
Pergamon oog¢,-ossl(~)oooos-o 

Comput. Lang. Vol. 32, No. 8, pp. 69--87, 1994 
Copyright (~ 1994 Elsevier Soenee Ltd 

Printed in Great Britain. All rights reserved 
0096-0551/94 $7.00 + 0.00 

E X C E P T I O N  H A N D L I N G :  E X P E C T I N G  T H E  U N E X P E C T E D  

STEVEN J. DREW and K. JOHN GOUGH 
Programming Languages and Systems Group, Computer Science Department, Queensland University of 

Technology, Queensland, Australia 4000 

(Received 4 February 1994; revision received 25 May 1994) 

Almtraet--Since the mid-1970s, and with the development of each new programming paradigm there has 
been an increasing interest in exceptions and the benefits of exception handling. With the move towards 
programming for ever more complex architectures, understanding basic facilities such as exception 
handling as an aid to improving program reliability, robustness and comprehensibility has become much 
more important. Interest has sparked the production of many papers both theoretical and practical, each 
giving a view of exceptions and exception handling from a different standpoint. 

In an effort to provide a means of classifying exception handling models which may be encountered, 
a taxonomy is presented in this paper. As the taxonomy is developed some of the concepts of exception 
handling are introduced and discussed. The taxonomy is applied to a number of exception handling models 
in some contemporary programming languages and some observations and conclusions offered. 

exceptions exception handling programming languages 

1. I N T R O D U C T I O N  

This paper introduces the concepts relating to exception handling, offering a working definition 
for an "exception" and explaining the terminology and mechanics of "exception handling" in the 
context of sequential computer languages and monoprocessor systems. The variety of views 
regarding exceptions and their handling has generated an equal variety of exception handling 
models. With this in mind a taxonomy for exception handler designs is developed. There are four 
distinguishing aspects of exception handling models which are considered in the taxonomy. The 
first includes the factors which affect the appearance of the exception handling model when viewing 
program code. Next is the method by which an exception handler is associated with a guarded 
region of code. The third aspect covers how an exception handling model represents and 
differentiates exceptional occurrences internally. The last aspect is the range of exception handler 
responses that the model provides. Handler responses describe the various ways in which the flow 
of control may be directed after execution of exception handling code. 

A comparison of exception handler designs from several contemporary procedural and object- 
oriented languages is made and each is described in terms of the taxonomy developed. Being able 
to effectively classify an exception handling model gives the ability to analyse its effect upon such 
program characteristics as robustness, reliability and comprehensibility. Each of the exception 
handling models classified is discussed with respect to those characteristics. Discussion also ranges 
to some of the models' unique design ideas before offering some conclusions and a comprehensive 
list of references. 

2. T H E  E X C E P T I O N  

Exceptions are extraordinary events detected during the execution of a program. Programming 
errors are one cause of exceptions, in many cases however they are caused through other infrequent, 
unexpected but otherwise correct events. As a consequence of an exception a program may be 
caused to terminate precipitously. A more sinister consequence however, is that execution might 
continue, apparently terminating correctly, but generating erroneous results. 

The part of the computer system where an exception is detected is an exception source. Exception 
sources include the hardware, operating system, language runtime support and the application 
program. Exceptions detected at the hardware level appear as "hardware exceptions" or interrupts. 
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These may be due to events detected by the processor such as the issue of an illegal instruction 
or an attempted division by zero. An exception detected by the operating system may appear as 
a signal. The Unix(r) operating system issues signals for detected events such as a "ctrl-c" keyboard 
interrupt and incorrect use of system memory. A language's runtime support software may perform 
checks on things such as values assigned to variables of bounded types or subranges. If a value 
is detected as being out of bounds or exceeding a specified range then this exception is expressed 
through the generation of a software trap. A programmer may specify tests, the failure of which 
might be considered an exception for a particular part of an application. 

Programs are often designed to operate within a particular execution environment. A communi- 
cations software package for example, may require that spurious noise in the transmission medium 
be kept below a certain level to ensure its correct operation. Any change in the operating 
environment, such as a transient burst of noise in the communication example, may have 
unpredictable results. In this manner the execution environment is another exception source. 

3. EXCEPTION HANDLING 

An exception handling system [1-3] specifies the program behaviour after an exception has been 
detected. This specification is achieved in two parts: the first being to supply instructions for 
remedial action required as a consequence of the exception, the second being to direct the flow of 
control after the instructions have been completed. Conceptually, when considering programs 
which utilise exception handling, two sets of code and two modes of execution can be identified. 
Program code can be separated into two distinct parts, code for normal execution and code for 
exceptional execution. 

Exceptional execution is that which occurs after an exception has been detected. Code for 
exceptional execution is referred to as "exception handler" code. Normal execution is defined as 
that execution which is not devoted to handling an exception. Exception handler code is 
"associated" with a particular region of code for normal execution called the "guarded region". 
The size of the guarded region is defined by the exception handling model and might range from 
a single statement, to a function, to a module or an entire program. In most exception handling 
models the occurrence of an exception whilst executing within a guarded region, causes control to 
pass to the entry of its associated handler code. An exception handler may have separate sections 
of code each selected to be executed dependent upon the detection of a particular exception. 
Alternatively the handler may prescribe the same action for any exception which is detected. 

4. A TAXONOMY FOR EXCEPTION HANDLER DESIGNS 

There are several areas of exception handler model design into which variation may be 
introduced. A taxonomy is presented here which separates the important features which distinguish 
one exception handling model from another. The general features of interest are the appearance 
of the model, the method of association of exception handlers and guarded regions, the definition 
and representation of an exception and the possibilities for flow of control which are introduced 
through execution of an exception handler. The latter feature is often referred to as the exception 
handling semantics. 

4.1. Appearance 

This section deals with features of an exception handling model which are discernible from 
inspection of program code. It is usually apparent whether the exception handling model is an 
inherent or embedded part of the language with its own syntax, or a feature addedon through library 
calls. The granularity of the guarded region might range from a (possibly compound) statement, 
a code block, a procedure or function body through to a module or whole program. Also affecting 
the code structure is the effective separation of exceptional and normal execution code. 
A mechanism with a clear separation will be easier to read and understand, highlighting the 
main purpose and extent of the guarded region and the remedial code in the exception handler 
section. 
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4.2. Association 

Dynamic association of guarded regions and exception handlers is achieved when the association 
of a particular handler is dependent upon the path that execution has taken. This form of 
association is exemplified by the Unix(r) operating system signal handling facilities. In this model 
the signal handler code to be executed on the occurrence of a particular signal is specified through 
a parameter to the signal() library function call. 

