
Why Functional Programming Matters�John Hughes, Institutionen f�or Datavetenskap,Chalmers Tekniska H�ogskola,41296 G�oteborg,SWEDEN. rjmh@cs.chalmers.seAbstractAs software becomes more and more complex, it is more and more important to structureit well. Well-structured software is easy to write, easy to debug, and provides a collectionof modules that can be re-used to reduce future programming costs. Conventional languagesplace conceptual limits on the way problems can be modularised. Functional languages pushthose limits back. In this paper we show that two features of functional languages in particular,higher-order functions and lazy evaluation, can contribute greatly to modularity. As examples,we manipulate lists and trees, program several numerical algorithms, and implement the alpha-beta heuristic (an algorithm from Arti�cial Intelligence used in game-playing programs). Sincemodularity is the key to successful programming, functional languages are vitally importantto the real world.1 IntroductionThis paper is an attempt to demonstrate to the \real world" that functional programming is vitallyimportant, and also to help functional programmers exploit its advantages to the full by makingit clear what those advantages are.Functional programming is so called because a program consists entirely of functions. Themain program itself is written as a function which receives the program's input as its argumentand delivers the program's output as its result. Typically the main function is de�ned in termsof other functions, which in turn are de�ned in terms of still more functions, until at the bottomlevel the functions are language primitives. These functions are much like ordinary mathematicalfunctions, and in this paper will be de�ned by ordinary equations. Our notation follows Turner'slanguage Miranda(TM) [Tur85], but should be readable with no prior knowledge of functionallanguages. (Miranda is a trademark of Research Software Ltd.)The special characteristics and advantages of functional programming are often summed upmore or less as follows. Functional programs contain no assignment statements, so variables, oncegiven a value, never change. More generally, functional programs contain no side-e�ects at all. Afunction call can have no e�ect other than to compute its result. This eliminates a major sourceof bugs, and also makes the order of execution irrelevant - since no side-e�ect can change thevalue of an expression, it can be evaluated at any time. This relieves the programmer of theburden of prescribing the
ow of control. Since expressions can be evaluated at any time, onecan freely replace variables by their values and vice versa - that is, programs are \referentiallytransparent". This freedom helps make functional programs more tractable mathematically thantheir conventional counterparts.Such a catalogue of \advantages" is all very well, but one must not be surprised if outsidersdon't take it too seriously. It says a lot about what functional programming is not (it has no�This paper dates from 1984, and circulated as a Chalmers memo for many years. Slightly revised versionsappeared in 1989 and 1990 as [Hug90] and [Hug89]. This version is based on the original Chalmers memo nroffsource, lightly edited for LaTeX and to bring it closer to the published versions, and with one or two errors corrected.Please excuse the slightly old-fashioned type-setting, and the fact that the examples are not in Haskell!.1

assignment, no side e�ects, no
ow of control) but not much about what it is. The functionalprogrammer sounds rather like a medieval monk, denying himself the pleasures of life in the hopethat it will make him virtuous. To those more interested in material bene�ts, these \advantages"are not very convincing.Functional programmers argue that there are great material bene�ts - that a functional pro-grammer is an order of magnitude more productive than his conventional counterpart, becausefunctional programs are an order of magnitude shorter. Yet why should this be? The only faintlyplausible reason one can suggest on the basis of these \advantages" is that conventional programsconsist of 90% assignment statements, and in functional programs these can be omitted! This isplainly ridiculous. If omitting assignment statements brought such enormous bene�ts then FOR-TRAN programmers would have been doing it for twenty years. It is a logical impossibility tomake a language more powerful by omitting features, no matter how bad they may be.Even a functional programmer should be dissatis�ed with these so-called advantages, becausethey give him no help in exploiting the power of functional languages. One cannot write a programwhich is particularly lacking in assignment statements, or particularly referentially transparent.There is no yardstick of program quality here, and therefore no ideal to aim at.Clearly this characterisation of functional programming is inadequate. We must �nd somethingto put in its place - something which not only explains the power of functional programming, butalso gives a clear indication of what the functional programmer should strive towards.2 An Analogy with Structured ProgrammingIt is helpful to draw an analogy between functional and structured programming. In the past,the characteristics and advantages of structured programming have been summed up more or lessas follows. Structured programs contain no goto statements. Blocks in a structured program donot have multiple entries or exits. Structured programs are more tractable mathematically thantheir unstructured counterparts. These \advantages" of structured programming are very similarin spirit to the \advantages" of functional programming we discussed earlier. They are essentiallynegative statements, and have led to much fruitless argument about \essential gotos" and so on.With the bene�t of hindsight, it is clear that these properties of structured programs, althoughhelpful, do not go to the heart of the matter. The most important di�erence between structuredand unstructured programs is that structured programs are designed in a modular way. Modulardesign brings with it great productivity improvements. First of all, small modules can be codedquickly and easily. Secondly, general purpose modules can be re-used, leading to faster developmentof subsequent programs. Thirdly, the modules of a program can be tested independently, helpingto reduce the time spent debugging.The absence of gotos, and so on, has very little to do with this. It helps with \programming inthe small", whereas modular design helps with \programming in the large". Thus one can enjoythe bene�ts of structured programming in FORTRAN or assembly language, even if it is a littlemore work.It is now generally accepted that modular design is the key to successful programming, andlanguages such as Modula-II [Wir82], Ada [oD80] and Standard ML [MTH90] include featuresspeci�cally designed to help improve modularity. However, there is a very important point that isoften missed. When writing a modular program to solve a problem, one �rst divides the probleminto sub-problems, then solves the sub-problems and combines the solutions. The ways in whichone can divide up the original problem depend directly on the ways in which one can glue solutionstogether. Therefore, to increase ones ability to modularise a problem conceptually, one mustprovide new kinds of glue in the programming language. Complicated scope rules and provisionfor separate compilation only help with clerical details; they o�er no new conceptual tools fordecomposing problems.One can appreciate the importance of glue by an analogy with carpentry. A chair can be madequite easily by making the parts - seat, legs, back etc. - and sticking them together in the right2

