Avoiding Unnecessary Updates

John Launchbury, Andy Gill, John Hughes,
Simon Marlow, Simon Peyton Jones, Philip Wadler
Computing Science Department,

Glasgow University

Abstract

Graph reduction underlies most implementations of lazy functional
languages, allowing separate computations to share results when sub-
terms are evaluated. Once a term is evaluated, the node of the graph
representing the computation is updated with the value of the term. How-
ever, In many cases, no other computation requires this value, so the up-
date is unnecessary. In this paper we take some steps towards an analysis
for determining when these updates may be omitted.

1 Introduction

There are two obvious ways to reduce lambda expressions: outside-in or inside-
out. The former is called normal-order reduction, the latter applicative-order.
Neither of these mechanisms guarantee to perform fewer reductions than the
other. Normal-order reduction only ever reduces terms that are definitely re-
quired, but it may end up reducing a single term more than once. On the
other hand, while applicative order reduction is less likely to reduce a single
term more than once, it may reduce terms unnecessarily, even to the extent of
failing to terminate.

There 1s a popular middle ground, commonly called lazy evaluation. Se-
mantically, lazy evaluation is equivalent to normal-order reduction—only terms
which are known to be required are evaluated. Operationally, however, lazy
evaluation matches exactly the applicative order behaviour in avoiding repeated
evaluation. (Note that neither applicative-order reduction nor lazy evaluation is
an optimal evaluation strategy in the sense of Levy [4], so both may sometimes
repeat reductions.)

One common method by which lazy evaluation achieves its behaviour is
graph reduction. When substitution takes place, a reference to an expression is
substituted, rather than the expression itself. If the expression is ever evaluated,
it is replaced by its value so that all other references to the term immediately
see the reduced value rather than the original unreduced term. This replace-
ment, or update, is precisely the point which distinguishes lazy evaluation from
normal-order reduction. Hence, normal-order is sometimes called tree reduction
in contrast to lazy evaluation’s graph reduction.

While graph reduction supplies undoubted benefits, it also has associated
costs. Updating the reference always costs instructions, and the cost of inter-
rupting the computation at the appropriate time may be even greater. Nor-
mally of course this cost 1s very small when compared with the cost of recom-
puting a value, but it exists nonetheless. On the parallel machine GRIP [5]

updates are particularly expensive because the updated node has to be flushed
from local memory out to the global store. Similarly, the need for updates
creates a major complication in the TIM abstract machine [2], and the pres-
ence of the update markers interrupts the flow of evaluation. Indeed, Fairbain
and Wray used a local analysis to cut down on such update markers, but un-
fortunately the analysis assumed a fairly naive model of implementation and
precluded more efficient alternative implementations.

In this paper we take some steps towards an analysis which detects when
updates may be omitted. It 1s a working paper and probably contains many
omissions, but nonetheless addresses an important issue in the implementation
of lazy functional programming languages.

The analysis is presented in the style of type rules. This has the advantage of
allowing information to flow both forwards and backwards through a program,
but it has the disadvantage of being that much further from an implementation.
Currently the analysis does not handle products or other data structures, but
it 1s higher-order. Also, explicit recursion is not presented here, but we do not
expect it to pose much of a problem.

2 The Language

We will use a stylised form of lambda expression extended with lets, plus a few
other constructs for convenience. The form of expressions is a simplification of
the Spineless, Tagless, G-machine implementation language (STG) [6] used in
the Glasgow Haskell compiler.

The underlying philosophy of the language is that it has a direct operational
reading, a sort of “abstract machine-code” for functional languages. Closures
are named explicitly using lets, and functions accept only such closures as
arguments. This philosophy is particularly appropriate for our analysis because
it provides an ideal place for update annotations to be placed. Note that the
only means of constructing closures is by using lets.

We make two exceptions to the rule regarding function arguments, both
purely for the sake of readability: explicit numbers may also be used as ar-
guments to functions; and primitive operations such as 4+ may be applied to
arbitrary expressions.

e € Fxpression = «a
| Az.e
| ea
| let' z=e; in es
| €71 * €2
a € Atom = =z
| n
* € Primitive == + |
z € Variable
n € Inleger

1 € Annotation

The aim of the analysis is to discover which lets create closures that need
to be updated and which do not. The result of the analysis is expressed as an
annotation placed on the let. The details of the annotations will be given later.

