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Abstract. We present a semantics of mocking, based on a process
calculus-like formalism, and an associated mocking framework. We can
build expressive mocking specifications from a small, orthogonal set of
operators. Our framework detects and rejects ambiguous specifications as
a validation measure. We report our experience testing software compo-
nents for the car industry, which needed the full power of our framework.

1 Introduction

Software components rarely exist in isolation; most components not only provide
an API, but depend on the APIs of other components. When a component is
tested in isolation, then these other APIs must be replaced by a suitable simula-
tion. Nowadays “mocks” are often used for this purpose, which not only simulate
the other components, but also help to check that they are used correctly.

There are many mocking frameworks available to support mocking, such as
Google Mock [9] for C++, or jMock [11] or Mockito [12] for Java. Yet we devel-
oped a new framework of our own—why?

We recently designed conformance tests for parts of the AUTOSAR automo-
tive software standard [3]. The goal was to test different vendors’ implementa-
tions of AUTOSAR components for compliance with the standard. We needed
mocks in order to test each component in isolation. We had three main require-
ments which ruled out existing mocking frameworks.

Ezxpressive. AUTOSAR does not completely specify how a compliant component
must behave, and different vendors interpret the standard differently. Therefore,
the system under test might invoke the mocks in a variety of very different ways.
As we cannot tailor our tests to the vendor’s implementation, our mocks must
handle this diversity instead. To allow diverse behaviour without making the
mocks too permissive, we need an expressive mocking framework.

Orthogonal. Many mocking frameworks have a non-orthogonal feature set. For
example, mocking frameworks support optional calls, which the system under
test may call or ignore, but it is often mot possible to mark a sequence of calls
as optional, so that either the whole sequence must be called or none at all.

In the AUTOSAR project we used QuickCheck [6,2] to model the software
components. From the model we can generate test cases and corresponding
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mocks; generating the mocks is extremely painful if the mocking framework
imposes arbitrary restrictions on what we can write. We want the freedom to
combine the features of the mocking framework however we like.

Clear and unambiguous specifications. In most mocking frameworks, the mean-
ing of a specification can be quite subtle, a point we illustrate in Section 2. For
example, these frameworks have rules for resolving ambiguity, and the user can
exploit these rules in writing specifications. This is convenient but makes it hard
to say what a given specification means.

Our AUTOSAR mocking specifications are, by necessity, sometimes long and
complex. They are tricky to get right. The last thing we want from our frame-
work is a subtle semantics! We want each mocking specification to have a simple,
declarative meaning. Likewise, we want the mocking framework to reject ambigu-
ous specifications, rather than make arbitrary choices: this reduces the number
of potential pitfalls.

One might expect that we could use an ambiguous specification to mock a
nondeterministic component, if the framework resolves ambiguity randomly. We
believe this is the wrong approach, because it makes tests unrepeatable. Instead,
the test suite itself should choose a particular deterministic interpretation.

This paper presents a new mocking framework which is expressive, is built
from a small core of orthogonal features, has a simple, compositional semantics
where every specification has a clear meaning, and which avoids making arbitrary
choices during test execution by rejecting ambiguous specifications. Although
our requirements came from the AUTOSAR testing project, we believe these
features are compelling in their own right, and are especially important when
testing large components. The contributions of the paper are as follows:

— We present a new framework for mocking (Sections 3-4). The framework
is given two semantics, a simple, compositional denotational semantics and
a small-step operational semantics. The two semantics have been proved
equivalent (see the accompanying technical report [13]).

— We avoid making arbitrary choices during test execution by ruling out
ambiguous mocking specifications. Specifically, we provide a procedure to
validate specifications (Section 5) which rules out specifications which are
ambiguous. The validation is sound with respect to the semantics. Perhaps
surprisingly, it is also complete, which means that if we reject a specification,
it must be ambiguous, and we can moreover find a trace that demonstrates
the ambiguity. The soundness proof, a sketch of the completeness proof, and
a link to the full formalization are found in the tech. report [13]

— We extend our basic framework to make it practical and describe how to
implement it in a memory-efficient way (Section 6).

