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A central challenge in using learning progressions (LPs) in practice is modeling the 
relationships that link student performance on assessment tasks to students’ levels on 
the LP. On the one hand, there is a progression of theoretically defined levels, each 
defined by a configuration of knowledge, skills, and/or abilities (KSAs). On the other 
hand, there are observed performances on assessment tasks, associated with levels but 
only imperfectly and subject to inconsistencies. What is needed is a methodology that 
can be used to map assessment performance onto the levels, to combine information 
across multiple tasks measuring similar and related KSAs, to support inferences about 
students, and to study how well actual data exhibit the relationships posited by the LP. 
In terms of the “assessment triangle” proposed by the National Research Council’s 
Committee on the Foundations of Assessment (National Research Council [NRC], 
2001), coherent theoretical and empirical connections are needed among the theory 
embodied in a progression (cognition), the tasks that provide observable evidence 
about a student’s understanding relative to that progression (observation), and the 
analytic models that characterize the relationship between them (interpretation). 
 This chapter discusses the use of Bayesian inference networks, or Bayes nets for 
short, to model LPs. Bayes nets are a class of statistical models that have been 
adapted for use in educational measurement. At present, the use of Bayes nets in 
LP contexts is in its relative infancy. We describe the fundamentals of the approach 
and the challenges we faced applying it in an application involving a LP in 
beginning computer network engineering. 
 The first section of the chapter reviews our framework of model-based reasoning. 
Subsequent sections map the development of LPs and associated assessments onto this 
framework and show how Bayes nets are used to manage the problems of evidence 
and uncertainty in the relationship between LPs and assessment task performances. 
We then explain in more detail what Bayes nets are, how they can be used to model 
task performance in the context of LPs, and the challenges that we face in this work. 

MODEL-BASED REASONING 

The lens of model-based reasoning helps clarify the role Bayes nets can play in 
modeling LPs. A model is a simplified representation focused on certain aspects of 



PATTI WEST ET AL. 

258 

a system (Ingham & Gilbert, 1991). The entities, relationships, and processes of a 
model provide a framework for reasoning about any number of real world 
situations, in each instance abstracting salient aspects of those situations and going 
beyond them in terms of mechanisms, causal relationships, and/or implications that 
are not apparent on the surface. 
 The lower left plane of Figure 1 shows phenomena in a particular real world 
situation. In the case of LP research, the situation is students’ task performances. A 
mapping is established between this situation and, in the center of Figure 1, the 
semantic plane of the model; that is, structures expressed in terms of the entities, 
relationships, and properties of the model. The lines connecting the entities in the 
model represent causes, influences, mechanisms, and other relationships. The 
analyst reasons in these terms. In modeling LPs, this layer concerns progressions 
and their levels, relationships among different progressions, and expected 
performance on assessment tasks based on the features of tasks (what students are 
asked to do) and the features of their performances (what they actually do). 
 The real world situation is depicted in Figure 1 as fuzzy, whereas the model is 
well-defined. This suggests that the correspondence between real world entities and 
the idealizations in the model is never exact. The reconceived situation in the lower 
right plane of Figure 1 is a blend of selected aspects of the real world situation and 
elements of the model (shown in dotted form). The match between the real world and 
the data is not perfect, but a framework of meaning that the situation does not possess 
in and of itself can enhance our understanding of it (Suarez, 2004; Swoyer, 1991). It 
is here that descriptions, explanations, and implications for real world phenomena are 
formed. In the case of LPs, it is here that patterns of students’ performance are 
interpreted in terms of their status or development with respect to the LP levels. 
 Symbol systems that are associated with some models further support reasoning, 
such as the algebraic and graphical representations of regression models shown above 
the semantic plane in Figure 1 as Representational Forms A and B. Similarly, Bayes 
nets provide mathematical and graphical representations to support reasoning about 
LPs, students’ status on them, and evaluations of their performances across tasks. 

DEVELOPMENT, ASSESSMENT, AND MODELING OF LEARNING PROGRESSIONS 

When we speak of modeling a LP, we refer to a coherent set of elements: a 
progression defined in terms of the psychology and the substance of the domain 
under consideration, a specification of how real-world situations can be set up to 
evoke evidence about a student’s status on the LP, and a measurement model (in 
our case, a Bayes net) that articulates the probabilistic relationship between student 
performances and status on the LP. These are the vertices of an “assessment 
triangle” (NRC, 2001): cognition, observation, and interpretation. Cognition refers 
to a theory about what students know and how they know it (the learning 
progression). Observation relates to the tasks we ask students to perform to gather 
evidence about what they know. Interpretation is the meaning we assign to these 
observations. Specifying and validating a probability model—Bayes nets in this 
case—helps analysts develop coherence among these elements in order to reason 
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the operational definitions of what KSAs would look like at each stage, and (5) 
assessments that measure performances with respect to each key KSA over time. 
Although students may progress along different pathways, common paths can be 
tested and legitimated. It should also be noted that student learning and thinking 
progress in the context of instruction and experiences. This progression must be 
considered in creating, assessing, modeling, and interpreting LPs. 
 The following discussion describes the development of LPs in a specific content 
area: beginning computer networking. The context is the Cisco Networking 
Academy (CNA), a global program in which information technology is taught 
through a blended program of face-to-face classroom instruction, an online 
curriculum, and online assessments. These courses are offered in high schools, 2- 
and 3-year community college and technical schools, and 4-year colleges and 
universities. Since its inception in 1997, CNA has grown to reach a diverse 
population of approximately 900,000 students annually, in more than 160 countries 
(Levy & Murnane, 2004; Murnane, Sharkey, & Levy, 2004). Behrens, Collison, 
and DeMark (2005) discuss the framework that drives the ongoing assessment 
activity that, in turn, provides the data for this work. 
 In 2007, CNA updated and redesigned the curriculum for its primary network 
course offerings. A group of subject matter experts, working with 
psychometricians and educational psychologists, sketched out provisional LPs 
based upon several lines of work integral to the design of the curriculum (for 
details, see West et al., 2010). First, they conducted statistical analyses of student 
exams from the previous four-course curriculum. Classical and item response 
theory (IRT) analyses of end-of-chapter and final exam data revealed patterns in 
the difficulty of certain assessment tasks based upon their placement in the 
curriculum. For example, the same item used to assess IP addressing had different 
difficulty depending on whether the item was used before or after students learned 
basic routing concepts. Second, these patterns were considered in combination with 
the results of cognitive task analysis research into novice and expert performance 
in the domain (Behrens, Frezzo, Mislevy, Kroopnick, & Wise, 2007; DeMark & 
Behrens, 2004). Finally, external research highlighting the real-world KSAs 
necessary for various job levels was used to validate the subject matter expert 
opinion and statistical analyses. Thus the initial LP framework was developed 
through the interaction of various experts using both theory and data. 
 To make this discussion more concrete, Table 1 presents an example of a LP 
in Internet Protocol (IP) Addressing, a key area taught in the four-semester Cisco 
Certified Network Associate (CCNA) course sequence. IP addressing is the 
mechanism by which all pieces of equipment in a network (PCs, routers, etc.) are 
given unique “addresses” so information sent to them knows where to go and 
information sent from them is properly labeled for return if necessary. An 
analogy is the street address of a house. A five-level progression is defined based 
on clusters of interrelated, assessable elements that describe a student’s 
capabilities at each level. The levels reflect increasingly sophisticated 
understandings of IP Addressing. Table 1 presents an abridged version of the 
KSAs at each level. 