Should the programmer wish to install a different handler for a particular signal at any point 
in the execution, then the signal() function is called again with an appropriately changed 
parameter. 

A code example below demonstrates the use and appearance of a typical though fictitious model 
which uses dynamic association of handlers and guarded regions. The language is some form of 
C and the function sethandler() associates the handler code designated by the parameter 
(handlerfuncN), with the code following the call to sethandler(). In effect, any exception 
occurring in the "normal C code" sections in the example code below, will precipitate the execution 
of the function which was the parameter to the last call to sethandler(). In the example, an 
exception occurring in the section marked/*B- -more normal C code*/will cause handlerfuncl ( ) 
to be executed. In the same manner, an exception occurring in the section marked /*C- -more 
normal C code*/will  cause handlerfunc3( ) to be executed. Depending upon the particulars of 
a model the handler might remain associated until either the function such as funcl ( ) returns, 
or until sethandler( ) is called again. 

void funcl (void) 
{ 

/*A- -normal C code*/ 
sethandler(handlerfuncl ); 
/*B- -more normal C code*/ 
sethandler(handlerfunc3); 
/*C- -more normal C code*/ 

} 
void func2(void) 
{ 

/*D--normal C code*/ 
funcl ; 
sethandler(handlerfunc2); 
/*E- -more normal C code*/ 

} 
void handlerfuncl (void) 
{ 

/*C code for particular remedial action*/ 
} 
... etc. 

Exception handler code is often associated with the guarded region through a reserved word like 
"rescue" (Eiffel) or "exception" (Ada). In this way the relationship between the guarded region 
and handler code is highlighted. This form of association is generally referred to as static 
association. An example of a code block with a statically associated handler appears in the code 
fragment below. 

BEGIN 
(*Code for normal execution*) 
(*The guarded region*) 

EXCEPTION 
(*Code for exceptional execution*) 
(*Exception handling cocle executed when an *) 
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(*exception is detected whilst executing in the *) 
(*guarded region above*) 

END 

Another type of association is association through the dynamic chain and applies to the code of 
any procedure in an invocation chain which is initiated within a guarded region. If an exception 
occurs whilst executing any procedure along the invocation chain, it is the handler code associated 
with that guarded region which is executed. It can be seen that if the body of an invoked procedure 
body contained, or was itself a guarded region with an associated handler, then this second guarded 
region (and handler) would be dynamically enclosed within the first. In this way entry to a guarded 
region's code marks the entry to a new exception handling "context". This means that it is the 
handler code associated with the most recently entered (and not exited) guarded region to which 
control will pass on occurrence of an exception. Successful execution of the guarded region results 
in a normal procedure return and with it a return to the previous exception handling context. 

Figure 1 depicts an invocation chain with some procedures (A, C and D) being guarded by 
handlers (Aex, Cex and Dex) and one procedure (B) which does not have its own handler code. 
If an exception occurred whilst executing any of the procedures A, C or D then control would pass 
to the handler code directly associated with it. This would be Aex, Cex or Dex respectively. An 
exception occurring during the execution of procedure B however, would cause control to pass to 
the handler Aex. This is because execution is currently within the exception handling context of 
procedure A. 

Figure 2 demonstrates the dynamic nesting of guarded regions (and exception handling contexts) 
generated by the same invocation chain. Consider the possibility that an exception might occur 
whilst executing the handler code associated with procedure D (Dex). If it was desirable for an 
attempt to be made to handle such an exception then passing control again to Dex would be 
unsuitable. Clearly a loop condition may arise if the same exception recurs. Under these conditions 
exception handler code must be executed in the surrounding exception handling context. Thus the 
exception occurring whilst executing Dex would cause control to pass directly to the handler 
associated with the immediately enclosing guarded region, i.e. Cex. 

4.3. Exceptions 

Once an exception has occurred, an exception handling model may need to have some internal 
representation which distinguishes the particular exception. This is useful if there are particular 
actions which can be taken in the event of a specific exception occurring. The representation of 
an exception is another distinguishing feature of exception handling mechanisms. The exception 
may be represented as a named entity or simply as a value of some variable type. The representation 

Invocation Chain 
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Fig. 1. A dynamic chain. 
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Fig. 2. Guarded regions. 

may be for a "family" of exceptions, for example "maths_exception". In this case extra information 
about the particular exception, e.g. underflow, overflow etc. may be communicated through 
parameters associated with the exception's representation. In object-oriented languages such as 
C + + ,  an exception may be represented as an object. In this case extra information about the 
exception may be contained within the description of the object, including the description of any 
exceptions which may be derived from that object. An example might be as above, deriving 
"overflow" from "maths_exception". 

Some exception handling models are limited in the range of exceptional events which can be 
represented. This may be a result of the designer trying to keep the model platform and/or 
environment independent. In any case this may limit the range of exception sources such that 
asynchronous events (environmental events) or signals or user defined exceptions are not included 
in the set of addressable exceptional events. 

Several exception handling models allow the programmer to define and explicitly "raise" an 
exception should a particular set of circumstances warrant for a particular application and 
abstraction. The above are variously termed user, programmer or developer defined exceptions. 
"Raising" a user defined exception is usually accomplished using a system or library function call 
and effectively places execution into the exceptional mode. 

4.4. Execution Modes and Fail-safety 

At this juncture it is useful to consider again the notions of normal and exceptional execution 
modes which were introduced earlier. Depending upon the implementation of an exception 
handling model, these notional modes of execution may have an explicit representation through 
some variable or data structure. If the model has no explicit representation of the execution mode, 
then the exceptional mode of execution may be defined as that execution existing between the start 
and finish of exception handler code. This extends to the execution of any dynamic chain initiated 
within the handler code. In the case of explicit representation, the execution mode is defined by 
the value of that variable or data structure. A possible advantage of some explicit representation 
of the execution mode is that if the execution is terminated whilst in the exceptional execution 
mode, this occurrence may be conveyed to the user. Such an ability is necessary to ensure program 
fail-safety. 