— We report on our experience using an earlier version of this framework in a
large industrial case study writing specifications for, and then testing imple-
mentations of, automotive software (Section 7).
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2 Why a Mocking Semantics?

Before going into the details of our new mocking framework, we will explain
why we are dissatisfied with the non-compositional semantics of conventional
mocking frameworks. We use Google Mock [9] (and Google Test [10]) purely as
a representative for existing mocking frameworks.

Consider a small test for a Dashboard component. The dashboard is con-
nected to a speed sensor and a display, and is supposed to read the speed and
update the display appropriately. In this example, the dashboard has a correct
C implementation which we want to test. In order to test it, we mock the sensor
and display component.

TEST (Dashboard, Testl) {

MockSensor mSensor;

MockDisplay mDisplay;

EXPECT_CALL (mSensor, readSpeed()).WillOnce(Return(10));
EXPECT_CALL (mDisplay, updateDisplay(Display::SPEED, _));

Dashboard dashboard(&mSensor, &mDisplay);
dashboard.main(); // Actual test

The test creates a mock sensor and a mock display, and a concrete
Dashboard object containing the mock objects. Thereafter, the mock ob-
jects are prepared to expect a call of readSpeed() (returning 10) and
updateDisplay(Display: :SPEED, _) respectively (where _ matches any argu-
ment). The test finally calls the main function of Dashboard. When a mocked
object is destroyed, the framework checks that all and only the expected calls
have been made. This test will pass provided that dashboard.main() calls the
mocked functions exactly as specified.

Let us enrich the example test by adding two more calls of dashboard.main ()
and having the mocked function readSpeed return a different value each time.
We tell updateDisplay that it will be called three times (by adding Times(3)
to the specification), and call the main function three times:

MockSensor mSensor;

MockDisplay mDisplay;

EXPECT_CALL (mSensor, readSpeed())
.WillOnce (Return(10))
.WillOnce(Return(6.7))
.WillOnce(Return(12.5));

EXPECT_CALL(mDisplay, updateDisplay(Display::SPEED, _)).Times(3);

Dashboard dashboard(&mSensor, &mDisplay);
dashboard.main();

dashboard.main();

dashboard.main(); // main x3
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This test will pass for correct implementations of the dashboard. Next, sup-
pose we want to be a little bit more precise. It so happens that the Dashboard
should convert the sensor speed, given in m/s, to km/h; i.e. if readSpeed returns
10, updateDisplay should be called with 36 as its second argument. We change
the expected calls to:

EXPECT_CALL (mDisplay, updateDisplay(Display::SPEED, 36)).Times(1);
EXPECT_CALL (mDisplay, updateDisplay(Display::SPEED, _)) .Times(2);

Surprisingly, this test fails even if the implementation does the correct thing.
It turns out that expectations are put on a stack, so are tested in the reverse
order that they are defined. Thus, the correct way to specify this would be

EXPECT_CALL(mDisplay, updateDisplay(Display::SPEED, _)) .Times(2);
EXPECT_CALL (mDisplay, updateDisplay(Display::SPEED, 36)).Times(1);

even though the call returning 36 happens first. And indeed, this test passes.
Now suppose that we change the specification so that the final call to
readSpeed returns 10 instead of 12.5:

EXPECT_CALL (mSensor, readSpeed())
.WillOnce(Return(10))
.WillOnce(Return(6.7))
.WillOnce(Return(10));

EXPECT_CALL (mDisplay, updateDisplay(Display::SPEED, _)) .Times(2);
EXPECT_CALL (mDisplay, updateDisplay(Display::SPEED, 36)).Times(1);

We might expect this test to pass, but it does not! The reason is that (by
default) expectations are not removed from the stack once they are fulfilled. Thus
as soon as the function updateDisplay is called with argument 36 it remains
on the stack as being called once. The second time it is called it increases the
call count of the updateDisplay with argument 36 instead of increasing the call
count of updateDisplay with arbitrary argument.

The above mocking specification looks ambiguous, since a second call with
argument 36 can be handled in two ways: it can be accepted by the first clause
or rejected by the second. The mocking framework has arbitrarily chosen the
second way.