A BAYESIAN NETWORK APPROACH TO MODELING LEARNING PROGRESSIONS 

261 

 

Table 1. Sample of Knowledge, Skills, and Abilities in the IP_Addressing Progression. 

Level 1 – Novice – Knows Pre-requisite Concepts: Can recall factual information and 
perform highly scripted activities 

• Student can navigate the operating system to get to the appropriate screen to 
configure the address. 

• Student can use a web browser to check whether or not a network is 
working. 

Level 2 – Basic – Knows Fundamental Concepts: Able to understand reasoning behind 
actions, but can’t apply in unknown situations 

• Student understands that an IP address corresponds to a source or destination 
host on the network. 

• Student understands that an IP address has two parts, one indicating the 
individual unique host and one indicating the network that the host resides 
on. 

• Student understands the default gateway is the address that data is sent to if 
the data is leaving the local network and why it must be specified. 

• Student understands how the subnet mask indicates the network and host 
portions of the address. 

• Student can create subnet masks based on octet boundaries. 
Level 3 – Intermediate – Knows More Advanced Concepts: Able to apply concepts to 
actions  

• Student understands the difference between physical and logical 
connectivity. 

• Student can explain the process of encapsulation.  
• Student understands how Dynamic Host Control Protocol (DHCP) 

dynamically assigns IP addresses.  
Level 4 –Advanced – Applies Knowledge and Skills: Able to apply concepts in context 
in an unscripted manner 

• Student can use the subnet mask to determine what other devices are on the 
same local network as the configured host. 

• Student can use a network diagram to find the local network where the 
configured host is located. 

• Student can recognize the symptoms that occur when the IP address or 
subnet mask is incorrect. 

Level 5 – Expert – Applies Advanced Knowledge and Skills: Able to apply concepts in 
new contexts in an unscripted manner and predict consequences of actions 

• Student can recognize a non-functional configuration by just looking at the 
configuration information; no testing of functionality is required. 

• Student can interpret a network diagram to determine an appropriate IP 
address/subnet mask/default gateway for a host device. 

• Student can interpret a network diagram in order to determine the best router 
to use as a default gateway when more than one router is on the local 
network. 
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Task Design (Observation) 

The CNA assessment development process follows an Evidence Centered 
Design (ECD; Mislevy, Steinberg, & Almond, 2003) approach. ECD guides the 
assessment design process by addressing a series of questions: “What claims or 
inferences do we want to make about students?” “What evidence is necessary to 
support such inferences?” “What features of observable behavior facilitate the 
collection of that evidence?” At each level of the LP, a subject matter expert 
created multiple claims based on the set of related KSAs that define  
the level. In order to assess student performance with respect to these claims, 
the curriculum contains end-of-chapter tests and end-of-course final exams 
consisting of multiple-choice questions. Each chapter or course typically 
addresses multiple LPs. Our current focus is the case in which each item in an 
assessment is designed to measure one LP level. Work on modeling more 
complex assessment tasks that address multiple LPs is discussed later in the 
chapter. 
 In this example, IP_Addressing is called a student model variable (SMV) 
because it represents an aspect of a student’s proficiency. SMVs, like 
IP_Addressing, are latent variables, which means their values cannot be 
observed directly. However, students’ task performances provide evidence 
about them. Two items that provide evidence about a student’s level on 
IP_Addressing are shown in Figure 2. They both concern knowledge of the 
syntax of a router command. These two seemingly similar items provide 
evidence to distinguish between different levels of a LP due to a small but 
conceptually important difference in task features: Changing the stem from /24 
to /28 requires students to have a more advanced IP Addressing skill, namely 
the skill to subdivide one of the octets. Item A distinguishes between Level 1 
and Level 2 (students can create subnet masks based on octet boundaries), while 
Item B distinguishes between Level 3 and Level 4 (students can use the subnet 
mask to determine what other devices are on the same local network as the 
configured host). 

Modeling Responses (Interpretation) 

We can represent the different patterns of evidence provided by the sample 
items in Figure 2 with a Bayes net. First, a student’s level on the IP_Addressing 
LP can be represented with a variable called IP_Addressing. The variable has 
five possible values, one for each level of the LP. For each level, there is a 
probability that a student is at that level. Figure 3 represents ignorance about a 
student’s level, expressed as probabilities of .2 at each level. (The Netica 
program, Norsys Software Corp., 2007, shows these probabilities as 
percentages, hence 20 rather than .20.) This is called a prior probability 
distribution, reflecting the belief about a student before observing any of  
the student’s responses. We will see how observation of student responses 
allows us to update our beliefs and express them in a posterior probability 
distribution. 
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 Table 2a specifies the relationship between IP_Addressing and Item A. Each row 
in the table is the conditional probability distribution for the values of the Item A OV, 
given the value of IP_Addressing. The row for Level 1, for example, says that a 
student at Level 1 has a probability of .8 of answering incorrectly and only .2 of 
answering correctly. (We discuss the source of these probabilities later in the 
chapter.) A student at Level 2 has a probability of .7 of answering correctly. Table 2 
reflects the LP structure since students at Level 1 will probably get Item A wrong, 
but students at or above Level 2 will probably get Item A right. These expectations 
are probabilities rather than certainties because a student at Level 4 might miss Item 
A owing to carelessness, an arithmetic error, or a gap in knowledge. Although the 
capabilities at a given level are interrelated for both concepts and curriculum, 
students may be stronger on some elements at one level than on others. Table 2b, 
which gives conditional probabilities for Item B, shows a jump in conditional 
probabilities between Level 3 and Level 4. 

