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A central challenge in using learning progressions (LPs) in practice is modeling the
relationships that link student performance on assessment tasks to students’ levels on
the LP. On the one hand, there is a progression of theoretically defined levels, each
defined by a configuration of knowledge, skills, and/or abilities (KSAs). On the other
hand, there are observed performances on assessment tasks, associated with levels but
only imperfectly and subject to inconsistencies. What is needed is a methodology that
can be used to map assessment performance onto the levels, to combine information
across multiple tasks measuring similar and related KSAs, to support inferences about
students, and to study how well actual data exhibit the relationships posited by the LP.
In terms of the “assessment triangle” proposed by the National Research Council’s
Committee on the Foundations of Assessment (National Research Council [NRC],
2001), coherent theoretical and empirical connections are needed among the theory
embodied in a progression (cognition), the tasks that provide observable evidence
about a student’s understanding relative to that progression (observation), and the
analytic models that characterize the relationship between them (interpretation).

This chapter discusses the use of Bayesian inference networks, or Bayes nets for
short, to model LPs. Bayes nets are a class of statistical models that have been
adapted for use in educational measurement. At present, the use of Bayes nets in
LP contexts is in its relative infancy. We describe the fundamentals of the approach
and the challenges we faced applying it in an application involving a LP in
beginning computer network engineering.

The first section of the chapter reviews our framework of model-based reasoning.
Subsequent sections map the development of LPs and associated assessments onto this
framework and show how Bayes nets are used to manage the problems of evidence
and uncertainty in the relationship between LPs and assessment task performances.
We then explain in more detail what Bayes nets are, how they can be used to model
task performance in the context of LPs, and the challenges that we face in this work.

MODEL-BASED REASONING

The lens of model-based reasoning helps clarify the role Bayes nets can play in
modeling LPs. A model is a simplified representation focused on certain aspects of
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a system (Ingham & Gilbert, 1991). The entities, relationships, and processes of a
model provide a framework for reasoning about any number of real world
situations, in each instance abstracting salient aspects of those situations and going
beyond them in terms of mechanisms, causal relationships, and/or implications that
are not apparent on the surface.

The lower left plane of Figure 1 shows phenomena in a particular real world
situation. In the case of LP research, the situation is students’ task performances. A
mapping is established between this situation and, in the center of Figure 1, the
semantic plane of the model; that is, structures expressed in terms of the entities,
relationships, and properties of the model. The lines connecting the entities in the
model represent causes, influences, mechanisms, and other relationships. The
analyst reasons in these terms. In modeling LPs, this layer concerns progressions
and their levels, relationships among different progressions, and expected
performance on assessment tasks based on the features of tasks (what students are
asked to do) and the features of their performances (what they actually do).

The real world situation is depicted in Figure 1 as fuzzy, whereas the model is
well-defined. This suggests that the correspondence between real world entities and
the idealizations in the model is never exact. The reconceived situation in the lower
right plane of Figure 1 is a blend of selected aspects of the real world situation and
elements of the model (shown in dotted form). The match between the real world and
the data is not perfect, but a framework of meaning that the situation does not possess
in and of itself can enhance our understanding of it (Suarez, 2004; Swoyer, 1991). It
is here that descriptions, explanations, and implications for real world phenomena are
formed. In the case of LPs, it is here that patterns of students’ performance are
interpreted in terms of their status or development with respect to the LP levels.

Symbol systems that are associated with some models further support reasoning,
such as the algebraic and graphical representations of regression models shown above
the semantic plane in Figure 1 as Representational Forms A and B. Similarly, Bayes
nets provide mathematical and graphical representations to support reasoning about
LPs, students’ status on them, and evaluations of their performances across tasks.

DEVELOPMENT, ASSESSMENT, AND MODELING OF LEARNING PROGRESSIONS

When we speak of modeling a LP, we refer to a coherent set of elements: a
progression defined in terms of the psychology and the substance of the domain
under consideration, a specification of how real-world situations can be set up to
evoke evidence about a student’s status on the LP, and a measurement model (in
our case, a Bayes net) that articulates the probabilistic relationship between student
performances and status on the LP. These are the vertices of an “assessment
triangle” (NRC, 2001): cognition, observation, and interpretation. Cognition refers
to a theory about what students know and how they know it (the learning
progression). Observation relates to the tasks we ask students to perform to gather
evidence about what they know. Interpretation is the meaning we assign to these
observations. Specifying and validating a probability model—Bayes nets in this
case—helps analysts develop coherence among these elements in order to reason
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Figure 1. Reconceiving a real world situation through a model. From “Validity from the
Perspective of Model-Based Reasoning,” by R. J. Mislevy in The Concept of Validity:
Revisions, New Directions, and Applications by R. L. Lissitz (Ed.) (p. 95), 2009, Charlotte,
NC: Information Age Publishing. Copyright 2009 by Information Age Publishing.
Reproduced with permission of Information Age Publishing.

about students’ levels in the progression from their task performances. This section
provides an overview of our work with LPs in the Cisco Networking Academy
using this framework.

Learning Progression Development (Cognition)

LPs are empirically grounded and testable hypotheses about how a student’s
understanding and ability to use KSAs in a targeted area develop over time
(Corcoran, Mosher, & Rogat, 2009). LPs are the pathways that bridge the gap
between some starting point, such as the inability to connect two routers in
computer networking, and a desired endpoint, such as the successful configuration
of routers (National Research Council [NRC], 2007). There are five components of
LPs (Corcoran et al., 2009; NRC, 2007): (1) learning targets or clear end points
that are defined by social aspirations, (2) progress variables that identify the critical
dimensions of KSAs that are developed over time, (3) levels of achievement or
stages that define significant intermediate steps, (4) learning performances that are
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the operational definitions of what KSAs would look like at each stage, and (5)
assessments that measure performances with respect to each key KSA over time.
Although students may progress along different pathways, common paths can be
tested and legitimated. It should also be noted that student learning and thinking
progress in the context of instruction and experiences. This progression must be
considered in creating, assessing, modeling, and interpreting LPs.

The following discussion describes the development of LPs in a specific content
area: beginning computer networking. The context is the Cisco Networking
Academy (CNA), a global program in which information technology is taught
through a blended program of face-to-face classroom instruction, an online
curriculum, and online assessments. These courses are offered in high schools, 2-
and 3-year community college and technical schools, and 4-year colleges and
universities. Since its inception in 1997, CNA has grown to reach a diverse
population of approximately 900,000 students annually, in more than 160 countries
(Levy & Murnane, 2004; Murnane, Sharkey, & Levy, 2004). Behrens, Collison,
and DeMark (2005) discuss the framework that drives the ongoing assessment
activity that, in turn, provides the data for this work.

In 2007, CNA updated and redesigned the curriculum for its primary network
course offerings. A group of subject matter experts, working with
psychometricians and educational psychologists, sketched out provisional LPs
based upon several lines of work integral to the design of the curriculum (for
details, see West et al., 2010). First, they conducted statistical analyses of student
exams from the previous four-course curriculum. Classical and item response
theory (IRT) analyses of end-of-chapter and final exam data revealed patterns in
the difficulty of certain assessment tasks based upon their placement in the
curriculum. For example, the same item used to assess [P addressing had different
difficulty depending on whether the item was used before or after students learned
basic routing concepts. Second, these patterns were considered in combination with
the results of cognitive task analysis research into novice and expert performance
in the domain (Behrens, Frezzo, Mislevy, Kroopnick, & Wise, 2007; DeMark &
Behrens, 2004). Finally, external research highlighting the real-world KSAs
necessary for various job levels was used to validate the subject matter expert
opinion and statistical analyses. Thus the initial LP framework was developed
through the interaction of various experts using both theory and data.

To make this discussion more concrete, Table 1 presents an example of a LP
in Internet Protocol (IP) Addressing, a key area taught in the four-semester Cisco
Certified Network Associate (CCNA) course sequence. [P addressing is the
mechanism by which all pieces of equipment in a network (PCs, routers, etc.) are
given unique “addresses” so information sent to them knows where to go and
information sent from them is properly labeled for return if necessary. An
analogy is the street address of a house. A five-level progression is defined based
on clusters of interrelated, assessable elements that describe a student’s
capabilities at each level. The levels reflect increasingly sophisticated
understandings of IP Addressing. Table 1 presents an abridged version of the
KSAs at each level.

260



A BAYESIAN NETWORK APPROACH TO MODELING LEARNING PROGRESSIONS

Table 1. Sample of Knowledge, Skills, and Abilities in the IP_Addressing Progression.