way. But this depends on an ability to make joints and wood glue. Lacking that ability, the onlyway to make a chair is to carve it in one piece out of a solid block of wood, a much harder task.This example demonstrates both the enormous power of modularisation and the importance ofhaving the right glue.Now let us return to functional programming. We shall argue in the remainder of this paperthat functional languages provide two new, very important kinds of glue. We shall give manyexamples of programs that can be modularised in new ways, and thereby greatly simpli�ed. Thisis the key to functional programming's power - it allows greatly improved modularisation. It isalso the goal for which functional programmers must strive - smaller and simpler and more generalmodules, glued together with the new glues we shall describe.3 Glueing Functions TogetherThe �rst of the two new kinds of glue enables simple functions to be glued together to make morecomplex ones. It can be illustrated with a simple list-processing problem - adding up the elementsof a list. We de�ne lists bylistof X ::= nil | cons X (listof X)which means that a list of Xs (whatever X is) is either nil, representing a list with no elements, orit is a cons of an X and another list of Xs. A cons represents a list whose �rst element is the Xand whose second and subsequent elements are the elements of the other list of Xs. X here maystand for any type - for example, if X is \integer" then the de�nition says that a list of integersis either empty or a cons of an integer and another list of integers. Following normal practice, wewill write down lists simply by enclosing their elements in square brackets, rather than by writingconses and nils explicitly. This is simply a shorthand for notational convenience. For example,[] means nil[1] means cons 1 nil[1,2,3] means cons 1 (cons 2 (cons 3 nil))The elements of a list can be added up by a recursive function sum. Sum must be de�ned for twokinds of argument: an empty list (nil), and a cons. Since the sum of no numbers is zero, we de�nesum nil = 0and since the sum of a cons can be calculated by adding the �rst element of the list to the sum ofthe others, we can de�nesum (cons num list) = num + sum listExamining this de�nition, we see that only the boxed parts below are speci�c to computing a sum.+---+sum nil = | 0 |+---+ +---+sum (cons num list) = num | + | sum list+---+This means that the computation of a sum can be modularised by glueing together a generalrecursive pattern and the boxed parts. This recursive pattern is conventionally called reduce andso sum can be expressed assum = reduce add 0 3

where for convenience reduce is passed a two argument function add rather than an operator. Addis just de�ned byadd x y = x + yThe de�nition of reduce can be derived just by parameterising the de�nition of sum, giving(reduce f x) nil = x(reduce f x) (cons a l) = f a ((reduce f x) l)Here we have written brackets around (reduce f x) to make it clear that it replaces sum. Conven-tionally the brackets are omitted, and so ((reduce f x) l) is written as (reduce f x l). A functionof 3 arguments such as reduce, applied to only 2 is taken to be a function of the one remainingargument, and in general, a function of n arguments applied to only m(< n) is taken to be afunction of the n�m remaining ones. We will follow this convention in future.Having modularised sum in this way, we can reap bene�ts by re-using the parts. The mostinteresting part is reduce, which can be used to write down a function for multiplying together theelements of a list with no further programming:product = reduce multiply 1It can also be used to test whether any of a list of booleans is trueanytrue = reduce or falseor whether they are all truealltrue = reduce and trueOne way to understand (reduce f a) is as a function that replaces all occurrences of cons in a listby f, and all occurrences of nil by a. Taking the list [1,2,3] as an example, since this meanscons 1 (cons 2 (cons 3 nil))then (reduce add 0) converts it intoadd 1 (add 2 (add 3 0)) = 6and (reduce multiply 1) converts it intomultiply 1 (multiply 2 (multiply 3 1)) = 6Now it is obvious that (reduce cons nil) just copies a list. Since one list can be appended to anotherby consing its elements onto the front, we �ndappend a b = reduce cons b aAs an example,append [1,2] [3,4] = reduce cons [3,4] [1,2]= (reduce cons [3,4]) (cons 1 (cons 2 nil))= cons 1 (cons 2 [3,4]))(replacing cons by cons and nil by [3,4])= [1,2,3,4]A function to double all the elements of a list could be written asdoubleall = reduce doubleandcons nilwhere doubleandcons num list = cons (2*num) listDoubleandcons can be modularised even further, �rst into4