A fail-safe [4-6] system is one in which every function guarantees that it will return normally 
only if it has executed without the detection of an exception. If the response to any exception is 
termination with an appropriate message then the system may be termed fail-safe. Otherwise, once 
having entered the exceptional mode of execution a fail-safe program is prevented from entering 
the normal mode unless the code of the guarded region is successfully reexecuted. 

Fail-safety is related to other program properties such as robustness [7], reliability [8, 9] and is 
an indication of the partial correctness of a program. Flaviu Cristian [6] explains that a partially 
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correct program is one for which every input either generates a confined failure or termination in 
a state satisfying the program specification. Such partially correct programs are termed "safe" as 
they can never output an erroneous result. The program is said to be "fail-safe" if in a timely 
manner, it delivers a correct result or some other predefined output which is considered "safe" for 
that particular application. 

4.5. Semantics of Exception Handling 

Once the exception has been caught and handler code executed, there are a number of directions 
in which the flow of control might possibly proceed. The direction(s) allowed to the flow of control 
define(s) the exception handling model's handler response semantics. 

For the purposes of further discussion, the statement being executed when an exception is 
detected is the "signalling statement". The block of code (or other construct) containing the 
signalling statement may be termed the "signaller". Yemini and Berry [10] identified live possible 
handler responses, designated as resume the signaller, terminate the signaller, retry the signaller, 
propagate the exception and transfer control. Other sources describe refinements to and variations 
of the above responses, often with different names, all however have semantics which might be 
described as subcategories of "termination" or "resumption". 

Figure 3 shows some possible scenarios for flow of control with different exception handler 
response semantics. Both "normal A" and "normal B" are guarded regions, with associated 
exception handlers "handler A" and "handler B". Normal mode of execution starts in "normal 
A" and moves to "normal B" when B is invoked. At some point whilst executing in "normal B" 
an exception is detected and (in most cases) flow of control passes to "handler B" via the arrow 
marked "Raise". For further discussion, the guarded region "normal B" may be regarded as the 
signaller. The possible handler responses are indicated by the arrows leaving the bottom of 
"handler B". 

4.5.1. Resumption 

A definition of resumption semantics is given in Roy Levin's thesis [3]. With these semantics, 
there are two possible courses of action. The first is that execution of the handler is deferred until 
the signaller has completed its execution. The exception is thus "serviced" and execution resumed 
until a more "convenient" juncture for execution of the handler. This course might seem prudent 
where the signaner's action is by necessity atomic, as in the transaction on a shared database for 
example. 

The second course, and the one most commonly regarded as resumption semantics, is that 
execution of the signaller is suspended until after execution of the handler. The signaller is then 
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Fig. 3. Exception handler responses. 
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resumed immediately after the point at which the exception was detected. This latter course has 
been described as Strict Resumption [11], and it is these semantics which will be referred to as 
resumption in any further discussion. The corresponding flow of control is indicated by the arrow 
marked "Resume" in Fig. 3. 

4.5.2. Termination 
Termination semantics require that on the detection of an exception, the execution of the 

signaller be immediately terminated and control passed to the associated exception handler. After 
any remedial action specified by the handler code a range of handler responses are possible. 

4.5.2.1. Retrial, Reexecution of the signaller after execution of the handler code is called retrial. 
In Fig. 3, the signaller is "normal B" and the flow of control for retrial semantics is indicated by 
the arrow marked "Retry". Retrial, in the exception handling models which support it, is usually 
accomplished by executing a statement such as RETRY(optional param). After completing the 
handler code and executing the retry statement, execution is recommenced in normal mode at the 
beginning of "normal B". After an attempt at remedying the exception causing condition, retrial 
semantics allows another chance for the successful execution of the guarded region. An instance 
where retrial semantics might be used is in a communications program where transient "noise" 
corrupts data packets, requiring that they be resent after a short period of time. In some models 
a means of limiting the number of consecutive retries is supplied, sometimes through an optional 
parameter as above. The advantage of this feature is that continuous looping is avoided when for 
example, in the above scenario, a "transient" condition becomes unacceptably continuous. 

4.5.2.2. Propagation. If an exception handling model does not support resumption and the 
exception handler code offers no means for retrial then execution must remain in the exceptional 
mode once entered. In a model where exception handling contexts are dynamically nested it may 
be useful for the task of handling an exception to be propagated to the enclosing context. 
Propagation is effected by signalling the currently raised exception or another from within the 
handler code, causing control to flow to the handler of the surrounding exception handling context. 
This action is indicated by the arrow marked "Propagate" in Fig. 3. 

Some exception handling models support implicit propagation. In the case when the handler code 
is completed and the execution is still in the exceptional mode, then control automatically passes 
to the handler of the surrounding context. In this case the task of handling the currently raised 
exception is propagated. Explicit propagation is achieved by executing a signalling statement 
explicitly e.g. RAISE(this_exception) as in the case of a programmer defined exception. The net 
effect is the same as implicit propagation except that it is the exception represented by 
"thisexception" which must be handled in the surrounding context. 

Nested exception handling contexts relate to different levels of abstraction in a program. As an 
example, "normal A" might call a number of mathematical functions as part of its operation, the 
code for "normal B" might perform the addition operation. As a result it could sometimes be 
advantageous for a different exception to be propagated which has more meaning at that level of 
abstraction. For instance, if an "integer overflow" exception is signalled in "normal B", and the 
code for "handler B" has no specific code to deal with that exception. Then a more generic "maths 
exception" may be signalled, for which there is specific handler code in "handler A". 

Many languages including many without an exception handling mechanism, have some system 
for reporting the occurrence of an exception prior to relinquishing control to the operating system. 
This mechanism may print a message to the screen or create a memory image file for later 
inspection. Where exception handling is part of the language, this feature is often referred to as 
the "default handler". In a system with implicit propagation it is possible that an exception may 
propagate all the way out to the default handler. Where propagation must be explicit and a handler 
completes its code without propagating the exception, then often it is the default handler to which 
control will pass. 

4.5.2.3. Transfer and strict termination. Some exception handling models allow control to be 
directed to some designated destination in the program after the execution of the handler code. 
The flow of control for these semantics is indicated in Fig. 3, by the arrow marked "Transfer or 
Strict Terminate". It is usually the case that the destination is a function from which the program 
cannot return and program termination follows. Such schemes are said to have transfer semantics. 
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A variation on the transfer semantics is where control is passed directly to the default handler. 
These semantics are called strict termination. 