Level 1 — Novice — Knows Pre-requisite Concepts: Can recall factual information and
perform highly scripted activities
« Student can navigate the operating system to get to the appropriate screen to
configure the address.
o Student can use a web browser to check whether or not a network is
working.

Level 2 — Basic — Knows Fundamental Concepts: Able to understand reasoning behind
actions, but can’t apply in unknown situations

« Student understands that an IP address corresponds to a source or destination
host on the network.

o Student understands that an IP address has two parts, one indicating the
individual unique host and one indicating the network that the host resides
on.

« Student understands the default gateway is the address that data is sent to if
the data is leaving the local network and why it must be specified.

o Student understands how the subnet mask indicates the network and host
portions of the address.

o Student can create subnet masks based on octet boundaries.

Level 3 — Intermediate — Knows More Advanced Concepts: Able to apply concepts to
actions
o Student understands the difference between physical and logical
connectivity.
« Student can explain the process of encapsulation.
« Student understands how Dynamic Host Control Protocol (DHCP)
dynamically assigns IP addresses.

Level 4 —Advanced — Applies Knowledge and Skills: Able to apply concepts in context
in an unscripted manner
o Student can use the subnet mask to determine what other devices are on the
same local network as the configured host.
e Student can use a network diagram to find the local network where the
configured host is located.
o Student can recognize the symptoms that occur when the IP address or
subnet mask is incorrect.

Level 5 — Expert — Applies Advanced Knowledge and Skills: Able to apply concepts in
new contexts in an unscripted manner and predict consequences of actions
o Student can recognize a non-functional configuration by just looking at the
configuration information; no testing of functionality is required.
o Student can interpret a network diagram to determine an appropriate IP
address/subnet mask/default gateway for a host device.
« Student can interpret a network diagram in order to determine the best router
to use as a default gateway when more than one router is on the local
network.
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Task Design (Observation)

The CNA assessment development process follows an Evidence Centered
Design (ECD; Mislevy, Steinberg, & Almond, 2003) approach. ECD guides the
assessment design process by addressing a series of questions: “What claims or
inferences do we want to make about students?” “What evidence is necessary to
support such inferences?” “What features of observable behavior facilitate the
collection of that evidence?” At each level of the LP, a subject matter expert
created multiple claims based on the set of related KSAs that define
the level. In order to assess student performance with respect to these claims,
the curriculum contains end-of-chapter tests and end-of-course final exams
consisting of multiple-choice questions. Each chapter or course typically
addresses multiple LPs. Our current focus is the case in which each item in an
assessment is designed to measure one LP level. Work on modeling more
complex assessment tasks that address multiple LPs is discussed later in the
chapter.

In this example, IP_Addressing is called a student model variable (SMV)
because it represents an aspect of a student’s proficiency. SMVs, like
IP_Addressing, are latent variables, which means their values cannot be
observed directly. However, students’ task performances provide evidence
about them. Two items that provide evidence about a student’s level on
IP_Addressing are shown in Figure 2. They both concern knowledge of the
syntax of a router command. These two seemingly similar items provide
evidence to distinguish between different levels of a LP due to a small but
conceptually important difference in task features: Changing the stem from /24
to /28 requires students to have a more advanced IP Addressing skill, namely
the skill to subdivide one of the octets. Item A distinguishes between Level 1
and Level 2 (students can create subnet masks based on octet boundaries), while
Item B distinguishes between Level 3 and Level 4 (students can use the subnet
mask to determine what other devices are on the same local network as the
configured host).

Modeling Responses (Interpretation)

We can represent the different patterns of evidence provided by the sample
items in Figure 2 with a Bayes net. First, a student’s level on the IP_Addressing
LP can be represented with a variable called IP_Addressing. The variable has
five possible values, one for each level of the LP. For each level, there is a
probability that a student is at that level. Figure 3 represents ignorance about a
student’s level, expressed as probabilities of .2 at each level. (The Netica
program, Norsys Software Corp., 2007, shows these probabilities as
percentages, hence 20 rather than .20.) This is called a prior probability
distribution, reflecting the belief about a student before observing any of
the student’s responses. We will see how observation of student responses
allows us to update our beliefs and express them in a posterior probability
distribution.
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Item A Item B
It is necessary to block all traffic It is necessary to block all traffic
from an entire subnet with a from an entire subnet with a
standard access control list. What standard access control list. What
IP address and wildcard mask |P address and wildcard mask
should be used in the access should be used in the access
control list to block only hosts from control list to block only hosts from
the subnet on which the host the subnet on which the host
192.168.16.43/24 resides? 192.168.16.43/28 resides?
A.192.168.16.00.0.0.15 A.192.168.16.0 0.0.0.15
B.192.168.16.0 0.0.0.31 B.192.168.16.0 0.0.0.31
C.192.168.16.16 0.0.0.31 C.192.168.16.16 0.0.0.31
D.192.168.16.32 0.0.0.15 **D.192.168.16.32 0.0.0.15
E.192.168.16.32 0.0.0.16 E.192.168.16.32 0.0.0.16
**F.192.168.16.0 0.0.0.255 F.192.168.16.0 0.0.0.255

Figure 2. Sample items assessing levels of IP_Addressing. From A Bayesian Network
Approach to Modeling Learning Progressions and Task Performances (CRESST Report
776) (p. 6), by P. West, D. W. Rutstein, R. J. Mislevy, J. Liu, Y. Choi, R. Levy, A. Crawford,
K. E. DiCerbo, K. Chappel, and J. T. Behrens, 2010, Los Angeles, CA: University of
California, CRESST. Copyright 2010 The Regents of the University of California. Reprinted
with permission of the National Center for Research on Evaluation, Standards, and Student
Testing (CRESST).

To this end, our simple Bayes net also contains variables for responses to Item
A and Item B. They are called observable variables (OVs) because we learn their
values, usually with certainty, when we observe a student’s responses. Their
possible values are 1 and 0, scores for right or wrong responses, respectively. In
our example, Item A distinguishes between Level 1 and Level 2, and Item B
distinguishes between Level 3 and Level 4. The Bayes net indicates these
relationships through conditional probability distributions for OVs, such as scores
on Item A and Item B given a student’s level on IP_Addressing, the latent SMV.
The distributions indicate the conditional probability of getting Item A right or
wrong at each level of the IP_Addressing LP.

IP Addressing
Levell 20.0
Level2 20.0
Level3 20.0
Level4 20.0
Levels5 20.0

Figure 3. A depiction of a student model variable that represents a five-level learning
progression, indicating equal probabilities that a student is at each level. (Note: This figure
and the Bayes net graphics that follow were produced with the Netica computer program.
Probabilities are displayed in the percent metric and thus sum to 100 rather than to 1.)
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Table 2a specifies the relationship between IP_Addressing and Item A. Each row
in the table is the conditional probability distribution for the values of the Item A OV,
given the value of IP_Addressing. The row for Level 1, for example, says that a
student at Level 1 has a probability of .8 of answering incorrectly and only .2 of
answering correctly. (We discuss the source of these probabilities later in the
chapter.) A student at Level 2 has a probability of .7 of answering correctly. Table 2
reflects the LP structure since students at Level 1 will probably get Item A wrong,
but students at or above Level 2 will probably get Item A right. These expectations
are probabilities rather than certainties because a student at Level 4 might miss Item
A owing to carelessness, an arithmetic error, or a gap in knowledge. Although the
capabilities at a given level are interrelated for both concepts and curriculum,
students may be stronger on some elements at one level than on others. Table 2b,
which gives conditional probabilities for Item B, shows a jump in conditional
probabilities between Level 3 and Level 4.

Table 2. Conditional Probabilities for Item Responses Given the Level of I[P_Addressing.

a) Item A b) Item B
ltem A ltem B
IP Addressing | Score () Score 1 IP Addressing | Score 0 | Score ]
Level | 80 20 Level | 90 10
Level 2 30 70 Level 2 80 20
Level 3 20 80 Level 3 70 30
Level 4 10 90 Level 4 20 80
Level 5 10 90 Level 5 10 90

To summarize this section, theoretically defined levels of the learning
progression provide information about what students know and how they know it.
This is the cognition vertex in the assessment triangle. The theory and research
underlying the LPs suggest how we might design tasks to elicit student
performances that depend on their status in the progressions. This is the
observation vertex. The interpretation vertex of the triangle addresses analytic
models that connect assessment performances with the cognitive structure of the
LP; these models are used to validate and improve the LP and task framework and
to reason about individual students in that framework. The following sections
explore this vertex using Bayes nets.

