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SUMMARY 

Pascal case statements can be compiled using a variety of methods, including comparison 
trees and branch tables. The scheme discussed here combines the two techniques to allow 
comparison trees with entries that are branch tables. The use of a combination of the two 
techniques is shown to adapt well to certain instances of case statements. Extensions to the 
standard case statement also require such a scheme to obtain an efficient implementation. 
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INTRODUCTION 

In an excellent paper,’ Sale discusses the implementation of Pascal case statements. 
Our work on the Pascal* compiler2 led to similar analysis of the problem, and we 
agree that some combination of comparison trees and branch tables is a most effective 
implementation of the case statement. We have carried this solution somewhat 
further: when appropriate, our compiler uses a combination of the two techniques 
within a single case statement. Handling of large case statements whose labels exhibit 
clustering is facilitated, while simpler forms are a natural special case. 

Consider the following examples, which the Tasmania and Pascal* compilers 
handle in similar fashion. 

case I of 
3,5,4: s tmtl;  

6 :  stmt2; 
7: stmt3 

end; 

This code compiles into a single branch table for selector values 3 to 7. 
The following code has a much less dense distribution of case labels. 

case J of 
3,5,4: s tmt l ;  

100: stmt2; 
200: stmt3 

end; 

A branch table for the case statement on J would require 198 entries, an unnecessary 
waste, so for the reasons discussed in Sale’s article, we adopt a tree of comparisons. 
Recognizing the continuous subrange 3,4,5 in the first case-list, our compiler 
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produces code of the form: 

ifjrl00 goto L l ;  
if j = 200 then stmt3 
else error; 
if J >  5 then goto L2; 
if J 2  3 then stmtl 
else error 
if J = 100 then stmt2 
else error 

L1: 

L2: 

The primary distinction of our algorithm is its ability to gracefully handle case 
statements with clustered labels: 

case K of 
1: Stmt l ;  
2: Stmt2; 
3 :  Stmt3; 
4: Stmt4; 
5 :  Stmt5; 
6 :  Stmt6; 
7: Stmt7; 
8: Stmt8; 

1001: Stmt9; 
1002: StmtlO; 
1003: S tmt l l ;  
1004: Stmtl2; 
2001: Stmtl3; 
2002: Stmt 14; 
2003: Stmtl5; 
2004: Stmtl6 

end; 

A case statement of this sort is quite reasonable from a programmer’s perspective, but 
presents a difficult tradeoff to an algorithm choosing between branch tables and 
comparison trees. The tree approach involves approximately 23 emitted value 
comparisons, with a typical path length of at least 4 comparisons for any given value of 
the selector K.  The case-labels span the range 1 . .2004, and cannot be efficiently 
handled by an algorithm restricted to use of a single branch table. 

Additionally, Pascal*, like many other Pascal extensions, allows an extended form 
of the case statement. Constant subranges are allowed for case labels; an otherwise 
clause, executed if the selector does not match any case label, may be appended to the 
case statement. This extended form of the case statement offers the programmer 
significant additional flexibility; however, it also increases the likelihood that sparse 
case statements may arise. 

IMPLEMENTATION TECHNIQUE 

We use a simple heuristic, described below, to detect clustering of the case-labels and 
to split up large branch tables when appropriate. In the above example, three such 
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clusters are identified: 1 . .8,1001. . lo04 and 2001 . .2004. Using a comparison tree to 
choose only among the three clusters, we emit 2 comparisons, with an average 
pathlength of only 1 .5 .  Three separate branch tables, with a total of 16 entries, are 
used for the clusters. The  object code produced is similar to the following: 

if K <  1004 then goto L1 
else BranchtabZe(2001. .2004); 
if K 5 8  then Branchtable(1. .8) 
else Branchtable( 1001 . .1004) 

L1: 

(Branchtable implies use of a simple computed jump with bounds checking, a feature of our 
intermediate code.) 

The function of the heuristic algorithm is to split a sorted list of case-labels 
(containing single constants and constant subranges) into a series of clustered label 
sets, each of which should be implemented as a branch table. The  algorithm presumes 
that a branch table is the fastest implementation for any case statement, and should be 
used unless prohibitively large. 

The  algorithm starts with a series of sorted case-labels, initially grouped together 
for inclusion in a single branch table. The  algorithm then searches for cost-effective 
places at which to split the table into pieces; each such split adds a node to the 
comparison tree. In  the example above, splits are located above case-labels 8 and 1004. 

Choosing appropriate places to split a cluster is a space-time tradeoff. The  
incremental cost in pathlength of a split is approximately proportional to 1 In, where n 
is the number of nodes in the tree. Thus, the first split of a branch table into two nodes 
implies a runtime test that is executed each time through the case statement. Addition 
of a third node adds a test that is only executed half of the time (assuming even 
distribution among legal selector values), and so on. Additional splits become 
increasingly attractive as the tree grows large. 

By introducing a split, the amount of branch table space required is decreased, but 
the amount of code needed to implement the branch tree is increased. Initially, the 
cluster requires branch table space equal to the entire range of values in the cluster. 
After the split the branch table space is equal to the sum of the sizes for each new 
cluster plus some overhead to create the branch tree consisting of the two tables. 
Thus, in the previous example, when considering the split after case-label 8, we see 
that the branch table initially contains 2004 entries (1 . .2004); if a split occurs after 
case-label 8, the two branch tables will contain 8 (1. .8) and 1004 (1001.. 2004) 
elements. This gives a total size of 1 1  12 elements plus some overhead. To compute the 
size of a split entry, the compiler sums the resulting branch tables and adds an 
estimate of the code size associated with the new branch tree element. 

A compiler constant specifies the relative importance of space and efficiency in the 
object code. Expressed as the desired ratio of instructions to be executed vs. 
instructions and branch locations to be emitted, this parameter determines the 
viability of each possible split. For a sparse case statement, the actual ratio before any 
splitting will be very low, since the number of branch table elements is high. Thus, a 
split will be advantageous if it increases the ratio. The  algorithm terminates when 
there are no further splits that can increase the actual ratio without exceeding the 
desired ratio. 

Once the splitting has been done, it is straightforward to generate a balanced 
comparison tree. We use an array to represent the list of clusters; once the splitting is 
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complete, the root node for the comparison tree is the median element in the sorted list 
of clusters. Roots for the left and right subtrees correspond to the median elements of 
the left and right halves of the array. Using this representation, the tree may be 
traversed in preorder format to generate the appropriate tests and branches as 
described in Reference 1. 

CONCLUDING REMARKS 

The algorithm described herein was added to the Pascalk compiler during the 
summer of 1980, and has seen regular use since then. As expected, we have found it to 
be effective in compiling a wide variety of case statements both in standard Pascal and 
using the Pascalk extensions. In comparison to the Tasmania compiler, we offer 
slightly better treatment of certain case statements, at the expense of some compile 
time complexity. Programmers typically avoid constructs that are poorly handled by 
compilers, so the elaborate case statements that benefit from our approach are rare in 
existing Pascal programs. We hope that the enhanced facilities of the Pascalk and 
Tasmania compilers will provide programmers greater freedom in the future. 
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