doubleandcons = fandcons doublewhere double n = 2*nfandcons f el list = cons (f el) listand then byfandcons f = cons . fwhere \." (function composition, a standard operator) is de�ned by(f . g) h = f (g h)We can see that the new de�nition of fandcons is correct by applying it to some arguments:fandcons f el = (cons . f) el= cons (f el)so fandcons f el list = cons (f el) listThe �nal version isdoubleall = reduce (cons . double) nilWith one further modularisation we arrive atdoubleall = map doublemap f = reduce (cons . f) nilwhere map applies any function f to all the elements of a list. Map is another generally usefulfunction.We can even write down a function to add up all the elements of a matrix, represented as a listof lists. It issummatrix = sum . map sumThe map sum uses sum to add up all the rows, and then the left-most sum adds up the row totalsto get the sum of the whole matrix.These examples should be enough to convince the reader that a little modularisation can go along way. By modularising a simple function (sum) as a combination of a \higher order function"and some simple arguments, we have arrived at a part (reduce) that can be used to write downmany other functions on lists with no more programming e�ort. We do not need to stop withfunctions on lists. As another example, consider the datatype of ordered labelled trees, de�ned bytreeof X ::= node X (listof (treeof X))This de�nition says that a tree of Xs is a node, with a label which is an X, and a list of subtreeswhich are also trees of Xs. For example, the tree1 o/ \/ \/ \2 o o 3|||o 4would be represented by 5

node 1(cons (node 2 nil)(cons (node 3(cons (node 4 nil) nil))nil))Instead of considering an example and abstracting a higher order function from it, we will gostraight to a function redtree analogous to reduce. Recall that reduce took two arguments, some-thing to replace cons with, and something to replace nil with. Since trees are built using node,cons and nil, redtree must take three arguments - something to replace each of these with. Sincetrees and lists are of di�erent types, we will have to de�ne two functions, one operating on eachtype. Therefore we de�neredtree f g a (node label subtrees) =f label (redtree' f g a subtrees)redtree' f g a (cons subtree rest) =g (redtree f g a subtree) (redtree' f g a rest)redtree' f g a nil = aMany interesting functions can be de�ned by glueing redtree and other functions together. Forexample, all the labels in a tree of numbers can be added together usingsumtree = redtree add add 0Taking the tree we wrote down earlier as an example, sumtree givesadd 1(add (add 2 0)(add (add 3(add (add 4 0) 0))0))= 10A list of all the labels in a tree can be computed usinglabels = redtree cons append nilThe same example givescons 1(append (cons 2 nil)(append (cons 3(append (cons 4 nil) nil))nil))= [1,2,3,4]Finally, one can de�ne a function analogous to map which applies a function f to all the labels ina tree: maptree f = redtree (node . f) cons nilAll this can be achieved because functional languages allow functions which are indivisible inconventional programming languages to be expressed as a combination of parts - a general higherorder function and some particular specialising functions. Once de�ned, such higher order functionsallow many operations to be programmed very easily. Whenever a new datatype is de�ned higherorder functions should be written for processing it. This makes manipulating the datatype easy, andalso localises knowledge about the details of its representation. The best analogy with conventionalprogramming is with extensible languages - it is as though the programming language can beextended with new control structures whenever desired.6

4 Glueing Programs TogetherThe other new kind of glue that functional languages provide enables whole programs to be gluedtogether. Recall that a complete functional program is just a function from its input to its output.If f and g are such programs, then (g . f) is a program which, when applied to its input, computesg (f input)The program f computes its output which is used as the input to program g. This might beimplemented conventionally by storing the output from f in a temporary �le. The problem withthis is that the temporary �le might occupy so much memory that it is impractical to glue theprograms together in this way. Functional languages provide a solution to this problem. The twoprograms f and g are run together in strict synchronisation. F is only started once g tries to readsome input, and only runs for long enough to deliver the output g is trying to read. Then f issuspended and g is run until it tries to read another input. As an added bonus, if g terminateswithout reading all of f's output then f is aborted. F can even be a non-terminating program,producing an in�nite amount of output, since it will be terminated forcibly as soon as g is �nished.This allows termination conditions to be separated from loop bodies - a powerful modularisation.Since this method of evaluation runs f as little as possible, it is called \lazy evaluation". Itmakes it practical to modularise a program as a generator which constructs a large number ofpossible answers, and a selector which chooses the appropriate one. While some other systems allowprograms to be run together in this manner, only functional languages use lazy evaluation uniformlyfor every function call, allowing any part of a program to be modularised in this way. Lazyevaluation is perhaps the most powerful tool for modularisation in the functional programmer'srepertoire.4.1 Newton-Raphson Square RootsWe will illustrate the power of lazy evaluation by programming some numerical algorithms. Firstof all, consider the Newton-Raphson algorithm for �nding square roots. This algorithm computesthe square root of a number N by starting from an initial approximation a0 and computing betterand better ones using the rulea(n+1) = (a(n) + N/a(n)) / 2If the approximations converge to some limit a, thena = (a + N/a) / 2so 2a = a + N/aa = N/aa*a = Na = squareroot(N)In fact the approximations converge rapidly to a limit. Square root programs take a tolerance(eps) and stop when two successive approximations di�er by less than eps.The algorithm is usually programmed more or less as follows:C N IS CALLED ZN HERE SO THAT IT HAS THE RIGHT TYPEX = A0Y = A0 + 2.*EPSC THE VALUE OF Y DOES NOT MATTER SO LONG AS ABS(X-Y).GT.EPS100 IF (ABS(X-Y).LE.EPS) GOTO 200Y = XX = (X + ZN/X) / 2.GOTO 100200 CONTINUEC THE SQUARE ROOT OF ZN IS NOW IN X7