3 Why it’s difficult

Examples are often valuable for providing intuition about a problem. Fur-
thermore, in our case they will provide an informal understanding of the STG
reduction model.

Consider the program fragment,

let u=... in
let v= u+3 n
v+ v

To obtain the value of the expression, we need to know which two values
to add together. The first is v. To evaluate v, we need to get the value of u.
Suppose u evaluates to 5. Because graph reduction guarantees not to recompute
values, u has its closure updated with the number 5. Now v can be evaluated,
producing 8, and its closure updated (with the number 8).

We now have to find the value to the second argument of +, so again we
need the value for v. However, as v’s closure was overwritten with 8 we can
obain its value immediately and we do not have to reaccess u. 8 is added to 8
to give the answer 16.

3.1 Hidden References

Because u was only accessed once, we could have omitted updating u’s closure
without causing any computation to be repeated. Note that u was only accessed
once even though v was accessed twice, and v depended on u. This means that
reaccessing is not necessarily transitive. Sometimes it is, however. Consider
the next example.

let u=... in
let v=Az.u+z in
vI3tuv 4

This time v 1s a function which adds its argument to the value of u. Every
time we use v we will need to know wu’s value. The problem is that even though
v is already in weak head normal form (whnf) it still contains a reference to w.
Thus in this example updating u’s closure with its value is necessary to save
recomputing that value. The next two examples show this very clearly.

let u=...1n
let v=(let w=u+1 in Az.w+z) in
vI3tuv 4

In this case, while both v and w need to be updated once evaluated, u does
not because it is only used once: on evaluating v 3, w is evaluated (accessing
u) and is overwritten with its value. Now all reference to u is lost, so even
when v is used again, u 1s not reaccessed.

Contrast this with

let u=... in
let v=2MAz.(let w=u+11in w+z)in
vI3tuv 4

Each time v is used it constructs a new closure for w (because in principle
w’s value could depend on z) and so continues to retain a reference to w.
Thus once u is evaluated, its closure must be updated to avoid recomputing its
value on a subsequent use of v. Taken together, this and the previous example
show how sensitive the issue of avoiding updates is to the precise form of the
expression. Denotationally the two expressions are equivalent (one is a A-lifted
version of the other) but their operational behaviour is different.

The examples have demonstrated that there are two issues to be addressed
to produce a useful analysis. The first is whether a closure is duplicated or
not. The second is whether duplication of a descendant closure affects the
original or not. The (fairly simplistic) approach we adopt here is to assume
that duplication of functions possibly duplicates closures the functions refer
to, whereas duplication of an atomic value does not. Once an atomic value
is reduced to weak head normal form (which for atomic values is the same
as normal form) it cannot contain references to other closures which may be
accessed at a later point.

4 TUpdate-Avoidance Analysis

In the analysis we use annotated types to register when multiple accesses are
possible. We are not interested in the distinction between types such as Integer
or Bool, but we are interested in the level of structure present in a type, in
particular whether the object is a product or a function. For simplicity we
restrict ourselves to consider functions.

Types to the left of function arrows carry annotations which specify whether
the function possibly duplicates its argument or not. Thus types are of the form,

S, T € Type = K
| A= T
A, B € AnnType = T

where AnnType is the annotated types. The annotations record whether a
value may possibly be used zero, one or many times.

1,] € Ann =

| One

| Many

The annotations are interpreted in the following way:

Zero Never used;
One Certainly used no more than once;
Many May be used any number of times.

and we assume an ordering of Zero < One < Many.

This interpretation incorporates a notion of safe approrimation. We may
end up deciding that a value could be used many times, when in fact it is
only ever used once. Of course, the better the analysis is, the less frequently it
will overapproximate in this way. Graph reduction is ultra-conservative in this
sense in that it updates every closure whether it is used more than once or not.

L'k e:T
Weak
I,x:S5%ere + e: T
[a: SMany o gMany o
Cont
[,z:SMay b elz/e 2/y]: T
Le:S" F e: T
Dere : (i <j)
Le:5 F e: T
x:Ay:BtF e:T
Ezch
y:Bx:AF e:T
Figure 1: Structural rules

4.1 Structural Rules

The analysis is given in the form of type rules. Judgements are of the form,
I'k e: T

This is read that in the type environment I', we may deduce that e has
type T (note, no annotation on T'). Type environments are partial functions,
mapping variables to annotated types. Thus each variable occurs at most once
in a type environment. That 1s,

')A€ TypeEnv = xz:Ay:B, ...