The way to fix this test in Google Mock is either to expect 36 twice, or
to tell the second expectation to retire once it is fulfilled with the feature
RetiresOnSaturation(). We choose the second option and the test now passes:

EXPECT_CALL(mDisplay, updateDisplay(Display::SPEED, _)) .Times(2);
EXPECT_CALL (mDisplay, updateDisplay(Display::SPEED, 36)).Times(1)
.RetiresOnSaturation();

While conventional mocking frameworks have a precise semantics, it is quite
complicated. There are subtle interactions between features because the seman-
tics is not compositional and ambiguous specifications are given an arbitrary,
though documented, semantics.
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In this case, the test failed and therefore we found out that the mocking
specification was ambiguous. More worrying is that, by resolving an ambiguity
the wrong way, the framework might allow a test to pass that should fail. We
would like to be alerted to such problems.

A complex semantics also places a mental burden on the user. We believe
that this burden becomes worse as the mocking specifications become bigger. We
will now present our approach to mocking, which brings a simple, surprise-free
semantics, and ambiguity checking to avoid having to make arbitrary choices.

3 Introduction to the Mocking Language

Our running example will be a dashboard similar to that of Section 2. The
dashboard executes a main loop 25 times per second. Each time round, it reads
a number of signals, such as the speed, battery status, outside temperature, etc.,
and updates a display accordingly. The display is a different software component
and is mocked by an update display function.

We start with a simple main loop that only reads the speed and then updates
the display. It will first call the mocked function read_speed, which returns a
value in m/s; let’s say that it should return 5.833 m/s. The mocking specification
read speed—5.833 says that the software under test must call read_speed, and
the mocked function will return 5.833. We refer to a single call and return as an
event; by combining events we can build more complex mocking specifications.

Next, the dashboard must make the display show 21 km/h. It does this
by calling update_display(speed,21); as before, we model this call with an
event update display(speed,21)+s ().t To say that the dashboard must call
read_speed and update_display in that order, we combine the two events
with the sequential composition operator “-”. The resulting specification is:

read speed+5.833 - update display(speed,21) ()

Now we turn to the battery level. This display only needs to be updated once
a second, though it may be updated more often. Since our mocking specifica-
tion only captures 1/25 of a second, we cannot check this directly; instead, we
allow the dashboard optionally to update the display, and will check in the test
suite itself that the display is updated often enough by counting the calls to
update_display. To express optional behaviour we add two new constructs to
the mocking language. The + operator allows the software under test to behave
according to either of two specifications, while the empty specification ¢ forbids
any calls. We may then express an optional behaviour by giving the software
under test the option of having that behaviour or not doing anything:

(read battery w234 - update display(battery,70)—()) + €

Another feature of the dashboard is that when driving in bright sunlight, the
display may light up. Not all cars have this feature. Moreover, some dashboards

L If a function’s return type is void, we use () for the return value.
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read the light sensor each time they update a part of the display, while others
only read it once per loop. But whenever the dashboard reads the light sensor,
it must then update the display brightness. The dashboard may read the light
sensor any number of times per loop, which we can model using the * operator:

(read light —6 - light display—())*

The three specifications above capture three aspects of the dashboard. To
mock the dashboard as a whole, we combine the three specifications with the
parallel composition operator “||”. This says that the dashboard may interleave
the execution of the three specifications, but must respect the order of events
within each single specification. For example, the dashboard may read the speed,
then the light sensor, then set the display brightness, then update the display:

(read speed—5.833 - update display(speed,21)+—())
|| (read light—6 - light display —())*
[| ((read battery 234 - update display(battery,70)—()) + €)

From this specification we can automatically generate mocks. Our mocks check
that the calls made by the dashboard precisely match the calls in the specifica-
tion: no extra calls, no missing calls, and all calls in the right order.