MODELING LPS USING BAYES NETS

Even the simplest LP structure poses issues of evidence and uncertainty since a
student at a given level of a progression may provide responses that vary across
levels from one task to the next. What degree of regularity should we expect in
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performance? How do we infer back from students’ performances to the levels at
which they likely work? How much evidence about a level does one task, or
several tasks at different levels, provide us? Does a particular task operate
differently than others when our theory says they should operate similarly?
Additional complexities arise when we consider multifaceted clusters of concepts.
Are there multiple typical paths students take that extend beyond the usual
variability in performance? Are there identifiable strands of concepts that display
their own regularities within a larger, less tightly structured progression? What
hard prerequisites, or soft tendencies, seem to influence students’ paths? How do
we discover these patterns in noisy data?

Measurement models posit a relationship between (a) a student’s status on
inherently unobservable SMVs that characterize some aspects of their
capabilities and (b) OVs that provide evidence about these SMVs. Specifying a
measurement model becomes a matter of specifying these relationships and, in so
doing, specifying how assessment data should be interpreted to yield inferences
about students. In addition to Bayes nets, other modern measurement models
with this same essential structure include latent class models (Dayton &
Macready, 2007), cognitive diagnosis models (Rupp & Templin, 2008), and
structured IRT models such as the Multidimensional Random Coefficients
Multinomial Logit Model (MRCMLM; Adams, Wilson, & Wang, 1997). In the
context of LPs, the SMVs correspond to LPs since students are presumed to be at
a given but unobservable level on each LP. We obtain evidence about their level
from performance on tasks built, based on the theory underlying the LP, for this
purpose.

More specifically, modern measurement models facilitate inferences about
students using two key features. The first is latent variables. These variables
recognize that what we would ultimately like to know about students (i.e., their
levels on the LP) is unobservable, and must be inferred from what we can observe,
namely, performance on tasks. The relationship between a student’s level on the
LP—the latent SMV—and performance on the tasks—captured in OVs—is at the
heart of the inference. By specifying which values of the OVs (i.e., the
performances on tasks) are expected based on the value of the SMV (i.e., the level
of the LP), the measurement model allows us to make inferences about the SMV
from observed values of the OVs.

The second feature of modern measurement models is the use of probability
models to express these relationships. Student performances (OVs) are modeled
as probabilistically dependent on the student’s level on the LP (SMV). A student
may exhibit task performances that do not exactly agree with the expectations
based on the model. For example, a student who has reached a given level of the
LP might demonstrate a higher or lower level of performance on a particular task;
task performance could be the result of chance, of inconsistency in applying
concepts, or of the influence of factors not encoded in the model. This is why the
conditional probabilities in the introductory example (Table 2) are not all ones and
ZEeros.
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Combining these two features produces a modern measurement model—
performances on tasks (OVs) are modeled as probabilistically dependent on the
unobservable level of the LP (SMV). Box 1 provides a formal definition of a
measurement model formulation in the LP paradigm. Given such a model, we can
characterize tasks’ effectiveness at distinguishing between levels (through the
patterns in the conditional probabilities as estimated from data), and we can draw
inferences about the status of students on a LP (as we will see shortly, through
posterior probability distributions once we observe students’ performances).
Further, probability theory helps a researcher explore the fit and misfit of a model
to data and iteratively fine-tune both tasks and theories.

Box 1: Formal definition of a measurement model

To more formally define the measurement model structure used in the modeling
of LPs, let # denote an unobservable SMV. Further, let X;, X;,..., X, represent
some number J of OVs, the values of which summarize performance on tasks
(e.g., scored item responses). A measurement model then specifies the
conditional probability for each OV, denoted P(X; | 0). The conditional
probability expression yields different probabilities of values of the OV
depending on the value of the SMV, capturing how a student’s performance
depends on his/her level of proficiency. Each OV is permitted to have its own
conditional probability distribution given the SMV, as tasks may differentially
measure the KSAs.

Bayesian Inference Networks

Bayes nets combine probability theory and graph theory to represent probabilistic
relationships among variables. Bayes nets are so named because they support
reasoning from any set of observations to any other variables (either latent or
observable but not yet observed) in a network using algorithms that incorporate
Bayes’ theorem (Lauritzen & Spiegelhalter, 1988; Pearl, 1988). As a general
modeling approach, Bayes nets focus on conditional probabilities in which the
probability of one event is conditional on the probability of other events: in
forecasting, for example, probabilities of tomorrow’s weather given today’s
weather and climate patterns; in animal breeding, characteristics of offspring
given characteristics of ancestors; in medical diagnosis, probabilities of
syndromes given disease states and of test results given syndromes. In
assessment, interest lies in item responses or features of performances given
students’ KSAs. Bayes nets can be used to structure relationships across large
multivariate systems, allowing us, for example, to synthesize the results of many
observed responses to support inferences about student thinking (Mislevy &
Gitomer, 1996).

266



A BAYESIAN NETWORK APPROACH TO MODELING LEARNING PROGRESSIONS

One way to represent these networks of variables and the resulting computations
is with a graphical model (such as Figure 4) consisting of the following elements
(Jensen, 1996):

« A set of variables, represented by ellipses or boxes and referred to as nodes.
All the variables in the most widely used Bayes nets have a finite number of
possible values, corresponding to a set of exhaustive and mutually exclusive
states (e.g., the IP addressing example has five mutually exclusive LP
levels that comprise all possible states of IP_Addressing as it is being
modeled).

« A set of directed edges (represented by arrows) between nodes, indicating
probabilistic dependence between variables. Nodes at the source of a directed
edge are referred to as parents of nodes at the destination of the directed edge,
their children. In our example, IP_Addressing is the parent of Item A and Item
B. The direction of edges is often determined by theory, such as disease states as
the parents of symptoms or the status of some indicator at Time & as a parent of
status at Time k+1.

« For each variable without parents (such as IP_Addressing), there is an initial
probability distribution for that variable. This could be uninformative, as in
Figure 2, or based on background knowledge about a group or individual.

« For each variable with parents (such as Item A in Figure 4), there is a set of
conditional probability distributions corresponding to all possible combinations
of the values of the parent variables (as in the rows of Table 2a).

IP Addressing

Levell 20.0
Level2 20.0
Level3 20.0
Leveld 20.0
Leveid 20.0 pm=

Item A Item B
Score0  30.0 H Score0 54.0
Score1  70.0 Score1 48.0

Figure 4. A Bayes net showing observable variables for two tasks. The performance is
dependent on a student’s level on the learning progression represented in the student model
variable IP_Addressing.
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Box 2 more formally describes Bayes nets as probability models. Because Bayes
nets are framed in terms of the standard theory of probability and statistics, general
approaches to model construction, parameter estimation, and model criticism are
available to researchers seeking to model LPs or any other substantive situation.

Box 2: Bayes nets as probability models

In general, Bayes nets can be described as a probability model for the joint
distribution of a set of finite-valued variables, say (Yy,...Yy), represented
recursively in terms of the product of conditional distributions:

P(%....%,) =T TP(%|Pa(1,)) (1)

where Pa(Y)) refers to the subset of variables with indices lower than j upon which
Y; depends. These are the variables that have edges pointing from them to Y; in the
graphical representation of the network. Theory and experience suggest which
variables should be considered parents of others. For example, in weather
forecasting, variables for today’s conditions are parents of variables for tomorrow’s
conditions. In genetics, variables representing genotypes of individuals are parents
of variables representing the phenotypes of the same individuals, and variables for
genotypes of literal parents are Bayes net parents of variables for the genotypes of
their literal children. Theory and experience also provide information for
determining if one set of variables should be modeled as independent from another
set of variables, given the values of a third set of variables (“conditional
independence”). For example, in Table 2, the probabilities of the Item A responses
are independent of the probabilities of Item B responses given information about
the levels of IP_Addressing; if we knew the value of a student’s IP_Addressing
variable, observing the value of the Item A response would not change our
expectations for her response to Item B. When theory and experience suggest many
conditional independence relationships, the variables in a Bayes net will have
relatively few parents, and the diagram and the recursive expression simplify. The
relationships among variables in the network can then be expressed in terms of
interactions among relatively small clusters of variables.

Once such a representation has been built, one can update belief about any
subset of the variables given information about any other subset using Bayes
theorem. The rapid increase of the use of Bayes nets is due to efficient algorithms
that allow these computations to take place in real time when the dependency
structure is favorable.