4.5.2.4. Return. The semantics described by Yemini and Berry as "terminate the signaller" [10] 
are essentially what we describe as return semantics. As indicated in Fig. 3, after execution of the 
handler control passes to the statement following the guarded region. From this point execution 
continues in the normal mode. In the case where the guarded region is a proper procedure or 
function than it can be seen that the semantics are exactly those of executing a return statement. 
Where the guarded region is a function then some models allow an alternative return value to be 
supplied by the handler. 

4.6. Variable Scope 

When considering handler response semantics and the method of association of handler and 
guarded region, it can be seen that the .scope of variables whilst executing handler code is an 
important point. Where retrial is possible, for example, it might be desirable to alter the values 
of variables local to the guarded re#on. Under other circumstances access to "uplevel" or variables 
in a more global scope might also be useful. 

4. 7. Some Exception Handler Designs 

What follows is a cursory look at various exception handler designs. The distinguishing features 
of each language's exception handling mechanism will be addressed as per the criteria set out in 
the taxonomy. Code examples are given to demonstrate the particular syntax and structure of each 
model. Very few languages (most notably Mesa [12] and PL/I [13] which are not covered here) offer 
resumption as the primary semantics for exception handling. Most modern languages support some 
subset of termination semantics and a few of these may include resumption semantics as an option. 
As a result the models chosen for the following review all support termination semantics and 
Exceptional C [14] demonstrates how resumption might safely be used. The review briefly covers 
the early exception handling models of CLU and Ada, then contrasts three object-oriented 
languages Modula-3, Eiffel and C + +.  Finally, the exception handling models designed for the C 
language and its derivatives are reviewed culminating in an examination of Exceptional C. 

4.7.1. CLU 

The CLU exception handling model [15] is an inherent part of the language design. The model 
pilots a low overhead method of setting handlers by creating tables for exception handling context 
information prior to runtime. Exception handlers are statically associated with (possibly com- 
pound) statements. Separation of code for normal and exceptional execution therefore, is reduced 
by the possibility for interleaving exception handler and normal code on a per statement basis. 

begin 

Statl except  w h e n  ohno: ExStat end 
Stat2 except 

when excl : 
ExStat2 

exit excl 
end 

end 
except 

when ohno: ExStat2 
when excl: ExStat4 
others: ExStat5 

end 
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Example: In the case of "ohno" being raised in Statl control passes to ExStat where it is then 
handled. If "ohno" is raised during ExStat or any other statement in the block containing Statl 
then it is handled by ExStat2. Similarly, if "excq" is raised in Stat2 then ExStat2 is executed 
followed by the "exit" statement. The exit statement propagates the exception handling of "exc l "  
to the handler associated with the block which is then handled by ExStat4. Any other exceptions 
raised in the block containing Statq or while executing ExStat are handled by ExStat5. Variables 
in this model have the same visibility and accessibility to both exception handler code and the 
guarded region. 

CLU exceptions are named entities which have optional parameters. Exception sources are 
limited to checks and traps in the language support software and programmer defined exceptions. 
There is no provision for dealing with "resource constraints" which indicates that only synchronous 
exceptions are handled in this model. 

The mechanism can be classified as "single-level" termination which infers explicit propagation. 
Explicit propagation is achieved in two ways. The first is by using the "exit exception_name" 
statement which propagates the responsibility for handling the exception to a handler in the 
enclosing exception handling context but within the same procedure invocation. The other is to 
explicitly signal the exception, e.g. "signal exception_name" which terminates the procedure and 
raises the named exception at the procedure invocation in the caller. 

Single level termination means that if there is no associated handler in that abstraction 
which can handle the exception, and if the task of handling the exception is not explicitly 
propagated before the end of handler code, then the handler automatically signals the 
language defined exception "failure". Once failure is signalled the mechanism exhibits a "multi- 
level" nature with implicit propagation of the failure exception. If no handler for the failure 
exception is found in the invocation chain then the default action is to terminate the program and 
to display a message string associated with the original unhandled exception. Failure may be raised 
explicitly though is more commonly raised automatically as it is implicit in every procedure 
heading. 

After exception handler code has been executed, normal flow is resumed and control is passed 
to the statement following the executed except clause.Default use of these return semantics renders 
the exception handling model as non-fail-safe. 

The exceptions which can be raised by the function/procedure type structure proc, are stated as 
part of the declaration or specification along with the statement of return type. This effectively gives 
two return paths, one through the return statement in the case of a normal termination, and one 
through the signal statement in the case of an exceptional termination.Static association of 
exceptions with invocations allows for the invoker to plan handlers for advertised exceptions, and 
automatically dictates that handling is performed outside of the context of the invocation or 
signaller. 

prvalue=proc(i int) returns(string) signals(ohno(string)) 
begin 

if condition( then return ("normal") 
else signal ohno ("exceptional") 

4. 7.2. Ada 

The exception handling mechanism in Ada [4, 16, 17] was designed as an integral part of the 
language and would be classified as inherent. The granularity of a guarded region is the "code 
block" which starts with the word "begin" and ends with the system word "exception". The 
associated handler code is found between the words "exception" and "end", which marks the end 
of the block.Code blocks along with their associated handlers might be the bodies of procedures 
and nested to an arbitrary level. Variable scope is the same whether executing the guarded region 
or handler code. The structure imposed by the exception handling mechanism effectively separates 
code for normal and exceptional execution. 
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procedure proc(. . . )  is 

begin 

statement1 ; 
if error1 then raise except1; end; 

exception 
when except1 = >treatment1; 

end; 

Ada's exceptions have no parameters and are named entities of type EXCEPTION. Ada includes 
four predefined synchronous exceptions which correspond to events which may be signalled by the 
hardware, operating system or language subsystems. These exceptions are CONSTRAINT_ER- 
ROR, signalled when a range is exceeded, NUMERIC_ERROR for operations such as an 
attempted divide-by-zero operation, PROGRAM_ERROR signalled when the program control 
structure is violated in some way, and STORAGE_ERROR which signifies the exhaustion of heap 
space for allocation. Possibly the only predefined asynchronous exception denotes the failure of 
a rendezvous operation and is named TASKING_ERROR. The programmer may also define 
arbitrary exception names to deal with application specific error conditions. 