This program is indivisible in conventional languages. We will express it in a more modular formusing lazy evaluation, and then show some other uses to which the parts may be put.Since the Newton-Raphson algorithm computes a sequence of approximations it is natural torepresent this explicitly in the program by a list of approximations. Each approximation is derivedfrom the previous one by the functionnext N x = (x + N/x) / 2so (next N) is the function mapping one approximation onto the next. Calling this function f, thesequence of approximations is[a0, f a0, f(f a0), f(f(f a0)), ..]We can de�ne a function to compute this:repeat f a = cons a (repeat f (f a))so that the list of approximations can be computed byrepeat (next N) a0Repeat is an example of a function with an \in�nite" output - but it doesn't matter, because nomore approximations will actually be computed than the rest of the program requires. The in�nityis only potential: all it means is that any number of approximations can be computed if required,repeat itself places no limit.The remainder of a square root �nder is a function within, that takes a tolerance and a list ofapproximations and looks down the list for two successive approximations that di�er by no morethan the given tolerance. It can be de�ned bywithin eps (cons a (cons b rest)) == b, if abs(a-b) <= eps= within eps (cons b rest), otherwisePutting the parts together,sqrt a0 eps N = within eps (repeat (next N) a0)Now that we have the parts of a square root �nder, we can try combining them in di�erent ways.One modi�cation we might wish to make is to wait for the ratio between successive approximationsto approach one, rather than for the di�erence to approach zero. This is more appropriate for verysmall numbers (when the di�erence between successive approximations is small to start with) andfor very large ones (when rounding error could be much larger than the tolerance). It is onlynecessary to de�ne a replacement for within:relative eps (cons a (cons b rest)) == b, if abs(a-b) <= eps*abs b= relative eps (cons b rest), otherwiseNow a new version of sqrt can be de�ned byrelativesqrt a0 eps N = relative eps (repeat (next N) a0)It is not necessary to rewrite the part that generates approximations.8

4.2 Numerical Di�erentiationWe have re-used the sequence of approximations to a square root. Of course, it is also possible to re-use within and relative with any numerical algorithm that generates a sequence of approximations.We will do so in a numerical di�erentiation algorithm.The result of di�erentiating a function at a point is the slope of the function's graph at thatpoint. It can be estimated quite easily by evaluating the function at the given point and at anotherpoint nearby and computing the slope of a straight line between the two points. This assumesthat, if the two points are close enough together then the graph of the function will not curve muchin between. This gives the de�nitioneasydiff f x h = (f(x+h)-f x) / hIn order to get a good approximation the value of h should be very small. Unfortunately, if h is toosmall then the two values f(x+h) and f(x) are very close together, and so the rounding error in thesubtraction may swamp the result. How can the right value of h be chosen? One solution to thisdilemma is to compute a sequence of approximations with smaller and smaller values of h, startingwith a reasonably large one. Such a sequence should converge to the value of the derivative, butwill become hopelessly inaccurate eventually due to rounding error. If (within eps) is used to selectthe �rst approximation that is accurate enough then the risk of rounding error a�ecting the resultcan be much reduced. We need a function to compute the sequence:differentiate h0 f x = map (easydiff f x) (repeat halve h0)halve x = x/2Here h0 is the initial value of h, and successive values are obtained by repeated halving. Giventhis function, the derivative at any point can be computed bywithin eps (differentiate h0 f x)Even this solution is not very satisfactory because the sequence of approximations converges fairlyslowly. A little simple mathematics can help here. The elements of the sequence can be expressedas the right answer + an error term involving hand it can be shown theoretically that the error term is roughly proportional to a power of h, sothat it gets smaller as h gets smaller. Let the right answer be A, and the error term be B*h**n.Since each approximation is computed using a value of h twice that used for the next one, any twosuccessive approximations can be expressed asa(i) = A + B*(2**n)*(h**n)and a(i+1) = A + B*(h**n)Now the error term can be eliminated. We concludea(i+1)*(2**n) - a(i)A = --------------------2**n - 1Of course, since the error term is only roughly a power of h this conclusion is also approximate,but it is a much better approximation. This improvement can be applied to all successive pairs ofapproximations using the functionelimerror n (cons a (cons b rest)) == cons ((b*(2**n)-a)/(2**n-1)) (elimerror n (cons b rest))9

