
Abstract Types Have Existential Type

JOHN C. MITCHELL

Stanford University
AND

GORDON D. PLOTKIN

University of Edinburgh

Abstract data type declarations appear in typed programming languages like Ada, Alphard, CLU and
ML. This form of declaration binds a list of identifiers to a type with associated operations, a
composite “value” we call a data algebra. We use a second-order typed lambda calculus SOL to show
how data algebras may be given types, passed as parameters, and returned as results of function calls.
In the process, we discuss the semantics of abstract data type declarations and review a connection
between typed programming languages and constructive logic.

Categories and Subject Descriptors: D.3 [Software]: Programming Languages; D.3.2 [Program-
ming Languages]: Language Classifications-applicative languages; D.3.3 [Programming Lan-
guages]: Language Constructs--abstract data types; F.3 [Theory of Conmputation]: Logics and
Meanings of Programs; F.3.2 [Logics and Meanings of Programs]: Semantics of Programming
Languages-denotational semantics, operational semantics; F.3.3 [Logics and Meanings of Pro-
grams]: Studies of Program Constructs-type structure

General Terms: Languages, Theory, Verification

Additional Key Words and Phrases: Abstract data types, lambda calculus, polymorphism, program-
ming languages, types

1. INTRODUCTION

Ada packages [17], Alphard forms [66, 711, CLU clusters [41, 421, and abstype
declarations in ML [23] all bind identifiers to values. Although there are minor
variations among these constructs, each allows a list of names to be bound to a
composite value consisting of “private” type and one or more operations. For
example, the ML declaration

abstype complex = real # real
with create = . . .
and pius = . . .
and re = . . .
andim= ..-

An earlier version of this paper appeared in the Proceedings of the 22thACM Symposium on Principles
of Programming Languages (New Orleans, La., Jan. 14-16). ACM, New York, 1985.
Authors’ addresses: J. C. Mitchell, Department of Computer Science, Stanford University, Stanford,
CA 94305; G. D. Plotkin, Department of Computer Science, University of Edinburgh, Edinburgh,
Scotland EH9 352.
Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.
0 1988 ACM 0164-0925/88/0700-0470 $01.50

ACM Transactions on Programming Languages and Systems, Vol. 10, No. 3, July 1988, Pages 470-502.

Abstract Types Have Existential Type l 471

binds the identifiers complex, create, plus, re, and im to the components of an
implementation of complex numbers. The implementation consists of the collec-
tion defined by the ML expression real # real, meaning the type of pairs of
reals, and the functions denoted by the code for create, plus, and so on. An
important aspect of this construct is that access to the representation is limited.
We cannot apply arbitrary operations on pairs of reals to elements of type
complex; only the explicitly declared operations may be used.

We will call a composite value constructed from a set and one or more
operations, packaged up in a way that limits access, a data algebra. We will
discuss the typing rules associated with the formation and the use of data algebras
and observe that data algebras themselves may be given types in a straightforward
manner. This will allow us to devise a typed programming notation in which
implementations of abstract data types may be passed as parameters or returned
as the results of function calls.

The phrase “abstract data type” sometimes refers to a class of algebras (or
perhaps an initial algebra) satisfying some specification. For example, the ab-
stract type stack is sometimes regarded as the class of all algebras satisfying the
familiar logical formulas axiomatizing push and pop. Associated with this view is
the tenet that a program must rely only on the data type specification, as opposed
to properties of a particular implementation. Although this is a valuable guiding
principle, most programming languages do not contain assertions or their proofs,
and without this information it is impossible for a compiler to guarantee that a
program depends only on a data type specification. Since we are primarily
concerned with properties of the abstract data type declarations used in common
programming languages, we will focus on the limited form of information hiding
or “abstraction” provided by conventional type checking rules.

We can be more specific about how data algebras are defined by considering
the declaration of complex numbers in more detail. Using an explicitly typed
ML-like notation, the declaration sketched earlier looks something like this:

abstype complex = real # real
with create: real + real + complex = Xx: real. Xy: real. (X, y)
and plus: complex --, complex =

Xz:real # real. Xw:real # real. (fst(z) + fst(w), snd(z) + snd(w))
and re: complex + real = Xz:real # real.fst(z)
and im: complex + real = Xz:real # real. snd(z)

The identifiers complex, create, plus, re, and im are bound to a data algebra whose
elements are represented as pairs of reals, as specified by the type expression
real # real. The operations of the data algebra are given by the function expres-
sions to the right of the equals signs1 Notice that the declared types of the
operations differ from the types of the implementing functions. For example, re
is declared to have type complex + real, but the implementing expression has
type real # real + real. This is because operations are defined using the concrete
representation of values, but the representation is hidden outside the declaration.

In the next section, we will discuss the type checking rules associated with
abstract data type declarations, which are designed to make complex numbers

1 In most programming languages, function definitions have the form “create(x:real, y:real) = . . .”
In the example above, we have used explicit lambda abstraction to move the formal parameters from
the left- to the right-hand sides of the equals signs.

ACM Transactions on Programming Languages and Systems, Vol. 10, No. 3, July 1988.

472 9 J. C. Mitchell and G. D. Plotkin

“abstract” outside the data algebra definition. In the process, we will give types
to data algebras. These will be existential types, which were originally developed
in constructive logic and are closely related to infinite sums (as in category
theory, for example). In Section 3, we describe a statically typed language SOL.
This language is a notational variant of Girard’s system F, developed in the
analysis of constructive logic [21,22], and an extension of Reynolds’ polymorphic
lambda calculus [62]. An operational semantics of SOL, based on the work of
Girard and Reynolds, is presented using reduction rules. However, we do not
address a variety of practical implementation issues. Although the basic calculus
we use has been known for some time, we believe that the analysis of data
abstraction using existential types originates with this paper. (A preliminary
version appeared as [56].)

The use of SOL as a proof-theoretic tool is based on an analogy between types
and constructive logic. This analogy gives rise to a large family of typed languages
and suggests that our analysis of abstract data types applies to more expressive
languages involving specifications. Since the connection between constructive
proofs and typed programs does not seem to be well known in the programming
language community (at least at present), our brief discussion of specifications
will follow a review of the general analogy in Section 4. Additional SOL program-
ming examples are given in Section 5.

The design of SOL suggests new programming languages along the lines of
Ada, Alphard, CLU, and ML but with richer and more flexible type structures.
In addition, SOL seems to be a natural “kernel language” for studying the
semantics of languages with polymorphic functions and abstract data type
declarations. For this reason, we expect SOL to be useful in future studies of
current languages. It is clear that SOL provides greater flexibility in the use of
abstract data types than previous languages, since data algebras may be passed
as parameters and returned as results. We believe that this is accomplished
without any compromise in “type security.” However, since we do not have a
precise characterization of type security, we are unable to show rigorously that
SOL is secure.’

Some languages that are similar to SOL in scope and intent are Pebble [7],
designed to capture some essential features of Cedar (an extension of Mesa [57]),
and Kernel Russell, KR, of [28], based on Russell [14, 15, 161. Martin-Lof’s
constructive type theory [46] and the calculus of constructions [ll] are farther
from programming language syntax but share many properties of SOL. Some
features of Martin-Lof’s system have been incorporated into the Standard ML
module design [44, 541, which was formulated after the work described here was
completed. We will compare SOL with some of these languages in Section 3.8.

2. TYPING RULES FOR ABSTRACT DATA TYPE DECLARATIONS

The basic typing rules associated with abstract data type declarations do not
differ much from language to language. To avoid the unnecessary complication
of discussing a variety of syntactic forms, we describe abstract data types using
the syntax we will adopt in SOL. Although this syntax was chosen to resemble

’ Research begun after this paper was written has shed some light on the type security of SOL. See

[52] and [55] for further discussion.

ACM Transactions on Programming Languages and Systems, Vol. 10, No. 3, July 1988.

Abstract Types Have Existential Type 473

common languages, there is one novel aspect that leads to additional flexibility:
We separate the names bound by a declaration from the data algebra they come
to denote. For example, the complex number example is written as follows:

abstype complex with
create: real --, real * complex,
plus: complex + complex,
re: complex + real,
im: complex + real

is
pack real A real

Xx: real.Xy:real. (1c, y)
Xz:real A real.hw:real A real.(fst(z) + fst(lo), snd(z) + snd(w))
Xzreal A real.fst(z)
Xz:real A real.snd(z) to 3 t.[(real + real --$ t) A (t + t) A (t + real) A (t + real)],

where the expression beginning pack and running to the end of the example is
considered to be the definition of the data algebra. (In SOL, we write real A real
for the type of pairs of reals. When parentheses are omitted, the connective A
has higher precedence than +-.) This syntax is designed to allow implementations
of abstract data types (data algebras) to be defined using expressions of any form
and to emphasize the view that abstract data type declarations commonly
combine two separable actions, defining a data algebra and binding identifiers to
its components.

The SOL declaration of an abstract data type t with operations x1, . . . , X, has
the general form

abstype t with x1: u,, . . . , x,: CT,, is M in N,

where ul, a, are the types of the operations and M is a data algebra
expression. As in the complex number example above, the type identifier t often
appears in the types of operations x1, . . . , x,. The scope of the declaration is N.

The simplest data algebra expressions in SOL are those of the form

pack TM, . -. M,, to 3t.u

where 7 is a type expression, M,, . . . , M,, are “ordinary” expressions (denoting
values of type r, or functions, for example) and 3 t.a is an “existential type”
describing the way that the data algebra may be used. The language SOL also
allows more general forms of data algebra expressions, which we will get to later
on. There are three typing rules associated with abstype.

It is easy to see that a declaration

abstypetwithx,:al,...,x,:a,
is pack 7M1 . . . Mk to 3t.a
in N

involving a basic data algebra expression only makes sense if k = n (so that each
operation gets an implementation) and the types of Ml, . . . , Mk match the
declared types of the operations x1, . . . , x, in some appropriate way. The matching
rule in SOL is that the type of Mi must be [T/t]~i, the result of substituting T for
tin ui (with appropriate renaming of bound type variables in ui). To see how this
works in practice, look back at the complex number declaration. The declared

ACM Transactions on Programming Languages and Systems, Vol. 10, No. 3, July 1988.

474 - J. C. Mitchell and G. D. Plotkin

type of the first operation create is real + real + complex, whereas the type of
the implementing function expression is real + real + (real A real). The matching
rule is satisfied in this case because the type of the implementing code may be
obtained by substituting real A real for complex in the declared type real + real
+ complex.

We can recast the matching rule using the existential types we have associated
with data algebra expressions. An appropriate type for a data algebra is an
expression that specifies how the operations may be used, without describing the
type used to represent values. If each Mi has type [~/t]ui, then we say that

pack 7M1 . . . M,,to 3t.al A . . . A u,

has type 3t.ul A . . . A un. This type may be read “there exists a type t with
operations of types u1 and . . . and bn.” The operator 3 binds the type variable t
in 3 t.a, so 3 t.u = 3 s.[s/t]a when s does not occur in u. Existential types provide
just enough information to verify the matching condition stated above, without
providing any information about the representation of the carrier or the algo-
rithms used to implement the operations. The matching rule for abstype may
now be stated.