Ada supports the Termination model with automatic (multilevel) propagation of all unhandled 
exceptions.Any exceptional occurrence without an appropriate handler somewhere along the 
dynamic chain eventually leads to program termination and for control to pass to the operating 
system. If an exception is handled, i.e. appears in a when clause, the treatment prescribed is carded 
out and control is passed back to the dynamically enclosing block (return semantics) where normal 
execution is resumed. This action renders the exception handling model not fail-safe. 

4. 7.3. Modula-3 

The Modula-3 exception handling mechanism is an inherent part of the language design. The 
granularity of the guarded region in this model is the code block between the reserved words "TRY" 
and "EXCEPT". The T R Y - E X C E P T  statement has the form: 

PROCEDURE PROC; 
BEGIN 
.. .(*code of procedure*) 

TRY 
Body of guarded region 

(*normal execution*) 
EXCEPT 

exception1 (optional_param) = > Handler1 
]1... 
I[exceptionn (optional param) = > Handlern 

ELSE HandlerO 
END; 

END PROC, 

As in Ada, the structure of the mechanism is such that there is effective separation of normal 
and exceptional code. The guarded region is bracketed by the reserved words "TRY" and 
"EXC E PT", while the associated handler (exceptionlist) falls between the words "EXCE PT" and 
"END". The same variables are accessible to both regions of code. 

Modula-3 Exceptions are named entities and are declared in the following manner: EXCEP- 
TION ExId(PT) where ExId is an exception with an optional parameter PT. If PT is omitted then 
the exception takes no parameter. 
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Exception sources are limited to language traps and the explicit raising of application dependent 
exceptions defined by the programmer. The Modula-3 Report [18] offered no means of dealing with 
signals or interrupts which might be generated by the operating system or hardware. This means 
that only synchronous exceptions are fielded by the model, suggesting that signals and environmen- 
tal events are either ignored or cause program termination. 

The PROCEDURE TYPE declaration (below) allows for the return of a value "R" which is the 
only return path from the procedure. 

TYPE T = PROCEDURE(..):R RAISES {S} 

The returned value is either that generated by the "unexceptional" execution or the value generated 
by an exception handler. As in the "throw" statement of C +  + ,  the RAISES{ } clause merely 
advertises the set S of exceptions that may be raised within the procedure. This feature facilitates 
static checks for raising of unlisted exceptions within the code and runtime checks for exceptions 
occurring which were not explicitly raised. If RAISES {S} is omitted then S defaults to the set of 
all exceptions. RAISES { } means that S is the empty set. 

An exception may be named only once in the EXCEPT clause and associated ELSE part and any 
parameter lists are optional. The statement executes the code block between "TRY" and "EXC E PT" 
and if the outcome is normal then the handler code between "EXCEPT" and "END" is ignored. 
If a listed exception is raised then the corresponding handler code is executed. If an exception not 
listed is raised then the ELSE clause containing HandlerO, if present, is executed. Where a handler 
is nominated then the outcome of the TRY statement is the outcome of the handler. This action 
is equivalent to return semantics and renders the exception handling model as not fail-safe. In the 
case of an unhandled exception, the outcome of the TRY statement is the raised exception. 

The responses of the Modula-3 exception handling mechanism come under the two categories 
of Termination and Propagation. Propagation may be explicit or implicit by design so that either 
a single or default multi-level model may be employed. The act of handling a listed exception or 
the invocation of the "catch-all" (Handler0 above) option, causes the T R Y  EXCEPT statement 
to return the value produced by the nominated handler. The case of an unlisted exception being 
raised and the absence of a Handler0 clause, causes the exception to be re-raised (propagated) after 
the T R Y  EXCEPT statement has executed. In this case it is the unhandled exception which is 
propagated rather than any standard "failure" exception. 

4. 7.4. Eiffel 

The Eiffel exception handling mechanism [4, 19] is an inherent part of the language. Eiffel 
exceptions are typed entities having an integer value and a string tag. The model exhibits a level 
of separation of exceptional and normal code similar to both Ada and Modula-3. The granularity 
of the model is the procedure-like routine described below. The guarded region itself is the "do" 
clause, while the exception handling code is contained in the "rescue" clause. The variables which 
are visible to the "do" clause have the same visibility in the "rescue" clause. 

routine is 
require 

- -precondit ions/assert ions 
local 

- -var iab le  declarat ions 
do 

body. 
ra ise (ex_name:STRING) - - ra ise  user defined exception 

ensure 
- -postcondit ions/assert ions 

rescue- -opt iona l  clause 
rescue clause. 
re t ry  

end 
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Bertrand Meyer, the language designer, defines the cause of an exception to be the "failure" of 
a particular software element such that it has been unable to terminate in a normal manner. Six 
categories of exception are possible in Eiffel including events which are synchronous and 
asynchronous. The categories are violation of an executable assertion, failure of a called routine, 
use of an entity with a void value where an operation requires an object, impossible operation 
(allocation when out of memory), exceptions from the hardware or operating system (control-c hit, 
divide by zero) and explicit raising of (user defined) "developer exceptions" through the use of the 
EXCEPTIONS Kernel Library class. The EXCEPTIONS class contains the routines for querying 
exceptional information such as source (origin), value and cause as well as those for catching, 
ignoring and raising exceptions. 

The handler response semantics of Eiffel are termination with retrial and implicit propagation. 
When a routine executes a component which fails and an exception results the execution is 
terminated and if present the rescue clause is executed (see the code sketch above). If no retry 
statement appears in the rescue clause then the routine returns and failure is signalled to the caller. 
Meyer refers to this terminate and propagate semantics as "organised panic". Presence of a retry 
statement in the rescue clause causes reexecution of the guarded region of the routine. We have 
described these semantics as retrial, Meyer refers to them as "resumption" presumably because 
successful reexecution of the guarded region is the only means of resuming the normal mode of 
execution.The EXCEPTIONS Kernel Library supplies an option whereby an exception can be 
ignored. This is helpful when the exception does not indicate a condition which is detrimental to 
the correct execution of the routine, e.g. a window resize. This "ignore" response is equivalent to 
what we have described as resumption semantics and Meyer terms this as a "false alarm". Without 
the possibility of misuse of the false alarm response, (if the mechanism was limited to certain signals 
only) the Eiffel exception handling model could be described as fail-safe. 