Eliminating error terms from a sequence of approximations yields another sequence which convergesmuch more rapidly.One problem remains before we can use elimerror - we have to know the right value of n. Thisis di�cult to predict in general, but is easy to measure. It is not di�cult to show that the followingfunction estimates it correctly, but we won't include the proof here.order (cons a (cons b (cons c rest))) == round(log2((a-c)/(b-c) - 1))round x = x rounded to the nearest integerlog2 x = the logarithm of x to the base 2Now a general function to improve a sequence of approximations can be de�ned:improve s = elimerror (order s) sThe derivative of a function f can be computed more e�ciently using improve, as followswithin eps (improve (differentiate h0 f x))Improve only works on sequences of approximations which are computed using a parameter h,which is halved between each approximation. However, if it is applied to such a sequence its resultis also such a sequence! This means that a sequence of approximations can be improved more thanonce. A di�erent error term is eliminated each time, and the resulting sequences converge fasterand faster. So, one could compute a derivative very e�ciently usingwithin eps (improve (improve (improve (differentiate h0 f x))))In numerical analysts terms, this is likely to be a fourth order method, and gives an accurate resultvery quickly. One could even de�nesuper s = map second (repeat improve s)second (cons a (cons b rest)) = bwhich uses repeat improve to get a sequence of more and more improved sequences of approxima-tions, and constructs a new sequence of approximations by taking the second approximation fromeach of the improved sequences (it turns out that the second one is the best one to take - it is moreaccurate than the �rst and doesn't require any extra work to compute). This algorithm is reallyvery sophisticated - it uses a better and better numerical method as more and more approximationsare computed. One could compute derivatives very e�ciently indeed with the program:within eps (super (differentiate h0 f x))This is probably a case of using a sledge-hammer to crack a nut, but the point is that even analgorithm as sophisticated as super is easily expressed when modularised using lazy evaluation.4.3 Numerical IntegrationThe last example we will discuss in this section is numerical integration. The problem may bestated very simply: given a real valued function f of one real argument, and two end-points aand b, estimate the area under the curve f describes between the end-points. The easiest way toestimate the area is to assume that f is nearly a straight line, in which case the area would beeasyintegrate f a b = (f a + f b)*(b-a)/2Unfortunately this estimate is likely to be very inaccurate unless a and b are close together. Abetter estimate can be made by dividing the interval from a to b in two, estimating the area on eachhalf, and adding the results together. We can de�ne a sequence of better and better approximationsto the value of the integral by using the formula above for the �rst approximation, and then addingtogether better and better approximations to the integrals on each half to calculate the others.This sequence is computed by the function 10

integrate f a b = cons (easyintegrate f a b)(map addpair (zip (integrate f a mid)(integrate f mid b)))where mid = (a+b)/2Zip is another standard list-processing function. It takes two lists and returns a list of pairs, eachpair consisting of corresponding elements of the two lists. Thus the �rst pair consists of the �rstelement of the �rst list and the �rst element of the second, and so on. Zip can be de�ned byzip (cons a s) (cons b t) = cons (pair a b) (zip s t)In integrate, zip computes a list of pairs of corresponding approximations to the integrals onthe two sub-intervals, and map addpair adds the elements of the pairs together to give a list ofapproximations to the original integral.Actually, this version of integrate is rather ine�cient because it continually recomputes valuesof f. As written, easyintegrate evaluates f at a and at b, and then the recursive calls of integratere-evaluate each of these. Also, (f mid) is evaluated in each recursive call. It is therefore preferableto use the following version which never recomputes a value of f.integrate f a b = integ f a b (f a) (f b)integ f a b fa fb = cons ((fa+fb)*(b-a)/2)(map addpair (zip (integ f a m fa fm)(integ f m b fm fb)))where m = (a+b)/2fm = f mIntegrate computes an in�nite list of better and better approximations to the integral, just asdi�erentiate did in the section above. One can therefore just write down integration routines thatintegrate to any required accuracy, as inwithin eps (integrate f a b)relative eps (integrate f a b)This integration algorithm su�ers from the same disadvantage as the �rst di�erentiation algorithmin the preceding sub-section - it converges rather slowly. Once again, it can be improved. The�rst approximation in the sequence is computed (by easyintegrate) using only two points, witha separation of b-a. The second approximation also uses the mid-point, so that the separationbetween neighbouring points is only (b-a)/2. The third approximation uses this method on eachhalf-interval, so the separation between neighbouring points is only (b-a)/4. Clearly the separationbetween neighbouring points is halved between each approximation and the next. Taking thisseparation as \h", the sequence is a candidate for improvement using the \improve" functionde�ned in the preceding section. Therefore we can now write down quickly converging sequencesof approximations to integrals, for examplesuper (integrate sin 0 4)improve (integrate f 0 1)where f x = 1/(1+x*x)(This latter sequence is an eighth order method for computing pi/4. The second approximation,which requires only �ve evaluations of f to compute, is correct to �ve decimal places).In this section we have taken a number of numerical algorithms and programmed them func-tionally, using lazy evaluation as glue to stick their parts together. Thanks to this, we were able tomodularise them in new ways, into generally useful functions such as within, relative and improve.By combining these parts in various ways we programmed some quite good numerical algorithmsvery simply and easily. 11

