
Avoiding Unnecessary UpdatesJohn Launchbury, Andy Gill, John Hughes,Simon Marlow, Simon Peyton Jones, Philip WadlerComputing Science Department,Glasgow UniversityAbstractGraph reduction underlies most implementations of lazy functionallanguages, allowing separate computations to share results when sub-terms are evaluated. Once a term is evaluated, the node of the graphrepresenting the computation is updatedwith the value of the term. How-ever, in many cases, no other computation requires this value, so the up-date is unnecessary. In this paper we take some steps towards an analysisfor determining when these updates may be omitted.1 IntroductionThere are two obvious ways to reduce lambda expressions: outside-in or inside-out. The former is called normal-order reduction, the latter applicative-order.Neither of these mechanisms guarantee to perform fewer reductions than theother. Normal-order reduction only ever reduces terms that are de�nitely re-quired, but it may end up reducing a single term more than once. On theother hand, while applicative order reduction is less likely to reduce a singleterm more than once, it may reduce terms unnecessarily, even to the extent offailing to terminate.There is a popular middle ground, commonly called lazy evaluation. Se-mantically, lazy evaluation is equivalent to normal-order reduction|only termswhich are known to be required are evaluated. Operationally, however, lazyevaluationmatches exactly the applicative order behaviour in avoiding repeatedevaluation. (Note that neither applicative-order reduction nor lazy evaluation isan optimal evaluation strategy in the sense of Levy [4], so both may sometimesrepeat reductions.)One common method by which lazy evaluation achieves its behaviour isgraph reduction. When substitution takes place, a reference to an expression issubstituted, rather than the expression itself. If the expression is ever evaluated,it is replaced by its value so that all other references to the term immediatelysee the reduced value rather than the original unreduced term. This replace-ment, or update, is precisely the point which distinguishes lazy evaluation fromnormal-order reduction. Hence, normal-order is sometimes called tree reductionin contrast to lazy evaluation's graph reduction.While graph reduction supplies undoubted bene�ts, it also has associatedcosts. Updating the reference always costs instructions, and the cost of inter-rupting the computation at the appropriate time may be even greater. Nor-mally of course this cost is very small when compared with the cost of recom-puting a value, but it exists nonetheless. On the parallel machine GRIP [5]



updates are particularly expensive because the updated node has to be 
ushedfrom local memory out to the global store. Similarly, the need for updatescreates a major complication in the TIM abstract machine [2], and the pres-ence of the update markers interrupts the 
ow of evaluation. Indeed, Fairbainand Wray used a local analysis to cut down on such update markers, but un-fortunately the analysis assumed a fairly naive model of implementation andprecluded more e�cient alternative implementations.In this paper we take some steps towards an analysis which detects whenupdates may be omitted. It is a working paper and probably contains manyomissions, but nonetheless addresses an important issue in the implementationof lazy functional programming languages.The analysis is presented in the style of type rules. This has the advantage ofallowing information to 
ow both forwards and backwards through a program,but it has the disadvantage of being that much further from an implementation.Currently the analysis does not handle products or other data structures, butit is higher-order. Also, explicit recursion is not presented here, but we do notexpect it to pose much of a problem.2 The LanguageWe will use a stylised form of lambda expression extended with lets, plus a fewother constructs for convenience. The form of expressions is a simpli�cation ofthe Spineless, Tagless, G-machine implementation language (STG) [6] used inthe Glasgow Haskell compiler.The underlying philosophy of the language is that it has a direct operationalreading, a sort of \abstract machine-code" for functional languages. Closuresare named explicitly using lets, and functions accept only such closures asarguments. This philosophy is particularly appropriate for our analysis becauseit provides an ideal place for update annotations to be placed. Note that theonly means of constructing closures is by using lets.We make two exceptions to the rule regarding function arguments, bothpurely for the sake of readability: explicit numbers may also be used as ar-guments to functions; and primitive operations such as + may be applied toarbitrary expressions.e 2 Expression ::= aj �x :ej e aj let i x = e1 in e2j e1 � e2a 2 Atom ::= xj n� 2 Primitive ::= + j : : :x 2 Variablen 2 Integeri 2 AnnotationThe aim of the analysis is to discover which lets create closures that needto be updated and which do not. The result of the analysis is expressed as anannotation placed on the let . The details of the annotations will be given later.



