
The Essence of ML 

John C. Mitchell Robert Harper 
AT&T Bell Laboratories Edinburgh University 
Murray Hill, NJ 07974 Edinburgh, Scotland 

Abstract 

Standard ML is a useful programming language with 
polymorphic expressions and a flexible module fa- 
cility. One notable feature of the expression lan- 
guage is an algorithm which allows type information 
to be omitted. We study the implicitly-typed ex- 
pression language by gjving a “syntactically isomor- 
phic” explicitly-typed, polymorphic function calcu- 
lus. Unlike the GirarddReynolds polymorphic calcu- 
lus, for example, the types of our ML calculus may 
be built-up b,y induction on type levels (universes). 
For this reason, the pure ML calculus has straightfor- 
ward set-theoretic, recursion-theoretic and domain- 
theoretic semantics, anId operational properties such 
as the termination of all recursion-free programs may 
be proved relatively simply. The signatures, struc- 
tures, and functors of the module language are easily 
incorporated into the typed ML calculus, providing 
a unified framework for studying the major features 
of the language (including the novel “sharing con- 
straints” on functor parameters). We show that, in 
a precise sense, the language becomes inconsistent if 
restrictions imposed by type levels are relaxed. More 
specifically, we prove that the important program- 
ming features of ML cannot be added to any impred- 
icative language, such as the Girard-Reynolds calcu- 
lus, without implicitly assuming a type of all types. 
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1 Introduction 

Recent years have seen increasing interest, in com- 
puter science, in various forms of typed &calculi. 
One motivation for studying these systems is that 
they provide some insight into programming lan- 
guages with similar typing features. For exam- 
ple, the Girard-Reynolds second-order X-calculus 
seems useful for analyzing languages with polymor- 
phic functions or abstract data type declarations 
[Gir72,Rey74,MP85]. The richer type systems pro- 
posed by Martin-Lijf [Mar82], Constable [C*86], and 
Huet and Coquand [CH84] also provide formal log- 
its for reasoning about programs. This general line 
of research has a different flavor from the original 
Scott-Strachey approach to programming language 
semantics, since the meta-language of type theory is 
somewhat closer to the object languages studied, and 
there is current interest in re-examining the status of 
nontermination and 1. However, the long-term goals 
are the same: a precise understanding of program- 
ming language constructs and a sound mathematical 
basis for reasoning formally or informally about pro- 
grams. 

In “The Essence of Algal” [Rey81], Reynolds 
presents a study of Algol-60 in the denotational style, 
contending that “Algol may be obtained from the 
simple imperative language by imposing a proce- 
dure mechanism based on a fully typed, call-by-name 
lambda calculus.” In addition to testing the Scott- 
Strachey approach for programming language anal- 
ysis, Reynolds’ study gave an important picture of 
Algol as the composition of several independent con- 
stituents. Using the framework of type theory, we 
propose an analogous case study of the programming 
language Standard ML [HMM86], only the first steps 
of which are completed here. In this paper, we will 
describe a typed X-calculus that encompasses many 
of the essential features of Standard ML and use this 
to analyze some potential extensions of the language. 
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We have chosen Standard ML as the basis for this 
analysis because it is sufficiently well-developed to 
be interesting and useful as a “real” programming 
language, and sufficiently well-designed to support 
detailed analysis. 

Standard ML is an updated version of the program- 
ming “meta-language” of the LCF system [GMW79], 
comprising a core expression language with poly- 
morphic functions [Mi185] and a module language 
for defining interdependent program units [Mac85]. 
The core language is designed around an automatic 
type inference algorithm that performs compile-time 
checking of “untyped” expressions. The module lan- 
guage is designed to support the organization of pro- 
grams into separately-compilable units, and involves 
a moderate amount of explicit type information. We 
believe that Standard ML may be characterized as 
follows. 

l The type system is a polymorphic lambda cal- 
culus with two levels (universes). In addition to 
polymorphic function spaces, the type construc- 
tors include strong sums (described in Section 
7), recursive types at the first level, and limited 
use of equalizers (described in Section 9) at the 
second level. 

l Exceptions provide a means for escaping any 
control structure to a point where the corre- 
sponding exception is trapped. 