5 An Example from Arti�cial IntelligenceWe have argued that functional languages are powerful primarily because they provide two newkinds of glue: higher-order functions and lazy evaluation. In this section we take a larger examplefrom Arti�cial Intelligence and show how it can be programmed quite simply using these two kindsof glue.The example we choose is the alpha-beta \heuristic", an algorithm for estimating how good aposition a game-player is in. The algorithm works by looking ahead to see how the game mightdevelop, but avoids pursuing unpro�table lines.Let game-positions be represented by objects of the type \position". This type will vary fromgame to game, and we assume nothing about it. There must be some way of knowing what movescan be made from a position: assume that there is a functionmoves: position -> listof positionthat takes a game-position as its argument and returns the list of all positions that can be reachedfrom it in one move. Taking noughts and crosses (tic-tac-toe) as an example,| | X| | |X| | |-+-+- -+-+- -+-+- -+-+-moves | | = [| | , | | , |X|]-+-+- -+-+- -+-+- -+-+-| | | | | | | || | O| | |O|-+-+- -+-+- -+-+-moves |X| = [|X| , |X|]-+-+- -+-+- -+-+-| | | | | |This assumes that it is always possible to tell which player's turn it is from a position. In noughtsand crosses this can be done by counting the noughts and crosses, in a game like chess one wouldhave to include the information explicitly in the type \position".Given the function moves, the �rst step is to build a game tree. This is a tree in which thenodes are labelled by positions, such that the children of a node are labelled with the positionsthat can be reached in one move from that node. That is, if a node is labelled with position p, thenits children are labelled with the positions in (moves p). A game tree may very well be in�nite, ifit is possible for a game to go on for ever with neither side winning. Game trees are exactly likethe trees we discussed in section 2 - each node has a label (the position it represents) and a list ofsubnodes. We can therefore use the same datatype to represent them.A game tree is built by repeated applications of moves. Starting from the root position, movesis used to generate the labels for the sub-trees of the root. Moves is then used again to generate thesub-trees of the sub-trees and so on. This pattern of recursion can be expressed as a higher-orderfunction, reptree f a = node a (map (reptree f) (f a))Using this function another can be de�ned which constructs a game tree from a particular positiongametree p = reptree moves pFor an example, look at �gure 1. The higher-order function used here (reptree) is analogous to thefunction repeat used to construct in�nite lists in the preceding section.The alpha-beta algorithm looks ahead from a given position to see whether the game willdevelop favourably or unfavourably, but in order to do so it must be able to make a rough estimateof the value of a position without looking ahead. This \static evaluation" must be used at the12

| |-+-+-gametree | |-+-+-| | | |-+-+-= | |-+-+-| |/ | \/ | \/ | \/ | \/ | \/ | \X| | |X| | |-+-+- -+-+- -+-+-| | | | |X|-+-+- -+-+- -+-+-| | | | | |/|\ /|\ /\... ... / \/ \/ \O| | |O|-+-+- -+-+-|X| |X|-+-+- -+-+-| | | |/|\ /|\... ...Figure 1: An Example of a Game-Tree.
13

limit of the look-ahead, and may be used to guide the algorithm earlier. The result of the staticevaluation is a measure of the promise of a position from the computer's point of view (assumingthat the computer is playing the game against a human opponent). The larger the result, the betterthe position for the computer. The smaller the result, the worse the position. The simplest suchfunction would return (say) +1 for positions where the computer has already won, -1 for positionswhere the computer has already lost, and 0 otherwise. In reality, the static evaluation functionmeasures various things that make a position \look good", for example material advantage andcontrol of the centre in chess. Assume that we have such a function,static: position -> numberSince a game-tree is a (treeof position), it can be converted into a (treeof number) by the function(maptree static), which statically evaluates all the positions in the tree (which may be in�nitelymany). This uses the function maptree de�ned in section 2.Given such a tree of static evaluations, what is the true value of the positions in it? In particular,what value should be ascribed to the root position? Not its static value, since this is only a roughguess. The value ascribed to a node must be determined from the true values of its subnodes.This can be done by assuming that each player makes the best moves he can. Remembering thata high value means a good position for the computer, it is clear that when it is the computer'smove from any position, it will choose the move leading to the sub-node with the maximum truevalue. Similarly, the opponent will choose the move leading to the sub-node with the minimumtrue value. Assuming that the computer and its opponent alternate turns, the true value of a nodeis computed by the function maximise if it is the computer's turn and minimise if it is not:maximise (node n sub) = max (map minimise sub)minimise (node n sub) = min (map maximise sub)Here max and min are functions on lists of numbers that return the maximum and minimum ofthe list respectively. These de�nitions are not complete because they recurse for ever - there is nobase case. We must de�ne the value of a node with no successors, and we take it to be the staticevaluation of the node (its label). Therefore the static evaluation is used when either player hasalready won, or at the limit of look-ahead. The complete de�nitions of maximise and minimise aremaximise (node n nil) = nmaximise (node n sub) = max (map minimise sub)minimise (node n nil) = nminimise (node n sub) = min (map maximise sub)One could almost write down a function at this stage that would take a position and return itstrue value. This would be:evaluate = maximise . maptree static . gametreeThere are two problems with this de�nition. First of all, it doesn't work for in�nite trees. Maximisekeeps on recursing until it �nds a node with no subtrees - an end to the tree. If there is no endthen maximise will return no result. The second problem is related - even �nite game trees (likethe one for noughts and crosses) can be very large indeed. It is unrealistic to try to evaluate thewhole of the game tree - the search must be limited to the next few moves. This can be done bypruning the tree to a �xed depth,prune 0 (node a x) = node a nilprune n (node a x) = node a (map (prune (n-1)) x)(prune n) takes a tree and \cuts o�" all nodes further than n from the root. If a game tree ispruned it forces maximise to use the static evaluation for nodes at depth n, instead of recursingfurther. Evaluate can therefore be de�ned by 14