3 Why it's di�cultExamples are often valuable for providing intuition about a problem. Fur-thermore, in our case they will provide an informal understanding of the STGreduction model.Consider the program fragment,let u = : : : inlet v = u + 3 inv + vTo obtain the value of the expression, we need to know which two valuesto add together. The �rst is v . To evaluate v , we need to get the value of u .Suppose u evaluates to 5. Because graph reduction guarantees not to recomputevalues, u has its closure updated with the number 5. Now v can be evaluated,producing 8, and its closure updated (with the number 8).We now have to �nd the value to the second argument of +, so again weneed the value for v . However, as v 's closure was overwritten with 8 we canobain its value immediately and we do not have to reaccess u . 8 is added to 8to give the answer 16.3.1 Hidden ReferencesBecause u was only accessed once, we could have omitted updating u's closurewithout causing any computation to be repeated. Note that u was only accessedonce even though v was accessed twice, and v depended on u . This means thatreaccessing is not necessarily transitive. Sometimes it is, however. Considerthe next example.let u = : : : inlet v = �x :u + x inv 3 + v 4This time v is a function which adds its argument to the value of u . Everytime we use v we will need to know u's value. The problem is that even thoughv is already in weak head normal form (whnf) it still contains a reference to u .Thus in this example updating u 's closure with its value is necessary to saverecomputing that value. The next two examples show this very clearly.let u = : : : inlet v = (let w = u + 1 in �x :w + x ) inv 3 + v 4In this case, while both v and w need to be updated once evaluated, u doesnot because it is only used once: on evaluating v 3 , w is evaluated (accessingu) and is overwritten with its value. Now all reference to u is lost, so evenwhen v is used again, u is not reaccessed.Contrast this withlet u = : : : inlet v = �x :(let w = u + 1 in w + x ) inv 3 + v 4



Each time v is used it constructs a new closure for w (because in principlew 's value could depend on x ) and so continues to retain a reference to u .Thus once u is evaluated, its closure must be updated to avoid recomputing itsvalue on a subsequent use of v . Taken together, this and the previous exampleshow how sensitive the issue of avoiding updates is to the precise form of theexpression. Denotationally the two expressions are equivalent (one is a �-liftedversion of the other) but their operational behaviour is di�erent.The examples have demonstrated that there are two issues to be addressedto produce a useful analysis. The �rst is whether a closure is duplicated ornot. The second is whether duplication of a descendant closure a�ects theoriginal or not. The (fairly simplistic) approach we adopt here is to assumethat duplication of functions possibly duplicates closures the functions referto, whereas duplication of an atomic value does not. Once an atomic valueis reduced to weak head normal form (which for atomic values is the sameas normal form) it cannot contain references to other closures which may beaccessed at a later point.4 Update-Avoidance AnalysisIn the analysis we use annotated types to register when multiple accesses arepossible. We are not interested in the distinction between types such as Integeror Bool , but we are interested in the level of structure present in a type, inparticular whether the object is a product or a function. For simplicity werestrict ourselves to consider functions.Types to the left of function arrows carry annotations which specify whetherthe function possibly duplicates its argument or not. Thus types are of the form,S ;T 2 Type ::= Kj A ! TA;B 2 AnnType ::= T iwhere AnnType is the annotated types. The annotations record whether avalue may possibly be used zero, one or many times.i ; j 2 Ann ::= Zeroj Onej ManyThe annotations are interpreted in the following way:Zero Never used;One Certainly used no more than once;Many May be used any number of times:and we assume an ordering of Zero < One < Many .This interpretation incorporates a notion of safe approximation. We mayend up deciding that a value could be used many times, when in fact it isonly ever used once. Of course, the better the analysis is, the less frequently itwill overapproximate in this way. Graph reduction is ultra-conservative in thissense in that it updates every closure whether it is used more than once or not.