Table 2. Conditional Probabilities for Item Responses Given the Level of IP_Addressing. 

a) Item A     b) Item B 

IP_Addressing 

Item A 

Score 0 Score 1 

Level 1 80 20 
Level 2 30 70 
Level 3 20 80 
Level 4 10 90 

 Level 5 10 90 
 

IP_Addressing 

Item B 

Score 0 Score 1 

Level 1 90 10 
Level 2 80 20 
Level 3 70 30 
Level 4 20 80 

 Level 5 10 90 

 

 To summarize this section, theoretically defined levels of the learning 
progression provide information about what students know and how they know it. 
This is the cognition vertex in the assessment triangle. The theory and research 
underlying the LPs suggest how we might design tasks to elicit student 
performances that depend on their status in the progressions. This is the 
observation vertex. The interpretation vertex of the triangle addresses analytic 
models that connect assessment performances with the cognitive structure of the 
LP; these models are used to validate and improve the LP and task framework and 
to reason about individual students in that framework. The following sections 
explore this vertex using Bayes nets. 

MODELING LPS USING BAYES NETS 

Even the simplest LP structure poses issues of evidence and uncertainty since a 
student at a given level of a progression may provide responses that vary across 
levels from one task to the next. What degree of regularity should we expect in 
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performance? How do we infer back from students’ performances to the levels at 
which they likely work? How much evidence about a level does one task, or 
several tasks at different levels, provide us? Does a particular task operate 
differently than others when our theory says they should operate similarly? 
Additional complexities arise when we consider multifaceted clusters of concepts. 
Are there multiple typical paths students take that extend beyond the usual 
variability in performance? Are there identifiable strands of concepts that display 
their own regularities within a larger, less tightly structured progression? What 
hard prerequisites, or soft tendencies, seem to influence students’ paths? How do 
we discover these patterns in noisy data? 
 Measurement models posit a relationship between (a) a student’s status on 
inherently unobservable SMVs that characterize some aspects of their 
capabilities and (b) OVs that provide evidence about these SMVs. Specifying a 
measurement model becomes a matter of specifying these relationships and, in so 
doing, specifying how assessment data should be interpreted to yield inferences 
about students. In addition to Bayes nets, other modern measurement models 
with this same essential structure include latent class models (Dayton & 
Macready, 2007), cognitive diagnosis models (Rupp & Templin, 2008), and 
structured IRT models such as the Multidimensional Random Coefficients 
Multinomial Logit Model (MRCMLM; Adams, Wilson, & Wang, 1997). In the 
context of LPs, the SMVs correspond to LPs since students are presumed to be at 
a given but unobservable level on each LP. We obtain evidence about their level 
from performance on tasks built, based on the theory underlying the LP, for this 
purpose. 
 More specifically, modern measurement models facilitate inferences about 
students using two key features. The first is latent variables. These variables 
recognize that what we would ultimately like to know about students (i.e., their 
levels on the LP) is unobservable, and must be inferred from what we can observe, 
namely, performance on tasks. The relationship between a student’s level on the 
LP—the latent SMV—and performance on the tasks—captured in OVs—is at the 
heart of the inference. By specifying which values of the OVs (i.e., the 
performances on tasks) are expected based on the value of the SMV (i.e., the level 
of the LP), the measurement model allows us to make inferences about the SMV 
from observed values of the OVs. 
 The second feature of modern measurement models is the use of probability 
models to express these relationships. Student performances (OVs) are modeled 
as probabilistically dependent on the student’s level on the LP (SMV). A student 
may exhibit task performances that do not exactly agree with the expectations 
based on the model. For example, a student who has reached a given level of the 
LP might demonstrate a higher or lower level of performance on a particular task; 
task performance could be the result of chance, of inconsistency in applying 
concepts, or of the influence of factors not encoded in the model. This is why the 
conditional probabilities in the introductory example (Table 2) are not all ones and 
zeros. 
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 Combining these two features produces a modern measurement model—
performances on tasks (OVs) are modeled as probabilistically dependent on the 
unobservable level of the LP (SMV). Box 1 provides a formal definition of a 
measurement model formulation in the LP paradigm. Given such a model, we can 
characterize tasks’ effectiveness at distinguishing between levels (through the 
patterns in the conditional probabilities as estimated from data), and we can draw 
inferences about the status of students on a LP (as we will see shortly, through 
posterior probability distributions once we observe students’ performances). 
Further, probability theory helps a researcher explore the fit and misfit of a model 
to data and iteratively fine-tune both tasks and theories. 
 
=========================================================== 

Box 1: Formal definition of a measurement model 

To more formally define the measurement model structure used in the modeling 
of LPs, let  denote an unobservable SMV. Further, let X1, X2,…, XJ represent 
some number J of OVs, the values of which summarize performance on tasks 
(e.g., scored item responses). A measurement model then specifies the 
conditional probability for each OV, denoted P(Xj | ). The conditional 
probability expression yields different probabilities of values of the OV 
depending on the value of the SMV, capturing how a student’s performance 
depends on his/her level of proficiency. Each OV is permitted to have its own 
conditional probability distribution given the SMV, as tasks may differentially 
measure the KSAs. 
=========================================================== 

Bayesian Inference Networks 

Bayes nets combine probability theory and graph theory to represent probabilistic 
relationships among variables. Bayes nets are so named because they support 
reasoning from any set of observations to any other variables (either latent or 
observable but not yet observed) in a network using algorithms that incorporate 
Bayes’ theorem (Lauritzen & Spiegelhalter, 1988; Pearl, 1988). As a general 
modeling approach, Bayes nets focus on conditional probabilities in which the 
probability of one event is conditional on the probability of other events: in 
forecasting, for example, probabilities of tomorrow’s weather given today’s 
weather and climate patterns; in animal breeding, characteristics of offspring 
given characteristics of ancestors; in medical diagnosis, probabilities of 
syndromes given disease states and of test results given syndromes. In 
assessment, interest lies in item responses or features of performances given 
students’ KSAs. Bayes nets can be used to structure relationships across large 
multivariate systems, allowing us, for example, to synthesize the results of many 
observed responses to support inferences about student thinking (Mislevy & 
Gitomer, 1996). 



