
LOCAL ID

TITLE
Proceedings [of the] 2. Hawaii international conference on
system sciences : conference held Jan. 22-24, 1969,
Honolulu, Hawaii: sponsored by Department of Electrical
AUTHOR

13
O
z
LLI

8

LU
O.
O
O
I

UL
CO

CO

i
I

VOLUME
ISSUE

ARTICLE AUTHOR
Cocke, John and Miller, Raymond

ARTICLE TITLE
Some Analysis Techniques for Optimizing Computer
Programs

DATE
PAGES
ISBN
ISSN

DUE DATE

BORROWER TFW
SUPPLIER DKB

PATRON, PLEASE RETURN ITEM TO:

Tufts University, Tisch Library/ILL
35 Professors Row
Medford, MA, US 02155

BORROWING LIBRARY, RETURN TO:

Royal Danish Library (DKB)
Christians Brygge 8 1219 DK
Copenhagen K,, DK 1219

\

SOME ANALYSIS TECHNIQUES
FOR OPTIMIZING COMPUTER PROGRAMS

by

John Cocke and Raymond E. Miller *
IBM Watson Research Center
Yorktown Heights , New York

I . Introduction. In the process of t ranslat ing a computer program

writ ten in a high level language to a machine language program, i t is

possible to obtain many different machine language programs each of

which is "equivalent" to the original program. By including some

program analysis and manipulat ion in the compil ing process, i t is often

possible to obtain an improved machine language program; that is , one

having fewer machine language instruct ions or requir ing considerably

less running t ime. An example of such an "optimization," which is not

dependent upon the machine to be used, is moving an instruct ion out of

a high frequency loop when al l but the f i rs t performance of the instruc­

t ion are unncessary.

In this paper, we describe several techniques for machine inde­

pendent modificat ion. In part icular , we describe some systematic

modificat ions of the f low structure of programs. We (1) assume an

ini t ial determinable f low pattern, and (2) restr ict the meaning of

"optimize" to circumvent any possibi l i ty of mathematical undecidabil i ty.

The model we use to represent the f low or sequencing of a pro­

gram is a directed graph G , cal led the program graph, in which the

nodes represent instruct ions, or blocks of instruc­

t ions, and the edges represent the possible f low

between blocks. Thus, in graph G^ , we denote

that A is the start ing point of the program by

* Research part ial ly sponsored by the Office of Naval Research under
Contract No. N0014-69-C-0023.

143

the ini t ial arrow to A , and by the exit arrow, that B is the end or
exit f rom the program. Here, any possible t race through the graph

from ini t ial arrow to the exit arrow gives a possible sequence of s teps

in the program.

II . Transformation by Node Spli t t ing. We mentioned earl ier a case in

which code could be moved from a high frequency port ion of a program

into a lower frequency port ion. A simple dependency analysis , which

locates operand-generat ion and result-uses of instruct ions, provides

much of the information needed to determine if and where instruct ions

can be moved. If each loop in the program (cycle in the graph) has only

a single place from which i t can be entered on any path from the begin­

ning of the program, then the analysis of possible movement is part ic­

ularly simple. As part of the analysis , any port ion of the graph having

only one entry point (whether i t is a cycle or not) is successively

coalesced to a single node. We consider here program graphs which

contain mult iple entry cycles and show how they can be t ransformed to

equivalent program graphs having only single entry regions. This mod­

if icat ion is accomplished by a succession of node spli t t ing and coalesc­

ing steps.

To i l lustrate, consider again graph . In G , both nodes B

and C are entry points to the cycle (B, C) and no coalescing of nodes

is possible. Consider G in which two copies C' and C" of node C
M

have been made. Obviously, G is equivalent
Ca

to Gj . In G^ , however, BC" is a single

entry loop, B being the only entry node, so

G would coalesce.

The general technique for spl i t t ing a

graph G consists of two parts .

Part I* Obtaining a subset of nodes S , which when removed from G ,

together with al l edges incident to S , gives a cycle-free graph. Any

144

set S must have th^ property that i t contains at least one node i |n each

cycle of G . If the cycles are known, the problem of f inding an S

having a minimum number of nodes is a straightforward covering prob­

lem [2]. The problem of f inding sets S of minimum cardinali ty arises

also in other contexts [1, 2] .

A certain set of minimum length cycles, called prime cycles,

can be shown to be the only cycles needed in considering this problem.

A method based on i terative node removal and elimination of redundant

terms has been found to generate just the set of prime cycles. For

we obtain:

4y Prime cycles for

j (2, 1,2), (4, 1,4)

J (2,3,2), (4,3,4)
3)

The solutions to the covering problem for G^ are then = {1,3} and

S2 = {2,4} .

Part II: Constructing the spli t graph G' from G and S . The spli t

graph G' is formed in a rather straightforward manner by f irst gener­

ating an acyclic portion for each element of S and then interconnecting

these portions. For our example G using S = {2,4} , we obtain the
J M

spli t graph G^ .

G 3 :

The dotted regions indicate single entry regions that can now be coalesced.

It can be shown that any such spli t graph G' has equivalent f low

to G and when coalesced has fewer nodes than G . Thus, i teration of

145

this process eventually coalesces the whole graph to a single node. Also

there is more freedom to move instruct ions in spl i t graphs than in the

original graphs.

III . General ized Regular Expressions. The f low through a program

graph can also be indicated by a regular expression. For example, the

regular expression for is A(B + C'B)(C"B)*. Algebraic manipu­

lat ion to equivalent regular expressions provides a means for obtaining

modified program graphs. Regular expressions can be general ized to

include paral lel operat ion, where A | B means that block A and B

can be done simultaneously. An example of such an expression derived

from G^ having B and C in paral lel is [0(A(B | C)D+CD)] * . If

dependency analysis al lows the instruct ions in block C to be moved up

to block O , then using this fact plus identi t ies on these general ized

regular expressions produces the s implif ied regular expression

[l] A. Lempel and I . Cederbaum, "Minimum feedback arc and ver­
tex sets of a directed graph, " IEEE Trans. Circuit Theory,
CT-13 (December 1966) 399-403.

[2] L. Diviet i and A. Grassel l i , "On the determination of minimum
feedback arc and vertex sets , " IEEE Trans. Circuit Theory,
CT-15 (March 1968) 86-89.

[3] F. E. Hohn, S. Seshu, and D. D. Aufenkamp, "The theory of
nets , " IRE Trans. Electronic Computers , EC-6 (September
1957) 154-161.

}A6