Weak � ` e : T�; x : SZero ` e : TCont �; x : SMany; y : SMany ` e : T�; z : SMany ` e[z=x; z=y] : TDere �; x : Si ` e : T�; x : Sj ` e : T (i � j )Exch �; x : A; y : B ` e : T�; y : B; x : A ` e : TFigure 1: Structural rules4.1 Structural RulesThe analysis is given in the form of type rules. Judgements are of the form,� ` e : TThis is read that in the type environment � , we may deduce that e hastype T (note, no annotation on T ). Type environments are partial functions,mapping variables to annotated types. Thus each variable occurs at most oncein a type environment. That is,� ;� 2 TypeEnv ::= x : A; y : B ; : : :We will often write the assumptions making the annotations on the typesexplicit.The structural rules given in Figure 1 de�ne the behaviour of type environ-ments. The weakening rule allows any variable to be introduced with a Zeroannotation, and the contraction rule allows two occurrences of a variable tobe combined so long as they both have the Many annotation. The renamingis present to maintain the invariant that each variable occurs once only in thetype environment.In order to allow variables with possibly other annotations to be combined,the dereliction rule allows annotations to be degraded. This clearly has the po-tential for losing information so should only be applied when necessary. Finallythe exchange rule shows that the order of assumptions is unimportant.4.2 The Analysis RulesThe analysis rules appear in Figure 2. The variable rule ensures that anynew variables appear in the type environment with annotation at least One(dereliction allows this to be degraded to Many ), and the constant rule statesthat numbers are an atomic type.



Var x : TOne ` x : TConst ` n : KLam �; x : Si ` e : T� ` (�x:e) : Si ! TApp � ` e : Si ! T�; x : Si ` (e x) : TLet � ` e1 : S �; x : Si ` e2 : T�j ;� ` (letk x = e1 in e2) : Twhere j = One if S = K; i otherwisek = i if T = K ; Many otherwisePrim � ` e1 : K � ` e2 : K�;� ` (e1 � e2) : KFigure 2: Deduction rules



One pleasant consequence of only ever applying functions to variables isthat the lambda and application rules are dual to each other. They have thee�ect of moving annotations between type environments and types.There are essentially four variants of the let rule, depending on whether thevariable being bound has an atomic type or not, and whether the term beingbuilt has an atomic type or not.When the bound variable is of atomic type, it can contain no references toother closures once it is evaluated. So multiple accesses of the value will notpropagate to the references contained in � , and their annotations may remainunchanged.This is not the case for a composite structure, however. A function maycontain references to other closures which are accessed each time the function isused. Thus all the free variables used in the de�nition of the function must begiven an annotation at least as high as that of the function, for if the functionis accessed many times, then so may any internal references.To model these two cases we introduce an operation on type environmentswhose e�ect is to propagate annotations to every type in the environment. Wede�ne,(x1 : T i11 ; : : : ; xn : T inn )j = (x1 : T i1:j1 ; : : : ; xn : T in:jn )wherei : Zero = Zeroi : One = ii : Many = Zero; if i = Zero= Many ; otherwiseA similar situation arises when the term being built is of atomic type.Even if the term is bound to a variable which is used many times, none of thereferences used in its de�nition can escape. That is, none of the closures used inde�ning e2 will ever be accessed more frequently than the number of accessesgiven in e2 . By assumption, this is already recorded by their annotation.Thus x in particular cannot be accessed more frequently than described bythe annotation i , and so in this case the let is also annotated with i .If e2 is of function type, however, then there is not su�cient informationpresent to determine whether the closure being built will only be accessed onceor not. If the function is bound to a variable which is used many times, thenthere may be multiple accesses of x , even if it only occurs once in e2 . So inthis case we are conservative and assume multiple accesses are possible, and werecord this on the let so that an update may be performed if necessary (letManyconstructs an updatable closure).5 ResultsIn this section we show the analysis working on the examples presented earlier.Example 1let u = : : : inlet v = u + 3 inv + v



First we note that using contraction and dereliction, together with the Varand Prim rules, we have,v1 : KOne ` v1 : Kv1 : KMany ` v1 : K v2 : KOne ` v2 : Kv2 : KMany ` v2 : Kv1 : KMany ; v2 : KMany ` v1 + v2 : Kv : KMany ` v + v : KWe can use this to obtain,u : KOne ` u : K ` 3 : Ku : KOne ` u + 3 : K v : KMany ` v + v : Ku : KOne ` letMany v = u + 3 in v + v : KThe Many annotation from the assumption about v has come to rest on thelet binding v , but as v has an atomic type, its annotation is not propagated tothe type environment, so u retains its original annotation.Finally, assuming that we have some � for which we may infer � ` : : : : K ,we have� ` : : : : K u : KOne ` letMany v = u + 3 in v + v : K� ` letOne u = : : : in (letMany v = u + 3 in v + v) : KThe �nal result is that u is used once only, but that v may be used morethan once.Example 2let u = : : : inlet v = �x :u + x inv 3 + v 4The interesting part of this example is the binding of v . First note that wecan derive,u : KOne ` u : K x : KOne ` x : Ku : KOne ; x : KOne ` u + x : Ku : KOne ` �x :u + x : KOne ! KFollowing a path similar to that of example 1, we can also derive,v : (KOne ! K )Many ` v 3 + v 4 : KPutting these together with the let rule gives,u : KMany ` letMany v = �x :u + x in v 3 + v 4 : KBecause v is not of atomic type, all the free variables involved in its bindingreceive v 's annotation. Thus u has the annotation Many , so will be bound inan updatable closure.