In the context of Bayesian networks for LPs, 6 is a latent discrete SMV with
states that correspond to the levels of the progression. Formally, the values can be
ordered, partially ordered, or unordered. A single LP would typically be
represented by ordered levels. The OVs are discrete variables with states
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corresponding to the different possible scored performances on items or other
tasks (e.g., a correct or incorrect response on an item, or levels or types of
performance qualities in more complex tasks). The Bayes net specifies P(X; | 0), a
table of the conditional probabilities of observing different performances on tasks
given the student’s level on the LP. Multiple tasks yield OVs that may have
different associated conditional probability tables. For example, one item may
require a student to be at least at a low level of the progression in order to have a
high probability of performing well, whereas another item requires the student to
be at a higher level to have a high probability of performing well. In the case of
the two items for IP_Addressing (Table 2), Item A requires a student to be at level
2 or above on IP_Addressing in order to have a high probability of getting a
correct score, while Item B requires a student to be at level 4 or level 5 to have a
high probability of answering correctly. The specification of the model is
completed by defining an initial probability distribution for f—i.e., a prior
distribution—capturing how likely it is that a student is at each level of the
progression. The prior may be uninformative, as in the introductory example
(Figures 2 and 4), or based on other information such as student background data
or instructors’ expectations.

When a Bayes net is specified in this way to model assessment of a single
discrete SMV, it can be viewed as a latent class model (Dayton & Macready, 2007;
Lazarsfeld & Henry, 1968). A traditional formulation for a C-class latent class
model (i.e., a model with C levels of a learning progression) specifies the
probability that examinee i responds to item j yielding an OV value of  as

P(X, :r):iP(Hi =c)P(X,; =10, =¢), 2)

=1

where P(6; = c) is the prior probability that examinee i is in class ¢ (i.e., level ¢ of
the progression) and P(X; = r| 6; = c¢) is the conditional probability that an
examinee in class ¢ responds to item j in response category r. The usual

C
restriction,ZP(ﬁi =c)=1, is imposed. Similarly, within latent classes the
c=1
conditional probabilities over response categories are restricted such that
R

S P(X ; =716, =c)=1, where R; is the number of distinct response categories for

r=1
item j. The graphical representation contains edges from 6 to each X (e.g., the edges
from IP_Addressing to both items in Figure 4). The recursive representation is

(X, X,0) = [TP(x, [Pa( X)) = TTP(X,|0)P(6).  3)

More complex cases can include multiple LPs as well as progressions that
allow for different pathways so that the Bayes net must address a finer grain-size
of KSAs to distinguish points along different pathways. In these cases, 6 is
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vector-valued. Performance on a given observable X from a task can depend on
more than one component of ; that is, conditional probabilities for such an
observable are estimated for possible combinations of its entire set of parent
SMVs. In networking, for example, doing well on a certain troubleshooting task
may require a student to be at Level 3 or higher in the IP_Addressing progression
and at Level 2 or higher in the Connectivity (also called “Connect Networks™)
progression.

To continue with our example, the graphical representation of a Bayes net
depicts the structure of relationships among variables—in our case, how
performance on tasks depends on LP levels—and probabilities that represent the
analyst’s knowledge of a student at a given point in time. Probabilities that arise
from (1) knowing nothing about a particular student’s level in IP_Addressing
and (2) knowing the conditional probabilities of item responses from Table 2 are
shown in Figure 4. The direction of the arrows reflects the direction of the
conditional probabilities in the tables, namely, that item performance depends
on the student’s level in IP_Addressing.

Once this probability structure has been built, we can reason in the other
direction as well. We work back through an arrow to obtain a better estimate
about an individual student’s level on the LP, given the response the student
makes to a given item, and then revise what we would expect to see on other
items as a result. Figure 5 shows that if a student answers Item A incorrectly, he
or she is probably at Level 1. The probabilities for IP_Addressing are obtained by
applying Bayes’ theorem as follows: Multiply the initial probabilities for each
level of the LP (in this case, .2) by the corresponding conditional probabilities in
the column for Score 0 of Table 2a; then normalize the result (i.e., rescale the
results of the multiplications so they add to 100%). The result gives the posterior
probabilities (IP_Addressing in Figure 5). These updated probabilities can then be
used to obtain the probabilities for Item B. This updating is a simple example of
Bayes’ theorem with just two variables. In more complicated networks,
algorithms are used that build on Bayes’ theorem but take advantage of
conditional independence structures to update many variables efficiently (Jensen,
1996).

Figure 6 shows that if the student answers item A correctly, s/he is probably
at Level 2 or higher. Figure 7 shows that if the student who answers Item A
correctly also answers Item B incorrectly, belief shifts to Levels 2 and Level 3.
(The probabilities for IP_Addressing in Figure 4 have now been combined with
the column for Score 0 in the Item B conditional probability table, Table 2b). If
we wanted to sort out these possibilities, we would administer an item that
focuses on capabilities that emerge in Level 3. Finally, if the student
had answered B correctly, then our belief would shift to Level 4 and Level 5
(Figure 8).
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Figure 5. A Bayes net showing updated belief about IP_Addressing and expectations for
Item B, after having observed an incorrect response to Item A.
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Figure 6. A Bayes net showing updated belief about IP_Addressing and expectations for
Item B, after having observed a correct response to Item A.

We stated earlier that we would say more about the source of the numbers in the
conditional probability matrices. At this point, we note the essential idea: We posit
the basic structure of relationships (e.g., how LPs relate to each other and how LPs
relate to tasks) and of the probabilities (e.g., where the jumps are) from our theory
about learning and the way we construct tasks. We collect student responses
to see how well theory fits data. If the model fits, we use the data to estimate the
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Figure 7. A Bayes net showing updated belief about IP_Addressing after having observed a
correct response to Item A and an incorrect response to Item B.

probabilities. Bayesian model fitting and model-checking approaches such as
described by Gelman, Carlin, Stern, and Rubin (1995) can be used. See Mislevy,
Almond, Yan, and Steinberg (1999) and Levy and Mislevy (2004) for details on
modeling and estimation approaches for fitting large conditional probability
matrices for more complex Bayes nets. If the model doesn’t fit, we use the data to
revise the model, the theory, or the way we collect data (e.g., revision of tasks).
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IP Addressing
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Figure 8. A Bayes net showing updated belief about IP_Addressing after having observed

correct responses to both Item A and Item B.
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CHALLENGES IN USING BAYES NETS TO MODEL LEARNING PROGRESSIONS

A number of challenges exist when using Bayes nets in modeling LPs and
associated data from assessments targeting LPs. One challenge concerns the
development of a toolkit of Bayes net techniques tuned for modeling assessment in
the context of LPs. Bayes nets support probability-based inferences in complex
networks of interdependent variables and are used in such diverse areas as
forecasting, pedigree analysis, troubleshooting, expert systems, jurisprudence,
intelligence analysis, and medical diagnosis (e.g., Pearl, 1988). When using Bayes
nets in any new domain (like LPs), it is a challenge to develop an experiential base
and modeling strategies using the general model-building, model-fitting, and model
criticism tools of Bayes nets to address the relationships that are particular to that
domain. For example, Bayes net fragments for properties of weather patterns and
meteorological instruments can be assembled and tailored for weather forecasting
applications (e.g., Edwards, 1998). Fragments concerning witness credibility and
lines of argumentation also recur in Bayes nets in legal evidentiary arguments (e.g.,
Kadane & Schum, 1996). The unique features of LPs dictate that certain recurring
structures will likely be present in applications of Bayes nets used to model LPs.
We discuss three of these applications—(1) interrelationships among LPs; (2) KSA
acquisition over time; and (3) evidence from complex tasks—which are likely to be
part of sophisticated applications of modeling LPs.

A second, more local, challenge arises when one applies Bayes nets to model
any specific substantive LP. In every application there are challenges in defining
the LP, creating tasks, and iteratively fitting and improving the model and theory.
In the NRC’s (2001) terms, the cognition, observation, and interpretation
components of an assessment must cohere. Bayes nets instantiate the last of these
components. In and of themselves Bayes nets do not dictate the choices faced by
researchers in any application, including the grain-size and number of levels in
LPs. The definition and modeling of the middle levels of a LP present specific
challenges in connecting cognition, observation, and interpretation.

There is a continual interplay between these two kinds of challenges. A Bayes
net toolkit for LP research, at any stage of development, aids the analyst in all
projects. Every project has its unique wrinkles, offers the possibility of insights
about model structures or modeling strategies that may be more broadly useful
for successive projects, and, as such, motivates expressing these new
understandings in resources for the toolkit. Since Bayes net analysis of LPs is
relatively new, we note in the following discussion the local challenges we faced.
These challenges highlight recurring patterns that the field may expect to
encounter more broadly in modeling LPs. For the interested reader, the Appendix
gives details of an application of Bayes nets to modeling a learning progression
in the CNA context.