We will often write the assumptions making the annotations on the types
explicit.

The structural rules given in Figure 1 define the behaviour of type environ-
ments. The weakening rule allows any variable to be introduced with a Zero
annotation, and the contraction rule allows two occurrences of a variable to
be combined so long as they both have the Many annotation. The renaming
is present to maintain the invariant that each variable occurs once only in the
type environment.

In order to allow variables with possibly other annotations to be combined,
the dereliction rule allows annotations to be degraded. This clearly has the po-
tential for losing information so should only be applied when necessary. Finally
the exchange rule shows that the order of assumptions is unimportant.

4.2 The Analysis Rules

The analysis rules appear in Figure 2. The variable rule ensures that any
new variables appear in the type environment with annotation at least One
(dereliction allows this to be degraded to Many), and the constant rule states
that numbers are an atomic type.

Var

Const

Lam

App

Let

Prim

z:TO" + 2. T
Fn: K

Le:S" F e: T
I (Awe): 8" =T

' Fe:S"=T
Fz:S F (ex): T

'k e S Az:S F ey T
DI A F (lethF 2=¢) iney): T

where j=One if S = K; i otherwise
k=1 if T=K; Many otherwise

I' ke K AF e K
TVA F (61 % e2): K

Figure 2: Deduction rules

One pleasant consequence of only ever applying functions to variables is
that the lambda and application rules are dual to each other. They have the
effect of moving annotations between type environments and types.

There are essentially four variants of the let rule, depending on whether the
variable being bound has an atomic type or not, and whether the term being
built has an atomic type or not.

When the bound variable is of atomic type, it can contain no references to
other closures once it is evaluated. So multiple accesses of the value will not
propagate to the references contained in I, and their annotations may remain
unchanged.

This is not the case for a composite structure, however. A function may
contain references to other closures which are accessed each time the function is
used. Thus all the free variables used in the definition of the function must be
given an annotation at least as high as that of the function, for if the function
1s accessed many times, then so may any internal references.

To model these two cases we introduce an operation on type environments
whose effect is to propagate annotations to every type in the environment. We

define,

(2g Tl“,...,:vn S TY = (2 T;I'j,...,mn L Tind)

where
1. Zero = Jero
1. One = 1
t . Many = Zero, if i = Zero

= Many, otherwise

A similar situation arises when the term being built is of atomic type.
Even if the term is bound to a variable which is used many times, none of the
references used in its definition can escape. That is, none of the closures used in
defining e, will ever be accessed more frequently than the number of accesses
given in ep. By assumption, this is already recorded by their annotation.
Thus z in particular cannot be accessed more frequently than described by
the annotation i, and so in this case the let is also annotated with 1.

If es is of function type, however, then there is not sufficient information
present to determine whether the closure being built will only be accessed once
or not. If the function is bound to a variable which is used many times, then
there may be multiple accesses of #, even if it only occurs once in ez. So in
this case we are conservative and assume multiple accesses are possible, and we
record this on the let so that an update may be performed if necessary (let*y
constructs an updatable closure).

5 Results

In this section we show the analysis working on the examples presented earlier.
Example 1
let wu=...1n

let v= u+3 n
v+ v

First we note that using contraction and dereliction, together with the Var
and Prim rules, we have,

vyt KOne |-y K ve s KOne |- 9yt K
vy s KMany |- g, - K vyt KMany | gy 0 K
vy KMany gy KMany - 4, 4 py K
v KMany -y Ly K

We can use this to obtain,

u: Koy K F3:K
u: Ko y4+ 39K v KMany g4y K
u: KOne | jetMany y — y 4+ 3 nov+v: K

The Many annotation from the assumption about v has come to rest on the
let binding v, but as v has an atomic type, its annotation is not propagated to
the type environment, so u retains its original annotation.

Finally, assuming that we have some I' for which we may infer I'F ... : K|
we have
', K u:K9FletM™ py=u+3inv+uv: K
I'Fletore u=...in (letMY vy =u+3 inv+v): K

The final result is that u is used once only, but that v may be used more
than once.