Example 3The �nal example covers the two code fragmentslet u = : : : inlet v = (let w = u + 1 in �x :w + x ) inv 3 + v 4andlet u = : : : inlet v = �x :(let w = u + 1 in w + x ) inv 3 + v 4The analysis annotates u and v as updatable in both cases,1 and w asupdatable only in the �rst. When evaluating the term in the second case, anew closure w is generated each time the function v is called, and this freshclosure is only ever used once. Thus is may safely be marked as a non-updatableclosure.In contrast, in the �rst case, a single closure for w is generated and reusedeach time v is called, so requiring the closure for w to be updatable. Thisshows a weakness with the analysis, for if w is updated, future references to vwill not refer to u, so in fact u need not be updated. However the analysis isconservative here, and is not able to distinguish between the uses of u in thetwo examples.A more accurate (and presumably more expensive) analysis could keep trackof the depth at which free variables occur in function valued expressions todetermine whether references to them will remain once the function has beenevaluated to whnf. Whether the relatively small gain in accuracy would beworth while or not is not clear.6 Relationship to Linear LogicThere is obviously a close relationship between linear logic the rules presentedhere. The version of linear logic most closely related is bounded linear logic [1],where annotations are placed on the \bangs" to indicate how often a term isused. So rather than using !T which describes a type that can be copied asoften as required (ie. an unbounded number of times), types such as !nT areused. Such a type may be copied up to n times, but no more. The analysispresented here may be viewed as an abstraction of this as we capture two ormore uses of a variable as Many , but retain Zero and One . One importantaspect of our analysis, however, is that is deals only with banged types, andhas no place for linear types.7 Future WorkThis report is a working paper, and quite a lot remains to be done. We currentlyhave no correctness proof for this analysis. The di�culty lies in not having had1Of course, as v is already in whnf, no update ever need take place. It is a simple matterto postprocess a term to remove update annotations from lets which bind variable to valuesalready in whnf.



an appropriate level semantics of the STG language. The denotational seman-tics is too high|it doesn't distinguish between normal-order reduction and lazyevaluation|and the operation semantics is too low as it explicitly describes theheap, stack pointers and the like. New work has recently developed an inter-mediate level semantics [3] which, we hope, will turn out to be appropriate notmerely for this proof, but for others that exploit lazy evaluation.References[1] Girard, Scedrov, and Scott, Bounded Linear Logic, J of Theoretical Com-puter Science, 97:1{66, 1992.[2] J.Fairbairn and S.Wray, A Simple Lazy Abstract-Machine to Execute Su-percombinators, in Proc. FPCA, Portland, pp 34-45, S-V, 1987.[3] J.Launchbury, A Natural Semantics for Lazy Evaluation, in Proc. ACMSIGPLAN Principles of Programming Languages, Charleston, South Car-olina, 1993.[4] J.-J.L�evy, Optimal Reductions in the Lambda Calculus, in Seldin and Hind-ley eds., To H.B.Curry: Essays in Combinatory Logic, Lambda Calculusand Formalism, pp 159-191, Academic Press, 1980.[5] S.Peyton Jones, C.Clack, J.Salkild, M.Hardie, GRIP - a high-performancearchitecture for parallel graph reduction. Proc IFIP conference on FunctionalProgramming Languages and Computer Architecture, Portland. SpringerVerlag LNCS 274, pp 98-112, 1987.[6] S.Peyton Jones, Implementing Lazy Functional Languages on Stock Hard-ware: the Spineless Tagless G-Machine, Journal of Functional Program-ming, CUP, 1992, to appear.