Interrelationships Among LPs

The IP_Addressing example we discuss in this chapter concerns a single LP. In
any complex domain, however, multiple KSAs must be developed not only with
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respect to sophistication in and of themselves but also in terms of their
connections to other KSAs, and jointly as the basis for more integrated
understandings. The knowledge maps in the Atlas of Science Literacy (American
Association for the Advancement of Science [AAAS], 2001, 2007) suggest that
such relationships are common and may become the object of study in LP
research. This phenomenon occurs in the CNA curriculum. Therefore, we can use
our experience to illustrate the broader challenge of modeling the
interrelationships among LPs. The relationships we build in Bayes nets can, when
schematized, be starting points for future researchers who tackle LP modeling
challenges that resemble ours.

In learning computer network skills, the student goes beyond understanding
isolated concepts to a synthesis of related KSAs. Figure 9 is a graphical
representation of the KSAs required for computer networking in the CNA
curriculum. It was created from discussions with subject matter experts and
instructors in the curriculum. This is not a Bayes net. Rather, it is a kind of concept
map that is similar to the maps in the Atlas of Science Literacy (AAAS, 2001,
2007). The map is one source of information we use in building LPs in the CNA
domain and in building the Bayes nets for modeling them. The map suggests that a
student’s capability is directly related to some KSAs that are specific to particular
networking devices and to other KSAs that are more general. For example, in
Figure 9, IP_Addressing depends on Basic Math Skills and Understanding Local &
Remote Network Concepts.

In a model of a domain consisting of multiple LPs, the structure and strength
of the relationships among different LPs can be incorporated in a Bayes network.
These relationships can be straightforward, such as when two LPs are correlated
or when mastery of one LP is a prerequisite for mastery of a more advanced LP.
Other relationships can be more complicated. For example, exploratory analysis
in the CNA curriculum suggests that to master certain levels of the
IP_Protocol Rules progression, learners must be at a certain level of
understanding in the IP_Addressing progression. It can be challenging to
determine how to model the relationships between the LPs. While there are
methods to learn the structure of a Bayesian network just from data, it is often
useful to hypothesize the structure first and then use data to verify or to revise
this model.

Using Bayes nets to model the hypothesized structure of multiple LPs, we
structure the joint distribution among a set of LPs by constructing relationships
among latent variables in a multivariate system. As previously discussed, under a
Bayes net approach, each LP is represented as a discrete latent variable (node) with
categories corresponding to different levels of KSAs in the LP. In the graphical
representation, directed edges connect latent variables according to a model
structure suggested by subject matter experts or exploratory analyses; for example,
Figure 10 indicates that there is a dependence between IP Addressing and
IP_Protocol Rules as discussed above. That is, the arrow from IP_Addressing
to IP_Protocol Rules indicates that the probabilities of the levels of the
IP_Protocol Rules SMV are different, depending on the level of IP_Addressing.
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Figure 9. Concept map of the CNA curriculum. This model displays the relationship between
different networking KSAs of which IP Addressing Proficiency is a part. A Bayes Net could be
constructed with a student model variable corresponding to each node. From A Bayesian
Network Approach to Modeling Learning Progressions and Task Performances (CRESST Report
776) (p. 23), by P. West, D. W. Rutstein, R. J. Mislevy, J. Liu, Y. Choi, R. Levy, A. Crawford, K. E.
DiCerbo, K. Chappel, and J. T. Behrens, 2010, Los Angeles, CA: University of California,
CRESST. Copyright 2010 The Regents of the University of California. Reprinted with permission
of the National Center for Research on Evaluation, Standards, and Student Testing (CRESST).
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Figure 10. Graphical representation indicating that there is a relationship between two LPs.
The nature of the relationship is specified by the conditional probability matrix in Table 3.
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The edge in this graph only indicates that there is a relationship, not its nature or
strength. This information is contained in the conditional probabilities. Table 3
shows one possible relationship. Reading conditional probability distributions
across rows, we see that if a student is at Level 1 or Level 2 of IP_Addressing, there
is a high probability the student will be at Level 1 of IP_Protocol Rules. However, a
student at Level 3, Level 4, or Level 5 of IP_Addressing has very similar
probabilities of being at any level of IP_Protocol Rules. The interpretation of this
structure is that students at Level 1 or Level 2 of IP_ Addressing are usually at Level
1 of IP_Protocol Rules. For students at or above Level 3 in [P_Addressing, there is
only a mild positive association between the two variables.

Table 3. A Conditional Probability Table with a Dependency Estimated from Data.

IP Protocol Rules
IP_Addressing Level 1 Level 2 Level 3 Level 4
Level | 0.72 0.14 0.08 0.06
Level 2 0.59 0.21 0.11 0.09
Level 3 0.32 0.28 0.22 0.18
Level 4 0.23 0.25 0.26 0.26
Level 5 0.21 0.24 0.27 0.28

Conditional probabilities can be determined based on data alone or in conjunction
with constraints suggested by subject matter experts. Table 4 is very similar to Table
3, but Table 4 has theory-based constraints. The zeros in Table 4 imply that a person
who is at Level 1 or Level 2 on IP_Addressing cannot be at a high level of
IP_Protocol Rules. That is, Level 3 of the IP_Addressing LP is a prerequisite for
being at Level 3 of the IP_Protocol Rules LP. Such a structure could be suggested by
the substantive relationship between the KSAs at the levels of the two LPs. With
data, a statistical test could be applied to test whether constraining the probabilities at
the upper right of Table 4 to zero provides acceptable fit.

Table 4. A Conditional Probability Table with Constraints on Conditional Probabilities that
Affect a Prerequisite Relationship.

1P Protocol Rules
IP_Addressing Level 1 Level 2 Level 3 Level 4
Level | 0.8 0.2 0* 0*
Level 2 0.7 0.3 0* 0*
Level 3 0.25 0.25 0.25 0.25
Level 4 0.25 0.25 0.25 0.25
Level 5 0.25 0.25 0.25 0.25

* Constrained value.
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Multiple Time Points

Another challenge related to the Bayes net implementation of LPs is modeling
change over time. As mentioned above, LPs can be characterized as measurable
pathways that students may follow in building their knowledge and in gaining
expertise over time. The Bayes nets we have discussed in this chapter have only
addressed student status at a single point in time. Dynamic Bayes nets can be used
to model student LPs over multiple time points where a student’s level may change
from one set of observations to another." At each time point there are (a) one or
more SMVs representing the LP(s) and (b) OVs with probabilistic dependence
upon the SMVs. In addition, there is a copy of the SMVs for each time point. We
model the relationship between unobservable LPs over time with conditional
probability distributions that reflect transition probabilities. Transition probabilities
indicate the probability of moving from a particular level at one measurement
occasion to the other levels at the next measurement occasion.

Figure 11 shows an example of modeling LPs with a dynamic Bayes net. The
Bayes net contains two parts: (1) four SMVs, which are actually the same LP but
assessed at four successive time points where each measurement occasion modeled
is dependent on the previous one, and (2) four OVs at each time point that are
dependent on the SMV for that time point. Different patterns of transition matrices
can be considered that depend on the developmental theory that grounds the LPs
and on the students’ experiences between measurement occasions. For example,
the effectiveness of instructional treatments can be compared in terms of the
transition probabilities they produce. Figure 11 depicts a situation in which
observations have been made at all four time points. At each occasion, the results
of four tasks were observed. This student was most likely at Level 1 of the SMV on
the first occasion, at Level 2 on the second occasion, at Level 3 on the third
occasion, and at Level 4 on the fourth occasion.

Complex Tasks

In the examples discussed thus far, each observable variable depends on only one
SMYV (i.e., LP). More complex tasks, however, may require jointly employing the
KSAs that are modeled to reflect levels in more than one LP. Conducting an
investigation in Mendelian inheritance, for example, may require KSAs from both
a LP for the concepts in Mendelian genetics and the skills in a LP for proficiency
in scientific inquiry.

In computer networking, students solving real-world network design and
troubleshooting problems often encounter tasks that require them to draw upon
multiple KSAs. Figure 9 suggests that assessing a student’s capabilities in
configuring a router involves the student’s understanding of IP addressing and
router concepts plus the student’s ability to connect networks. While tasks can be
defined to measure just one skill (and most of the multiple choice questions in end-
of-chapter tests are so designed), in order to determine whether students can solve
problems in real-world environments we must design tasks that require KSAs from
multiple LPs.
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Figure 11. A dynamic Bayes net.