 One w
is with a
(Jensen, 

• A set
All th
possib
states
levels
mode

• A set
proba
edge 
their 
B. Th
the pa
status

• For e
proba
Figur

• For e
condi
of the

 

 

 

 

 

 

 

 

 

 

 

Figure
dependen

 

A BAYESIAN N

way to represen
a graphical mo
1996): 

t of variables, 
he variables in
ble values, co
s (e.g., the IP
s that compri
eled). 
t of directed 
abilistic depend
are referred to
children. In ou

he direction of 
arents of symp
s at Time k+1. 
each variable w
ability distribu
re 2, or based o
each variable w
itional probabi
e values of the 

e 4. A Bayes net 
nt on a student’s

NETWORK APPR

nt these networ
odel (such as F

represented b
n the most wid
orresponding to
P addressing 
ise all possib

edges (repres
dence between
o as parents of
ur example, IP
edges is often 

ptoms or the sta

without parent
ution for that v
on background 
with parents (s
lity distributio
parent variable

t showing observ
s level on the lea

variabl

ROACH TO MOD

rks of variable
Figure 4) consi

by ellipses or b
dely used Bay
o a set of exh

example has
ble states of 

ented by arro
n variables. No
f nodes at the d
P_Addressing i

determined by
atus of some in

ts (such as IP_
variable. This 
knowledge abo

such as Item A
ons correspond
es (as in the row

vable variables f
arning progressio
le IP_Addressing

DELING LEARNI

es and the resul
isting of the fo

boxes and refe
es nets have a

haustive and m
s five mutual
IP_Addressin

ows) between 
odes at the sou
destination of 
is the parent of
y theory, such a
ndicator at Tim

_Addressing), 
could be uni

out a group or 
A in Figure 4)
ding to all poss
ws of Table 2a

for two tasks. Th
on represented i
g. 

ING PROGRESSI

lting computati
following elem

erred to as no
a finite numbe

mutually exclu
lly exclusive 

ng as it is be

nodes, indica
urce of a dire
the directed ed
f Item A and I
as disease state
me k as a paren

there is an in
informative, a
individual. 

), there is a se
sible combinati
a). 

he performance i
in the student mo

IONS 

267 

ions 
ments 

des. 
er of 
sive 
LP  

eing 

ating 
cted 
dge, 
Item 
es as 
nt of 

nitial 
s in 

et of 
ions 

is 
odel 



PATTI WEST ET AL. 

268 

 Box 2 more formally describes Bayes nets as probability models. Because Bayes 
nets are framed in terms of the standard theory of probability and statistics, general 
approaches to model construction, parameter estimation, and model criticism are 
available to researchers seeking to model LPs or any other substantive situation. 
 
=========================================================== 

Box 2: Bayes nets as probability models 

In general, Bayes nets can be described as a probability model for the joint 
distribution of a set of finite-valued variables, say (Y1,…YN), represented 
recursively in terms of the product of conditional distributions: 

 
1, , ,N j j

j
P Y Y P Y Pa Y

 
(1) 

where Pa(Yj) refers to the subset of variables with indices lower than j upon which 
Yj depends. These are the variables that have edges pointing from them to Yj in the 
graphical representation of the network. Theory and experience suggest which 
variables should be considered parents of others. For example, in weather 
forecasting, variables for today’s conditions are parents of variables for tomorrow’s 
conditions. In genetics, variables representing genotypes of individuals are parents 
of variables representing the phenotypes of the same individuals, and variables for 
genotypes of literal parents are Bayes net parents of variables for the genotypes of 
their literal children. Theory and experience also provide information for 
determining if one set of variables should be modeled as independent from another 
set of variables, given the values of a third set of variables (“conditional 
independence”). For example, in Table 2, the probabilities of the Item A responses 
are independent of the probabilities of Item B responses given information about 
the levels of IP_Addressing; if we knew the value of a student’s IP_Addressing 
variable, observing the value of the Item A response would not change our 
expectations for her response to Item B. When theory and experience suggest many 
conditional independence relationships, the variables in a Bayes net will have 
relatively few parents, and the diagram and the recursive expression simplify. The 
relationships among variables in the network can then be expressed in terms of 
interactions among relatively small clusters of variables. 
 Once such a representation has been built, one can update belief about any 
subset of the variables given information about any other subset using Bayes 
theorem. The rapid increase of the use of Bayes nets is due to efficient algorithms 
that allow these computations to take place in real time when the dependency 
structure is favorable. 
 In the context of Bayesian networks for LPs,  is a latent discrete SMV with 
states that correspond to the levels of the progression. Formally, the values can be 
ordered, partially ordered, or unordered. A single LP would typically be 
represented by ordered levels. The OVs are discrete variables with states 
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corresponding to the different possible scored performances on items or other 
tasks (e.g., a correct or incorrect response on an item, or levels or types of 
performance qualities in more complex tasks). The Bayes net specifies P(Xj | ), a 
table of the conditional probabilities of observing different performances on tasks 
given the student’s level on the LP. Multiple tasks yield OVs that may have 
different associated conditional probability tables. For example, one item may 
require a student to be at least at a low level of the progression in order to have a 
high probability of performing well, whereas another item requires the student to 
be at a higher level to have a high probability of performing well. In the case of 
the two items for IP_Addressing (Table 2), Item A requires a student to be at level 
2 or above on IP_Addressing in order to have a high probability of getting a 
correct score, while Item B requires a student to be at level 4 or level 5 to have a 
high probability of answering correctly. The specification of the model is 
completed by defining an initial probability distribution for —i.e., a prior 
distribution—capturing how likely it is that a student is at each level of the 
progression. The prior may be uninformative, as in the introductory example 
(Figures 2 and 4), or based on other information such as student background data 
or instructors’ expectations. 
 When a Bayes net is specified in this way to model assessment of a single 
discrete SMV, it can be viewed as a latent class model (Dayton & Macready, 2007; 
Lazarsfeld & Henry, 1968). A traditional formulation for a C-class latent class 
model (i.e., a model with C levels of a learning progression) specifies the 
probability that examinee i responds to item j yielding an OV value of r as 

 
1

( ) ( ) ( | ),
C

ij i ij i
c

P X r P c P X r c  (2) 

where P( i = c) is the prior probability that examinee i is in class c (i.e., level c of 
the progression) and P(Xij = r| i = c) is the conditional probability that an 
examinee in class c responds to item j in response category r. The usual 

restriction,
1

( ) 1
C

i
c

P c , is imposed. Similarly, within latent classes the 

conditional probabilities over response categories are restricted such that 

1
( | ) 1

jR

ij i
r

P X r c , where Rj is the number of distinct response categories for 

item j. The graphical representation contains edges from  to each X (e.g., the edges 
from IP_Addressing to both items in Figure 4). The recursive representation is 

 
1, , , .N j j j

j j
P X X P X Pa X P X P

 
(3) 

 More complex cases can include multiple LPs as well as progressions that 
allow for different pathways so that the Bayes net must address a finer grain-size 
of KSAs to distinguish points along different pathways. In these cases,  is 
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vector-valued. Performance on a given observable X from a task can depend on 
more than one component of ; that is, conditional probabilities for such an 
observable are estimated for possible combinations of its entire set of parent 
SMVs. In networking, for example, doing well on a certain troubleshooting task 
may require a student to be at Level 3 or higher in the IP_Addressing progression 
and at Level 2 or higher in the Connectivity (also called “Connect Networks”) 
progression. 
 
