empty)

where
matchOne (term1, term2) msubst =

do subst1 ← msubst
subst2 ← match (apply subst1 term1) term2

return (union subst1 subst2)

When we encounter a metavariable we return the singleton substi-
tution mapping the metavariable to the original term and its repre-
sentation as a scheme. Otherwise, we zip the two terms to check
that the structures match. Then, we obtain a single substitution by
matching each recursive occurrence and returning the union of the
resulting substitutions. In the definition of matchOne, we apply the
substitution obtained thus far to the first term using the function
apply. This function enforces linear patterns by instantiating each
metavariable for which there is a binding. This also guarantees that
the resulting substitution does not overlap with the substitution ob-
tained thus far, since multiple occurrences of a metavariable are
replaced throughout the term. As a consequence, we can just return
the union of the two substitutions.

The function apply is defined in terms of foldScheme:

apply :: Regular a
⇒ Subst a→ SchemeOf a→ SchemeOf a

apply subst = foldScheme findMetaVar pf
where

findMetaVar x = maybe (metaVar x) snd (lookup x subst)

When a metavariable is encountered, we lookup the corresponding
term in the second component of the substitution. A pattern functor
value is reconstructed using the function pf.

The function inst, which is similar to apply, instantiates each
metavariable in a term and returns a value of the original datatype:

inst :: Regular a⇒ Subst a→ SchemeOf a→ a
inst subst = foldScheme findMetaVar to

where
findMetaVar x =

maybe (error "inst: unbound metavariable")
fst
(lookup x subst)

Again, we lookup the corresponding term in the substitution. Since
we construct a value of the original datatype, unbound metavari-
ables are not allowed and result in a runtime error. A pattern functor
value is converted to a value of the original datatype using to.

Finally, we combine the functions defined for matching a term
and instantiating a term in the definition of rewriteM:

rewriteM :: (Regular a, Crush (PF a), Zip (PF a), Monad m)
⇒ Rule a→ a→ m a

rewriteM r term =
do subst← match (lhs r) term

return (inst subst (rhs r))

We match the left-hand side of the rule to the given term, resulting
in a substitution. Then, we use this substitution to instantiate the
right-hand side of the rule. Since the matching process might fail,
a monadic computation is returned. A similar library function is
rewrite, defined in terms of rewriteM:
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rewrite :: (Regular a, Crush (PF a), Zip (PF a))
⇒ Rule a→ a→ a

rewrite r term = maybe term id (rewriteM r term)

This function always succeeds since the original term is returned
when rewriting fails.

4.2.3 Example
At this point, we can already use generic rewriting to implement
the example presented in the introduction. However, as we will see,
the rewriting library interface is not yet very user-friendly.

Recall that a rule for rewriting propositions has type Rule Prop.
Hence, we define the rule andContr using a scheme representation:

andContr :: Rule Prop
andContr = p ‘pAnd‘ pNot p : pF

where
p = metaVar 1

We abbreviate the structure encodings of Prop values in order to
improve readability. Functions pF, pNot, and pAnd are defined as
follows:

pF :: SchemeOf Prop
pF = pf (Inr (Inr (Inl Unit)))
pAnd ::

SchemeOf Prop→ SchemeOf Prop→ SchemeOf Prop
pAnd p q = pf (Inr (Inr (Inr (Inr (Inl (Id p :*: Id q))))))

pNot :: SchemeOf Prop→ SchemeOf Prop
pNot p = pf (Inr (Inr (Inr (Inl (Id p)))))

Except for the application of pf, structure values resemble those
used in the Regular instance for Prop. In fact, it is possible to define
pVar, pT, and pF more concisely by using toScheme:

pVar :: String→ SchemeOf Prop
pVar s = toScheme (Var s)
pT :: SchemeOf Prop
pT = toScheme T
pF :: SchemeOf Prop
pF = toScheme F

Unfortunately, pNot, pAnd, and pOr cannot be defined similarly.
Consider the following failed attempt for Not:

badPNot :: SchemeOf Prop→ SchemeOf Prop
badPNot p = toScheme (Not p)

This definition is not correct because the constructor Not cannot
take a SchemeOf Prop value as an argument. It follows that we
cannot use Not and toScheme, and we are forced to define pNot
redundantly using the structure value of Not.