Cisco has developed a simulation environment for creating complex assessment
tasks using a tool called Packet Tracer (Frezzo, Behrens, & Mislevy, 2009).
Students interact with these tasks as they would with a real network environment.
As in a real troubleshooting or network design problem, students must draw on
KSAs from multiple LPs to complete these tasks. These relationships are
incorporated in a Bayes net by having multiple SMV parents of an observable
variable. Figure 12 shows a hypothetical example. Some tasks depend only on
capabilities in the Connectivity LP, some depend only on capabilities in the
IP_Addressing LP, and others depend on capabilities in both. Table 5 shows the
conditional probability table for an observable variable for such a task, identified as
ConAddTaskl. Each row gives the probabilities of a right and wrong response
(Scorel or Score0) assuming that a student is at a given combination of values for
the SMV parents, Connectivity and IP_Addressing. The probabilities represent
students’ status on two LPs, namely, Connectivity with three levels and
IP_Addressing with five. By choosing task features and performance requirements
in accordance with the definitions of the LPs, the author of ConAddTask1 designed
the task so that, to be likely to succeed, students need to be at Level 2 or higher on
Connectivity and at Level 4 or higher on IP_Addressing. The pattern of conditional
probabilities reflects this structure.

The challenges in modeling complex performance tasks involve determining not
only how the relationships from the model are to be structured but also what type
of observations are most appropriate for incorporation as evidence in the model. In
Packet Tracer, the students’ log files include a record of all commands that they
have performed as well as a final network configuration that would resolve the
problem in a troubleshooting task or meet the client’s requirements in a
configuration task. Currently the final configuration is evaluated by comparing it to
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Figure 12. A graphical representation of a task dependent on multiple learning
progressions. Note that some tasks depend strictly on Connectivity (ConTasks), some on
IP_Addressing (AddTasks), and some on both (ConAddTasks). Adapted from A Bayesian
Network Approach to Modeling Learning Progressions and Task Performances (CRESST
Report 776) (p. 13), by P. West, D. W. Rutstein, R. J. Mislevy, J. Liu, Y. Choi, R. Levy, A.

Crawford, K. E. DiCerbo, K. Chappel, and J. T. Behrens, 2010, Los Angeles, CA: University
of California, CRESST. Copyright 2010 The Regents of the University of California.
Reprinted with permission of the National Center for Research on Evaluation, Standards,
and Student Testing (CRESST).

a target configuration on the quality and features of a number of network aspects.
Additional information is being collected, however, that can be used for evaluation.
Earlier research with the NetPASS prototype (Williamson et al., 2004) used sequences
and timing of actions recorded in the log files as evidence of student capabilities. We
are currently studying whether other types of evidence can be used operationally.

Grain-size of a LP

The grain-size of a LP refers to how broadly or finely focused the progression of the
described KSAs is. There are tradeoffs between modeling LPs at coarser or finer
levels of detail; the choice depends on the purpose of the research or the assessment
project at hand. Fine-grained LPs may be appropriate for studying changes in a
narrowly defined concept, but a more broadly cast LP might be preferable for
summarizing students’ general levels of reasoning in a large-scale educational
survey. The LPs we have worked with in CNA are built to help instructional
designers, task developers, and teachers coordinate their work to define the
curriculum and guide instruction at the level of lessons and exercises. The
IP_Addressing LP shown in Table 1, for example, is at a medium grain-size. Each
level is associated with a set of KSAs that are related to IP_Addressing. Students
operating at a given level in this LP are likely to display most of the KSAs at lower
levels and few of the KSAs at higher levels. However, more finely-grained LPs that
focus more closely on one KSA in the set are possible—that is, IP_Addressing may
be broken into a number of finer-grained LPs. On the other hand, a coarser LP may
be defined by combining IP_Addressing with, say, Connectivity, Routing, and
Switching for a broader description of students’ KSAs. In this example, the grain-
size was chosen for reasons related to subject matter and data.
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Table 5. Conditional Probability Table for the Observable Variable ConAddTaskl, Which
Has Two SMV Parents (IP_Addressing and Connectivity).

Connectivity IP_Addressing CondddTask]
Score 0 Score 1
Level 1 Level 1 90 10
Level 1 Level 2 90 10
Level 1 Level 3 90 10
Level 1 Level 4 90 10
Level 1 Level 5 90 10
Level 2 Level 1 90 10
Level 2 Level 2 90 10
Level 2 Level 3 90 10
Level 2 Level 4 20 80
Level 2 Level 5 20 80
Level 3 Level 1 90 10
Level 3 Level 2 90 10
Level 3 Level 3 90 10
Level 3 Level 4 20 80
Level 3 Level 5 20 80

In terms of subject matter, the groupings reflected in the IP_Addressing LP are
based on clusters of related concepts that are taught and practiced together as
variations on a “key idea” that is addressed in instruction and built on in
subsequent levels. Two data-driven lines of reasoning influenced our choice of
grain-size: (1) analyses of existing test data and subsequent identification of
patterns of stability in that data and (2) variation in performance across two
different organizations of the CNA curriculum.

Analysis of end-of-chapter test data revealed items with similar difficulties in
terms of statistics and clustering of students in accordance with latent classes that
represented those who “got the idea” and those who did not—usually one central
concept, sometimes two, in a chapter. We conducted exploratory analyses using
unconstrained latent class models (see Haertel, 1989) to identify structures that
may suggest portions of LPs. These exploratory analyses and additional latent class
analyses revealed dependencies across chapters that reflect curriculum developers’
beliefs that certain concepts build on others. Tracking these dependencies revealed
linear progressions of concepts across chapters that formed a LP, such as
IP_Addressing. There was instructional value in defining a LP at this grain-size
because the central theme in a given LP level (as discussed in connection with the
IP_Addressing example) could account empirically for a cluster of related KSAs
addressed in the chapter and the associated learning exercises. We also found cases
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in which knowledge at a given level of one LP was necessary for advancing to a
given level of a different LP.

We gained further insights by comparing results across different presentations of
material. Different classes present information in different sequences. Our analyses
are still underway, but it appears that the patterns of performance in different
courses can be understood in terms of the different orders in which the LP levels
are addressed. In other words, modeling at a coarser grain-size would produce a
very “messy middle” because after, say, two courses, students would have very
different performance profiles. Modeling at the medium grain-size allows us to
understand the middle in terms of different profiles across the same set of LPs.

The “Messy Middle”

Another challenge related to the definition of LPs may arise when modeling middle
levels of proficiency. It is typically easiest to define the endpoints of a LP, where
the lowest level refers to a novice state and the highest level refers to an expert
state. In the simple LP described in the beginning of this chapter, learning
generally proceeds as the successive attainment of KSAs in a single order, as
shown in Table 1. In such cases, it is possible to define a LP in terms of ordered
levels of a single SMV (as shown in Figure 13a).

It is more challenging to model the intermediate levels in the LP, however,
when there are multiple pathways a student may follow in acquiring the KSAs
associated with the various levels. To illustrate some of these possibilities, Figure
13b depicts alternative structures for the sequencing of KSA acquisition. In each
sequence, the nodes represent different KSAs associated with the LP. Note that
KSA 1 and KSA 5, at the beginning and the end of the sequences, represent the
lowest and highest endpoints of the LP, respectively. The sequence on the left
represents the acquisition of KSAs 1-5 in a particular order: students acquire KSA
1, followed by KSA 2, followed by KSA 3, followed by KSA 4, and finally KSA
5. The sequence in the middle offers a similar structure in which KSAs are
acquired in an ordered fashion although the order differs. The sequence on the right
depicts a different structure in which students acquire KSA 1 and then KSA 2.
They then may acquire either KSA 3 or KSA 4, both of which must be acquired
before KSA 5.

As Figure 13 illustrates, numerous patterns of KSA acquisition are possible. It is
often unclear which sequence or pattern holds, or, as may be possible, if students
experience different sequences of KSA acquisition. The difficulty in defining a
single sequence that applies to all students, or of enumerating all the sequences that
students experience—to say nothing of identifying which sequence students
progress along—is what is referred to as the “messy middle” (Gotwals & Songer,
2010, p. 277). Approaches for modeling multiple sequences in the “messy middle”
can be found in the psychometric literature on diagnostic and classification models
(e.g., Haertel & Wiley, 1993; Leighton & Gierl, 2007; Rupp & Templin, 2008;
Tatsuoka, 2002). These approaches can be expressed in Bayes net structures by
extending the ideas discussed in the previous section.
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a) A Single Sequence b) Multiple Sequences of Acquisition of
of Acquisition of KSAs.
KSAs.