evaluate = maximise . maptree static . prune 5 . gametreewhich looks (say) 5 moves ahead.Already in this development we have used higher-order functions and lazy evaluation. Higherorder functions reptree and maptree allow us to construct and manipulate game trees with ease.More importantly, lazy evaluation permits us to modularise evaluate in this way. Since gametreehas a potentially in�nite result, this program would never terminate without lazy evaluation.Instead of writingprune 5 . gametreewe would have to fold these two functions together into one which only constructed the �rst �velevels of the tree. Worse, even the �rst �ve levels may be too large to be held in memory at onetime. In the program we have written, the functionmaptree static . prune 5 . gametreeonly constructs parts of the tree as maximise requires them. Since each part can be thrown away(reclaimed by the garbage collector) as soon as maximise has �nished with it, the whole tree is neverresident in memory. Only a small part of the tree is stored at a time. The lazy program is thereforee�cient. Since this e�ciency depends on an interaction between maximise (the last function in thechain of compositions) and gametree (the �rst), it could only be achieved without lazy evaluationby folding all the functions in the chain together into one big one. This is a drastic reduction inmodularity, but it is what is usually done. We can make improvements to this evaluation algorithmby tinkering with each part: this is relatively easy. A conventional programmer must modify theentire program as a unit, which is much harder.So far we have only described simple minimaxing. The heart of the alpha-beta algorithm is theobservation that one can often compute the value of maximise or minimise without looking at thewhole tree. Consider the tree:max/ \/ \/ \/ \min min/ \ / \/ \ / \1 2 0 ?Strangely enough, it is unnecessary to know the value of the question mark in order to evaluatethe tree. The left minimum evaluates to 1, but the right minimum clearly evaluates to somethingless than or equal to 0. Therefore the maximum of the two minima must be 1. This observationcan be generalised and built into maximise and minimise.The �rst step is to separate maximise into an application of max to a list of numbers; that is,we decompose maximise asmaximise = max . maximise'(Minimise is decomposed in a similar way. Since minimise and maximise are entirely symmetricalwe shall discuss maximise and assume that minimise is treated similarly). Once decomposed in thisway, maximise can use minimise' rather than minimise itself, to discover which numbers minimisewould take the minimum of. It may then be able to discard some of the numbers without lookingat them. Thanks to lazy evaluation, if maximise doesn't look at all of the list of numbers, some ofthem will not be computed, with a potential saving in computer time.It is easy to \factor out" max from the de�nition of maximise, giving15

maximise' (node n nil) = cons n nilmaximise' (node n l) = map minimise l= map (min . minimise') l= map min (map minimise' l)= mapmin (map minimise' l)where mapmin = map minSince minimise' returns a list of numbers, the minimum of which is the result of minimise, (mapminimise' l) returns a list of lists of numbers. Maximise' should return a list of the minima of thoselists. However, only the maximum of this list matters. We shall de�ne a new version of mapminwhich omits the minima of lists whose minimum doesn't matter.mapmin (cons nums rest) == cons (min nums) (omit (min nums) rest)The function omit is passed a \potential maximum" - the largest minimum seen so far - and omitsany minima which are less than this.omit pot nil = nilomit pot (cons nums rest) == omit pot rest, if minleq nums pot= cons (min nums) (omit (min nums) rest), otherwiseMinleq takes a list of numbers and a potential maximum, and returns true if the minimum of thelist of numbers is less than or equal to the potential maximum. To do this, it does not need tolook at all the list! If there is any element in the list less than or equal to the potential maximum,then the minimum of the list is sure to be. All elements after this particular one are irrelevant -they are like the question mark in the example above. Therefore minleq can be de�ned byminleq nil pot = falseminleq (cons num rest) pot = true, if num<=pot= minleq rest pot, otherwiseHaving de�ned maximise' and minimise' in this way it is simple to write a new evaluator:evaluate = max . maximise' . maptree static . prune 8 . gametreeThanks to lazy evaluation, the fact that maximise' looks at less of the tree means that the wholeprogram runs more e�ciently, just as the fact that prune looks at only part of an in�nite treeenables the program to terminate. The optimisations in maximise', although fairly simple, canhave a dramatic e�ect on the speed of evaluation, and so can allow the evaluator to look furtherahead.Other optimisations can be made to the evaluator. For example, the alpha-beta algorithm justdescribed works best if the best moves are considered �rst, since if one has found a very good movethen there is no need to consider worse moves, other than to demonstrate that the opponent has atleast one good reply to them. One might therefore wish to sort the sub-trees at each node, puttingthose with the highest values �rst when it is the computer's move, and those with the lowest values�rst when it is not. This can be done with the functionhighfirst (node n sub) = node n (sort higher (map lowfirst sub))lowfirst (node n sub) = node n (sort (not.higher) (map highfirst sub))higher (node n1 sub1) (node n2 sub2) = n1>n2where sort is a general purpose sorting function. The evaluator would now be de�ned byevaluate = max . maximise' . highfirst . maptree static .prune 8 . gametree16