Example 2
let u=... in
let v=Az.u+z in
vI3tuv 4

The interesting part of this example is the binding of v. First note that we
can derive,

u: Korelky: K z:KOrelgp: K
u:KOne g KOreb y4z: K
u: Kore b g u+x: KO 5 K

Following a path similar to that of example 1, we can also derive,
v (KO”e — K)Ma”y Fod+uv4:K
Putting these together with the let rule gives,
w: KM b fetMany o — Az u4zinv 34+v 4 K

Because v is not of atomic type, all the free variables involved in its binding
receive v’s annotation. Thus u has the annotation Many, so will be bound in
an updatable closure.

Example 3
The final example covers the two code fragments

let u=...1n
let v=(let w=u+1 in Az.w+z) in
vI3tuv 4
and
let u=... in
let v=2MAz.(let w=u+11in w+z)in
vI3tuv 4

The analysis annotates u and v as updatable in both cases,! and w as

updatable only in the first. When evaluating the term in the second case, a
new closure w 1s generated each time the function v is called, and this fresh
closure is only ever used once. Thus is may safely be marked as a non-updatable
closure.

In contrast, in the first case, a single closure for w is generated and reused
each time v is called, so requiring the closure for w to be updatable. This
shows a weakness with the analysis, for if w is updated, future references to v
will not refer to u, so in fact u need not be updated. However the analysis is
conservative here, and is not able to distinguish between the uses of u in the
two examples.

A more accurate (and presumably more expensive) analysis could keep track
of the depth at which free variables occur in function valued expressions to
determine whether references to them will remain once the function has been
evaluated to whnf. Whether the relatively small gain in accuracy would be
worth while or not 1s not clear.

6 Relationship to Linear Logic

There is obviously a close relationship between linear logic the rules presented
here. The version of linear logic most closely related is bounded linear logic [1],
where annotations are placed on the “bangs” to indicate how often a term is
used. So rather than using !7 which describes a type that can be copied as
often as required (ie. an unbounded number of times), types such as !" T are
used. Such a type may be copied up to n times, but no more. The analysis
presented here may be viewed as an abstraction of this as we capture two or
more uses of a variable as Many, but retain Zero and One. One important
aspect of our analysis, however, is that is deals only with banged types, and
has no place for linear types.

7 Future Work

This report is a working paper, and quite a lot remains to be done. We currently
have no correctness proof for this analysis. The difficulty lies in not having had

LOf course, as v is already in whnf, no update ever need take place. It is a simple matter
to postprocess a term to remove update annotations from lets which bind variable to values
already in whnf.

an appropriate level semantics of the STG language. The denotational seman-
tics is too high—it doesn’t distinguish between normal-order reduction and lazy
evaluation—and the operation semantics is too low as it explicitly describes the
heap, stack pointers and the like. New work has recently developed an inter-
mediate level semantics [3] which, we hope, will turn out to be appropriate not
merely for this proof, but for others that exploit lazy evaluation.

References

[1] Girard, Scedrov, and Scott, Bounded Linear Logic, J of Theoretical Com-
puter Science; 97:1-66, 1992.

[2] J.Fairbairn and S.Wray, A Simple Lazy Abstract-Machine to Ezxecule Su-
percombinators, in Proc. FPCA | Portland, pp 34-45, S-V, 1987.

[3] J.Launchbury, A Natural Semantics for Lazy Evaluation, in Proc. ACM
SIGPLAN Principles of Programming Languages, Charleston, South Car-
olina, 1993.

[4] J.-J.Lévy, Optimal Reductions in the Lambda Calculus, in Seldin and Hind-
ley eds., To H.B.Curry: FEssays in Combinatory Logic, Lambda Calculus
and Formalism, pp 159-191, Academic Press, 1980.

[6] S.Peyton Jones, C.Clack, J.Salkild, M.Hardie, GRIP - a high-performance
architecture for parallel graph reduction. Proc IFIP conference on Functional
Programming Languages and Computer Architecture, Portland. Springer

Verlag LNCS 274, pp 98-112, 1987.

[6] S.Peyton Jones, Implementing Lazy Functional Languages on Stock Hard-
ware: the Spineless Tagless G-Machine, Journal of Functional Program-
ming, CUP, 1992, to appear.