(AB.l) In abstype t with x1: ul, . . . , x,: a, is M in N, the data algebra
expression M must have type 3 t.ul A . - - A a,.

Although it may seem unnecessarily verbose to write the type of pack - . . to
. . . as part of the expression, this is needed to guarantee that the type is unique.
Without the type designation, an expression like pack TM could have many
types. For example, if the type of M is 7 + 7, then pack TM might have types
3 t.t -+ t, 3 t.t += 7, 3 t.7 -+ t, and 3 t.7 + 7. To avoid this, we have included the
intended type of the whole expression as part of the syntax. Something equivalent
to this is done in most other languages. In CLU, for example, types are determined
using the keyword cvt, which specifies which occurrences of the representation
type are to be viewed as abstract. ML, as documented in [23], uses keywords abs
and rep, whereas later versions [50] use type constructors and pattern matching.

An important constraint in abstract type declarations is that only the explicitly
declared operations may be applied to elements of the type [58]. In SOL, this
constraint is formulated as follows:

(AB.2) In abstype t with x1: ul,. . . , x ,, : u,, is M in N, if y is any free identifier
in N different from x1, . . . , x,, then t must not appear free in the type of y.

In addition to accomplishing the goals put forth in [58], this condition is easily
seen to be a natural scoping rule for type identifiers. We can see why (AB.2)
makes sense and what kind of expressions it prevents by considering the following
example.

let f = Xx: stack . . . in
abstype stack with empty : stack,

push : int A stack + stack,
pop : stack + int A stack

is . . .
in f (empty)

end

ACM Transactions on Programming Languages and Systems, Vol. 10, No. 3, July 1988

Abstract Types Have Existential Type 475

In this program fragment, the declaration of function f specifies a formal
parameter x:stack, and so the domain of f is some type called stack. For this
reason, the application off to the empty stack might seem sensible at first glance.
However, notice that since the name stack in the declaration off is outside the
scope of the stack declaration shown, the meaning of stack in the type off is
determined by some outer declaration in the full program. Therefore, the iden-
tifier stack in the type off refers to a different type from the identifier stack in
the type of empty. Semantically, we have a type mismatch. Rule (AB.2) prohibits
exactly this kind of program since the identifier f is free in the scope of the
abstype declaration, but stack occurs free (unbound) in the type off. Note that
rule (AB.2) mentions only free occurrences of type names. This is because
SOL has types with bound variables, and the names of bound variables are
unimportant.

Since SOL abstype declarations are local to a specific scope, rather than
global, we also need to consider whether the representation of a data type should
be accessible outside the scope of a declaration. The designers of ML, another
language with local abstype declarations, decided that it should not (see [23],
p. 56). In our notation and terminology, the ML restriction is

(AB.3) In abstype t with x1: ul, . . . , xn: a, is M in N, the type variable t
must not be free in the type of N.

One way for t to appear free in the type of N is for N to be one of the operations
of the abstract type. For example, if t appears free in ul, then (AB.3) will prohibit
the expression

abstype t with x, : o,, . . . , x,: (r, is M in x1

which exports the first operation outside the scope of the declaration. (If t does
not appear in the type of x1, then this expression is allowed.) In designing
modules for Standard ML, MacQueen has argued that this restriction is too
strong [44, 451. If programs are composed of sets of modules (instead of being
block structured, like SOL terms) then it makes sense to use the constituents of
a data algebra defined in one module to construct a related data algebra in
another module. However, this really seems to be an objection to block-structured
programs and not a criticism of abstype as a means of providing data abstraction.
In fact, there are several good reasons to adopt rule (AB.3) in SOL.

One justification for (AB.3) is that SOL type checking becomes algorithmically
intractable without it. In SOL, we consider any expression of the correct type a
data algebra expression. One useful example not allowed in many conventional
languages is the conditional expression. If both

pack TM, . . . M, to 3 t.o

and

pack pP, a -. P, to 3 t.o

are data algebra expressions of the same existential type, then

if B then pack TM, . . . M, to 3 t.a
else pack pP, I . . P, to 3 t.u

ACM Transactions on Programming Languages and Systems, Vol. 10, No. 3, July 1988.

476 . J. C. Mitchell and G. D. Plotkin

is a data algebra expression of SOL with type 3 t.a. Conditional algebra expres-
sions are useful for selecting between several alternative implementations of the
same abstract type. For example, a program using matrices may choose between
sparse or dense matrix implementations using a conditional data algebra expres-
sion inside an abstype declaration. Without (AB.3), the type of an abstype
expression with a data algebra conditional such as

abstype t with x1: t, . . . , xn: u,
isifBthen(pack7M1 e-e M,toilt.(r)

else (pack pP1 . . . P, to 3 t.u)
in x1

may depend on whether the conditional test is true or false. (Specifically, the
meaning of the expression above is either iVll or PI, depending on B). Thus,
without (AB.3), we cannot type check expressions with conditional data algebra
expressions at “compile time,” that is, without computing the values of arbitrary
tests.

Another way of describing this situation is to consider the form of type
expression we would need if we wanted to give the expression above a type
without evaluating B. Since the type of the expression actually depends on the
value of B, we would have to mention B in the type. This approach is used in
some languages (notably Martin-Lof’s intuitionistic type theory), but it intro-
duces ordinary value expressions into types. Consequently, type equality depends
on equality of ordinary expressions. Some of the simplicity of SOL is due to the
separation of type expressions from “ordinary” expressions, and considerable
complication would arise from giving this up.

Finally, the termination of all recursion-free programs seems to fail if we drop
(AB.3). In other words, there is a roundabout way of writing programs that do
not halt on any input, without using any recursive declarations or iterative
constructs. This is a complex issue whose full explanation is beyond the scope of
this paper. The reader is referred to [lo], [29], [49], and [54] for further discussion.
Putting all of these reasons together, it seems that dropping (AB.3) would change
the nature of SOL quite drastically. Therefore, we leave the study of abstype
without (AB.3) to future research.

With rule (AB.3) in place, we can allow very general computation with data
algebras. In addition to conditional data algebra expressions, SOL allows data
algebra parameters. An example that illustrates their use is the general tree
search routine given in Section 2.5. The usual algorithms for depth-first search
and breadth-first search may be written so that they are virtually identical,
except that depth-first search uses a stack and breadth-first search uses a queue.
The general tree-search algorithm in Section 2.6 is based on this idea, using a
formal parameter in place of a stack or queue. If a stack data algebra is supplied
as an actual parameter, then the algorithm performs depth-first search. Similarly
a queue parameter produces breadth-first search. Additional structures like
priority queues may also be passed as actual parameters, resulting in “best-first”
search algorithms.

Data algebra parameters are allowed in SOL simply because the typing rules
do not prevent them. If z is a variable with type 3 t.al A . . . A IS,,, then

abstype t with x1: (Jo, . . . , x,: U, is z in N

ACM Transactions on Programming Languages and Systems, Vol. 10, No. 3, July 1988.

Abstract Types Have Existential Type 477

is a well-typed expression of SOL. Since SOL allows parameters of all types,
there is nothing to prevent the data algebra z from being a formal parameter. By
typing data algebra expressions and treating all types in SOL in the same way,
we allow conditional data algebra expressions, data algebra parameters, and many
other useful kinds of computation on data algebras.

The next section presents the language SOL in full. To emphasize our belief
that SOL abstype captures the “essence” of data abstraction, we have described
the construct as if we had designed it for this purpose. However, we emphasize
again that SOL is not our invention at all; SOL with existential types was
invented by Girard as a proof-theoretic tool [22], and SOL without existential
types was developed independently by Reynolds as a model of polymorphism
[62]. The purpose of our paper is to explain that existential types provide a
paradigm example of data type declarations and to suggest some advantages of
this point of view.

3. THE TYPED LANGUAGE SOL

We show how implementations of abstract data types can be typed and passed
as function parameters or results by describing the functional language SOL.
Although SOL is an applicative language, we believe that this treatment of data
algebras also pertains to imperative languages. This belief is based on the general
similarity between binding constructs of functional and imperative languages
and is supported by previous research linking lambda calculus and programming
languages (e.g., [36, 37, 631).

There are two classes of expressions in SOL: type expressions and terms. In
contrast to more complicated languages such as Pebble [7], KR [28], Martin-
Lof’s constructive type theory [46], and the calculus of constructions [111, types
may appear in terms, but terms do not appear in type expressions. The type
expressions are defined by the following abstract syntax

u::= tlc(u+-7lu A Tlcr v T(vt.u~3t.a.

In our presentation of SOL, we use two sorts of variables, type variables r, s,
t . . and ordinary variables X, y, z, In the syntax above, t may be any type
iariable and c any type constant. Some possible type constants are int and bool,
which we often use in examples. Intuitively, u + r is the type of functions from
u to r, an element of the product type u A T is a pair with one component
from u and the other from 7, and an element of the disjoint union or tagged sum
type u V 7 is an element of CT or 7.

The two remaining forms involve V and 3, which bind type variables in type
expressions. The universal type V t.u is a type of polymorphic functions and
elements of 3 t.u are data algebras. Free and bound variables in type expressions
are determined precisely using a straightforward inductive definition, with V
binding t in V t.u and 3 binding t in 3 t.u. Since t is bound in V t.u and 3 t.u, we
consider V t.u = Vs.[s/t]u and 3 t.u = 3 s.[s/t]u, provided s does not occur free in
U. (Recall that [s/t]u is the result of substituting s for free occurrences of t in u,
with bound type variables renamed to avoid capture.)

In SOL, as in most typed programming languages, the type of an expression
depends on the types given to its free variables. We incorporate “context” into

ACM Transactions on Programming Languages and Systems, Vol. 10, No. 3, July 1988.

478 l J. C. Mitchell and G. D. Plotkin

the typing rules using type assignments, which are functions from ordinary
variables to type expressions. For each type assignment A, we define a partial
function TypeA from expressions to types. Intuitively, TypeA (M) = u means that
the type of M is u, given the assignment A of types to variables that may appear
free in M. Each partial function Type* is defined by a set of deduction rules of
the form

TypeA = u, . . .

Typea = T

meaning that if the antecedents hold, then the value of TypeA at N is defined to
be 7. The conditions on TypeA may mention other type assignments if N
binds variables that occur in subterms.

A variable of any type is a term. Formally, we have the axiom

TyPeA = A(x)

saying that a variable x has whatever type it is given. We also allow term
constants, provided that each constant is assigned a type that does not contain
free type variables. One particularly useful constant is the polymorphic condi-
tional cond, which will be discussed after V-types are introduced.