4 A Process Calculus for Mocking

We have now seen all of the features of our mocking language, and begin a formal
treatment of its semantics. Mocking specifications resemble terms in a process
calculus, and their syntax is summarised below. An event a — z denotes calling
the function a to get result z. For now we treat a and z abstractly; in Section 6
we will breathe life into the calculus by allowing events to be real function calls.

p uw= ¢ | amz | pg | plla ] ptagl| p

We want to assign meaning to mocking specifications. We therefore define a
denotational semantics in terms of traces; a trace is a sequence of events. The
language L(p) of a process is the set of traces that the process accepts, i.e. that
satisfy the mocking specification, and is defined as follows:

Lp-q) ={st|se€Llp)NteL(q)}

L(p +q) = L(p) U L(q)
Lpll ¢ ={u|seL(p)Ate L(q)Auis an interleaving of s and ¢}
L(p*) ={s182--sn | n € Nand for all i, s; € L(p)}

Lla—z)={ar z}
L(e) = A{e}
This semantics is compact and easy to understand, and ideal for understanding

the behaviour of a mocking specification. However, it is of little use for imple-
menting the mocking framework. It accepts or rejects whole execution traces,

)
)=
) =
) =
)=
)=
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but during test execution we are given a single call at a time and have to return
a single result. Therefore, we also provide a small-step semantics. The small-
step semantics is more complicated than the denotational one. In order to make
sure that we have not made a mistake, we have proved that both semantics are
equivalent: see the accompanying tech. report [13].

The small-step semantics is based on two judgements: reduction p—, ;¢
means that on a call to a, the process p will return z and behave as ¢ thereafter,
while “p is accepting” means that p accepts the empty trace: the test case may
finish without calling any mocked functions. We design both judgements so that
they coincide with the denotational semantics.

A process p should be accepting if ¢ € L(p). Looking at the denotational
semantics, we get the following rules: p - ¢ is accepting if both p and ¢ are
accepting (likewise p || ¢), p + ¢ is accepting if either p or g are accepting, p* is
accepting, € is accepting and a >z isn’t.

The most interesting case for reduction is sequential composition. To reduce
p - g, we can either reduce p or, if p is accepting, remove it and reduce ¢. This
gives the following rules:

D —az ¢ (THENL) p is accepting q—ra,zT
pT —az q-T P-q —azT

(THENR)

We can also derive these rules from the denotational semantics. Suppose we
have a trace st € L(p - q), where s € L(p) and t € L(¢q). THENL: If s is non-
empty, the first event in st is from L(p), hence we should reduce p to, say, p’.
The remainder of st is a trace from p’ - ¢, so we should reduce to that. THENR:
If s is empty, which can only occur if € € L(p), the trace is simply t € L(q),
hence we should reduce ¢ to, say, ¢. The remainder of st is a trace from ¢’, so
we should reduce to that.

Reasoning either informally or from the denotational semantics, we find the
other reduction rules. To reduce a parallel composition p || ¢, reduce either p or
q; to reduce a choice p + ¢, remove one of the choices and reduce the one that’s
left. To reduce p*, expand it to p - p* and then reduce p; finally, an event a+z
reduces to €. This is captured in the rules below.

P—a,:q q—ra:T P—a,:q
“ (JIL) “ (IIR) . YT (%)
pllr —azqllr pllg =azpllr P" —azq-p
— —a,zT
Prazd ) 177az (+R) (EVENT)
p+r —a,z 4 p+q —a,z T Ar=>2 —qz €

If we are not interested in the result of the call, we write p—, ¢, and say
that p a-reduces (or just reduces) to g¢; if we are not interested in the resulting
process q either, we just write p —,, and say that p can consume a. We lift the
terminology from single events to whole traces in the natural way.
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5 Ambiguity Detection

As argued in the Introduction and Section 2, we want to forbid ambiguous
specifications, because they lead to complex semantics, or to unrepeatable tests
if resolved at random. An example of an ambiguous specification in our language
is ar>z, + a+>zo: if the program calls a, we do not know whether to return z;
or zo. We will see in Section 6.1 that the user does not decide what value an event
will return until that event is called, so we must also reject a+—z + a+>z—we
have no way of knowing that both events will always return the same value.

This suggests the following definition of ambiguity: p is ambiguous if for some
call a, there are two applicable reduction rules for p —,. A process is also am-
biguous if it reduces to an ambiguous process. Our process a2z + ar>z is
ambiguous because, for the call a, the rules +L and +R both apply.