4.7.5. Language C 

The programming language "C" is made up of a relatively small and simple "core" language 
and a collection of supporting function libraries. The "C" core language does not include facilities 
like basic input and output, and it certainly does not include any exception handling mechanism. 
Any such facilities developed for "C" must be added on through the use of function libraries and 
possibly preprocessing. 

The function prototypes for performing non-local gotos are found in the library header file 
setjmp.h. The combined actions of setjmp() and longjump() are the basis of several exception 
handling models developed for C and other language implementations which use C as an 
intermediate language. In most cases the syntactic "sugar" developed for exception handling is 
expanded to C code using a preprocessor. Minor additions are made to the runtime system to allow 
the manipulation of data structures holding context information. 

Examples of the above approach for the C language are works by Lee [20] and Allman and Been 
[21]. Lee describes an Ada-like mechanism developed for "C" running under the Unix operating 
system. Exceptions are named and identified by a string value and may be programmer defined 
for a particular application. The model caters for both synchronous and asynchronous exceptions 
which appear to be treated similarly. Operating system signals (e.g. generated by control-c or an 
illegal address operation), are caught using the Unix signal handling facilities of "signal.h". These 
are then fed into the exception handling facility. 

The mechanism described by Lee, like Ada's, supports termination and multilevel (automatic or 
implicit) propagation semantics, as well as an interesting non-Ada-like addition for explicitly 
"signalling" exceptions. The granularity of the mechanism is the code block as in Ada and the 
mechanism appears much the same. The same scope rules for variables applies whether executing 
exception handling code or guarded region. 

NEW_EXCEPTION(AN_EXCEPTION); 
NEW_EXCEPTION(SIG); 
BEGIN 

fn( ); 
if (condition1) exc_raise(AN_EXCEPTION); 
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EXCEPTION 
WHEN(AN_EXCEPTION) 

dosomething ( ); 
WHEN(OTHERS) 

exc_reraise; 
END 

Using the exc_raise( ) function causes a search of the associated handler for a matching "WHEN" 
clause in the handler. The W HEN (OTH E R S) clause is a "catch-all" to handle any exception not 
explicitly catered for. The exc_signal( ) function does not have an equivalent in Ada and causes 
the search to skip the associated handler and search that of the dynamically enclosing block. The 
function exc_reraise( ) is used from within a handler to explicitly reraise the same exception in 
the surrounding context. The use of signal handling means that the model is capable of dealing 
with asynchronous exceptions. As with Ada the system would be considered not fail-safe as after 
the execution of handler code, control passes to the END statement and follows return style 
semantics. 

Allman and Been also describe an "add-on" exception handling model for the "C"/Unix 
environment, in which exceptions are identified by a character string. The string contains 
information about the exception including its source and severity which may determine how the 
exception is to be handled. Three levels of severity are possible, these are Abort, which indicates 
that the procedure in which the exception is raised cannot continue, Error which indicates that 
processing can continue but the results cannot be guaranteed to be correct, and Warning which 
indicates that the exceptional condition has been resolved. A special severity, Transient is allocated 
to asynchronous exceptions (some signals) to indicate that the exception might not occur in the 
same place if the program was rerun. Two functions excalock( ) and excaunlock( ) are provided 
to enable and disable signals (interrupts) to facilitate atomic actions on data structures. Code with 
exception handling appears as follows: 

a() 
{ 

extern handler( ); 
exchandle("? :Xname", handler); 
b(); 
excraise ("W: Xname",N U LL); 

} 
b( )  
{ 

excraise("E : Xname".N U LL) 

} 

Exceptions handlers are set using the int exchandle(exstring, handlerproc) call, and excdhan- 
die(..) which resets the default handler action. The first parameter is the exception string which 
may contain "wildcard" pattern matching characters (*,?), the second is the function name of the 
handler. Any parameters to the handler are gathered when the exception is raised, excraise(- 
exstring, argl, arg2 . . . . .  NULL); In this model the exception handler code does not have access 
to variables local to the guarded region. Variable visibility for the handler is limited to its own local 
variables and those in a more global scope. 

The response semantics possible are termination which is termed "backout", automatic propa- 
gation and resumption which is termed "continue" or "ignore". The standard default handler action 
for an Abort severity exception is program termination, all others cause the excraise() to 
continue.The programmer determination of exception severity (rather than origin based) and the 
non-specific use of resumption semantics render the model as non-fail-safe. 
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4.7.6. C+ + 

The authors Koenig and Stroustrup [22] (the source of the included code examples) outline a 
portable method of exception handling using C's longimp/setjmp mechanism and an implemen- 
tation based on that of CLU, which causes no context saving/stacking overhead. The only overhead 
introduced in the use of the latter exception handling mechanism is the storage of extra tables 
presumably for access to runtime stack information and for facilitation of the stack "unwinding" 
process. 

Ellis and Stroustrup [23, 24] describe a model which has been accepted in the proposed ANSI 
C + + standard. Exceptions are synchronous only, corresponding to programmer defined exceptions 
as well as software runtime traps generated through things like range and array index checks. 
Operating system signals and asynchronous exceptions are not dealt with by the C-t- + exception 
handling model as they are seen as platform dependent and better dealt with through the signal 
handling facilities of the operating system. 

The model described below is based on the fundamental idea that "a function that finds a 
problem that it cannot cope with, throws an exception, hoping that its (direct or indirect) caller 
can handle the problem. A function that wants to handle that kind of problem can indicate that 
it is willing to catch that exception". Exceptions in C-I- + are objects and these are the entities which 
are thrown. An exception is caught, however by specifying its type. Throwing an exception transfers 
control to a handler. An object is passed and the type of that object determines which handlers 
can catch it. When an exception is thrown, control is transferred to the nearest handler of 
appropriate type; "nearest" meaning the handler whose try block was most recently entered by the 
thread of control and not yet exited. The granularity of the guarded region is the code block as 
in Modula-3. Both the "try" and "catch" blocks have access to the variables which are accessible 
to the function (below). Any variables local to the try block are not visible to the catch statement. 

void func(void) 
( 
//code of function body 
try //a "try block" 
{ 

/ / . . .  
throw "Catch Me!"; 

} 
catch(const char*p) 
{ 

//handle character string exceptions. 
} 
catch(...) //catch all handler. 
{ 

throw; //rethrow the same exception. 
} 
} //end of function 

A throw expression with no operand rethrows the exception being handled. This implies that there 
is some repository holding the value of the "current" exception. The throw; without an operand 
may only appear in a catch statement or a function called by that handler. A handler declared 
as catch(. . .)  is a "catch-all" handler and will perform an action for all previously unhandled 
exceptions of any type. The "catch-all" may only be used at the end of a block of handlers. If a 
thrown exception is not handled in the current exception handling context then the function 
terminate( ) is automatically called. 