=========================================================== 
 
 To continue with our example, the graphical representation of a Bayes net 
depicts the structure of relationships among variables—in our case, how 
performance on tasks depends on LP levels—and probabilities that represent the 
analyst’s knowledge of a student at a given point in time. Probabilities that arise 
from (1) knowing nothing about a particular student’s level in IP_Addressing 
and (2) knowing the conditional probabilities of item responses from Table 2 are 
shown in Figure 4. The direction of the arrows reflects the direction of the 
conditional probabilities in the tables, namely, that item performance depends 
on the student’s level in IP_Addressing. 
 Once this probability structure has been built, we can reason in the other 
direction as well. We work back through an arrow to obtain a better estimate 
about an individual student’s level on the LP, given the response the student 
makes to a given item, and then revise what we would expect to see on other 
items as a result. Figure 5 shows that if a student answers Item A incorrectly, he 
or she is probably at Level 1. The probabilities for IP_Addressing are obtained by 
applying Bayes’ theorem as follows: Multiply the initial probabilities for each 
level of the LP (in this case, .2) by the corresponding conditional probabilities in 
the column for Score 0 of Table 2a; then normalize the result (i.e., rescale the 
results of the multiplications so they add to 100%). The result gives the posterior 
probabilities (IP_Addressing in Figure 5). These updated probabilities can then be 
used to obtain the probabilities for Item B. This updating is a simple example of 
Bayes’ theorem with just two variables. In more complicated networks, 
algorithms are used that build on Bayes’ theorem but take advantage of 
conditional independence structures to update many variables efficiently (Jensen, 
1996). 
 Figure 6 shows that if the student answers item A correctly, s/he is probably 
at Level 2 or higher. Figure 7 shows that if the student who answers Item A 
correctly also answers Item B incorrectly, belief shifts to Levels 2 and Level 3. 
(The probabilities for IP_Addressing in Figure 4 have now been combined with 
the column for Score 0 in the Item B conditional probability table, Table 2b). If 
we wanted to sort out these possibilities, we would administer an item that 
focuses on capabilities that emerge in Level 3. Finally, if the student  
had answered B correctly, then our belief would shift to Level 4 and Level 5  
(Figure 8). 
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CHALLENGES IN USING BAYES NETS TO MODEL LEARNING PROGRESSIONS 

A number of challenges exist when using Bayes nets in modeling LPs and 
associated data from assessments targeting LPs. One challenge concerns the 
development of a toolkit of Bayes net techniques tuned for modeling assessment in 
the context of LPs. Bayes nets support probability-based inferences in complex 
networks of interdependent variables and are used in such diverse areas as 
forecasting, pedigree analysis, troubleshooting, expert systems, jurisprudence, 
intelligence analysis, and medical diagnosis (e.g., Pearl, 1988). When using Bayes 
nets in any new domain (like LPs), it is a challenge to develop an experiential base 
and modeling strategies using the general model-building, model-fitting, and model 
criticism tools of Bayes nets to address the relationships that are particular to that 
domain. For example, Bayes net fragments for properties of weather patterns and 
meteorological instruments can be assembled and tailored for weather forecasting 
applications (e.g., Edwards, 1998). Fragments concerning witness credibility and 
lines of argumentation also recur in Bayes nets in legal evidentiary arguments (e.g., 
Kadane & Schum, 1996). The unique features of LPs dictate that certain recurring 
structures will likely be present in applications of Bayes nets used to model LPs. 
We discuss three of these applications—(1) interrelationships among LPs; (2) KSA 
acquisition over time; and (3) evidence from complex tasks—which are likely to be 
part of sophisticated applications of modeling LPs. 
 A second, more local, challenge arises when one applies Bayes nets to model 
any specific substantive LP. In every application there are challenges in defining 
the LP, creating tasks, and iteratively fitting and improving the model and theory. 
In the NRC’s (2001) terms, the cognition, observation, and interpretation 
components of an assessment must cohere. Bayes nets instantiate the last of these 
components. In and of themselves Bayes nets do not dictate the choices faced by 
researchers in any application, including the grain-size and number of levels in 
LPs. The definition and modeling of the middle levels of a LP present specific 
challenges in connecting cognition, observation, and interpretation. 
 There is a continual interplay between these two kinds of challenges. A Bayes 
net toolkit for LP research, at any stage of development, aids the analyst in all 
projects. Every project has its unique wrinkles, offers the possibility of insights 
about model structures or modeling strategies that may be more broadly useful 
for successive projects, and, as such, motivates expressing these new 
understandings in resources for the toolkit. Since Bayes net analysis of LPs is 
relatively new, we note in the following discussion the local challenges we faced. 
These challenges highlight recurring patterns that the field may expect to 
encounter more broadly in modeling LPs. For the interested reader, the Appendix 
gives details of an application of Bayes nets to modeling a learning progression 
in the CNA context. 