Here are some examples of ambiguous processes:

— ar2z1 + a2z is ambiguous, as above. In general, if p—, and g —,, then
p + ¢ is ambiguous.

— (a2 - b—>2zg) || b—2z3 is ambiguous: after a call to a, it reduces to
br>zo || br>zs, in which there are two b-reductions. In general, if p and
q have overlapping alphabets, then p || ¢ is ambiguous.

— (ar2z1 + €) - ar> 29 is ambiguous: calling a, we could return either z; or 2.

Along the same lines, a2z - (ar>22 + €) - a+ 23 is ambiguous: after a call

to a, we are left with (e 22 + €) - a+> z3, essentially the previous example.

The examples above tell us how to detect ambiguity. We will start with +
and ||. Note that the two constructs need different rules: the second example
is ambiguous, but replacing || by + it becomes unambiguous. With +, the first
call needs to tell us which alternative to choose, but with || every call needs to
have this property.

— If p—, and ¢ —,, then p + ¢ is ambiguous because rules +L and +R both
apply.

— If a € alphabet(p) N alphabet(q) then p || ¢ is ambiguous because we can
reach a process p’ || ¢ where p’ —, and ¢’ —,; rules ||L and ||R then both
apply. (The alphabet of a process is simply the set of events that appear
syntactically in it.)

We will define a function p v that checks that p is unambiguous. For now we
only define the easy cases:
pHqgv=pv Aqgv A-Talp—a Nqg—a)
pll ¢gv=pv A qgv A alphabet(p) Nalphabet(q) = 0
avrz v = true
e v = true
Sequential composition is trickier. Looking at (a+>z1 + €) - ar>22, we see
that the reduction rules THENL and THENR both apply, the first because

ar>z1 + € can consume a and the second because a+— 21 + ¢ is accepting and
a > z9 can consume a. Generalising to an arbitrary sequential composition p - g:
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— If p—,, then rule THENL applies.
— If p is accepting and ¢ —,, then rule THENR applies.

If both conditions are true, p - ¢ is ambiguous. The final example above,
a—z1 - (a—zy + €) - ar>z3, does not satisfy the above conditions, but is still
ambiguous because it a-reduces to a process that does. Let us say that a overlaps
p, or p?a, if there is a trace under which p reduces to a process p’, such that
p' —4 and p’ is accepting. Then we may generalise our remarks above: if p?a
and g —,, then by our argument above, p’ - ¢ is ambiguous; hence p - ¢ is too.

p-gv=pv Agv A-TJa(pla A qg—,)
Finally, we take replication p*. Informally, p* is a sequence p - p - --- - p of
ps, so it should be enough to check that p - p is unambiguous. This, though, is
slightly too restrictive: the process (a —z + €)* is unambiguous (only rule * can
ever apply) but we would reject it. The first reduction of p* must be rule *, so
it cannot be ambiguous unless p is ambiguous. Therefore, we find all one-step
reductions ¢ - p* of p*, and check that for all of those, ¢ - p is unambiguous:

p*vV=pv A-=FaFbIg(p—aq A q?b A p—p)

We must also be able to say whether a overlaps p, according to the definition
of overlapping that we gave earlier. We have a number of simple structural rules:

pla q?a pla
P L B (A
pla q?a q?a
p+q?a(+m p+q?a(+m p.q?a(Tmmm

We also have a couple of “nearly” structural rules. Since p* is always accepting,
if p—4 then p* ? a. And if ¢ is accepting, then L(p) C L(p - ¢), so if p?a then
p-q? oa

pla q is accepting

—
(THENL) b

*-OUTER
p-q?a p" 7 a ( )

Finally, p + ¢ can introduce an overlap, if p is accepting and ¢ —, or vice
versa:

P—q q is accepting p is accepting q—a

(+LR) (+RL)

pt+q?a p+q?a

Our ambiguity detection is both sound and complete. Because of soundness,
we never accept an ambiguous specification; because of completeness, when we
reject a specification we can give a trace showing that it is ambiguous. The proof
of soundness and a sketch of completeness are found in the tech. report [13].
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6 From Process Calculus to Mocking Framework

The goal of this section is to turn the process calculus into a fully-fledged mocking
framework. A basic implementation is simple. We first check that the mocking
specification p is unambiguous. To execute p, we wait for the system under test
to make a call a. We check if p—, . ¢ for some g¢; if not, the call is erroneous.
Otherwise, we return the result z to the caller, and continue by executing q.
Finally, when the test finishes, we check that the final process is accepting.