One might regard it as su�cient to consider only the three best moves for the computer or theopponent, in order to restrict the search. To program this, it is only necessary to replace high�rstwith (taketree 3 . high�rst), wheretaketree n = redtree (nodett n) cons nilnodett n label sub = node label (take n sub)Taketree replaces all the nodes in a tree with nodes with at most n subnodes, using the function(take n) which returns the �rst n elements of a list (or fewer if the list is shorter than n).Another improvement is to re�ne the pruning. The program above looks ahead a �xed deptheven if the position is very dynamic - it may decide to look no further than a position in which thequeen is threated in chess, for example. It is usual to de�ne certain \dynamic" positions and notto allow look-ahead to stop in one of these. Assuming a function \dynamic" that recognises suchpositions, we need only add one equation to prune to do this:prune 0 (node pos sub) = node pos (map (prune 0) sub),if dynamic posMaking such changes is easy in a program as modular as this one. As we remarked above, since theprogram depends crucially for its e�ciency on an interaction between maximise, the last functionin the chain, and gametree, the �rst, it can only be written as a monolithic program without lazyevaluation. Such a program is hard to write, hard to modify, and very hard to understand.6 ConclusionIn this paper, we've argued that modularity is the key to successful programming. Languageswhich aim to improve productivity must support modular programming well. But new scoperules and mechanisms for separate compilation are not enough - modularity means more thanmodules. Our ability to decompose a problem into parts depends directly on our ability to gluesolutions together. To assist modular programming, a language must provide good glue. Functionalprogramming languages provide two new kinds of glue - higher-order functions and lazy evaluation.Using these glues one can modularise programs in new and exciting ways, and we've shown manyexamples of this. Smaller and more general modules can be re-used more widely, easing subsequentprogramming. This explains why functional programs are so much smaller and easier to write thanconventional ones. It also provides a target for functional programmers to aim at. If any part of aprogram is messy or complicated, the programmer should attempt to modularise it and to generalisethe parts. He should expect to use higher-order functions and lazy evaluation as his tools for doingthis.Of course, we are not the �rst to point out the power and elegance of higher-order functionsand lazy evaluation. For example, Turner shows how both can be used to great advantage in aprogram for generating chemical structures [Tur81]. Abelson and Sussman stress that streams(lazy lists) are a powerful tool for structuring programs [AS86]. Henderson has used streams tostructure functional operating systems [P.H82]. The main contribution of this paper is to assertthat better modularity alone is the key to the power of functional languages.It is also relevant to the present controversy over lazy evaluation. Some believe that functionallanguages should be lazy, others believe they should not. Some compromise and provide only lazylists, with a special syntax for constructing them (as, for example, in SCHEME [AS86]). Thispaper provides further evidence that lazy evaluation is too important to be relegated to second-class citizenship. It is perhaps the most powerful glue functional programmers possess. One shouldnot obstruct access to such a vital tool. 17

AcknowledgementsThis paper owes much to many conversations with Phil Wadler and Richard Bird in the Program-ming Research Group at Oxford. Magnus Bondesson at Chalmers University, Goteborg pointedout a serious error in an earlier version of one of the numerical algorithms, and thereby prompteddevelopment of many of the others. This work was carried out with the support of a ResearchFellowship from the UK Science and Engineering Research Council.References[AS86] H. Abelson and G.J. Sussman. Structure and Interpretation of Computer Programs. MITPress, Boston, 1986.[Hug89] J. Hughes. Why Functional Programming Matters. Computer Journal, 32(2), 1989.[Hug90] John Hughes. Why Functional Programming Matters. In D. Turner, editor, ResearchTopics in Functional Programming. Addison Wesley, 1990.[MTH90] R. Milner, M. Tofte, and R. Harper. The De�nition of Standard ML. MIT Press, 1990.[oD80] United States Department of Defense. The Programming Language Ada ReferenceManual. Springer-Verlag, 1980.[P.H82] P.Henderson. Purely Functional Operating Systems. 1982.[Tur81] D. A. Turner. The Semantic Elegance of Applicative Languages. In Proceedings 1981Conference on Functional Languages and Computer Architecture, Wentworth-by-the-Sea,Portsmouth, New Hampshire, 1981.[Tur85] D. A. Turner. Miranda: A non-strict language with polymorphic types. In Proceedings1985 Conference on Functional Programming Languages and Computer Architecture,pages 1{16, Nancy, France, 1985.[Wir82] N. Wirth. Programming in Modula-II. Springer-Verlag, 1982.
18