There are two problems with using generic rewriting as pre-
sented so far. First, in order to write concise rules, the user will need
to define abbreviations for the structure representations of construc-
tors, such as pF and pAnd. Second, such abbreviations force the
user into relating constructors to their structure representations yet
again, even though this is already made explicit in the Regular in-
stance for the datatype.

4.3 Metavariables as Function Arguments
We have demonstrated how generic term rewriting is implemented
in our library. A second contribution of this paper is that we show
how our library allows its users to specify rules using just the con-
structors of the original datatype definition. This is a clear improve-
ment over the rewriting example above, because a user does not
need to directly manipulate structure values. While such specifica-
tions are given using the original constructors, they still need to be
transformed into SchemeOf values so that the rewriting machinery

defined earlier can be used. We now discuss how to transform these
rule specifications into the internal library representation of rules,
or internal rules for short.

We start with the simpler case of rules that contain no metavari-
ables. An example of such a rule is notTrue:

notTrue :: RuleSpec Prop
notTrue = Not T : F

Because the rule does not contain metavariables, it is sufficient to
apply toScheme to perform the conversion:

rule0 :: Regular a⇒ RuleSpec a→ Rule a
rule0 r = toScheme (lhs r) : toScheme (rhs r)

In our system, rules with metavariables are specified by functions
from terms to rules. For example, the rule andContr is modified as
follows to represent the metavariable:

andContr :: Prop→ RuleSpec Prop
andContr p = p :∧: Not p : F

A rule with one metavariable is represented by a function with one
argument that returns a RuleSpec value, where the argument can
be seen as a placeholder for the metavariable. This is convenient
for programmers because metavariables are specified in the same
way for different datatypes, rule specifications are more concise,
scope checking is performed by the compiler, and implementation
details such as variable names and the internal representation of
terms remain hidden.

To use these specifications for rewriting, we have to transform
them into the internal representation for rules. Consider the func-
tion that performs this transformation for rules with one metavari-
able:

rule1 :: (Regular a, Zip (PF a), LR (PF a))
⇒ (a→ RuleSpec a)→ Rule a

rule1 r = introMetaVar (lhs ◦ r) : introMetaVar (rhs ◦ r)

Function introMetaVar performs the transformation from a func-
tion on terms to a term extended with metavariables. The value r
is composed to yield either the left-hand side or right-hand side of
the rule. The context LR (PF a) provides support for extending a
term with metavariables, we defer the discussion of this predicate
for the moment.

The function passed to introMetaVar is not allowed to inspect
the metavariable argument: the metavariable can only be used as
part of the constructed term. As our library relies on this property,
the user should not inspect metavariables in rule definitions. For
example, the following rule is invalid:

bogusRule :: Prop→ RuleSpec Prop
bogusRule (Var ) = T : F
bogusRule p = p :∧: Not p : F

Ideally, the restriction that metavariables are not inspected are en-
coded in the type system, so that rules like bogusRule are ruled out
statically. However, to the best of our knowledge, it is impossible
to enforce this restriction without changing the user’s datatype.

A rule function that uses but does not inspect its metavari-
able argument has the property that if two different values are
passed to that function, the resulting rule values will only differ
at the places where the metavariable argument occurs. The func-
tion insertMetaVar exploits this property and inserts a metavariable
exactly at the places where the two term representations differ:

insertMetaVar :: (Regular a, Zip (PF a))
⇒ MetaVar→ a→ a→ SchemeOf a

insertMetaVar v x y =
case fzip (insertMetaVar v) (from x) (from y) of

Just str → pf str
Nothing→ metaVar v
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class LR f where
leftf :: a→ f a
rightf :: a→ f a

instance LR Id where
leftf x = Id x
rightf x = Id x

instance LRBase a⇒ LR (K a) where
leftf = K leftb
rightf = K rightb

instance LR Unit where
leftf = Unit
rightf = Unit

instance (LR f, LR g)⇒ LR (f :+: g) where
leftf x = Inl (leftf x)
rightf x = Inr (leftf x)

instance (LR f, LR g)⇒ LR (f :*: g) where
leftf x = leftf x :*: leftf x
rightf x = rightf x :*: rightf x

Figure 7. leftf and rightf definitions

Function insertMetaVar traverses two pattern functor values in
parallel using fzip, constructing a scheme (SchemeOf a) during the
traversal. Whenever the two structures are different, a metavariable
is returned. Otherwise, the recursive occurrences of the matching
structures are traversed with insertMetaVar v.