3.1 Functions and Let

In SOL, we take functions of a single argument as basic and introduce functions
of several arguments as a derived form. A function expression explicitly declares
the type of the formal parameter. Consequently, the type of the function body is
determined in a typing context that incorporates the formal parameter type. If
A is a type assignment, then A [X : g] is a type assignment with

(Ab:al)(~) = ltyj
if y is the same variable as x

otherwise.

The deduction rules for function abstraction and application are

‘I’nx~[,:,~(M) = 7
TypeA(Xx:a.M) = u + 7

and

TypeA = (T + T, TypeA = u
TypeA = 7

Thus a typed lambda expression has a functional type and may be applied to any
argument of the correct type. An example function expression is the lambda
expression

Xx:int. x + 1

for the successor function on integers.
The semantics of SOL is described using a set of operational reduction rules.

The reduction rules use substitution, and, therefore, require the ability to rename
bound variables. For functions, we rename bound variables according to the

ACM Transactions on Programming Languages and Systems, Vol. 10, No. 3, July 1933.

Abstract Types Have Existential Type 479

equational axiom

xx : u.M = xy : u.[y/x]M, y not free in M

The operational semantics of function definition and application are captured by
the reduction rule

(Xx : a.M)N + [N/x]M,

where we assume that substitution [N/x]M includes renaming of bound variables
to avoid capture. (Technically speaking, the collection of SOL reduction rules
defines a relation on equivalence classes of SOL terms, where equivalence is
defined by the collection of all SOL axioms for renaming bound variables. See,
e.g., [2] for further discussion). Intuitively, the reduction rule above says that the
expression (XX: a.M)N may be evaluated by substituting the argument N for
each free occurrence of the variable x in M. For example,

(XX: int. x + 2)5 + 5 + 2.

Some readers may recognize this mechanism as the “copy rule” of ALGOL 60.
We write +z+ for the congruent and transitive closure of +.

We introduce let declarations by the abbreviation

let x = M in N :: = (Xx : a.N)M,

where c = TypeA(Note that since the assignment A of types to variables is
determined by context, the definition of let depends on the context in which it
is used. An alternative would be to write let x: u = M in N, but since u is always
uniquely determined, the more succinct let notation seems preferable.

The typing rules and operational semantics for let are inherited directly
from X. For example, we have

let f = Xn:int. x + 3 in f(f(2)) * (2 + 3) + 3.

A similar declaration is the ML recursive declaration

letrec f = M in N

which declares f to be a recursive function with body M. (If f occurs in M, then
this refers recursively to the function being defined; occurrences of f in M are
bound by letrec.) Although we use letrec in programming examples, it is
technically useful to define pure SOL as a language without recursion. This pure
language has simpler theoretical properties, making it easier to study the type
structure of SOL.

3.2 Products and Sums

A simple kind of record type is the unlabeled pair. In SOL, we use A for pair or
product types. Product types have associated pairing and projection functions as
follows:

Typea = u, Type,(N) = 7

TypeA((M, N)) = u A T

TypeA = u A 7

TypeA (fst M) = u, TypeA (snd M) = 7
ACM ‘hansactions on Programming Languages and Systems, Vol. 10, No. 3, July 1988.

480 l J. C. Mitchell and G. D. Plotkin

The operational semantics of pairing and projection are given by the reduction
rules

fst(M, N) * M, snd(M, N) + N.

For example,

let p = (1, 2) in f&(p) + 1.

We can introduce multivariable lambda abstraction as an abbreviation involving
products. Some metanotation makes this easier to describe. We write f’y as an
abbreviation for f (f . . . (fy) . . .) with i occurrences off. As a convenience, we
consider f Oy = y. We also write yci)n for the expression fst(sndi-‘y) if 1 5 i < n
and snd”-‘y if i = n. Thus, if y = (x1, (x2, . . . , (x,-~, z,) . . .)), we have
y(i) n =>> xi. Using these abbreviations, we define multiargument lambda abstrac-
tion by

X(x1: Ul,. . .) xn: un).M::= xy : Ul A (* - * A un * * *).[Y(l)“, . . .) y(yX1,. . . , x,]M

For example, X (x : u, y : T) .M is an abbreviation for

AZ: u A T. [fst z, snd z/x, y]M.

We will also use the abbreviation

let f(q: (rl, . . . , x,: a,) = M in N ::= let f = X (x1: ul, . . . , x,: a,).M in N

which allows us to declare functions using a more fhmiliar syntax.
Sum types V have injection functions and a case expression. The SOL case

statement is similar to the tagcase statement of CLU, for example [41].

TypeA (M) = u

TypeA (inleft M to u V T) = u V T, Typea (inright M to 7 V a) = 7 V u

TwA(M) = u V 7, TwA~,:,l(N) = P, Tme,+:,1(P) = P

TypeA (case M left x : u. N right y : 7.P end) = p

In the expression above, case binds x in N and y in P. As with X-binding, we
equate case expressions that differ only in the names of bound variables.

case M left x: u.N right y: 7.P end
= case M left u: a.[u/x]N right u: ~.[u/y]P end,

provided u is not free in N and u is not free in P.
It is possible to replace the bindings in case expressions with X-bindings as

P suggested in [63], making case a constant instead of a binding operator. However,
the syntax above seems slightly easier to read.

The reduction rules for sums are

case (inleft M to 0 V T) left x: a.N right y: T.P end - [M/x]N
case (inright M to (r V T) left x: u.N right Y:T.P end G. [M/y]P

For example,

let z = inleft 3 to int V boo1 in
case z left z : int.x right y : bool.if y then 1 else 0 end

=>>3

ACM Transactions on Programming Languages and Systems, Vol. 10, No. 3, July 1988.

Abstract Types Have Existential Type 481

Note that the type of this case statement remains int if z is declared to be
inright of a Boolean instead of inleft of an integer.

3.3 Polymorphism

Intuitively, Xt.M is a polymorphic expression that can be “instantiated” to values
of various types. In an Ada-like syntax, the term Xt.M would be written

generic (type t)A4

Polymorphic expressions are instantiated using type application, which we will
write using braces 1,) to distinguish it from an ordinary function application.
If M has type V t.a, then the type of M(T) is [7/t]u. The Ada-like syntax for
M(T) is

new M(7).

The formal definitions are

TypeA = 7

TypeA(Xt.M) = Vt.7

t not free in A (CC) for any x free in M

TypeA = V t.a

Tme~QWl) = [Tltb
The restriction on the bound variable t in Xt.M eliminates nonsensical expres-

sions like XX: t.Xt.x, where it is not clear whether t is free or bound. (See [20] for
further discussion.) Note that unlike many programming languages, a SOL
polymorphic function may be instantiated using any type expression whatsoever,
regardless of whether its value could be determined at compile time.

One use of V-types is in the polymorphic conditional cond. The constant cond
has type V t.bool + t + t + t. We often use the abbreviation

if M then N else P ::= cond (r)MNP,

where Typea = TypeA = T.
Polymorphic type binding may be used to define polymorphic functions such

as the polymorphic maximum function. The type of a function Max which,
given any type t and order relation T: t A t + boo& finds the maximum of a pair
of t’s is

Max: Vt[(t A t +- bool) + (t A t) + t].

A SOL expression for the polymorphic maximum function is

Max ::= At. Xr:t A t + bool. Xp:t A t.if r(p) then fst(p) else snd(p)

If r: T A T + boo1 is an order relation on type 7, then

Max:bb-(X, Y>

finds the maximum of a pair (x, y) of elements of type 7. While Max is written
with the expectation that the actual parameter r will be an order relation, the
SOL type checking rules cannot ensure this.

ACM Transactions on Programming Languages and Systems, Vol. 10, No. 3, July 1988

482 - J. C. Mitchell and G. D. Plotkin

Intuitive Semantics and Reduction Rules for Xt.M. The intuitive meaning of
ht.M is the infinite product of all meanings of A4 as t varies over all types. In the
next section, we see that abstract data type declarations involve infinite sums.
To see the similarity between V-types and infinite products, we review the
general notion of product, as ,used in category theory [l, 27, 431. There are two
parts to the definition: product types (corresponding to product objects in
categories) and product elements (corresponding to product arrows). Given a
collection S of types, the product type n S has the property that for each s E S
there is a projection function proj s from n S to s. Furthermore, given any
family F = (fs] of elements indexed by S with fs E s, there is a unique product
element fl F with the property that

proj s fl F = fs.

Uniqueness of products means that if proj s n F = g, for all s E S, then
nF=flG.

The correspondence with SOL is that we can think of a type expression u and
type variable t as defining a collection of types, namely the collection S of all
substitution instances [T/t]u of CJ. If A4 is a term with t not free in the type of
any free ordinary variable, then M and t determine a collection of substitution
instances [T/t]M. It is easy to show that if t is not free in the type of any
free variable of M and TypeA = u, then TypeA ([T/t]M) = [T/t]u. By letting
f [T/t10 = [T/t JM, we may view the collection of substitution instances of M as a
family F = 1 fs) indexed by elements of S. Using this indexing of instances, we
may regard V t.a as a product type n S and Xt.M as a product element JJ F, with
projection accomplished by type application. The product axiom above leads to
the reduction rule

(ht.M)bl * b/tlM
where we assume that bound variables are renamed in [r/t]M to avoid capture
of free type variables in 7. Since X binds type variables, we also have the renaming
rule

Xt.M = Xs.[s/t]M, s not free in Xt.M.

There is a third “extensionality” rule for X-abstraction over types, stemming
from the uniqueness of products, but we are not concerned with it in this paper
(primarily because it does not seem to be a part of ordinary programming language
implementation and because it complicates the Static Typing Theorem in
Section 3.7).

3.4 Data Abstraction and Existential Types

Data algebras, or concrete representations of abstract data types, are elements
of existential types. The basic rule for data algebra expressions is this.

TypeA = b/tb
TypeA (pack TM to 3 t.a) = 3 t.a *

The more general form described in Section 2 may be introduced as the following
abbreviation:

pack TM, . ..Mnto3t.~.:=pack7(M1,(...,Mn) ...))toElt.u,
ACM Transactions on Programming Languages and Systems, Vol. 10, No. 3, July 1988.

Abstract Types Have Existential Type 483

where

u= Ul A (*.. A un . ..).

Polymorphic data algebras may be written in Ada, Alphard, CLU, and ML.
Since SOL has X-binding of types, we can also write polymorphic representations
in SOL. For example, let t-stuck be a representation of stacks of elements of t,

say,

t-stuck ::= pack (int A array of t) empty push pop
to 3s.~ A (t A s + s) A (s + t A s),

where empty represents the empty stack, and push and pop are functions
implementing the usual push and pop operations. Then the expression

stack ::= ht.t-stack

with type

stuck: Vt. 3s.[s A (t A s + s) A (s - t A s)]

is a polymorphic implementation of stacks. We could also define a polymorphic
implementation of queues

queue: Vt. 3q.[q A (t A q + q) A (q + t A q)]

similarly. Note that stuck and queue have the same existential type, reflecting
the fact that as algebras, they have the same signature.