6.1 Matching

In our examples so far, an event specifies a single concrete call such as
update display(speed,21) and a concrete result like 5.833. In reality, we do not
always know the function arguments so precisely, and need a richer event lan-
guage. In our framework, an event specifies a pattern of function calls. For ex-
ample, we may write update display(speed, ), where the “” is a wildcard; this
matches any call to update display where the first argument is speed. A pattern
simply stands for any of the concrete calls which it matches.

We also allow the event’s return value to depend on the call arguments. The
user can associate an evaluation function with each event, which is given the
call’s concrete arguments and computes the return value.? Note that each oc-
currence of an event in the mocking specification can have a different evaluation
function: the same call need not always return the same result. An event that re-
turns a constant result is a degenerate case where the evaluation function ignores
its arguments.

We need to be careful that we can still execute mocking specifications that
use pattern matching, and check them for ambiguity. Executing the specification
is not a problem: we only need to be able to check if a concrete call matches a
particular event. Given a process p and a call ¢, we check if there is an event
that p can consume and which matches c. Finally, we use the evaluation function
associated with the event to calculate the return value, and reduce p.

We can also check the specification for ambiguity, as long as we can tell
whether any two events intersect. (Two events intersect if there is a single con-
crete call that matches both of them.) It will help to write out the existing rules,
using equality explicitly whenever we compare the events of two processes:

p+agv=pv Agv A —-Jadb(p—e ANg—p Na=0D)
pllgv=pv A gv A —3a3b(a € alphabet(p) A b € alphabet(q) A a =b)
a—z v = true
e v = true
p-qgv=pv ANgv AN—-JaTb(p?a A g—p Aa=0D)
p* VvV =pv' A-3aFb3IcIq(p—aq N qg?b A p—c. Ab=c)

2 This is why we could not tell if two events have the same return value in Section 5.
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Now, instead of checking if two events are equal, we need to check if they in-
tersect. All we have to do is replace each occurrence of “a = b’ above with
“a and b intersect”! This gives a sound and complete ambiguity detection algo-
rithm for our mocking language with patterns. We will, for example, consider
update display(speed, 36)+— () + update display(speed, ) () to be ambiguous.
For now we have only implemented quite basic matching. In particular, we
can match each argument against either a constant or the wildcard “ ”; these
were all that we needed for the AUTOSAR testing. However, it is easy to add
more powerful patterns, provided they meet the two requirements above. For
example, we could easily add value ranges (“z must be between 0 and 2007).

6.2 Efficient Implementation

For our AUTOSAR testing we implemented the mocking framework in C. We
could simply have implemented the reduction rules of the process algebra, but
then reduction would need to allocate memory. We wanted to allocate all memory
before running the test, and to avoid heavy term manipulation while testing.

An obvious choice is to translate the mocking specification to a finite-state
automaton. Unfortunately, the || operator suffers from exponential blowup: an
automaton that implements p || ¢ needs to remember “how far” it has got in
both p and ¢, so the number of states it needs is the product of the number of
states in p’s automaton and ¢’s automaton.

Instead, we keep the terms of the process calculus but augment them with
flags that record how far execution has got. During test execution we need only
update the flags and not modify the structure of the terms.

For example, we annotate the sequential composition p - ¢ with the flag “left”.
This indicates that we are reducing p. When we apply rule THENR to start
reducing ¢, we change the flag to “right”, and from then on we ignore p and
treat the composition as if it were just ¢. This gives us the following rules for
the augmented “-” operator:

D —raz ¢ p is accepting q—ra,zT

THENL THENR
(p : 71)1ef‘c 4>a,z (q . 71)1ef‘c ( ) (p : q)left %a,z (p : T)right ( )

q —az T

(THENR2)
(p : q)right Ha,z (p : T)right

Notice that we no longer change the structure of the term, we only change
the flag. The first two rules correspond exactly to the rules we had before; the
third one is an extra structural rule that arises because we can no longer get rid
of p once we have finished reducing it.