We now define introMetaVar:

introMetaVar :: (Regular a, Zip (PF a), LR (PF a))
⇒ (a→ a)→ SchemeOf a

introMetaVar f = insertMetaVar 1 (f left) (f right)

Function insertMetaVar requires that the two term arguments are
different at metavariable occurrences, so we apply f to two values,
left and right, such that they cause the failure of fzip. In particular,
we want the following property to hold:

∀f. fzip f (from left) (from right) ≡ Nothing

Informally, this property states that left and right produce values of
the same type with different top-level constructors (or the same top-
level constructor but different values at a non-recursive position).
This follows from the fact that fzip only fails for incompatible
pattern functor values, which represent the top-level constructors. It
is important that left and right differ at the top-level (i.e., as soon as
possible), otherwise metavariables would be inserted deeper than
intended. Functions left and right are defined as follows:

left :: (Regular a, LR (PF a))⇒ a
left = to (leftf left)
right :: (Regular a, LR (PF a))⇒ a
right = to (rightf left)

These definitions use auxiliary functions leftf and rightf that gen-
erate a pattern functor value and convert it to the expected a using
to. The arguments of leftf and rightf are the recursive occurrences,
here we give the same argument in both cases (left) to emphasize
that the difference must be at top-level. These auxiliary functions
are defined generically, that is, by induction on the structure of the
pattern functor. Figure 7 shows the definitions of both functions as
methods of the type class LR. The constant case uses an additional
type class, which is shown in Figure 8.

The property for fzip above is restated for leftf and rightf as
follows:

∀f x y. fzip f (leftf x) (rightf y) ≡ Nothing

class LRBase a where
leftb :: a
rightb :: a

instance LRBase Int where
leftb = 0
rightb = 1

instance LRBase [a ] where
leftb = [ ]
rightb = [error "Should never be inspected"]

Figure 8. leftb and rightb definitions

Note that the LR instances for Unit and Id do not satisfy the above
property. We explain why we chose this suboptimal formulation.
Ideally, we would prefer to enforce the above property statically
for all pattern functors, and replace the LR instances for Unit and
Id by weaker instances of the type class One, where One produces
a single functor value. Then, we could write

instance (One f, One g)⇒ LR (f :+: g) where ...

Unfortunately, the product case makes this scheme unrealistic:

instance (LR f, One g)⇒ LR (f :*: g) where ...
instance (One f, LR g)⇒ LR (f :*: g) where ...

To generate two different product values, at least one of the compo-
nents should be inhabited by two different values. However, these
two overlapping instances cannot be expressed in Haskell. So, we
adopt the current simpler approach, where, to satisfy the property
above, we require the pattern functor to contain at least one sum
or one constant case. Furthermore, note that the current instance of
sum cannot be given as, for example, Inl ⊥ and Inr ⊥, because the
function to may evaluate to ⊥ when presented with such values.
We call leftf recursively in both sum methods, to emphasize that
different sum choices are enough for zip to fail.

With a slight generalization we allow the specification of rules
with two metavariables. For example, consider the following rule:

deMorgan :: Prop→ Prop→ RuleSpec Prop
deMorgan p q = Not (p :∧: q) : Not p :∨: Not q

To use the deMorgan rule with our rewriting machinery we need a
variant of rule1 that handles two metavariables:

rule2 :: (Regular a, Zip (PF a), LR (PF a))
⇒ (a→ a→ RuleSpec a)→ Rule a

rule2 r =
introMetaVar2 (λx y→ lhs (r x y)) : 
introMetaVar2 (λx y→ rhs (r x y))

The real work is carried out by introMetaVar2.

introMetaVar2 :: (Regular a, Zip (PF a), LR (PF a))
⇒ (a→ a→ a)→ SchemeOf a

introMetaVar2 f = term1 ‘mergeSchemes‘ term2

where
term1 = insertMetaVar 1 (f left left) (f right left )
term2 = insertMetaVar 2 (f left left) (f left right)