After the execution of handler code control passes back to the caller where execution resumes 
normal flow. The model must be regarded as not fail-safe on the strength of the use of these return 
semantics. The exception handling model described above, utilises termination with explicit 
propagation, return and limited retrial semantics. 



Exception handling: expecting the unexpected 83 

It is possible to suffix a function declarator with an exception-specification. This is a list of the 
set of exceptions, and exceptions derived from these types, which may be thrown during a function 
execution. This feature accentuates the model's "single level" explicit propagation semantics. 

void f ( )  throw(X,Y) 
{ 

/ / . .  
} 

Any attempt by a function to throw an exception not in its exception list will cause a call to the 
function "unexpected( )". As it turns out the default action for unexpected()  is a call to 
"terminate( )", whose default is to call "abort( )". The functions unexpected( ) and terminate( ) 
execute the last functions which are passed to the functions set_unexpected()  and set_termi- 
nate()  respectively. These functions represent the default handling mechanism and provide a 
means of ensuring a "last wish" prior to program termination. 

4. 7. 7. Exceptional C 

Exceptional C [14, 25] is a superset of the C language designed to provide exception handling 
facilities as an inherent part of the language, which might normally be provided using a combination 
of status return values and "C"  signal handling. The exception handling model uses the termination, 
(single level) explicit propagation, return and resumption semantics depending upon the exception 
source. Two types of exceptions are declarable. The first of these are ordinary exceptions which 
indicate program error. These are referred to above as synchronous exceptions, which are subject 
to termination semantics. The second are SIGNAL exceptions or asynchronous exceptions caused 
by interrupts from the keyboard or other environmental source. These are handled using 
resumption semantics as they represent an environmental event rather than a program error and 
as such cannot cause a reraising of the exception on resumption. The Exceptional C model supports 
programmer defined exceptions as well as those introduced through the runtime system traps and 
operating system signals. 

Exceptional C handlers are associated with code blocks (as in Ada) and if the handler is to be 
associated with a statement then the statement has to be embedded within a block. The same 
variables are accessible to the handler code and guarded region. Exceptions may have an argument 
list and are declared as follows: 

exception a. b(param-type-or-decl-list) 
or 
SIGNAL exception c. d(param-type-or-decl-list) 

An interface specification must include the possible exceptions which might be raised. A function 
declaration for afunc( ) for example, specifies that some statement in the function might raise the 
exception OUT OF LUCK(): 

void*afunc(int t) raises (exception OUT OF LUCK(int n)); 

The occurrence of any exception other than those declared in the "raises" part of the function 
header causes an "ER RO R" exception to be propagated to the caller. The corresponding function 
body would have a skeleton: 

void*afunc(int t) raises (exception OUT OF_LUCK(int n)) 
{ 

{ 
normal execution code; 

except { 
when excl: dostuff( ); 
when others: generalstuff( ); 

CL 20/2--B 
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} 
} 

} 

raise OUT_OF_LUCK(3); 
when SIGNAL others: generalsignalstuff( ); 

Exceptions may be explicitly raised using the raise statement: raise exception_name(optional 
argument list); as above. This causes the block in which the exception was raised to be searched 
for an appropriate handler. If  found the control is passed to that handler. Exception handlers are 
specified in the except block. This except statement is always the last statement of the code block. 
A handler and the block containing it may terminate if the handler completes its statement sequence 
or if the handler executes an exi t  or a return statement. Otherwise a handler may return by executing 
a retry, nex t  or resume statement or through explicit propagation by executing a raise statement. 
The termination of a handler (and the block it is associated with) infers that flow of control passes 
to the statement following the block where normal execution is resumed. This being the case then 
the model is intrinsically not  fa i l - sa fe .  

The retry statement is retry; or retry(int); if a retry count is needed. This completes the handler 
code and the block in which the exception was raised is reexecuted. The next; statement returns 
control of execution to the statement following the block in which the exception was raised. The 
resume; statement, in the case of SIGNAL exceptions, causes the execution to be resumed at the 
point of interruption. 

5. DISCUSSION AND MODEL EVALUATIONS 

As introduced earlier, three important properties of programs which might be improved through 
an effective exception handling mechanism are those of reliability, robustness and comprehensibil- 
ity. A program is reliable if it always returns results which are correct or at least safe for a given 
application. A program can be considered robust if it continues to operate reliably under any, even 
extreme or otherwise adverse operating conditions. The taxonomy offered may be used as a means 
of determining just how well a particular exception handling model effects these improvements. The 
following discussion involves the program properties above, how they relate to the classification 
areas of the taxonomy and the various exception handling models reviewed. 

Program reliability is dependent upon the handler response semantics employed by an exception 
handling model. In particular, reliability is linked to the property of fail-safety, where a program 
produces either a correct or some other "safe" output and never an erroneous one. The only model 
reviewed which did not use the "unsafe" features of either return or resumption semantics, and 
hence the only fail-safe model, was that of the Eiffel language. 

Robustness is reflected in a program's ability to overcome transient conditions which might 
otherwise leaa to program termination. A good example would be the operation of communication 
software where the transmission medium is subject to "noise", and various levels of operation may 
need to be retried, e.g. resending a message packet after a "Nack" packet or a time-out signal is 
received. It is the retrial semantics in an exception handling model that provide a means of 
improving program robustness. The ability to provide this service over as wide a range of exception 
sources as possible is important. Of the reviewed models only those of Eiffel and Exceptional C 
provide retrial semantics and thus a means for developing more robust programs. Robustness is 
also promoted by providing a means for a program to cope with environmental changes. Such 
asynchronous changes are often signalled through remote sensors and do not indicate an error in 
the program. Rather, it means that the program needs to find an alternative route to its 
post-condition. This is best illustrated by a robot changing direction when encountering an 
obstacle. Any model which can field operating system signals and possesses a retrial response can 
effectively handle such situations. It is the Exceptional C model which most efficiently and flexibly 
deals with asynchronous events through the safe use of resumption semantics with the SIGNAL 
class exceptions. 
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Research [26-28] suggests that a well designed exception handling mechanism can make inroads 
towards the improvement of program comprehensibility in two ways. The first is the ability of the 
mechanism to separate code for normal and exceptional execution and the second is its ability to 
reduce the number of explicit conditional statements especially in the code for normal execution. 