Interrelationships Among LPs 

The IP_Addressing example we discuss in this chapter concerns a single LP. In 
any complex domain, however, multiple KSAs must be developed not only with 
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respect to sophistication in and of themselves but also in terms of their 
connections to other KSAs, and jointly as the basis for more integrated 
understandings. The knowledge maps in the Atlas of Science Literacy (American 
Association for the Advancement of Science [AAAS], 2001, 2007) suggest that 
such relationships are common and may become the object of study in LP 
research. This phenomenon occurs in the CNA curriculum. Therefore, we can use 
our experience to illustrate the broader challenge of modeling the 
interrelationships among LPs. The relationships we build in Bayes nets can, when 
schematized, be starting points for future researchers who tackle LP modeling 
challenges that resemble ours. 
 In learning computer network skills, the student goes beyond understanding 
isolated concepts to a synthesis of related KSAs. Figure 9 is a graphical 
representation of the KSAs required for computer networking in the CNA 
curriculum. It was created from discussions with subject matter experts and 
instructors in the curriculum. This is not a Bayes net. Rather, it is a kind of concept 
map that is similar to the maps in the Atlas of Science Literacy (AAAS, 2001, 
2007). The map is one source of information we use in building LPs in the CNA 
domain and in building the Bayes nets for modeling them. The map suggests that a 
student’s capability is directly related to some KSAs that are specific to particular 
networking devices and to other KSAs that are more general. For example, in 
Figure 9, IP_Addressing depends on Basic Math Skills and Understanding Local & 
Remote Network Concepts. 
 In a model of a domain consisting of multiple LPs, the structure and strength 
of the relationships among different LPs can be incorporated in a Bayes network. 
These relationships can be straightforward, such as when two LPs are correlated 
or when mastery of one LP is a prerequisite for mastery of a more advanced LP. 
Other relationships can be more complicated. For example, exploratory analysis 
in the CNA curriculum suggests that to master certain levels of the 
IP_Protocol_Rules progression, learners must be at a certain level of 
understanding in the IP_Addressing progression. It can be challenging to 
determine how to model the relationships between the LPs. While there are 
methods to learn the structure of a Bayesian network just from data, it is often 
useful to hypothesize the structure first and then use data to verify or to revise 
this model. 
 Using Bayes nets to model the hypothesized structure of multiple LPs, we 
structure the joint distribution among a set of LPs by constructing relationships 
among latent variables in a multivariate system. As previously discussed, under a 
Bayes net approach, each LP is represented as a discrete latent variable (node) with 
categories corresponding to different levels of KSAs in the LP. In the graphical 
representation, directed edges connect latent variables according to a model 
structure suggested by subject matter experts or exploratory analyses; for example, 
Figure 10 indicates that there is a dependence between IP_Addressing and 
IP_Protocol_Rules as discussed above. That is, the arrow from IP_Addressing  
to IP_Protocol_Rules indicates that the probabilities of the levels of the 
IP_Protocol_Rules SMV are different, depending on the level of IP_Addressing. 
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The edge in this graph only indicates that there is a relationship, not its nature or 
strength. This information is contained in the conditional probabilities. Table 3 
shows one possible relationship. Reading conditional probability distributions 
across rows, we see that if a student is at Level 1 or Level 2 of IP_Addressing, there 
is a high probability the student will be at Level 1 of IP_Protocol_Rules. However, a 
student at Level 3, Level 4, or Level 5 of IP_Addressing has very similar 
probabilities of being at any level of IP_Protocol_Rules. The interpretation of this 
structure is that students at Level 1 or Level 2 of IP_Addressing are usually at Level 
1 of IP_Protocol_Rules. For students at or above Level 3 in IP_Addressing, there is 
only a mild positive association between the two variables. 

Table 3. A Conditional Probability Table with a Dependency Estimated from Data. 

IP_Addressing 

IP_Protocol_Rules 

Level 1 Level 2 Level 3 Level 4 

Level 1 0.72 0.14 0.08 0.06 

Level 2 0.59 0.21 0.11 0.09 

Level 3 0.32 0.28 0.22 0.18 

Level 4 0.23 0.25 0.26 0.26 

Level 5 0.21 0.24 0.27 0.28 

 Conditional probabilities can be determined based on data alone or in conjunction 
with constraints suggested by subject matter experts. Table 4 is very similar to Table 
3, but Table 4 has theory-based constraints. The zeros in Table 4 imply that a person 
who is at Level 1 or Level 2 on IP_Addressing cannot be at a high level of 
IP_Protocol_Rules. That is, Level 3 of the IP_Addressing LP is a prerequisite for 
being at Level 3 of the IP_Protocol_Rules LP. Such a structure could be suggested by 
the substantive relationship between the KSAs at the levels of the two LPs. With 
data, a statistical test could be applied to test whether constraining the probabilities at 
the upper right of Table 4 to zero provides acceptable fit. 

Table 4. A Conditional Probability Table with Constraints on Conditional Probabilities that 
Affect a Prerequisite Relationship. 

IP_Addressing 

IP Protocol Rules 

Level 1 Level 2 Level 3 Level 4 

Level 1 0.8 0.2 0* 0* 

Level 2 0.7 0.3 0* 0* 
Level 3 0.25 0.25 0.25 0.25 
Level 4 0.25 0.25 0.25 0.25 
Level 5 0.25 0.25 0.25 0.25 

* Constrained value. 
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Multiple Time Points 

Another challenge related to the Bayes net implementation of LPs is modeling 
change over time. As mentioned above, LPs can be characterized as measurable 
pathways that students may follow in building their knowledge and in gaining 
expertise over time. The Bayes nets we have discussed in this chapter have only 
addressed student status at a single point in time. Dynamic Bayes nets can be used 
to model student LPs over multiple time points where a student’s level may change 
from one set of observations to another.1 At each time point there are (a) one or 
more SMVs representing the LP(s) and (b) OVs with probabilistic dependence 
upon the SMVs. In addition, there is a copy of the SMVs for each time point. We 
model the relationship between unobservable LPs over time with conditional 
probability distributions that reflect transition probabilities. Transition probabilities 
indicate the probability of moving from a particular level at one measurement 
occasion to the other levels at the next measurement occasion. 
 Figure 11 shows an example of modeling LPs with a dynamic Bayes net. The 
Bayes net contains two parts: (1) four SMVs, which are actually the same LP but 
assessed at four successive time points where each measurement occasion modeled 
is dependent on the previous one, and (2) four OVs at each time point that are 
dependent on the SMV for that time point. Different patterns of transition matrices 
can be considered that depend on the developmental theory that grounds the LPs 
and on the students’ experiences between measurement occasions. For example, 
the effectiveness of instructional treatments can be compared in terms of the 
transition probabilities they produce. Figure 11 depicts a situation in which 
observations have been made at all four time points. At each occasion, the results 
of four tasks were observed. This student was most likely at Level 1 of the SMV on 
the first occasion, at Level 2 on the second occasion, at Level 3 on the third 
occasion, and at Level 4 on the fourth occasion. 

Complex Tasks 

In the examples discussed thus far, each observable variable depends on only one 
SMV (i.e., LP). More complex tasks, however, may require jointly employing the 
KSAs that are modeled to reflect levels in more than one LP. Conducting an 
investigation in Mendelian inheritance, for example, may require KSAs from both 
a LP for the concepts in Mendelian genetics and the skills in a LP for proficiency 
in scientific inquiry. 
 In computer networking, students solving real-world network design and 
troubleshooting problems often encounter tasks that require them to draw upon 
multiple KSAs. Figure 9 suggests that assessing a student’s capabilities in 
configuring a router involves the student’s understanding of IP addressing and 
router concepts plus the student’s ability to connect networks. While tasks can be 
defined to measure just one skill (and most of the multiple choice questions in end-
of-chapter tests are so designed), in order to determine whether students can solve 
problems in real-world environments we must design tasks that require KSAs from 
multiple LPs. 
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Table 5. Conditional Probability Table for the Observable Variable ConAddTask1, Which 
Has Two SMV Parents (IP_Addressing and Connectivity). 