As before, metavariables are inserted by insertMetaVar, but there is
a slight complication: the rule specification now has two arguments
rather than one. Because insertMetaVar inserts only one variable
at a time, we need to handle the two metavariables separately.
Suppose that we handle the first metavariable, then we need two
terms to pass to insertMetaVar. We apply f to different arguments
for the first metavariable, and we supply the same argument for
the second metavariable. In this way, differences in the generated
terms arise only for the first metavariable. The second metavariable
is handled in a similar way.
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At this point we have two terms, each containing either one of
the metavariables. We use the function mergeSchemes to combine
the two schemes into one that contains both metavariables.

mergeSchemes :: Zip f
⇒ Scheme f→ Scheme f→ Scheme f

mergeSchemes p@(In x) q@(In y) =
case (schemeView p, schemeView q) of

(MetaVar i, )→ p
( , MetaVar j)→ q

→ In (fzip′ mergeSchemes x y)

The generic function fzip′ is used to traverse both terms in parallel
until a metavariable is encountered at either side. Then, the term
at the other side can be discarded, for we are sure that it is just
a left-value that was kept constant for the sake of handling one
metavariable at a time.

4.4 Rules with an Arbitrary Number of Metavariables
Our technique for introducing metavariables in rules exhibits a
clear pattern. It would be easy to define functions rule3, rule4, and
so on to handle the cases for other fixed numbers of metavariables.

Alternatively, we can try and capture the general pattern in a
class declaration and a suitable set of instance declarations. To this
end, let us first examine this particular pattern more closely. In
general, a rule involving n metavariables, for some natural number
n, can be built by a function f that expects n arguments and produces
a rule specification. To do so, we invoke the function n times, each
time putting the value right into a specific argument position while
keeping the value left in the remaining positions. Each of the n rule
specifications obtained through this diagonal pattern are combined,
by means of the function insertMetaVar, with a base value obtained
by passing left values exclusively to f:

(f left left · · · left)| {z }
base

./

8>><>>:
( f right left · · · left )
( f left right · · · left )

...
...

...
. . .

...
( f left left · · · right )| {z }

diag

In this way, we obtain n rules that are, by repeated merging, com-
bined into the single rule originally expressed by f.

First, we define a type class Builder that contains the family of
functions that is used to build rules:

class Regular (Target a)⇒ Builder a where
type Target a :: ∗
base :: a→ RuleSpec (Target a)
diag :: a→ [RuleSpec (Target a)]

Apart from the methods base and diag that provide values obtained
from invocations of each Builder-function with left and right argu-
ments, the class contains an associated type synonym Target that
holds the type targeted by the rule under construction. Some typical
instances of the resulting type family are:

type Target ( RuleSpec Prop) = Prop
type Target ( Prop→ RuleSpec Prop) = Prop
type Target (Prop→ Prop→ RuleSpec Prop) = Prop

It remains to inductively define instances for building rewrite rules
with an arbitrary number of metavariables. The base case, for con-
structing rules that do not involve any metavariables, is straightfor-
ward: such rules are easily built from functions that take no argu-
ments and immediately return a RuleSpec:

instance Regular a⇒ Builder (RuleSpec a) where
type Target (RuleSpec a) = a
base x = x
diag x = [x]

Given an instance for the case involving n metavariables, the case
for (n+1) metavariables is, perhaps surprisingly, not much harder:

instance (Builder a, Regular b, LR (PF b))
⇒ Builder (b→ a) where

type Target (b→ a) = Target a
base f = base (f left)
diag f = base (f right) : diag (f left)

We now define a single function rule for constructing rewrite rules
from functions over metavariable placeholders:

rule :: (Builder r, Zip (PF (Target r)))
⇒ r→ Rule (Target r)

rule f = foldr1 mergeRules rules
where

mergeRules x y =
mergeSchemes (lhs x) (lhs y) : 
mergeSchemes (rhs x) (rhs y)

rules = zipWith (ins (base f)) (diag f) [1 . . ]
ins x y v =

insertMetaVar v (lhs x) (lhs y) : 
insertMetaVar v (rhs x) (rhs y)