Here is how we augment the other constructs:

— For alternation, p 4+ ¢, we add a flag that records which alternative, p or g,
we have chosen. It is initially “neither”. If we make a p-transition it becomes
“left”, and we ignore ¢ from then on, and vice versa.
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— We do not need to augment p || ¢, though p and ¢ themselves are augmented.
The reduction rules are the same as before.

— We augment a single event, a — z, with a flag that indicates whether we have
performed the event. If the flag shows that we have already performed the
event, we may no longer perform it.

Replication is the trickiest case, because in executing p* we may execute p an
unlimited number of times. To handle this we need to be able to reset a term,
which sets its flags back to their initial state. Whenever p in p* does not accept
an event a +— z, but does accept the empty trace, we reset p and feed a +— z to it;
this corresponds to unrolling p* in the original semantics. We also augment p*
with a flag that records whether we have performed any reductions on it; this
flag is set after the very first reduction, and allows us to model the fact that p*
always accepts the empty trace.

6.3 Extensions

The mocking language we have presented so far is quite minimal. When writing
mocking specifications in practice we use a larger repertoire of constructs. Con-
structs we've found useful include permutations, optional behaviours and finite
repetition. The permutation construct operates on a list of behaviours and is
similar to parallel composition but doesn’t allow interleaving of behaviours: the
behaviours must execute one after another, but in an arbitrary order.

Constructs like these are definable in the language we’ve already presented.
For example, an optional p is simply p + €. However, in our implementation
we’ve added them as primitives for reasons of efficiency. It is particularly impor-
tant to have permutations be a primitive in the implementation since its encoding
into our calculus causes an exponential blow-up in the size of the process.

As an example of using permutations consider the example with parallel com-
position from Section 3:

(read speed+—5.833 - update display(speed,21)+—())
|| (read light—6 - light display —())*
[| ((read battery 234 - update display(battery,70)—()) + €)
This specification allows all values to be read before any updates are performed.
This might be exactly the freedom one wishes to express. However, suppose that
we wish to ensure that the calls to read speed and update display should happen
in immediate sequence without being interrupted by any of the other calls, and
likewise with the calls to read battery and update display. We can achieve this
by using permutations instead of parallel composition, writing the permutation
of p, ¢ and r as perm|p, q,r], as follows:
perm|read speed—5.833 - update display(speed,21)+ (),
(read light—6 - light display— ()",
(read battery 234 - update display(battery,70)—()) + €]
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The components we are testing are currently single-threaded, but provided
our implementation of mocking is thread-safe then there is no reason not to use
it with multi-threaded code—we would synchronise on each mocked call, thus
establishing a sequential order of calls. It is likely that multi-threaded code would
require mocking specifications to use the || operator to handle the inevitable
non-determinism in the order of mocked calls, but our framework supports this.

7 Mocking in the AUTOSAR Testing Project

Our mocking semantics arose out of a recent project testing AUTOSAR Basic
Software components [3] for Volvo Cars [14]. We modelled around twenty AU-
TOSAR components using an earlier version of the mocking framework. These
included the layers of protocol stacks for CAN, LIN, and FlexRay, a router and
some diagnostic components. Each component corresponded to an approximately
150-page written specification. Our testsuite has been used to check a handful
of implementations from Volvo Cars’ subcontractors.

We modelled the AUTOSAR software components in QuickCheck [2], a model-
based testing tool that can automatically create random test cases from state
machine specifications written in a domain-specific functional language. Dur-
ing the project we developed our mocking framework and integrated it with
QuickCheck so that for each generated test case appropriate mocks were also
generated. The complexity of the mocking generators varied wildly: from a sin-
gle line of code to several hundred for the most complicated function we tested.
To be able to write these complex mocking generators it was absolutely essential
to have a compositional mocking framework where specifications can easily be
combined. The simple and clear semantics is also crucial to be able to understand
complex mocking generators.