Connectivity IP_Addressing 
ConAddTask1 

Score 0 Score 1 

Level 1 Level 1 90 10 
Level 1 Level 2 90 10 
Level 1 Level 3 90 10 
Level 1 Level 4 90 10 
Level 1 Level 5 90 10 

Level 2 Level 1 90 10 

Level 2 Level 2 90 10 

Level 2 Level 3 90 10 

Level 2 Level 4 20 80 

Level 2 Level 5 20 80 

Level 3 Level 1 90 10 

Level 3 Level 2 90 10 

Level 3 Level 3 90 10 

Level 3 Level 4 20 80 

Level 3 Level 5 20 80 

 In terms of subject matter, the groupings reflected in the IP_Addressing LP are 
based on clusters of related concepts that are taught and practiced together as 
variations on a “key idea” that is addressed in instruction and built on in 
subsequent levels. Two data-driven lines of reasoning influenced our choice of 
grain-size: (1) analyses of existing test data and subsequent identification of 
patterns of stability in that data and (2) variation in performance across two 
different organizations of the CNA curriculum. 
 Analysis of end-of-chapter test data revealed items with similar difficulties in 
terms of statistics and clustering of students in accordance with latent classes that 
represented those who “got the idea” and those who did not—usually one central 
concept, sometimes two, in a chapter. We conducted exploratory analyses using 
unconstrained latent class models (see Haertel, 1989) to identify structures that 
may suggest portions of LPs. These exploratory analyses and additional latent class 
analyses revealed dependencies across chapters that reflect curriculum developers’ 
beliefs that certain concepts build on others. Tracking these dependencies revealed 
linear progressions of concepts across chapters that formed a LP, such as 
IP_Addressing. There was instructional value in defining a LP at this grain-size 
because the central theme in a given LP level (as discussed in connection with the 
IP_Addressing example) could account empirically for a cluster of related KSAs 
addressed in the chapter and the associated learning exercises. We also found cases 
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in which knowledge at a given level of one LP was necessary for advancing to a 
given level of a different LP. 
 We gained further insights by comparing results across different presentations of 
material. Different classes present information in different sequences. Our analyses 
are still underway, but it appears that the patterns of performance in different 
courses can be understood in terms of the different orders in which the LP levels 
are addressed. In other words, modeling at a coarser grain-size would produce a 
very “messy middle” because after, say, two courses, students would have very 
different performance profiles. Modeling at the medium grain-size allows us to 
understand the middle in terms of different profiles across the same set of LPs. 

The “Messy Middle” 

Another challenge related to the definition of LPs may arise when modeling middle 
levels of proficiency. It is typically easiest to define the endpoints of a LP, where 
the lowest level refers to a novice state and the highest level refers to an expert 
state. In the simple LP described in the beginning of this chapter, learning 
generally proceeds as the successive attainment of KSAs in a single order, as 
shown in Table 1. In such cases, it is possible to define a LP in terms of ordered 
levels of a single SMV (as shown in Figure 13a). 
 It is more challenging to model the intermediate levels in the LP, however, 
when there are multiple pathways a student may follow in acquiring the KSAs 
associated with the various levels. To illustrate some of these possibilities, Figure 
13b depicts alternative structures for the sequencing of KSA acquisition. In each 
sequence, the nodes represent different KSAs associated with the LP. Note that 
KSA 1 and KSA 5, at the beginning and the end of the sequences, represent the 
lowest and highest endpoints of the LP, respectively. The sequence on the left 
represents the acquisition of KSAs 1–5 in a particular order: students acquire KSA 
1, followed by KSA 2, followed by KSA 3, followed by KSA 4, and finally KSA 
5. The sequence in the middle offers a similar structure in which KSAs are 
acquired in an ordered fashion although the order differs. The sequence on the right 
depicts a different structure in which students acquire KSA 1 and then KSA 2. 
They then may acquire either KSA 3 or KSA 4, both of which must be acquired 
before KSA 5. 
 As Figure 13 illustrates, numerous patterns of KSA acquisition are possible. It is 
often unclear which sequence or pattern holds, or, as may be possible, if students 
experience different sequences of KSA acquisition. The difficulty in defining a 
single sequence that applies to all students, or of enumerating all the sequences that 
students experience—to say nothing of identifying which sequence students 
progress along—is what is referred to as the “messy middle” (Gotwals & Songer, 
2010, p. 277). Approaches for modeling multiple sequences in the “messy middle” 
can be found in the psychometric literature on diagnostic and classification models 
(e.g., Haertel & Wiley, 1993; Leighton & Gierl, 2007; Rupp & Templin, 2008; 
Tatsuoka, 2002). These approaches can be expressed in Bayes net structures by 
extending the ideas discussed in the previous section.  
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make task design more principled, more planful, and ultimately more valid. Bayes 
nets also help connect curriculum to assessment. For example, curriculum 
designers can use information from a Bayes net structure to make decisions about 
which content areas to emphasize so that students have a greater probability of 
mastering future KSAs (DiCerbo & Behrens, 2008). 
 An area we continue to explore is how Bayes nets can provide feedback to 
students and instructors (DiCerbo, 2009). Such feedback could be achieved in at 
least two ways. First, students could receive reports that update their estimated 
levels on various KSAs, given their assessment performance. Based on these 
reports, students could be directed to other activities. This is the idea behind 
intelligent tutors or, when wrapped in a “fun” scenario, behind games (Shute et al., 
2009). Teachers can use the structure of Bayes nets the same way that the 
curriculum designers (mentioned above) do when making decisions about content 
emphasis. In addition, teachers can diagnose student problems. For example, if a 
student is struggling in one area, teachers can look backwards to a network of 
variables to see what prerequisite KSAs the student probably lacks. 