For instance, rules are now defined as follows:

notTrueRule, andContrRule, deMorganRule :: Rule Prop

notTrueRule = rule ( Not T : F)
andContrRule = rule (λp → p :∧: Not p : F)
deMorganRule = rule (λp q→ Not (p :∧: q) : 

Not p :∨: Not q )

To directly apply a rule constructed by a Builder, we compose rule
and rewrite:

applyRule :: (Builder r, Rewrite (Target r))
⇒ r→ Target r→ Target r

applyRule = rewrite ◦ rule

In summary, the Builder class and its instances provide a uni-
form approach to constructing rewrite rules that involve an arbitrary
number of metavariables. Note that rules with different numbers of
metavariables are, once built, uniformly typed and can, for exam-
ple, be straightforwardly grouped together in a list or in any other
data structure. Building rules by repeatedly comparing the results
of different invocations of functions comes with some overhead,
but for the typical case where the rule definition is in a constant
applicative form, this amounts to a one-time investment.

4.5 Polishing the Interface
We now have a library for generic rewriting. However, the types of
high-level functions contain too much implementation detail. For
instance, recall the type of rewriteM:

rewriteM :: (Regular a, Crush (PF a), Zip (PF a), Monad m)
⇒ Rule a→ a→ m a

Function rewriteM exposes implementation details such as calls to
generic crush and generic zip in its type signature. We hide these
by defining a type class synonym Rewrite as follows:

class (Regular a, Crush (PF a), Zip (PF a), LR (PF a))
⇒ Rewrite a

For instance, the type of propositions is made an instance of
Rewrite by declaring

instance Rewrite Prop
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Using Rewrite, the type signature of rewriteM becomes:

rewriteM :: (Rewrite a, Monad m)⇒ Rule a→ a→ m a

Some of the constraints of Rewrite are superfluous to some generic
functions in the library. For example, the function rule only requires
an instance of Zip. It might appear that the additional constraints
on rule restrict its use unnecessarily, but this is not a problem in
practice because functors built from sums and products already
satisfy those constraints.

5. Performance
We have measured execution times of our generic rewriting library,
mainly to measure how well the generic definitions perform com-
pared to hand-written code for a specific datatype. We have tested
our library with the proposition datatype from the introduction,
extended with constructors for implications and equivalences. We
have defined 15 rewrite rules, and we used these rules to bring the
proposition to disjunctive normal form (DNF). This rewrite system
is a realistic application of our rewriting library, and is very simi-
lar to the system that is used in an exercise assistant for e-learning
systems (Heeren et al. 2008).

The library has been tested with four different strategies: such a
strategy controls which rewrite rule is tried, and where. The strate-
gies range from naive (i.e, apply some rule somewhere), to more
involved strategy specifications that stage the rewriting and use all
kinds of traversal combinators. QuickCheck (Claessen and Hughes
2000) is used to generate a sequence of random propositions, where
the height of the propositions is bounded by five, and the same se-
quence is used for all test runs. Because the strategy highly influ-
ences how many rules are tried, we vary the number of propositions
that has to be brought to disjunctive normal form depending on the
strategy that is used. The following table shows for each strategy
the number of propositions that are normalized, how many rules
are successfully applied, and the total number of rules that have
been fired:

strategy terms rules applied rules tried ratio
dnf-1 10,000 217,076 113,728,320 0.19%
dnf-2 50,000 492,114 22,716,336 2.17%
dnf-3 50,000 487,490 22,955,220 2.12%
dnf-4 100,000 872,494 19,200,407 4.54%

The final column shows the percentage of rules that succeeded: the
numbers reflect that the simpler strategies fire more rules.

We compare the execution times of four different implementa-
tions for the collection of rewrite rules.

• Pattern Matching (PM). The first implementation defines
the 15 rewrite rules as functions that use pattern matching. Ob-
viously, this implementation suffers from the drawbacks that
were mentioned in Section 2.1, making this version less suit-
able for an actual application. However, this implementation of
the rules is worthwhile to study because Haskell has excellent
support for pattern matching, which will likely result in efficient
code.
• Specialized Rewriting (SR). We have also written a special-

ized rewriting function that operates on propositions. Because
the Prop datatype does not have a constructor for metavariables,
we have reused the Var constructor for this purpose, thus mixing
object variables with metavariables.
• Pattern-functor View (PV). Here we implemented the rules

using the generic functions for rewriting that were introduced
in this paper. The instance for the Regular type class is similar
to the declaration in Figure 3, except that a balanced encoding
was used for the constructors of the Prop datatype to make it
more efficient.