Abstract data type declarations are formed according to the rule

TypeA = 3 t.u, Tme,+,] 09 = P
TypeA(abstype s with x: g is M in N) = p ’

provided t is not free in p or the type A(y) of any free y # x occurring in N.

This definition of abstype provides all the type constraints discussed in
Section 2. Condition (AB.l) is included in the assumption TypeA (M) = 3 t.a,
whereas (AB.2) and (AB.3) follow from the restrictions on free occurrences of t.
As mentioned earlier, the only restriction on data algebras is that they have the
correct type. The more general form is defined by the abbreviation

abstype t with x1: cl, . . . , x,: u, is M in N

::= abstypetwithy:a, A (... A mn -..)

is M in [y(l)*, . . . , y’“)“/x,, . . . , x,]N,

where y(l)” is as defined in Section 3.2.
One advantage of combining polymorphism with data abstraction is that we

can use the polymorphic representation of stacks to declare integer stacks. The
expression

abstype int-stk with empty : int-stk,
push: int A int-stk + int-stk,
pop: int-stk + int A int-stk

is stack (int)
in N

ACM Transactions on Programming Languages and Systems, Vol. 10, No. 3, July 1988.

484 ’ J. C. Mitchell and G. D. Plotkin

declares a type of integer stacks with three operations. Note that the names for
the stack operations are local to N, rather than defined globally by stuck.

3.5 Programming with Data Algebras

One feature of SOL is that a program may select one of several data type
implementations at run time. For example, a parser that uses a symbol table
could be parameterized by the symbol table implementation and passed either a
hash table or binary tree implementation according to conditions. This ability to
manipulate data algebras makes a common feature of file systems and linkage
editors an explicit part of SOL. For example, many of the functions of the CLU
library, a design for handling multiple implementations [41], may be accom-
plished directly by programs.

In allowing programs to select representations, we also allow programs to
choose among data types that have the same signature. This flexibility accrues
from the fact that SOL types are signatures, rather than complete data type
specifications: Since we only check signature information, data types that have
the same signature have implementations of the same existential type. This is
used to advantage in the tree-search algorithm of Figure 1. It may also be argued
that this points out a deficiency in the SOL typing discipline. In a language with
specifications as types, type checking could guarantee that every actual parameter
to a function is an implementation of a stack, rather than just an implementation
with a designated element and two binary operations. Languages with this
capability will be discussed briefly in Section 4.4.

The common algorithm for depth-first search uses a stack, whereas the usual
approach to breadth-first search uses a queue. Since stack and queue implemen-
tations have the same SOL type, the program fragment in Figure 1 declares a
tree-search function with a data algebra parameter instead of a stack or queue.
If a stack is passed as a parameter, the function does depth-first search, while a
queue parameter produces breadth-first. In addition, other data algebras, such as
priority queues, could be passed as parameters. A priority queue produces a “best-
first” search; the search proceeds along paths that the priority queue deems
“best.”

The three arguments to the function search are a node start in a labeled tree,
a label goal to search for, and the data algebra parameter struct. We assume that
one tree node is labeled with the goal, so there is no error test. The result of a
call to search is the first node reached, starting from start, whose label matches
goal. The tree structure is declared at the top of the program fragment to make
the types of the tree functions explicit. The tree has a root, each node has a label
and is either a leaf or has two descendants. The function is-leaf? tests whether
a node is a leaf, while left and right return the left and right descendants of any
nonleaf.

3.6 Reduction Rules and intuitive Semantics of Existential Types

Intuitively, the meaning of the abstype expression

abstype t with x: CT is (pack TM to 3 t.a) in N

is the meaning of N in an environment where t is bound to 7, and x to M.
Operationally, we can evaluate abstype expressions using the reduction rule

abstype t with x: (T is (pack TM to 3 t.a) in N + [M/x][~/t]lV,

ACM Transactions on Programming Languages and Systems, Vol. 10, No. 3, July 1988.

Abstract Types Have Existential Type 485

I* Tree data type declaration ‘1

abstype t with root:t, labei:t-string, isleaf?:t-bool,

left:t-t, right:t-t is tree

in

I’ Search returns first node reached from sfurr with label(node) = goal.

The structure parameter may be a stack, queue, priority queue, etc. */

let search(start:t, goahstring, strnct: VEls[s/\(tAs-s)r\(s-Us)]) =

abstype s with empty:s, insert:t/\s-s, delete:s-tAs

is stnlct {t}

in

1’ function to select next node; also returns updated structure ‘/

let next(node:t, st:s) =

if isleaf?(node) then delete(st)

else delete(insert(left(node), insert(right(node),st)))

in

/* recursive function jind calls near until goal reached +/

letrec find(node:t, st:s) =

if label(node)=goal then node else find(next(node, St))

in

/* callfind to reach node with label(node)=goaL*/

find(start, empty)

end

end

end

in

. . /* program using search function *I

end

end

Fig. 1. Program with search function directed by data algebra
parameter.

where substitution includes renaming of bound variables as usual. (It is not too
hard to prove that the typing rules of SOL guarantee that [iV/x][~/t]N is well-
typed.) Since abstype binds variables, we also have the renaming equivalence

abstype t with x: IJ is M in N = abstype s with y: [s/t]a is M in [y/x][s/t]N,

provided s is not free in u, and neither s nor y is free in N.
Existential types are closely related to infinite sums. We can see the relation-

ship by reviewing the categorical definition of infinite sum [1,27,43]. The general
definition of sum includes sum types (corresponding to sum objects in categories)
and sum functions (corresponding to sum arrows). Given a collection S of types,
the sum type C S has the property that for each s E S there is an injection
function inj s from s to C S. Furthermore, given any fixed type r and family
F = (fsj of functions indexed by S, with fs: s + r, there is a unique sum
function C F: 2 S + r with the property that

C F(inj sx) = fsx.
ACM Transactions on Programming Languages and Systems, Vol. 10, No. 3, July 1988.

466 l J. C. Mitchell and G. D. Plotkin

Uniqueness of sums means that if 2 F(inj sx) = g, for all s E S, then
CF=CG.

The correspondence with sums is similar to the correspondence between
polymorphism and products. It will be easier to see how abstype gives us sums
if, for any term, M with TypeA = u + p and t not free in p, we adopt the
abbreviation

1 t.M :: = AZ : (3 t.a). abstype t with x : (T is z in Mx

where x and z are fresh variables. To see how C t.M is a sum function, recall
from the discussion of V-types that a type expression u and type variable t define
a collection of types, namely, the collection of substitution instances [~/t]a.
Similarly, a term M and type variable t define a family F of substitution instances
[T/t]M. As before, we index elements of F by types in S by associating
[T/t]M with [T/t]a. If M has type c + p for some p that does not have t free,
then F is a family of functions from types in S to a fixed p. We may now
regard the type 3 t.a as the sum type x S, the term C t.M as the sum element
2 F, and Ay:s.(pack sy to 3 t.a) as the injection function inj s. The sum axiom
holds in SOL, since

(2 04) (pack TY to 3 t.a)
::= [AZ: 3 ta. abstype t with x : (r is z in Mx)]pack my to 3 t.o

+z- abstype t with x: u is (pack my to 3 La) in Mx)
--3> [T/t]My.

It is interesting to compare abstype with case since V-types with inleft, inright,
and case correspond to finite categorical sums. Essentially, abstype is an
infinitary version of case.

As an aside, we note that the binding construct abstype may be replaced by a
constant sum. This treatment of abstype points out that the binding aspects of
abstype are essentially X binding. If N is a term with type u + p, and t is not
free in p, then both Xt.N and C t.N are well typed. Therefore, it suffices to have
a function sum 3t.a p that maps Xt.N:Vt.[a + p] to C t.N: (3 t.a) + p.
Essentially, this means sum 3 t.u p must satisfy the equation

(sum 3t.a px)(pack my to 3t.a) = x(~)y

for any x, y of the appropriate types. In the version of SOL with sum as basic,
we use this equation, read from left to right, as the defining reduction rule for
sum. Given sum, both C and abstype may be defined by

C t.M ::= sum 3 t.u p Xt.M,
abstype t with x: u is N in M ::= (C th: a.M)N.

The reduction rules for C and abstype follow the reduction rules for sum. From
a theoretical point of view, it would probably be simpler to define SOL using
sum instead of C or abstype, since this reduces the number of binding operators
in the language. However, for expository purposes, it makes sense to take abstype
as primitive, since this makes the connection with data abstraction more readily
apparent. The difference is really inessential since any one of C, abstype, and
sum may be used to define the other two (using other constructs of the language).

ACM Transactions on Programming Languages and Systems, Vol. 10, No. 3, July 1988.

Abstract Types Have Existential Type l 487

3.7 Properties of SOL

Two important typing properties of SOL can be proved as theorems. The first
theorem may be interpreted as saying that SOL typing prevents run-time type
errors. Technically, the Type Preservation Theorem says that if we begin with a
well-typed term (expression or program) and evaluate or “run” it using the
reduction rules given, then at every step of the way we have a well-typed term
of the same type. This implies that if a term M contains a function f of type
int + int, say, then evaluation will never produce an expression containing f
applied to a Boolean argument, since this would not be well typed. Therefore,
although evaluating a term M may rearrange it dramatically, evaluation will only
produce terms in which f is applied to integer arguments.

TYPE PRESERVATION THEOREM. Let M be a term of SOL with TypeA (M) = U.
If M + N, then TypeA (N) = CT.

A similar theorem for a simpler language without polymorphism appears in [121,
where it is called the Subject Reduction Theorem. The proof uses induction on
reduction paths and is essentially straightforward.

Another important theorem is a formal statement of the fact that type infor-
mation may be discarded at run time. More specifically, it is clear from the
language definition that SOL type checking can be done efficiently without
executing programs (i.e., without referring to the operational semantics of the
language). The Static Typing Theorem shows that once the type of a term has
been calculated, the term may be evaluated (or “run”) without further examining
types. This is stated formally by comparing the operational reduction rules given
in the language definition with a similar set of reduction rules on untyped terms.

Given a term M, we let Erase(M) denote the untyped expression produced by
erasing all type information from M. The function Erase has the simple inductive
definition

Erase(x) = x
Erase(c) = c
Eru.se(Xx : a.M) = Xx.Eruse(M)
Eruse(MN) = Erase(M)Er
Eruse((M, N)) = (Erase(M), Erase(N))
Erase (fst M) = fst Erase(M)
Erme(snd M) = snd Erase(M)
Erase(inleft M to u V 7) = inleft Erase(M)
Erase(inright M to u V 7) = inright Erase(M)
Erme(case M left x : a.N right y : 7.P end)

= case Erase(M) left x.Eruse(N) right y.Eruse(P) end
Eruse(Xt.M) = Erase(M)
Eruse(M(T)) = Erase(M)
Era.se(pack pM to 3t.u) = Erase(M)
Erme(abstype t with x : u is M in N) = let x = Erase(M) in Erase(N)

We define the untyped reduction relation jE by erasing types from terms in
each reduction rule, for example,

(Xx.M)N +E [N/x]M.