Figure 13. Single and multiple sequences of acquisition of KSAs.

In particular, a Bayes net for the multiple path scenario can be written in terms
of multiple nodes. Figure 14 shows a Bayes net structure that accommodates all
the paths in Figure 13b, using SMVs with two values for each KSA. This
structure posits that, in students’ development, the acquisition of KSA 1 tends to
occur first and the acquisition of KSA 5 last. However, different orderings of
KSAs 2, 3, and 4 may occur along the way. The conditional probability matrices
corresponding to the arrows indicate if paths are common. If a single ordering is
required, say, for reporting purposes, it is possible that the state with KSA 1 only
is at a low level of a LP; any state with KSA 1 and KSA 2, 3, or 4 is at a second
level; any state with KSA 1 and two of KSA 2, 3, and 4 is at a third level; a state
with KSAs 14 is at a fourth level; and a state with five KSAs is at the highest
level. According to this definition, students at the same broad level of the LP
could have different profiles of probabilities for tasks, depending on their states
within levels.
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Figure 14. Bayes net for LP with multiple sequences of acquisition of KSAs. A student could
progress from KSA_1 to KSA_2, 3, or 4 and then through any of the various paths indicated
by the arrows.

DISCUSSION

Benefits of Using Bayes Nets to Model LPs

Why use Bayes nets to model LPs? One strength of the Bayes net approach is that
it builds on a structure that can be based on theory and expert opinion; initially,
conditional probabilities can be based on expert opinion and fragmentary data. This
means a network can be used immediately for low-stakes inferences. As data
accumulate, however, the probability-based reasoning foundations allow for
coherent improvement of the estimates and more powerful investigations of model
fit and subsequent model improvement. A particular advantage of Bayes nets is the
flexibility in modeling complex and often subtle evidentiary relationships (Schum,
1994) among LP levels and between LPs and task performances. This is especially
important if multiple interrelated progressions are considered and if KSAs from
multiple progressions are involved in complex tasks or multiple aspects of a
performance are evaluated (Mislevy, 1994; Mislevy & Gitomer, 1996). Estimates
for students’ LP levels can be updated in real time. Fragments of Bayes nets can be
pre-built and assembled on the fly in response to an evolving situation, which is
important in adaptive testing and in games- and simulation-based assessment
(Almond & Mislevy, 1999; Conati, Gertner, & VanLehn, 2002; Martin &
VanLehn, 1993; Shute, Ventura, Bauer, & Zapata-Rivera, 2009).

Although the work of Bayes nets is focused on modeling student performance in
light of LPs, Bayes nets also make LPs more useful in some practical and
important ways. Using Bayes nets to model LPs can lead to efficient and valid task
design. The process of identifying initial LPs focuses test developers on the theory
of cognition in the domain and defines the characteristics of individuals at various
levels of the LP. Bayes nets confirm these levels and progressions, allowing
designers to specify the levels of KSAs at which they aim assessment items. For
example, it is possible to state that a task is designed to target Level 3 of one
progression and requires knowledge at Level 2 of another progression. This helps
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make task design more principled, more planful, and ultimately more valid. Bayes
nets also help connect curriculum to assessment. For example, curriculum
designers can use information from a Bayes net structure to make decisions about
which content areas to emphasize so that students have a greater probability of
mastering future KSAs (DiCerbo & Behrens, 2008).

An area we continue to explore is how Bayes nets can provide feedback to
students and instructors (DiCerbo, 2009). Such feedback could be achieved in at
least two ways. First, students could receive reports that update their estimated
levels on various KSAs, given their assessment performance. Based on these
reports, students could be directed to other activities. This is the idea behind
intelligent tutors or, when wrapped in a “fun” scenario, behind games (Shute et al.,
2009). Teachers can use the structure of Bayes nets the same way that the
curriculum designers (mentioned above) do when making decisions about content
emphasis. In addition, teachers can diagnose student problems. For example, if a
student is struggling in one area, teachers can look backwards to a network of
variables to see what prerequisite KSAs the student probably lacks.

Challenges for the Community

Model-building is, by nature, iterative. Progressions are hypothesized, and models
are built, based on understandings of the substantive area and data at a given point
in time. As discussed above, building a Bayes net for a particular application
involves encoding the relationships and making hypotheses of interest from the
domain in the Bayes net. The Bayes net is fit to the data, and data-model fit and
related model-checking tools are used to identify strengths and weaknesses of the
Bayes net in terms of overall features, subsets of variables, or subsets of examinees
(Levy, 2006; Sinharay, 2006; Sinharay & Almond, 2007; Williamson, Mislevy, &
Almond, 2001). The results of these analyses have several interpretations. In a
statistical sense, adequate data-model fit indicates that the probabilistic
relationships in the Bayes net account for what actually takes place in terms of the
data at hand, whereas data-model misfit indicates the relationships in the Bayes net
do not reflect what actually takes place. More substantively, because the Bayes net
is explicitly built to reflect domain-specific hypotheses, adequate data-model fit
constitutes support for those hypotheses, whereas data-model misfit constitutes
evidence against the hypotheses. Data-model misfit might indicate that some
approximations or choices made in the model are not precise enough, or that
certain relationships are poorly understood, or that the hypotheses and relationships
hold for certain students but not for others.

As noted above, Bayes nets are flexible statistical models applicable to a wide
variety of problems. Assessment and assessment in the context of LPs constitute
just a few of these problems. The unique features of assessment of LPs, however,
dictate that certain recurring features of the model are likely present in applications
of Bayes nets to LP assessments. At present, the development of Bayes nets to
accommodate these aspects is in its relative infancy. Similarly, related aspects of
modeling need to be tuned to the particular features of assessment in the context of
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LPs. For example, efficient data-model fit procedures to evaluate hypotheses about
sequences of KSA acquisition through the “messy middle” need to be developed.

As discussed above, new challenges arise in every application in which a
researcher models a LP in a particular substantive area. A comprehensive approach
to assessment for LPs develops Bayes nets in concert with the specification of the
desired inferences and tasks. This process, which is often iterative, is always
localized to the specific situation as defined by the purpose of the assessment. Any
serious application of Bayes nets involves the interplay between the
methodological tools of Bayes nets and the substantive expertise required to build
appropriate model approximations for the domain.

NOTE

' Because the LP variables are unobservable, the resulting Bayes net is formally a hidden Markov

model (Cappé, Moulines, & Rydén, 2005; Langeheine & Van de Pol, 2002).
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APPENDIX

An Example of Building and Fitting a Bayesian Network for a Learning
Progression

This example demonstrates how assessment data can be used to help validate a
learning progression (LP) using statistical modeling in the form of a Bayes net. The
data are from scored responses to 35 items written to target specified levels of the
IP_Addressing progression. The hypothesized structure is a Bayes net with these
35 items as conditionally independent observable variables, dependent on a single
discrete latent variable with values that indicate LP levels.

Owing to the connection between a Bayes net of this description and latent class
analysis (Box 2), a series of latent class analyses were conducted using the poLCA
package (Linzer & Lewis, 2007) in R (R Development Core Team, 2008). These
were exploratory analyses that did not constrain the solution to finding the
theoretical levels that motivated the item writers or to yielding conditional
probabilities that reflected jumps that accorded to levels. Rather, they were
unconstrained latent class analyses for 2-Class, 3-Class, 4-Class, 5-Class, and 6-
Class solutions. Furthermore, it was not required that classes be ordered or that the
conditional probability matrices for items would show jumps at levels targeted by
the item writers. The structure that emerged would be driven by patterns in the
data. As the ensuing discussion shows, the latent class structure that emerged
empirically closely reflected the theoretical structure of LP levels and conditional
probabilities for items with jumps at intended levels.

The 4-Class model demonstrated the best fit to the data, based on statistical fit in
terms of the BIC (Schwarz, 1978) and the bootstrapped likelihood ratio test
(McLachlan & Peel, 2000; Nylund, Asparouhov, & Muthén, 2007) conducted in
Mplus (Muthén & Muthén, 1998-2006). In addition, this model offered the best
interpretability of the classes in terms of class membership proportions and
consistently ordered patterns of class performance across items. The four classes
identified in the analysis corresponded to increasing levels of performance on the
items and were interpretable as increasing levels of KSAs. A hypothesized further
distinction at the high end of the LP was not realized due to the small number of
items targeted at this level. In other words, there was insufficient information in the
data set to differentiate students at the two highest theorized levels. A Bayes net
representation of a model with a single SMV containing four levels (classes) was
then constructed in Netica (Norsys Software Corp., 2007), represented in Figure Al.