Challenges for the Community 

Model-building is, by nature, iterative. Progressions are hypothesized, and models 
are built, based on understandings of the substantive area and data at a given point 
in time. As discussed above, building a Bayes net for a particular application 
involves encoding the relationships and making hypotheses of interest from the 
domain in the Bayes net. The Bayes net is fit to the data, and data-model fit and 
related model-checking tools are used to identify strengths and weaknesses of the 
Bayes net in terms of overall features, subsets of variables, or subsets of examinees 
(Levy, 2006; Sinharay, 2006; Sinharay & Almond, 2007; Williamson, Mislevy, & 
Almond, 2001). The results of these analyses have several interpretations. In a 
statistical sense, adequate data-model fit indicates that the probabilistic 
relationships in the Bayes net account for what actually takes place in terms of the 
data at hand, whereas data-model misfit indicates the relationships in the Bayes net 
do not reflect what actually takes place. More substantively, because the Bayes net 
is explicitly built to reflect domain-specific hypotheses, adequate data-model fit 
constitutes support for those hypotheses, whereas data-model misfit constitutes 
evidence against the hypotheses. Data-model misfit might indicate that some 
approximations or choices made in the model are not precise enough, or that 
certain relationships are poorly understood, or that the hypotheses and relationships 
hold for certain students but not for others. 
 As noted above, Bayes nets are flexible statistical models applicable to a wide 
variety of problems. Assessment and assessment in the context of LPs constitute 
just a few of these problems. The unique features of assessment of LPs, however, 
dictate that certain recurring features of the model are likely present in applications 
of Bayes nets to LP assessments. At present, the development of Bayes nets to 
accommodate these aspects is in its relative infancy. Similarly, related aspects of 
modeling need to be tuned to the particular features of assessment in the context of 
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LPs. For example, efficient data-model fit procedures to evaluate hypotheses about 
sequences of KSA acquisition through the “messy middle” need to be developed. 
 As discussed above, new challenges arise in every application in which a 
researcher models a LP in a particular substantive area. A comprehensive approach 
to assessment for LPs develops Bayes nets in concert with the specification of the 
desired inferences and tasks. This process, which is often iterative, is always 
localized to the specific situation as defined by the purpose of the assessment. Any 
serious application of Bayes nets involves the interplay between the 
methodological tools of Bayes nets and the substantive expertise required to build 
appropriate model approximations for the domain. 

NOTE 
1 Because the LP variables are unobservable, the resulting Bayes net is formally a hidden Markov 

model (Cappé, Moulines, & Rydén, 2005; Langeheine &Van de Pol, 2002). 
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APPENDIX 

 An Example of Building and Fitting a Bayesian Network for a Learning 
Progression 

This example demonstrates how assessment data can be used to help validate a 
learning progression (LP) using statistical modeling in the form of a Bayes net. The 
data are from scored responses to 35 items written to target specified levels of the 
IP_Addressing progression. The hypothesized structure is a Bayes net with these 
35 items as conditionally independent observable variables, dependent on a single 
discrete latent variable with values that indicate LP levels. 
 Owing to the connection between a Bayes net of this description and latent class 
analysis (Box 2), a series of latent class analyses were conducted using the poLCA 
package (Linzer & Lewis, 2007) in R (R Development Core Team, 2008). These 
were exploratory analyses that did not constrain the solution to finding the 
theoretical levels that motivated the item writers or to yielding conditional 
probabilities that reflected jumps that accorded to levels. Rather, they were 
unconstrained latent class analyses for 2-Class, 3-Class, 4-Class, 5-Class, and 6-
Class solutions. Furthermore, it was not required that classes be ordered or that the 
conditional probability matrices for items would show jumps at levels targeted by 
the item writers. The structure that emerged would be driven by patterns in the 
data. As the ensuing discussion shows, the latent class structure that emerged 
empirically closely reflected the theoretical structure of LP levels and conditional 
probabilities for items with jumps at intended levels. 
 The 4-Class model demonstrated the best fit to the data, based on statistical fit in 
terms of the BIC (Schwarz, 1978) and the bootstrapped likelihood ratio test 
(McLachlan & Peel, 2000; Nylund, Asparouhov, & Muthén, 2007) conducted in 
Mplus (Muthén & Muthén, 1998–2006). In addition, this model offered the best 
interpretability of the classes in terms of class membership proportions and 
consistently ordered patterns of class performance across items. The four classes 
identified in the analysis corresponded to increasing levels of performance on the 
items and were interpretable as increasing levels of KSAs. A hypothesized further 
distinction at the high end of the LP was not realized due to the small number of 
items targeted at this level. In other words, there was insufficient information in the 
data set to differentiate students at the two highest theorized levels. A Bayes net 
representation of a model with a single SMV containing four levels (classes) was 
then constructed in Netica (Norsys Software Corp., 2007), represented in Figure A1. 

INFERENCES REGARDING ASSESSMENT ITEMS 

An item was classified as “at the level” of a certain class if it supported an 
interpretation that students at that level would be able to solve or complete the task, 
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 Five items were scored polytomously; these distinguished roughly well at the level 
predicted by experts. This is seen in terms of differential probabilities between the 
targeted LP levels at one score level and the two other LP levels at another score 
level. This phenomenon is illustrated for the item whose conditional probabilities 
appear in Figure A3. This item was expected to be a level 4 item. This item is located 
at class 2 with respect to being able to obtain a score of 1 as opposed to 0; it is also is 
located at class 3 in terms of being able to obtain a score of 2 as opposed to 1.  
 Overall, eighteen items were located at a level adjacent to the predicted level 
(e.g., an item expected at level 4 was located at class 3). One item was located 
adjacent to the predicted class and was also located at another class not adjacent. 
Only one item was clearly located at a class that was not equal to or adjacent to 
the predicted level. Initial reviews of these results indicated revisions that would 
help the items more sharply target the concepts at their intended levels. 

INFERENCES REGARDING STUDENTS 

The conditional probability tables also reveal how inferences regarding students are 
conducted in the Bayes net. For example, observing a correct response for the item in 
Figure A2 is strong evidence that the student is in class 4; observing an incorrect 
response for the item in Figure A2 is relatively strong evidence that the student is not 
in class 4. The use of a Bayes net approach supports inferences regarding students by 
collecting and synthesizing the evidence in the form of observed values of variables. 
That information is then propagated through the network via algorithms based on 
Bayes’ theorem to yield posterior distributions for the remaining unknown variables 
(Pearl, 1988), including the SMV corresponding to the LP. For example, Figure A1 
contains the Bayes net for a student who has completed four items. The student 
correctly answered the first two items and incorrectly answered the next two items. 
On the basis of this evidence, the posterior distribution for his/her latent skill variable 
indicates that this student has a probability of being in classes 1–4 of .487, .264, .228, 
and .021, respectively. On this basis we may infer that the student is almost certainly 
in one of the first three classes (i.e., is at one of the first three levels of the 
progression) and is more likely in the first class than either the second or third. Yet 
there still remains considerable uncertainty. The collection and inclusion of more 
data would lead to a more refined inference. 

COMMENT ON THE EXAMPLE 

The results of the modeling offer a data-based interpretation of the development of 
KSAs that constitute the LP. In some cases, the results for items confirm the 
experts’ expectations. For other items, the results are more ambiguous or offer an 
alternative to the experts’ expectations. To take a more comprehensive perspective 
on assessment of LPs, the results of the statistical analyses will be submitted to the 
subject matter experts for consultation and possible refinements in terms of the 
definition of the LP, the items that assess the aspects of the LP, and the utility of 
additional items for modeling students’ progression. 
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