ACM Transactions on Programming Languages and Systems, Vol. 10, No. 3, July 1988.

488 . J. C. Mitchell and G. D. Plotkin

Let qE be the congruent and transitive closure of =s~. Then we have the
following theorem:

STATIC TYPING THEOREM. Let M, N be two terms of SOL with Type*(M) =
TypeA(Then M +c= N iff Erase(M) aE Erase(N).

Since the theorem shows that two sets of reduction rules have essentially
equivalent results, it follows that programs may be executed using any interpreter
or compiler on the basis of untyped reduction rules. Like the Type Preservation
Theorem, the proof uses induction on the length of reduction paths and is
essentially straightforward. Although easily proved, these theorems are important
since they confirm our expectations about the relationship between typing and
program execution.

It is worth mentioning the relationship between the Static Typing Theorem
and the seemingly contradictory “folk theorem” that tagged sums (in SOL
notation, g V T types) require run-time type information. Both are correct but
based on different notions of “untyped” evaluation. The Static Typing Theorem
says that if a term M is well typed, then M can be evaluated using untyped
reduction => E. However, notice that Erase does not remove inleft and inright,
only the type designations on these constructs. Therefore, in evaluating a case
statement

case M left ... right . . . end

the untyped evaluation rules can depend on whether M is of the form inleft M,
or inright Ml. In the “ folk theorem,” this is considered type information, hence
the apparent contradiction.

The SOL reduction rules have several other significant properties. For example,
the reduction rules have the Church-Rosser property [22,61].

CHURCH-R• SSER THEOREM. Suppose M is a term of SOL which reduces to
Ml and M2. Then there is a term N such that both M, and Mz reduce to N.

In contrast to the untyped lambda calculus, no term of SOL can be reduced
infinitely many times.

STRONG NORMALIZATION THEOREM. There are no infinite reduction se-
quences.

The strong normalization theorem was first proved by Girard [22]. In light of
the strong normalization theorem, the Church-Rosser theorem follows from a
simple check of the weak Church-Rosser property (see Proposition 3.1.25 of [2]).
A consequence of Church-Rosser and Strong Normalization is that all maximal
reduction sequences (from a given term) end in the same normal form.3 As
proved in Girard’s thesis [22] and discussed in [20] and [59], the proof of the
strong normalization theorem cannot be carried out formally in either Peano
arithmetic or second-order Peano arithmetic (second-order Peano is also called
“analysis”). Furthermore, the class of number-theoretic functions that are

LIA normal form M is a term that cannot be reduced. Our use of the phrase strong normalization
follows [2]. Some authors use strong normalization for the property that all maximal reduction
sequences from a given term end in the same normal form.

ACM Transactions on Programming Languages and Systems, Vol. 10, NO. 3, July 1988

Abstract Types Have Existential Type 489

representable in pure SOL without base types are precisely the recursive functions
that may be proved total in second-order Peano arithmetic [22, 681. These and
related results are discussed in [20] at greater length.

3.8 Alternative Views of Abstract Data Type Declarations

As noted in the introduction, several language design efforts are similar in spirit
to ours. The language SOL is based on Reynolds’ polymorphic lambda calculus
[62] and Girard’s proof-theoretic language [22]. Some similar languages are
Pebble [71, Kernel Russel, KR, [2&J], ML with modules as proposed by MacQueen
[44], and Martin-Lof’s constructive type theory [46]. We compare abstype in
SOL with an early proposal of Reynolds [62] and, briefly, with the constructs of
Pebble and KR.

In defining the polymorphic lambda calculus, Reynolds proposed a kind of
abstype declaration based on X-binding [62]. As Reynolds notes, the expression

abstype t with x,: o,, . . . , x,: a, is M in N

has the same meaning as

(hLhx1: (rl . . . Ax,: U,.iv)(7JMl, . . . , M,

If M is of the form pack 7M1 . . . M, to 3 t.a. However, abstype should not be
considered an abbreviation for this kind of expression for two reasons. First, it
is not clear what to do if M is not of the form pack rM1 . . . M,, to 3 t.a.
Therefore, we can only simulate a restricted version of SOL by this means; much
flexibility is lost. A lesser drawback of using X to define abstype in this way is
that the expression

(Xt.X(xl: ~1, . . ., ix,: a,).N){~jM1 . . . M,,

is well typed in cases in which the corresponding abstype expression fails to
satisfy (AB.3). As noted in Section 2, rule (AB.3) keeps the “abstract” type from
being exported outside the scope of a declaration. However, other justifications
for (AB.3) discussed in Section 2 do not apply here, since Reynolds’ suggestion
cannot be used to construct conditional data algebra expressions, for example.

While the above definition of abstype using X has some drawbacks, a more
suitable definition using X is described in the final section of the later paper [64].

Pebble and KR take a view of data algebras that appears to differ from SOL.
An intuitively appealing view of pack TM, . . . M,, is simply as a record whose
first component is a type. This seems to lead one to introduce a “type of types,”
a path followed by [7] and [28]. We would expect a product type for pack e . . to
be something like

Type A crl A me. A a,,.

However, this does not link the value of the first component to the types of the
remaining components. To solve this problem, Pebble and KR associate abstract
data types with “dependent product” types of the form

t:Type A (rl A . . . A u,,,

where t is considered bound in u1 A . . . A a,.
ACM Transactions on Programming Languages and Systems, Vol. 10, No. 3, July 1988.

490 l J. C. Mitchell and G. D. Plotkin

Since Pebble does not supply projection functions for dependent products, the
dependent product of Pebble actually seems to be a sum (in the sense of category
theory), like SOL g-types. KR dependent products do have something that looks
like a projection function: If A is a data algebra, then Currier(A) is a type
expression of KR. However, since Carrier(pack TM to 3 La) is not considered
equal to 7, it seems that KR dependent products are not truly products. Perhaps
further analysis will show that KR dependent products are also sums and closer
to SOL existential types than might appear at first glance.

As pointed out in [30], there are actually two reasonable notions of sum type,
“weak” and “strong” sums. The SOL existential type is a typical example of weak
sums, whereas strong sums appear as the C-types of Martin Lof’s type theory
[46]. The main difference lies in rule (AB.3), which holds for weak sums, but not
for strong. Thus, while Martin-Lof’s product types over universes give a form of
polymorphism that is similar to SOL polymorphism, Martin-Lof’s sum types
differ from our existential types. For this reason, the languages are actually quite
different. In addition, the restrictions imposed by universes simplify the seman-
tics of Martin-Lof’s language, at the cost of a slightly more complicated
syntax. (Some relatively natural programming examples, such as the Sieve of
Eratosthenes program given in Section 5.2 of this paper, are prohibited by
the universe restrictions of Martin-Lof type theory.) For further discussion of
sum and product types over universes, the reader is referred to [9], [lo], [31],
[451, [461, [491, and [541.

4. FORMULAS AS TYPES

4.1 Introduction

The language SOL exhibits an analogy between logical formulas and types that
has been used extensively in proof theory [12, 13, 22, 30, 35, 38, 39, 46, 67, 691.
The programming significance of the analogy has been stressed by Martin-Lof
[46]. We review the basic idea using propositional logic and then discuss quan-
tification briefly. In addition to giving some intuition into the connection between
computer science and constructive logic, the formulas-as-types analogy also
suggests other languages with existential types. One such language, involving
specifications as types, is discussed briefly at the end of this section. In general,
our analysis of abstype suggests that any constructive proof rules for existential
formulas provide data type declarations. For this reason, the formulas-as-types
languages provide a general framework for studying many aspects of data
abstraction.

4.2 Propositional Logic

Implicational propositional logic uses formulas that contain only propositional
variables and 3, implication. The formulas of implicational propositional logic
are defined by the grammar

u ::= ti u --) 7,

where we understand that t is a propositional variable. We are concerned with
an intuition&c interpretation of formulas, so it is best not to think of formulas

ACM Transactions on Programming Languages and Systems, Vol. 10, No. 3, July 1988.

Abstract Types Have Existential Type 491

as simply being true or false whenever we assign truth values to each variable.
While various forms of intuitionistic semantics have been developed [IO, 33, 34,
701, we will not go into this topic. Instead, we will characterize intuitionistic
validity by means of a proof system.

Natural deduction is a style of proof system that is intended to mimic the
common blackboard-style argument

Assume u.
By . . . we conclude 7.
Therefore u + 7.

We make an assumption in the first line of this argument. In the second line,
this assumption is combined with other reasoning to derive 7. At this point, we
have proved T, but the proof depends on the assumption of u. In the third step,
we observe that since u leads to a proof of 7, the implication 6 + r follows. Since
the proof of u + r is sound without proviso, we have “discharged” the assumption
of u in proceeding from 7 to u + T. In a natural deduction proof, each proposition
may depend on one or more assumptions. A proposition is considered proved
only when all assumptions have been discharged.

The natural deduction proof system for implicational propositional logic
consists of three rules, given below. For technical reasons, we use labeled
assumptions. (This is useful from a proof-theoretic point of view as a means of
distinguishing between different assumptions of the same formula.) Let V be a
set, intended to be the set of labels, and let A be a mapping from labels to
formulas. We will use the notation Conseq,(M) = u to mean that M is a proof
with consequence u, given the association A of labels to assumptions. Proofs and
their consequences are defined as follows:

ConseqA (x) = A(x)
ConseqA(M) = u --, 7, ConseqA (N) = u

ConseqA(MN) = 7
,

ConseqAb,l(M) = 7
ConseqA(Xx: u.M) = u + T ’

The set Assume(M) of undischarged assumptions of M is defined by

Assume(x) = (x)
Assume(MN) = Assume(M) U Assume(N)
Assume(Xx: a.M) = Assume(M) - {x)

In English, we may summarize these two definitions as follows:

A label x is a proof of A(x) with assumption labeled x.

If M is a proof of u + r and N is a proof of u, then MN is a proof of r
(depending on all assumptions used in either proof).

If M is a proof of 7 with assumption u labeled x, then Xx: u.M is a proof of
u + r with the assumption x discharged.

A formula u is intuitionistically provable if there is a proof M with ConseqA (M)
= (T and Assume(M) = 0. (It is easy to show that if Assume(M) = 0, then

ACM Transactions on Programming Languages and Systems, Vol. 10, No. 3, July 1988.

492 l J. C. Mitchell and G. D. Plotkin

ConseqA(M) does not depend on A.) Even when ---) is the only propositional
connective, there are classical ,tautologies that are not intuitionistically provable.
For example, it is easy to check that the formula ((s + t) + s) + s is a classical
tautology just by trying all possible assignments of true and false to s and t.
However, this formula is not intuitionistically provable.