INFERENCES REGARDING ASSESSMENT ITEMS

An item was classified as “at the level” of a certain class if it supported an
interpretation that students at that level would be able to solve or complete the task,

289



PATTI WEST ET AL.

1P sddressing proficiency |

— f\\\&\

1118541L1 11081612 1516392 T nesssz [ noesiaz
100 o ST o 529 0 515
[} 1 403 1 471 1 485

| nisanz 1514412 [ nioaso2 [ nostsoz Hog131L2 1105906L3
0 484 o 215 w A 0 624 ﬁr 0 280 I 0 498 o152 0 747
1518 1785 1318 )'II 1720 1504 ; gf | L1253
i v/ ¥ RS A
Ho9s28L3 095043 H18203L3 H16492L3 11027913 He9131LE 11027613
6 578 [] a?.gﬁl_ [ u.sﬂr 0 460 0 5zsﬁ_|_ ] 31.2ﬂ|_ [ a.zgr
1422 1321 1651 1540 1412 1688 1418 ]
[ L .4 \ - Y
Y T Hi0azeLs 5L H16579L4 111657414 1095114 151660L4
o n_sm—r 0 6% 0 ssof 0 522 0 307 ] w_rﬁ_r 0 615
1 47T 1 305 e 1 \Bam 1478 1603 1483 1 s |
2 44— 2 375N
/ 3 e 3 a3 - l
3 v
15845714 1114367L4 1164914 1116496L4 11649314 H1os0aLe H11207L4
0 584 0 a9 0 752 0 608 0 233 o ﬂ-sﬁ | 0 648 =
1 276 1 401 1248 1.2 1363 L 1352
|2 07— 2. M4
|3 262w

Figure Al. Graphical representation of the Bayes net. Adapted from A Bayesian Network
Approach to Modeling Learning Progressions and Task Performances (CRESST Report
776) (p. 17), by P. West, D. W. Rutstein, R. J. Mislevy, J. Liu, Y. Choi, R. Levy, A. Crawford,
K. E. DiCerbo, K. Chappel, and J. T. Behrens, 2010, Los Angeles, CA: University of
California, CRESST. Copyright 2010 The Regents of the University of California. Reprinted
with permission of the National Center for Research on Evaluation, Standards, and Student
Testing (CRESST).

whereas students at lower levels would likely be unsuccessful. To classify items,
the conditional probability tables were examined. For each item, the odds of
answering the item completely correctly were calculated in each class, and odds
ratios were calculated to compare adjacent classes. These odds ratios capture the
power of the items to discriminate between classes. To construct an odds ratio for
the first class, the probability that a complete novice (our interpretation of the
lowest class emerging from the analysis—a class with low conditional probabilities
of correct responses to all items) would get the item right was defined as the
probability of getting the item right by guessing. Each item was assigned to a level
based on considerations of (a) the size of these odds ratio between successive
classes, (b) the criterion that the probability of responding correctly at the assigned
level exceeded .50 for dichotomously scored items, and (c) the distribution of
probability across the response categories for polytomously scored items.

The results indicated that many items discriminated strongly between classes.
For example, Figure A2 contains the conditional probability table for an item that
only students in the fourth (highest) class are likely to solve successfully.
Statistically, this item aids in distinguishing students in the fourth latent class from
those in the remaining classes. Substantively, the item exemplifies one aspect of
what it means to be at the fourth level of the LP. Students at the fourth level have
acquired the KSAs necessary to have a strong chance of correctly answering this
item; students at the lower levels have not.
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IP_Addressing_Proficiency Score0 Score1
Class1 84.200 15.800
Class2 74.420 25,580
Class3 62.440 37.560
Class4 12.480 87.520

Figure A2. Conditional probability table for an item that discriminates well between the
fourth and the other classes. From A Bayesian Network Approach to Modeling Learning
Progressions and Task Performances (CRESST Report 776) (p. 19), by P. West, D. W.
Rutstein, R. J. Mislevy, J. Liu, Y. Choi, R. Levy, A. Crawford, K. E. DiCerbo, K.
Chappel, and J. T. Behrens, 2010, Los Angeles, CA: University of California, CRESST.
Copyright 2010 The Regents of the University of California. Reprinted with permission
of the National Center for Research on Evaluation, Standards, and Student Testing
(CRESST).

Other items were more ambiguous in terms of their levels. For example, Figure
A3 shows the conditional probability table for an item on which students in the
second class have a .88 probability of earning partial or full credit but only a .52
probability of earning full credit, whereas students in the third class have
a .86 probability of earning full credit. A simple classification of this item in terms
of one level is insufficient to fully capture its connection to the classes. A richer
characterization of the item, recognizing that it discriminates well between multiple
adjacent classes, states that once a student reaches class two, she is very likely to
earn at least partial credit but needs to reach class three (or four) in order to be as
likely to earn full credit.

Across all items, the results were largely consistent with the experts’ expectations.
Ten items exhibited clear and distinct patterns that distinguished between classes
exactly as predicted by experts. That is, these items were “located” at the expected
level. Figure A2 shows an example of one such item; the expert prediction of this
item as a level 4 item is strongly supported by the empirical results.

IP_Addressing_Proficiency Score0  Scorel Score2
Class1 40.300 49.000 10.700
Class2 11.870 36.280 51.850
Class3 2.350 12.050 85.600
Class4 0.000 5.110 94.890

Figure A3. Conditional probability table for an item that discriminates differentially at
multiple points. From A Bayesian Network Approach to Modeling Learning Progressions
and Task Performances (CRESST Report 776) (p. 19), by P. West, D. W. Rutstein, R. J.
Mislevy, J. Liu, Y. Choi, R. Levy, A. Crawford, K. E. DiCerbo, K. Chappel, and J. T.
Behrens, 2010, Los Angeles, CA: University of California, CRESST. Copyright 2010 The
Regents of the University of California. Reprinted with permission of the National Center
for Research on Evaluation, Standards, and Student Testing (CRESST).
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Five items were scored polytomously; these distinguished roughly well at the level
predicted by experts. This is seen in terms of differential probabilities between the
targeted LP levels at one score level and the two other LP levels at another score
level. This phenomenon is illustrated for the item whose conditional probabilities
appear in Figure A3. This item was expected to be a level 4 item. This item is located
at class 2 with respect to being able to obtain a score of 1 as opposed to 0; it is also is
located at class 3 in terms of being able to obtain a score of 2 as opposed to 1.

Overall, eighteen items were located at a level adjacent to the predicted level
(e.g., an item expected at level 4 was located at class 3). One item was located
adjacent to the predicted class and was also located at another class not adjacent.
Only one item was clearly located at a class that was not equal to or adjacent to
the predicted level. Initial reviews of these results indicated revisions that would
help the items more sharply target the concepts at their intended levels.

INFERENCES REGARDING STUDENTS

The conditional probability tables also reveal how inferences regarding students are
conducted in the Bayes net. For example, observing a correct response for the item in
Figure A2 is strong evidence that the student is in class 4; observing an incorrect
response for the item in Figure A2 is relatively strong evidence that the student is not
in class 4. The use of a Bayes net approach supports inferences regarding students by
collecting and synthesizing the evidence in the form of observed values of variables.
That information is then propagated through the network via algorithms based on
Bayes’ theorem to yield posterior distributions for the remaining unknown variables
(Pearl, 1988), including the SMV corresponding to the LP. For example, Figure Al
contains the Bayes net for a student who has completed four items. The student
correctly answered the first two items and incorrectly answered the next two items.
On the basis of this evidence, the posterior distribution for his/her latent skill variable
indicates that this student has a probability of being in classes 1-4 of .487, .264, .228,
and .021, respectively. On this basis we may infer that the student is almost certainly
in one of the first three classes (i.e., is at one of the first three levels of the
progression) and is more likely in the first class than either the second or third. Yet
there still remains considerable uncertainty. The collection and inclusion of more
data would lead to a more refined inference.

COMMENT ON THE EXAMPLE

The results of the modeling offer a data-based interpretation of the development of
KSAs that constitute the LP. In some cases, the results for items confirm the
experts’ expectations. For other items, the results are more ambiguous or offer an
alternative to the experts’ expectations. To take a more comprehensive perspective
on assessment of LPs, the results of the statistical analyses will be submitted to the
subject matter experts for consultation and possible refinements in terms of the
definition of the LP, the items that assess the aspects of the LP, and the utility of
additional items for modeling students’ progression.
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