One of the particular challenges with modelling AUTOSAR is that it does
not always completely specify the behaviour of the software. Not only may the
mocked functions behave in a number of ways, components also have some free-
dom in which mocked functions to call and how often they are called. And sure
enough, whenever the specification allowed for some leeway we found that im-
plementations typically differed in behaviour. The expressiveness of our mocking
framework proved invaluable for developing mocking specifications which could
handle all legal behaviours mandated by the standard.

8 Related Work

It would be natural to compare our work to existing C mocking frameworks.
However, there does not seem to be very many, and the few that exist (like
CMock [7) and Cgreen [5]) have very limited functionality. Instead, we compare
to Google Mock. Google Mock provides mocking functionality for C++ and is
feature-wise close to jMock [11] and EasyMock [8] for Java. Thus it should, to
the best of our knowledge, be representative of modern mocking frameworks.



398 J. Svenningsson et al.

Since C has no objects, we will simply compare the expressiveness of the two
approaches.

The main difference is that Google Mock provides lots of default behaviour:
expectations are put in parallel by default, there are default return values, etc.
The language we define has no default behaviour—everything is explicit. Both
approaches have their merits, but hidden defaults require a well-educated user.
In terms of expressiveness, we have observed three key differences:

— Google Mock has state, i.e. one action may set a variable that can be read
by a later action. This is not included in our language since we have not
had the need for it. It would be possible to extend our language with state,
but the more interesting question is why we haven’t had the need for it. We
believe the reason is the compositionality and expressiveness of our mock-
ing language. Compare to writing a regular expression and implementing
an equivalent state machine. Regular expressions provide a declarative and
compositional interface without the need for state which is much simpler to
use than having to maintain the state of the state machine explicitly.

— Google Mock only does replication of single events; it is not possible to
repeat, for example, a sequence of calls. In our particular use case, L* is a
central ingredient, thus not having it would have presented a problem to us.

— Finally, there does not seem to be a way to express p + g in Google Mock.
One could say atMost (1) for both p and ¢, but that would not catch the
case when neither or both are called. Again this is central to our use case,
but perhaps one often manages without it in ordinary unit testing.

An area closely related to mocking is runtime monitoring. In particular, Jass
[4] allows monitoring of ”trace assertions” expressed in a CSP-like language; if
the monitored code performs an event in the alphabet of the process that is not
part of any trace, then an exception is raised. The trace assertion language is
described by example and formal properties are not stated or proven. In gen-
eral, run-time monitors can allow non-determinism in the monitor, because this
cannot lead to non-determinism in the test outcome. Because mocking supplies
return values to the code under test, then non-deterministic mocking will lead
to non-deterministic test outcomes. Similarly, model checkers can allow non-
deterministic environments since they can explore branching executions, collect
constraints, and use solvers to find interesting cases: since each test execution
can follow only one branch then we do not enjoy the same freedom.

Our mocking language shares many similarities with the language PSL [1],
used by the hardware community for specifying and verifying circuits. PSL is
divided into several layers and one of these layers is a modelling layer, used for
specifying parts of the design which are not yet implemented. Although similar
in spirit to our language, PSL’s mocking language naturally differs on many
details as it targets hardware, not software.
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9 Conclusions

This paper provides a fresh look at mocking and presents a new expressive
and compositional semantics. It is the first such semantics we are aware of;
other mocking frameworks have a precise semantics, but only defined by their
implementation. The expressiveness is inspired by a large use case of mocking
in a model-based testing project in the automotive software domain, but the
solution is generally applicable in other domains as well.

Since we have a formal semantics for mocking, we can check mocking speci-
fications for ambiguity. We prove that this verification is sound and complete.
Thus, whenever we accept a user-defined mocking specification, the result is un-
ambiguous and if the specification is unambiguous, we accept it. Unambiguous
specifications are important because a mocking framework must either make
arbitrary choices or random choices in the face of ambiguity; the first leads to
surprising behaviour and the second to unrepeatable tests. The formal semantics
also makes it clear that our feature set is orthogonal.
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