Of course, we have just defined the typed lambda calculus: The terms of typed
lambda calculus are precisely the proofs defined above and their types are the
formulas given. In fact, ConseqA and TypeA are precisely the same function, and
Assume(M) is precisely the set of free variables of M. The similarity between
natural deduction proofs and terms extends to the other connectives and quan-
tifiers. The proof rules for A, V, V, and 3 are precisely the formation rules given
earlier for terms of these types.

One interesting feature of the proof rule for V of [60] is that it is the
discriminating case statement of CLU [42], rather than the problematic outleft
and outright functions of ML [23]. The “out” functions of ML are undesirable
since they rely on run-time exceptions (cf. [41], p. 569). Specifically, if X: r
in ML, then (inright 3~): cf V 7 and outleft(inright x): 6. However, we cannot
actually compute a value of type g from x : T, so this is not semantically sensible.
The ML solution to this problem is to raise a run-time exception when
outleft(inright X) is evaluated, which introduces a form of run-time type
checking. Since the V rule leads us directly to a case statement that requires no
run-time type checking, it seems that the formulas-as-types analogy may be a
useful guide in designing programming languages.

4.3 Universal and Existensial Quantifiers

The intuitionistic proof rules for universal and existential types are repeated
below for emphasis. It is a worthwhile exercise for the reader to become convinced
that these make logical sense.

Conseab, (M) = V t.cr
Conseq,(M(r)) = [T/t]a’

ConseqA(M) = 7
ConseqA (1t.M) = V t.r

t not free in A(x) for x free in M,

Conseq,(M) = [T/t]u
ConseqA (pack TM to 3 t.a) = 3 t.a ’

ConseqA(M) = 3 t.a, Conseq,I,:.l(N) = p
Conseqa (abstype s with x : (T is M in N) = p ’

provided t is not free in p or the type A (y) of any free y # x occurring in N.

The rules for V are the usual universal instantiation and generalization. The
third is an existential generalization rule, and the fourth a form of existential
instantiation. Except for the explicit proof notation chosen to suggest program-
ming language syntax, these proof rules are exactly those found in [60]. Although
a full discussion would take us beyond the scope of this paper, it is worth
remarking that reduction rules may also be derived using the formulas-as-types
analogy: The reduction rules of SOL are precisely the proof-simplification rules
given in [61].
ACM Transactions on Programming Languages and Systems, Vol. 10, No. 3, July 1988.

Abstract Types Have Existential Type 493

4.4 Other Languages With Existential Types

The formulas-as-types analogy can be applied to other natural deduction proof
systems. Two particularly relevant logics are the second-order logics of [60],
Chapter V. The simpler of these amounts to adding first-order terms to the
second-order logic of SOL. In this language, types are formulas that describe the
behavior of terms.

In an ideal programming language, we would like to use specifications to
describe abstract data types. The ideal or “intended” type of stack is the
specification

Vt. 3s. 3empty:s. 3push:t A s + s.
3pop: s + t A s: Vx:s. Vy: t. (pop(push(x, y)) = (x, y)),

or, perhaps more properly, a similar specification with an induction axiom:

Vt. 3s. 3empty:s. 3push: t A s + s. 3pop:s + t A s.
Vx:s.tly: t. (pop(push(x, y)) = (x, y) A induction axiom].

Both specifications are, in fact, type expressions in the language based on first-
and second-order logic. We expect the meaning of each type expression to
correspond to a class of algebras satisfying the specification (see, e.g., [24] for a
discussion of universal algebra). However, the language based on first- and
second-order logic is cumbersome for programming since constructing an element
of one of these existential types involves proving that an implementation meets
its specification. Some interesting research into providing environments for
programming with specifications as types is provided in [S] and [9]. Induction
rules, used for proofs by “data type induction” [25], are easily included in
specifications since induction is expressible in second-order logic.

A richer “ramified second-order” system in Chapter V of [60] includes X-
abstraction in the language of types. Via formulas-as-types, this leads to the
richer languages of [47] and [51].

5. MORE PROGRAMMING EXAMPLES

5.1 Universal and Existential Parameterization

Some useful constructions involving abstract data types are to pass representa-
tions as parameters, parameterize the data types themselves, and return imple-
mentations as results of procedures. In SOL, we can distinguish between two
kinds of type parameterization. Suppose M uses operations x: (T on type t, and t
is not free in the type of any other free variable of M. Then the terms

M, = Xt.Xx:a. M
M2 = z t.Xx:cT. M

are both parameterized by a type and operations. However, there are significant
differences between these two terms. To begin with, M, is well typed even if t
appears free in the type of M, where M2 is not. Furthermore, the two terms have
different types. If the type of M is p, then their types are

Ml: Vt(a + p)

ACM Transactions on Programming Languages and Systems, Vol. 10, No. 3, July 1988.

494 l J. C. Mitchell and G. D. Plotkin

and

M2: (3t.a) */I.

We will say that MI is universally parameterized and MZ is ex&entially pararm+

terized.
Generic packages are universally parameterized data algebras. For example,

given any type t with operations

plus: t A t + t
times: t A t + t,

we can write a data algebra t-matrix implementing matrix operations over t. Four
operations we might choose to include are

create: t A ... A t-mat
mplus: mat A mat + mat,
mtimes: mat A mat * mat,
a!&: mat + t.

If mbody is an expression of the form

mbody ::= pack 7M1 . . - M, to 3s[(t A -. - A t + s)
A (s A s + s) A (s A s + s) A (s + t)]

implementing create, m&s, mtimes, and det using plus and times, then

matrix ::= At. Aplus: t A t + t. Xtimes: t A t + t.mbody

is a universally parameterized data algebra. The type of matrix is

Vt.(t A t + t) --, (t A t + t) + 3s[(t A . . . A
t + s) A (s A s + s) A (s A s + s) A (s + t)].

Note that mbody could not be existentially parameterized by t since t appears
free in the type of mbody.

Functions from data algebras to data algebras are existentially parameterized.
One simple manipulation of data algebras is to remove operations from the
signature. For example, a doubly ended queue, or dequeue, has two insert and
two remove operations. The type of an implementation dq of dequeues with
empty, insertl, insert2, removel, and remove2, is

dq-type ::= Vt.3d.[d A (t A d + d) A
(t A d + d) A (d + t A d) A (d + t A d)]

A function that converts dequeue implementations to queue implementations
is a simple example of an existentially parameterized structure. Given dq, we can
implement queues using the form

Q(x, t) ::= abstype d with empty: . . . , insertl: . . . , insert2: . . . ,
removel: . . . , remove2: . . .

is x(t]
in pack d empty insert1 remove2 to 3 t.a

with dq substituted for X. Thus the term

dq-to-q ::= Xx:dq-type.Xt.Q(x, t)
ACM Transactions on Programming Languages and Systems, Vol. 10, No. 3, July 1988.

Abstract Types Have Existential Type 495

with type

&-type ---, Vt. 3s.[s A (t A s + s) A (s + t A s)]

is a function from data algebras to data algebras. Suppose that queue is the data
algebra produced by applying dq-to-q to dq. Since the type of queue is a closed
type expression, the fact that queue uses the same representation type as dq
seems effectively hidden. Generally, universal parameterization may be used to
effect some kind of sharing of types, whereas existential parameterization ob-
scures the identity of representations. (See [45], which was written later, for
related discussion.)

Some other useful transformations on data algebras are the analogs of the
theory building operations combine, enrich, and derive of CLEAR [5,6]. Although
a general combine operation as in CLEAR, for example, cannot be written in
SOL because of type constraints, we can write a combine operation for any pair
of existential types. For example, we can write a procedure to combine data
algebras of types 3s.~ and 3 t.p into a single data algebra. The type of this
function

Combine, = Xx: 3 t.u Xy : 3 t.p.

abstype s with z: u is x in
abstype t with w : p is y in

is

packs [pack t(z, w) to 3t(u A p)] to 3s3t(u A p)

Combine,: 3s.~ + 3t.p 4 3s3t(u A p).

For universally parameterized data algebras of types V r 3 S.CT and V r 3 t.p, we can
write combine so that in the combined data algebra, the type parameter will be
shared. The combine function with sharing

Combines = Xx:VrZls.a XyzVr3t.p.

Xr.abstype s with z : tr is x(r) in
abstype t with w:p is y(r) in

packs [pack t(z, w) to 3t(u A p)] to 3s3t(u A p)

has type

Combinez: Vr3s.a + Vr3t.p + Vr3s3t(u A p).

A similar, but slightly more complicated, combine function can be written for
the case in which the two parameters are both universally parameterized by a
type and several operations on the type. For example, a polymorphic matrix
package could be combined with a polymorphic polynomial package to give a
combined package parameterized by a type t and two binary operations plus and
times providing both matrices and polynomial over t. Furthermore, the combine
function could be written to enrich the combined package by adding a function
that finds the characteristic polynomial of a matrix.

5.2 Data Structures Using Existential Types

Throughout this paper, we have viewed data algebras as implementations of
abstract data types. An alternative view is that data algebras are simply records
tagged with types. This view leads us to consider using data algebras as parts of
data structures. In many cases, these data structures do not seem directly related

ACM Transactions on Programming Languages and Systems, Vol. 10, No. 3, July 1988.

496 - J. C. Mitchell and G. D. Plotkin

to any kind of abstract data type. The following example uses existentially typed
data structures to represent streams.

Intuitively, streams are infinite lists. In an applicative language, it is convenient
to think of a stream as a kind of “process” that has a set of possible internal
states and a specific value associated with each state. Since the process imple-
ments a list, there is a designated initial state and a deterministic state transition
function, Therefore, a stream consists of a type s (of states) with a designated
individual (start state) of type s, a next-state function of type s + s, and a value
function of type s --, t, for some t. An integer stream, for example, will
have a value function of type s + int, and so the type of integer streams will be
3s[s A (s ---) s) A (s --, int)].

The Sieve of Eratosthenes can be used to produce an integer stream enumer-
ating all prime numbers. This stream is constructed using a sift operation on
streams. Given an integer stream sl, Sift(sl) is a stream of integers that are not
divisible by the first value of sl. If Num is the stream 2, 3, . . . , then the sequence
formed by taking the first value of each stream

Num, Sift(Num), Sift(Sift(Num)), . . .

will be the sequence of all primes.
With streams represented using existential types, Sift may be written as the

following function over existential types.

Sift =
X stream: 3s[s A (s --, s) A (s - int)].

abstype s with start : s, next : s -+ s, value : s + int is stream
in let n = value(start)

in letrec f = X state : s.
if n divides value(state) then f (next(state))

else state
in

pack s f (start) Xx: s. f (next(x)) value to 3s[s A (s + s) A (s + int)]
end

end
end

Sieve will be the stream with states represented by integer streams, start state
the stream of all integers greater than 1, and Sift the successor function on states.
The value associated with each Sieve state is the first value of the integer stream,
so that the values of Sieve enumerate all primes.