• Fixed-point View (FV). The last version also uses the
generic rewriting approach, but it uses a different structural
representation called the fixed-point view (Holdermans et al.
2006). Like the pattern-functor view, this view makes recursion
explicit in a datatype, but additionally, every recursive occur-
rence is mapped to its structural counterpart. In this view, from
and to would have the following types:

from :: a→ Fix (PF a)
to :: Fix (PF a)→ a

We include this view in our measurements because such deep
structure mapping is common in generic programs that deal
with regular datatypes (Jansson and Jeuring 1997). Indeed, the
fixed-point view was used in our library before we switched to
the current structure representation.

All test runs were executed on an Apple MacBook Pro with
a 2.2 GHz Intel Core 2 Duo processor, 2 Gb SDRAM memory,
and running MacOS X 10.5.3. The programs were compiled with
GHC version 6.8.3 with all optimizations enabled (using the -O2
compiler flag). Execution times were measured using the time
shell command, and were averaged over three runs. The following
table shows the execution time in seconds for each implementation
of the strategies:

strategy PM SR PV FV
dnf-1 6.31 16.75 56.78 70.69
dnf-2 3.49 6.37 23.66 30.24
dnf-3 3.52 6.42 23.82 30.26
dnf-4 5.72 9.14 27.82 37.65

Because the strategies normalize a varying number of terms, it is
hard to draw any conclusion from results of different rows. The ta-
ble shows that the pattern-matching approach (PM) is significantly
faster compared to the other approaches. The specialized rewriting
approach (SR) adds observability of the rewrite rules, at the cost of
approximately doubling the execution time. The two generic ver-
sions, when compared to the SR approach, suffers from a slow-
down of a factor 3 to 4. This slowdown is probably due to the
conversions from and to the structure representation of proposi-
tions. The approach with a fixed-point view (FV) is less efficient
than using the pattern-functor view (PV) since the latter only con-
verts a term when this is really required. This is reflected in the
recursive embedding-projection pair for the FV in contrast to the
non-recursive embedding-projection pair of the PV.

Execution time is consumed not only by the rewrite rules, but
also by the strategy-controlled traversals over the propositions.
These traversal functions, such as transform from the introduction,
can of course be defined generically. The execution times presented
before use specialized traversal functions for the Prop datatype,
but we have repeated the experiment using the generic traversal
definitions. Although traversal combinators are not the focus of this
paper, it is interesting to measure how much impact this change has
on performance. The following table shows the execution times
for the different implementations that now make use of generic
traversal combinators:

strategy PM SR PV FV
dnf-1 10.56 20.50 61.95 91.12
dnf-2 11.18 14.40 32.21 54.86
dnf-3 11.38 14.51 32.21 55.44
dnf-4 9.04 12.53 31.56 46.08

First, the observations made for the table presented earlier still hold.
By comparing the two tables point-wise it can be concluded that
the generic traversal functions are slower. The relative increase in
execution time for the versions that already used generic definitions
(that is, PV and FV) is, however, lower compared to the non-generic
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versions (PM and SR). Furthermore, the additional cost of making
the traversal generic depends on the strategy being used, since the
strategies use different combinators.

So what can be concluded from these tests? The tests do not of-
fer spectacular new results, but rather confirm that observability of
rules comes at the expense of loss in runtime efficiency. Further-
more, generic definitions introduce some additional overhead. The
trade-off between efficiency and genericity depends on the appli-
cation at hand. For instance, the library would be suitable for the
online exercise assistant, because runtime performance is less im-
portant in such a context. We believe that improving the efficiency
of generic library code is an interesting area for future research. By
inlining and specializing generic definitions, and by applying par-
tial evaluation techniques, we expect to get code that is more com-
petitive to the hand-written definitions for a specific datatype. Fu-
sion techniques (Alimarine and Smetsers 2005; Coutts et al. 2007)
can help to eliminate some of the conversions between a value and
its structure counterpart.