The most effective code separation technique is exemplified by the Ada model. The code for 
normal operation appears between the "begin" and "exception" reserved words and the exception 
handlers associated with that guarded region appear between "exception" and "end". Similar 
arrangements are used in Modula-3, Eiffel, Lee's model for "C" and also Exceptional C. The C + + 
model also achieves good code separation through the use of the"catch" clauses which always 
appear as the last clauses in the guarded region. CLU and Allman and Been's model for the "C" 
language, to varying extents, both allow handler code to be interspersed with normal execution 
code. 

Logical complexity is directly proportional to the number of conditional ( i f . . .  then . . .  else . . . .  
CASE, switch etc.) statements. The use of exception propagation rather than setting condition 
variables or conditionally returning error values obviously makes inroads into complexity 
reduction especially where invocations may be nested to any level. Further reduction is possible 
when considering the use of exception handling instead of pretesting conditions which might 
indicate the likelihood of a software, signal or hardware exception being raised, e.g. divide by zero, 
range checks etc. It follows that the number of different exceptions which can be fielded by an 
exception handling model gives one indication of its effectiveness in reducing complexity. All of 
the models reviewed could handle user defined exceptions and those defined by the language. The 
models of CLU, C +  + and Modula-3 however, were not designed to deal with operating system 
signals and/or asynchronous events. This leaves the models of Exceptional C, Ada, Eiffel and the 
two models for "C" as being the best equipped to reduce the logical complexity of a program. 

It could be argued that models which use preprocessing or have an intermediate "C" 
representation which is then compiled, do not actually reduce the complexity of the program as 
conditional statements are reintroduced after code expansion. The reader is reminded that 
comprehensibility is attributed to the written source coded, and it is a measure of how easy or 
difficult that code is to understand. 

5.1. Trends and features 

Table 1 provides a summary of the features of the exception handling models reviewed. From 
the table and inspection of other languages some interesting trends appear. Firstly with regards 
to appearance: nearly all of the languages reviewed had an exception handling mechanism which 
was part of the language design rather than providing the means for the programmer to add it on. 
The more modern procedural style languages tend to use the code block (statement sequence) as 
the granularity for the guarded region. The more modern languages also tend to provide a model 
which clearly separates the code for normal and exceptional execution. In the area of association, 
and related to appearance is the tendency towards static association of handler and guarded region. 
Related to the range of exceptions represented, is the tendency to provide the ability for the 
programmer to define exceptional circumstances for an abstraction. Not all models provide the 

Table 1. Exception handler feature summary 

Features/Lang. ExcC C +  + C (A + B) C (Lee) Eiffel Mod-3 Ada 8.x CLU 

Inherent part  of language Y Y N N Y Y Y Y 
Granularity (St'ment, Block) B B B,S B B B B B,S 
Separate normal and exceptional code Y Y N Y Y Y Y N 
Exceptions (Named, Typed) N T T N N N N T 
Exception parameters Y Y N N N Y N Y 
Association (Static, Dynamic) S S D S S S S S 
Asynch. exceptions Y N Y Y Y N N N 
Signals as exceptions Y N Y Y Y N Y Y 
User defined exceptions Y Y Y Y Y Y Y Y 
Termination semantics Y Y Y Y Y Y Y Y 
Retrial Y N N N Y N N N 
Propagation (Imp., Exp.) E E I I,E I,E I,E I,E I,E 
Return semantics Y Y Y Y N Y Y Y 
Resumption semantics Y N Y N N N N N 
Fail-safe N N N N Y N N N 
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means for dealing with exceptions detected in the operating system or environment. This stems from 
the fact that the exception handling model is language based and the designer must choose between 
providing signal or interrupt handling for a range of platforms or none at all. The handler response 
semantics of choice seem to be termination with very limited use of resumption. The use of return 
semantics as the default form of termination response implies that the designers have a lot of faith 
in the programmer's ability to provide adequate alternative results through the execution of 
exception handler code. The limited use of retrial reflects a seemingly similar lack of understanding 
of the principle of fail safety and its importance. 

If the question were asked: Which of the models and features reviewed stand out? The answers 
would be: CLU for the design of low overhead handler setting and the local reraising action of 
the "exit" statement. Lee's model for the "C" language with the ability to explicitly "signal" an 
exception, Eiffel for implementing fail-safe exception handling, and Exceptional C for the effective 
use of resumption semantics. 

In any language which offers a non-local goto mechanism, such as the longjmp( )/setjmp( ) pair 
in the C language, it is possible for the programmer to construct an exception handling mechanism. 
Whilst possible, it proves to be an extremely difficult job to get right, which is why many languages 
provide a "ready made" exception handling mechanism. One requirement for the task of building 
an exception handling mechanism, is a detailed knowledge of the actions and side-effects of the 
non-local goto mechanism. For longjmp( )/setjmp( ) in C, these are well documented [29]. Another 
requirement is a knowledge of the desired characteristics and possible pitfalls of the exception 
handling model to be built. Application of the taxonomy presented to an exception handling model 
design, and comparison with the classifications of some existing models, should provide an 
invaluable aid to the designer in attaining this knowledge and also in refining design. 

6. T O  C O N C L U D E  

An introduction and overview of the notions of exceptions and exception handling have been 
presented and the range of attributes which may be included in exception handling model design 
identified. A taxonomy for exception handling models was devised with criteria for classification 
being the elements which affect the "appearance" of the model in the language, how guarded region 
and handler code are associated, the range of exceptional events and their representation in the 
exception handling mechanism, the types of handler response semantics that the model supports 
i.e. resumption, termination etc., and whether or not the model supports fail safety. 

The exception handling models of eight procedural languages were reviewed with respect to the 
developed taxonomy. The relative merits and demerits awarded each model were discussed with 
emphasis on their ability to improve program robustness, reliability as well as reduce program 
complexity. Important design ideas were identified in the exception handling models from each of 
the CLU [15], Eiffel, Exceptional C [14] and Lee's model for the "C" language [20]. 
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