Sieve =
abstype s with start : s, next: s + s, value : s + int

ispack 3t[tA (t-t) A (t-+int)]
packint2 Successor Xx:int.r to 3t[t A (t-t) A (t+int)]
Sift
Xstate:Yt[tA(t+t)A(t-+int)].

abstype F with r-start, r-next, r-val is state
in r-val(r-start)

to!lt[tA(t+t)A(t+int)]

Expressed in terms of Sieve, the ith prime number is

abstype s with start : s, next : s + s, value : s + int
is Sieve
in value(next’ start),

ACM Transactions on Programming Languages and Systems, Vol. 10, No. 3, July 1988.

Abstract Types Have Existential Type 497

where “next’ start” is the expression next(next(. . . (next start). . .)) with i occur-
rences of next.

It is worth noticing that Sieve is “circular” in the sense that the representation
type 3t[t A (t + t) A (t + int)] used to define Sieve is also the type of Sieve
itself. For this reason, this example could not have been written in a predicative
system like Martin-Lof’s intuitionistic type theory [9, 461. The typing rules of
that theory require that elements of one type be composed only of elements of
simpler types.

6. CONCLUSION AND DIRECTIONS FOR FURTHER INVESTIGATION

We have used language SOL, a syntactic variant of Girard’s system F and an
extension of Reynolds’ polymorphic lambda calculus [22, 621, to discuss abstract
data type declarations in programming languages. SOL is easily defined and has
straightforward operational semantics. The language also allows us to decompose
abstract data type declarations into two parts: defining a data algebra and binding
names to its components. For this reason, SOL allows implementations of
abstract data types to be passed as function parameters or returned as results.
This makes the language more flexible than many contemporary typed languages,
without sacrificing efficient compile-time type checking.

The flexibility of SOL comes about primarily because we treat data algebras
as values that have types themselves. The types of data algebras in SOL are
existential types, a type motivated by an analogy between programming languages
and constructive logic and closely related to infinite sums. We believe that
although the design of SOL does not address certain practical objectives, the
language demonstrates useful extensions to current programming languages. SOL
also seems very useful for studying the mathematical semantics of data type
declarations.

One promising research direction is to use SOL to formalize and prove some
natural properties of abstract data types. For example, if M and N implement
two data algebras with the same observable behavior (see, e.g., [32]), then the
meaning of a program using M should correspond appropriately to the meaning
of the same program using N. However, SOL is sufficiently complicated that it
is not clear how to define “observable behavior.” Among other difficulties, data
algebras are heterogeneous structures whose operations may be polymorphic or
involve existential types. Reynolds, Donahue, and Haynes have examined various
related “representation independence” properties of SOL-like languages without
existential types [18, 26, 55, 641. Some of these ideas have been applied to SOL
in [52], which was written after the work described here was completed. However,
there is still much to be done in this direction.

There are a number of technical questions about SOL that merit further study.
The semantics of various fragments of SOL are studied in [3], [4], [181, [26],
[47], [51], [62], and [65], but many questions remain. Some open problems are
listed in [3], [4], and 1511. In addition, there are a number of questions related
to automatic insertion of type information into partially typed expressions of
SOL. For example, it would be useful to find an algorithm which, given a term
M of the untyped lambda calculus, could determine whether type expressions

ACM Transactions on Programming Languages and Systems, Vol. 10, No. 3, July 1988.

498 - J. C. Mitchell and G. D. Plotkin

and type binding can be added to M to produce a well-typed term of SOL. Some
questions of this nature are discussed in [40], [48], and [53].

A general problem in the study of types is a formal characterization of type
security. We have given two theorems about typing in SOL: Expressions may be
evaluated without considering type information, and the syntactic type of an
expression is not affected by reducing the expression to simpler forms. These
theorems imply that types may be ignored when evaluating SOL expressions and
that SOL type checking is sufficient to prevent run-time type errors. The study
of representation independence (mentioned above) leads to another notion of
type security, but further research seems necessary to show that SOL programs
are “type-safe” in other ways.

One interesting aspect of SOL is that it may be derived from quantified
propositional (second-order) logic using the formulas-as-types analogy discussed
in Section 4. Our analysis of abstype demonstrates that the proof rules for
existential formulas in a variety of logical systems all correspond to declaring
and using abstract data types. Thus, the formulas-as-types languages provide a
general framework for studying abstract data types. In particular, the language
derived from first- and second-order logic seems to incorporate specifications
into programs in a very natural way. The semantics and programming properties
of this language seem worth investigating and relating to other studies of data
abstraction based on specification.

APPENDIX. COLLECTED DEFINITION OF SOL

The type expressions of SOL are defined by the following abstract syntax:

where t is any type variable and c is any type constant. (We use two sorts of
variables, type variables r, s, t, . . . and ordinary variables X, y, z, . . .)

A type assignment A is a function from ordinary variables to type expressions.
We use A[x : u] to denote the type assignment A, with A1 (y) = A (y) for y different
from X, and A, (x) = u. The partial functions TypeA, for all type assignments A,
and the operational semantics of SOL are defined as follows:

Constants and Variables

TypeA = T for constant cr of type 7

Typea = A(x)

Functions and Application

Tsea~x:cl(M) = T

TypeA(Xx:u.M) = u + T

TypeA = u + 7, TypeA = u

TypeA = 7

Xx : u.M = Xy : u.[y/x]M,
(Xx : u.M)N =+ [N/x]M,

y not free in M

ACM Transactions on Programming Languages and Systems, Vol. 10, No. 3, July 1988.

Abstract Types Have Existential Type 499

Products

Type,(M) = (r, TypeA = 7
Type,.,((M, N)) = (r A T

TypeA = (r A 7

TypeA (fst M) = u, TypeA (snd M) = T

fst(M, N) =9 M, snd(M, N) + N

Sums

Typea = u
TypeA (inleft M to CT V 7) = u V 7, TypeA (inright A4 to T V a) = 7 V u

TseA(M) = u V 7, Twq,:,1W) = P, Twqr:rl(P) = P
Type, (case M left x : UN right y : r.P end) = p

case M left x: u.N right y: 7.P end
= case M left u: u.[u/x]N right u: ~.[u/y]P end,

provided u is not free in N and u is not free in P.

case(inleft M to CJ V T) left x: u.N right y : 7.P end + [M/x]N
case(inright M to u V 7) left x: u.N right y : T.P end + [M/y]P

Polymorphism

TypeA = T
TypeA(Xt.M) = Vt.7

t not free in A(x) for any x free in M

TypeA = Vt.u

‘&wA(W)) = [Tltlu
M.M = Xs.[s/t]M, s not free in Xt.M.

(xt.M)(T} + [T/t]M

Abstract Data Types

Tea W = b/t 10
TypeA(pack TM to 3 t.u) = 3 t.u

TypeA W = 3 t.u, ‘bpeA~,:u] 07 = P
TypeA (abstype s with x: u is M in N) = p ’

provided t is not free in p or the type A(y) of any free y # x occurring in N

abstype t with x: u is M in N = abstype s with y: [s/t]u is M in [y/x][s/t]N,

provided s is not free in u, and neither s nor y is free in N.

abstype t with x: u is (pack TM to 3 t.u) in N + [M/x][~/tlN.

ACKNOWLEDGMENTS

Thanks to John Guttag and Albert Meyer for helpful discussions. Mitchell thanks
IBM for a graduate fellowship while at MIT, and Plotkin acknowledges the
support of the BP Venture Research Unit.

ACM Transactions on Programming Languages and Systems, Vol. 10, No. 3, July 1988.

500 l J. C. Mitchell and G. D. Plotkin

REFERENCES

1. ARBIB, M. A., AND MANES, E. G. Arrows, Structures, and Functors: The Categorical Imperative.
Academic Press, Orlando, Fla., 1955.

2. BARENDREGT, H. P. The Lambda Calculus: Its Syntax and Semantics. North-Holland, Amster-
dam, The Netherlands, 1984 (revised edition).

3. BRUCE, K. B., AND MEYER, A. A completeness theorem for second-order polymorphic lambda
calculus. In Proceedings of the International Symposium on Semantics of Data Types. Lecture
Notes in Computer Science 173, Springer-Verlag, New York, 1984, pp. 131-144.

4. BRUCE, K. B., MEYER, A. R., AND MITCHELL, J. C. The semantics of second-order lambda
calculus. In Information and Computation (to be published).

5. BURSTALL, R. M., AND GOGUEN, J. Putting theories together to make specifications. In Fifth
International Joint Conference on Artificial Intelligence, 1977, pp. 1045-1958.

6. BURSTALL, R. M., AND GOGUEN, J. An informal introduction to specification using CLEAR.
In The Correctness Problem in Computer Science, Boyer and Moore, Eds. Academic Press,
Orlando, Fla., 1981, pp. 185-213.

7. BURSTALL, R., AND LAMPSON, B. A kernel language for abstract data types and modules. In
Proceedings of International Symposium on Semantics of Data Types. Lecture Notes in Computer
Science 173, Springer-Verlag, New York, 1984, pp. l-50.

8. CONSTABLE, R. L. Programs and types. In 21st IEEE Symposium on Foundations of Computer
Science (Syracuse, N.Y., Oct. 1980). IEEE, New York, 1980, pp. 118-128.

9. CONSTABLE, R. L., ET AL. Implementing Mathematics With The Nuprl Proof Deuelop-
ment System. Graduate Texts in Mathematics, vol. 37, Prentice-Hall, Englewood Cliffs, N.J.,
1986.

10. COQUAND, T. An analysis of Girard’s paradox. In Proceedings of the IEEE Symposium on Logic
in Computer Science (June 1986). IEEE, New York, 1986, pp. 227-236.

11. COQUAND, T., AND HUET, G. The calculus of constructions. Znf. Comput. 76, 2/3 (Feb./Mar.
1988), 95-120.

12. CURRY, H. B., AND FEYS, R. Combinatoty Logic I. North-Holland, Amsterdam, 1958.
13. DEBRUIJN, N. G. A survey of the project Automath. In To H. Z3. Curry: Essays on Com-

binatory Logic, Lambda Calculus and Formalism. Academic Press, Orlando, Fla., 1980, pp.
579-607.

14. DEMERS, A. J., AND DONAHUE, J. E. Data types, parameters and type checking. In 7th ACM
Symposium on Principles of Programming Languages (Las Vegas, Nev., Jan. 28-30, 1980). ACM,
New York, 1980, pp. 12-23.

15. DEMERS, A. J., AND DONAHUE, J. E. ‘Type-completeness’ as a language principle. In 7th ACM
Symposium on Principles of Programming Languages (Las Vegas, Nev., Jan. 28-30, 1980). ACM,
New York, 1980, pp. 234-244.

16. DEMERS, A. J., DONAHUE, J. E., AND SKINNER, G. Data types as values: polymorphism, type-
checking, encapsulation. In 5th ACM Symposium on Principles of Programming Languages
(Tucson, Ariz., Jan. 23-25,1978). ACM, New York, 1978, pp. 23-30.

