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SOME ANALYSIS TECHNIQUES 
FOR OPTIMIZING COMPUTER PROGRAMS 

by 

John Cocke and Raymond E.  Miller  *  
IBM Watson Research Center  
Yorktown Heights ,  New York 

I .  Introduction.  In the process of t ranslat ing a  computer  program 

writ ten in a  high level  language to a  machine language program, i t  is  

possible to obtain many different  machine language programs each of 

which is  "equivalent" to the original  program. By including some 

program analysis  and manipulat ion in the compil ing process,  i t  is  often 

possible to obtain an improved machine language program; that  is ,  one 

having fewer machine language instruct ions or  requir ing considerably 

less  running t ime.  An example of such an "optimization,"  which is  not  

dependent  upon the machine to be used, is  moving an instruct ion out  of  

a  high frequency loop when al l  but  the f i rs t  performance of the instruc­

t ion are unncessary.  

In this  paper,  we describe several  techniques for  machine inde­

pendent  modificat ion.  In part icular ,  we describe some systematic 

modificat ions of the f low structure of programs.  We (1) assume an 

ini t ial  determinable f low pattern,  and (2)  restr ict  the meaning of 

"optimize" to circumvent any possibi l i ty of mathematical  undecidabil i ty.  

The model  we use to represent  the f low or  sequencing of a  pro­

gram is  a  directed graph G ,  cal led the program graph,  in which the 

nodes represent  instruct ions,  or  blocks of instruc­

t ions,  and the edges represent  the possible f low 

between blocks.  Thus,  in graph G^ ,  we denote 

that  A is  the start ing point  of  the program by 
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the ini t ial  arrow to A ,  and by the exit  arrow, that  B is  the end or  
exit  f rom the program. Here,  any possible t race through the graph 

from ini t ial  arrow to the exit  arrow gives a  possible sequence of s teps 

in the program. 

II .  Transformation by Node Spli t t ing.  We mentioned earl ier  a  case in 

which code could be moved from a high frequency port ion of a  program 

into a  lower frequency port ion.  A simple dependency analysis ,  which 

locates operand-generat ion and result-uses of instruct ions,  provides 

much of the information needed to determine if  and where instruct ions 

can be moved.  If  each loop in the program (cycle in the graph) has only 

a  single place from which i t  can be entered on any path from the begin­

ning of the program, then the analysis  of possible movement is  part ic­

ularly simple.  As part  of  the analysis ,  any port ion of the graph having 

only one entry point  (whether i t  is  a  cycle or  not)  is  successively 

coalesced to a  single node.  We consider  here program graphs which 

contain mult iple entry cycles and show how they can be t ransformed to 

equivalent  program graphs having only single entry regions.  This  mod­

if icat ion is  accomplished by a  succession of node spli t t ing and coalesc­

ing steps.  

To i l lustrate,  consider  again graph .  In G ,  both nodes B 

and C are entry points  to the cycle (B,  C) and no coalescing of nodes 

is  possible.  Consider G in which two copies C'  and C" of node C 
M 

have been made.  Obviously,  G is  equivalent  
Ca 

to Gj .  In G^ ,  however,  BC" is  a  single 

entry loop,  B being the only entry node,  so 

G would coalesce.  

The general  technique for  spl i t t ing a  

graph G consists  of  two parts .  

Part  I* Obtaining a  subset  of  nodes S ,  which when removed from G ,  

together with al l  edges incident  to S ,  gives a  cycle-free graph.  Any 
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set  S must have th^ property that  i t  contains at  least  one node i |n each 

cycle of G .  If  the cycles are known, the problem of f inding an S 

having a minimum number of nodes is  a straightforward covering prob­

lem [2].  The problem of f inding sets S of minimum cardinali ty arises 

also in other contexts [  1,  2] .  

A certain set  of minimum length cycles,  called prime cycles,  

can be shown to be the only cycles needed in considering this problem. 

A method based on i terative node removal and elimination of redundant 

terms has been found to generate just  the set  of prime cycles.  For 

we obtain:  

4y Prime cycles for 

j (2,  1,2),  (4,  1,4) 

J (2,3,2),  (4,3,4) 
3) 

The solutions to the covering problem for G^ are then = {1,3} and 

S2  = {2,4} .  

Part  II:  Constructing the spli t  graph G' from G and S .  The spli t  

graph G' is  formed in a rather straightforward manner by f irst  gener­

ating an acyclic portion for each element of S and then interconnecting 

these portions.  For our example G using S = {2,4} ,  we obtain the 
J M 

spli t  graph G^ .  

G 3 :  

The dotted regions indicate single entry regions that  can now be coalesced. 

It  can be shown that  any such spli t  graph G' has equivalent f low 

to G and when coalesced has fewer nodes than G .  Thus,  i teration of 
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this  process eventually coalesces the whole graph to a  single node.  Also 

there is  more freedom to move instruct ions in spl i t  graphs than in the 

original  graphs.  

III .  General ized Regular  Expressions.  The f low through a program 

graph can also be indicated by a  regular  expression.  For example,  the 

regular  expression for  is  A(B + C'B)(C"B)*.  Algebraic manipu­

lat ion to equivalent  regular  expressions provides a  means for  obtaining 

modified program graphs.  Regular  expressions can be general ized to 

include paral lel  operat ion,  where A |  B means that  block A and B 

can be done simultaneously.  An example of such an expression derived 

from G^ having B and C in paral lel  is  [  0(A(B |  C)D+CD)] *  .  If  

dependency analysis  al lows the instruct ions in block C to be moved up 

to block O ,  then using this  fact  plus identi t ies  on these general ized 

regular  expressions produces the s implif ied regular  expression 
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