6. Related Work
The generic rewriting library introduced in this paper can be viewed
as a successor to the library given by Jansson and Jeuring (2000);
we discussed the relation with this library in the introduction.

Libraries that provide generic traversal combinators, such as
Strafunski (Lämmel and Visser 2002), Scrap Your Boilerplate
(Lämmel and Peyton Jones 2003), Uniplate (Mitchell and Runci-
man 2007), a pattern for almost compositional functions (Bringert
and Ranta 2006), and probably more, can be used to define rewrite
rules in the form of functions. This has the disadvantages we de-
scribe in Section 2, the most important of which is that it is impos-
sible to document, test, and analyse rewrite rules. The advantage of
using functions instead of rules is that datatypes do not have to be
extended with metavariables: we reuse program-level variables for
metavariables in our rules.

The match function is a simple variant of generic unification
functions (Jansson and Jeuring 1998; Sheard 2001). Our library
cannot be easily generalised to perform unification and stay user-
friendly, because the result of unification may contain values of
datatypes extended with metavariables, and hence a user would
have to deal with structure values. On the other hand, we could
use two-level types as in the work from Sheard but require less
work from the user, because most functionality can be obtained
generically from the structure representation of the two-level types.
Furthermore, we could easily adapt our library to use mutable
variables, as in Sheard’s work, to improve performance.

Brown and Sampson (2008) implement generic rewriting using
the Scrap Your Boilerplate library. Rule schemes are described in
a special purpose datatype that does not depend on the type of
values being rewritten. In contrast to our system, rules are not typed
and hence invalid rules are only detected at runtime. This system
can handle rewriting of a system of datatypes while our library is
limited to a single regular datatype. However, we know how to lift
this restriction in a type-safe way, see Section 7.

There exist a number of programming languages built on top of
the rewriting paradigm, such as ELAN (Borovanský et al. 2001),
OBJ (Goguen and Grant 1997), and ASF+SDF (Van Deursen et
al. 1996). Instead of built-in support for rewriting, we focus on
how to support rewriting in a mainstream higher-order functional
programming language by providing a library.

7. Conclusions and Further Work
We have shown the interface and implementation of a generic
library for rewriting. Our library overcomes problems in previous
generic rewriting libraries: users do not have to adapt the datatype

on which they want to apply rewriting, they do not need knowledge
of how the generic rewriting library has been implemented, and
they can document, test, and analyse their rules. The performance
of our library is not as good as that of hand-written datatype-
specific rewriting functions, but we think the loss of performance
is acceptable for many applications.

One of the most important limitations of the library described
in this paper is that it only works for datatypes that can be repre-
sented by means of a fixed-point. Such datatypes are also known as
regular datatypes. This is a severe limitation, which implies that we
cannot apply the rewriting library to nested datatypes or systems
of (mutually recursive) datatypes. Indeed, many real-world appli-
cations involve such systems: examples include systems of linear
equations and the abstract syntax of expressions that may contain
declarations that, in turn, may consist of expressions again. How-
ever, with some additional machinery we can overcome this limita-
tion and so we have an implementation of the rewriting library that
enables generic rewriting on systems of datatypes. The techniques
used are rather sophisticated and apply to several other problems
as well, such as the Zipper. A thorough explanation of the under-
lying ideas and implementation can be found in a dedicated paper
(Rodriguez et al. 2008).

Our library requires that rules do not inspect their metavariable
argument. For instance, we do not allow arbitrary function appli-
cations in the right-hand side of a rule, contrary to rules that are
defined as functions with pattern matching. Another limitation of
our library is that rules cannot have preconditions, for example,
that a proposition matched against a metavariable is in disjunctive
normal form. Extending rewrite rules with preconditions remains
future work.

Currently, we are also working on generating test data generi-
cally. The left-hand side of a rewrite rule can be used as a template
for test data generation to improve the testing coverage. We plan to
use it to provide a testing framework for users of our library. This
functionality can be easily added to our library: all it takes to define
a new generic function is declaring a type class and providing a set
of inductively defined instances.
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