17. U.S. DEPARTMENT OF DEFENSE Reference Manual for the Ada Programming Language. GPO
008.ooo-00354-8,198O.

18. DONAHUE, J. On the semantics of data type. SIAM J. Comput. 8 (1979), 546-560.
19. FITTING, M. C. Zntuitionistic Logic, Model Theory and Forcing. North-Holland, Amsterdam,

1969.
20. FORTUNE, S., LEIVANT, D., AND O’DONNELL, M. The expressiveness of simple and second

order type structures. J. ACM 30,l (1983), 151-185.
21. GIRARD, J.-Y. Une extension de l’interpretation de Godel i l’analyse, et son application i

l’elimination des coupures dans l’analyse et la theorie des types. In 2nd Scandinavian Logic
Symposium, J. E. Fenstad, Ed. North-Holland, Amsterdam, 1971, pp. 63-92.

22. GIFWRD, J.-Y. Interpretation fonctionelle et elimination des coupures de l’arithmetique d’ordre
superieur. These D’Etat, Univ. Paris VII, Paris, 1972.

23. GORDON, M. J., MILNER, R., AND WADSWORTH, C. P. Edinburgh Lecture Notes in Computer
Science 78, Springer-Verlag, New York, 1979.

24. GRATZER G. Universal Algebra. Van Nostrand, New York, 1968.
25. GUT-TAG, J. V., HOROWITZ, E., AND MUSSER, D. R. Abstract data types and software validation.

Commun. ACM 21,12 (Dec. 1978). 10481064.

ACM Transactions on Programming Languages and Systems, Vol. lo, No. 3, July 1988.

Abstract Types Have Existential Type 501

26. HAYNES, C. T. A theory of data type representation independence. In Proceedings of Znterna-
tional Symposium on Semantics of Data Types. Lecture Notes in Computer Science 173, Springer-
Verlag, New York, 1984, pp. 157-176.

27. HERRLICH, H., AND STRECKER, G. E. Category Theory. Allyn and Bacon, Newton, Mass., 1973.
28. HOOK, J. G. Understanding Russell-A first attempt. In Proceedings of International Sympo-

sium on Semantics of Data Types. Lecture Notes in Computer Science 173, Springer-Verlag, New
York, 1984, pp. 69-85.

29. HOOK, J., AND HOWE, D. Impredicative strong existential equivalent to type: type. Tech. Rep.
TR 86-760, Cornell Univ., Ithaca, N.Y., 1986.

30. HOWARD, W. The formulas-as-types notion of construction. In To H. B. Curry: Essays on
Combinatory hgic, Lambda-Calculus and Formalism. Academic Press, Orlando, Fla., 1980, pp.
479-490.

31. HOWE, D. J. The computational behavior of Girard’s paradox. In IEEE Symposium on Logic in
Computer Science (June 1987). IEEE, New York, 1987, pp. 205-214.

32. KAPUR, D. Towards a theory for abstract data types. Tech. Rep. MIT/LCS/TM-237, MIT,
Cambridge, Mass., 1980.

33. KLEENE, S. C. Realizability: A retrospective survey. In Cambridge Summer School in Mathe-
matical Logic. Lecture Notes in Mathematics 337, Springer-Verlag, New York, 1971, pp. 95-112.

34. KRIPKE, S. A. Semantical analysis of intuitionistic logic I. In Formal Systems and Recursive
Functions. Proceedings of the 8th Logic Colloquium (Oxford, 1963). North-Holland, Amsterdam,
1965, pp. 92-130.

35. LAMBEK, J. From lambda calculus to Cartesian closed categories. In To H. B. Curry: Essays on
Combinatory Logic, Lambda Calculus and Formalism. Academic Press, Orlando, Fla., 1980,
pp. 375-402.

36. LANDIN, P. J. A correspondence between Algol 60 and Church’s Lambda-notation. Commun.
ACM 8,2,3 (Feb.-Mar. 1965), 89-101; 158-165.

37. LANDIN, P. J. The next 700 programming languages. Commun. ACM 9,3 (Mar. 1966), 157-166.
38. LKUCHLI, H. Intuitionistic propositional calculus and definably non-empty terms. J. Symbolic

Logic 30 (1965), 263.
39. LKUCHLI, H. An abstract notion of realizability for which intuitionistic predicate calculus is

complete. In Zntuitionism ana’ Proof Theory: Proceedings of the Summer Conference at Buffalo
N. Y. (1968). North-Holland, Amsterdam, 1970, pp. 227-234.

40. LEIVANT, D. Polymorphic type inference. In Proceedings of the 20th ACM Symposium on
Principles of Programming Languages (Austin, Tex., Jan. 24-26, 1983). ACM, New York, 1983,
pp. 88-98.

41. LISKOV, B., SNYDER, A., ATKINSON, R., AND SCHAFFERT, C. Abstraction mechanism in CLU.
Commun. ACM 20,8 (Aug. 1977), 564-576.

42. LISKOV, B. ET AL. CLU Reference Manual. Lecture Notes in Computer Science 114, Springer-
Verlag, New York, 1981.

43. MAC LANE, S. Categories for the Working Mathematician. Graduate Texts in Mathematics 5,
Springer-Verlag, New York, 1971.

44. MACQUEEN, D. B. Modules for standard ML. In Polymorphism 2,2 (1985), 35 pages. An earlier
version appeared in Proceedings of 1984 ACM Symposium on Lisp and Functional Programming.

45. MACQUEEN, D. B. Using dependent types to express modular structure. In Proceedings of the
13th ACM Symposium on Principles of Programming Languages (St. Petersburg Beach, Fla, Jan.
13-15,1986). ACM, New York, 1986, pp. 277-286.

46. MARTIN-LUF, P. Constructive mathematics and computer programming. Paper presented at
The 6th International Congress for Logic, Methodology and Philosophy of Science. Preprint, Univ.
of Stockholm, Dept. of Mathematics, Stockholm, 1979.

47. MCCRACKEN, N. An investigation of a programming language with a polymorphic type structure.
Ph.D. dissertation, Syracuse Univ., Syracuse, N.Y., 1979.

48. MCCRACKEN, N. The typechecking of programs with implicit type structure. In Proceedings of
International Symposium on Semantics of Data Types. Lecture Notes in Computer Science 173,
1984. Springer-Verlag, New York, pp. 301-316.

49. MEYER, A. R., AND REINHOLD, M. B. Type is not a type. In Proceedings of the 13th ACM
Symposium on Principles of Programming Languages (St. Petersburg Beach, Fla., Jan. 13-15,
1986). ACM, New York, 1986. pp. 287-295.

ACM Transactions on Programming Languages and Systems, Vol. 10, No. 3, July 1988.

502 l J. C. Mitchell and G. D. Plotkin

50. MILNER, R. The standard ML core language. Polymorphism 2, 2 (1985), 28 pages. An earlier
version appeared in Proceedings of 1984 ACM Symposium on Lisp and Functional Programming.

51. MITCHELL, J. C. Semantic models for second-order Lambda calculus. In Proceedings of the
25th IEEE Symposium on Foundations of Computer Science (1984). IEEE, New York, 1984,
pp. 289-299.

52. MITCHELL, J. C. Representation independence and data abstraction. In Proceedings of the
13th ACM Symposium on Principles of Programming Languages (St. Petersburg Beach, Fla.,
Jan. 13-15, 1986). ACM, New York, 1986, pp. 263-276.

53. MITCHELL, J. C. Polymo?phic type inference and containment. Inf. Comput. 76,2/3 (Feb./Mar.
1988), 211-249.

54. MITCHELL, J. C., AND HARPER, R. The essence of ML. In Proceedings of the 15th ACM
Symposium on Principles of Programming Languages (San Diego, Calif., Jan. 13-15,1988). ACM,
New York, 1988, pp. 28-46.

55. MITCHELL, J. C., AND MEYER, A. R. Second-order logical relations. In Log& of Programs.
Lecture Notes in Computer Science 193, Springer-Verlag, New York, 1985, pp. 225-236.

56. MITCHELL, J. C., AND PLOTKIN, G. D. Abstract types have existential types. In Proceedings
of the 12th ACM Symposium on Principles of Programming Languages (New Orleans, La.,
Jan. 14-16, 1985). ACM, New York, 1985, pp. 37-51.

57. MITCHELL, J. G., MAYBERRY, W., AND SWEET, R. Mesa language manual. Tech. Rep. CSL-
79-3, Xerox PARC, Palo Alto, Calif., 1979.

58. MORRIS, J. H. Types are not sets. In 1st ACM Symposium on Principles of Programming
Languuges (Boston, Mass., Oct. l-3, 1973). ACM, New York, 1973, pp. 120-124.

59. O’DONNELL, M. A practical programming theorem which is independent of Peano arithmetic.
In 11th ACM Symposium on the Theory of Computation (Atlanta, Ga., Apr. 30-May 2, 1979).
ACM, New York, 1979, pp. 176-188.

60. PRAWITZ, D. Natural Deduction. Almquist and Wiksell, Stockholm, 1965.
61. PRAWITZ, D. Ideas and results in proof theory. In 2nd Scandinavian Logic Symposium. North-

Holland, Amsterdam, 1971, pp. 235-308.
62. REYNOLDS, J. C. Towards a theory of type structure. In Paris Colloquium on Programming.

Lecture Notes in Computer Science 19, Springer-Verlag, New York, 1974, pp. 408-425.
63. REYNOLDS, J. C. The essence of Algol. In Algorithmic Languages, J. W. de Bakker and J. C.

van Vliet, Eds. IFIP, North-Holland, Amsterdam, 1981, pp. 345-372.
64. REYNOLDS, J. C. Types, abstraction, and parametric polymorphism. In IFIP Congress (Paris,

Sept. 1983).
65. REYNOLDS, J. C. Polymorphism is not set-theoretic. In Proceedings of International Symposium

on Semantics of Data Types. Lecture Notes in Computer Science 173, Springer-Verlag, New York,
1984, pp. 145-156.

66. SHAW, M. (Ed.) ALPHARD: Form and Content. Springer-Verlag, New York, 1981.
67. STATMAN, R. Intuitionistic propositional logic is polynomial-space complete. Theor. Comput.

Sci. 9 (1979), 67-72.
68. STATMAN, R. Number theoretic functions computable by polymorphic programs. In 22nd IEEE

Symposium on Foundations of Computer Science. IEEE, New York, 1981, pp. 279-282.
69. STENLUND, S. Combinators, X-terms and Proof Theory. Reidel, Dordrecht, Holland, 1972.
70. TROELSTRA, A. S. Mathematical Investigation of Zntuitionistic Arithmetic and Analysis. Lecture

Notes in Mathematics 344, Springer-Verlag, New York, 1973.
71. WULF, W. W., LONDON, R., AND SHAW, M. An introduction to the construction and verification

of Alphard programs. IEEE Trans. Softw. Eng. SE-2 (1976), 253-264.

Received June 1986; revised March 1988; accepted March 1988

ACM Transactions on Programming Languages and Systems, Vol. 10, No. 3, July 1988.