l The operational semantics are given by a deter- 
ministic evaluator, for which the type system is 
sound with respect to normal termination. In 
other words, if the evaluator halts with no excep- 
tion raised, then the type of the result is guar- 
anteed by the typing rules. 

l References are provided using the syntax of type 
constructors, and any value of the first level may 
be stored in a reference cell. 

l Values of each universe are “first-class” in the 
sense that any operations appropriate to that 
level may be applied. For example, any element 
of any type from the first level may be stored in 
a reference cell, and functors may take any val- 
ues from the second level as parameters. This 
is not strictly true of Standard ML as currently 
implemented, since functors may not take func- 
tors as arguments. However, we consider this an 
implementation restriction, and not an essential 
feature of the language. 

There are many other aspects of ML that contribute 
to its utility. For example, the combination of named 

constructors in datatype declarations and pattern- 
matching in function definitions leads to a succinct 
and powerful programming style. However, this syn- 
tax does not seem essential; ML without pattern 
matching would still be ML. 

For the reader familiar with Reynolds’ study of Al- 
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the following comparisons may be helpful. 

Idealized Algol leaves expression evaluation un- 
determined, whereas deterministic evaluation 
seems central to the way exceptional and normal 
termination are defined in Standard ML. 

Storage allocation in Idealized Algol adheres to 
a stack discipline, while Standard ML does not. 

Idealized Algol distinguishes storable values from 
denotable values (c.f. [Gor79]), while Standard 
ML treats data types and phrase types uni- 
formly. 

Idealized Algol has labels and goto’s, which are 
replaced by the more structured exception mech- 
anism of Standard ML. 

While a thorough treatment of evaluation order is be- 
yond the scope of this paper, it may be worthwhile 
to clarify a few points. Reynolds argues that the pro- 
cedure mechanism of Algol is call-by-name, but the 
order of expression evaluation should be regarded as 
indeterminate. We also believe that in one respect, 
Standard ML evaluation is order dependent, and in 
another respect, order independent. However, our 
point of view is based on an entirely different sort 
of distinction. Reynolds’ view of Algol evaluation re- 
lies on the separation between Algol phrase types and 
Algol data types. Since ML constructs are uniformly 
applicable to values of all types (at least within the 
first universe), it is difficult to separate procedures 
from expressions. Therefore, ML must be viewed as 
having a single form of run-time evaluation. Since the 
definition of normal termination, the behavior of ex- 
ceptions, and the straightforward explanation of side- 
effects all seem to depend on evaluation order, we be- 
lieve that full “run-time” evaluation of ML programs 
is most successfully explained using a deterministic 
evaluation strategy. 

Due to the complexity of Standard ML, there are 
actually two phases of evaluation in current imple- 
mentations. The module language provides declara- 
tions that bind identifiers to structured values with 
type components, and these identifiers often occur in 
type expressions. Consequently, non-trivial evalua- 
tion is involved in determining equality of type ex- 
pressions. During the type-checking phase of compi- 
lation, only certain compound forms in type expres- 
sions are evaluated, and so compile-time evaluation 
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appears to be finite Church-Rosser, as a consequence 
of the finiteness of developments [Bar84, Theorem 
11.2.251. Thus, we believe that while “run-time” eval- 
uation is order dependent, order of evaluation may 
safely be regarded as indeterminate for the purpose 
of type checking. 

The main focus of th:is paper will be the type sys- 
tem of Standard ML, as this seems a prerequisite for 
more comprehcensive analysis. To simplify the presen- 
tation, we will. omit exceptions and references; what 
is left is still quite interesting. The two main ar- 
eas of investigation will be the discrepancy between 
implicitly- and explicitl,y-typed frameworks, and the 
importance of separating the types into two distinct 
universes. With respect to the first point, we will ar- 
gue that the implicitly-typed core language is most 
profitably viewed as a short-hand for an explicitly- 
typed language. This sjmplifies the semantics of the 
language, since only well-typed expressions must have 
meaning, and allows us to study the implicitly-typed 
expression lan.guage within the same framework as 
the module language. It is worth noting that al- 
though the semantics is simplified, there seems to be 
no significant loss of generality in taking this point 
of view. We will see that Milner’s type inference 
model, as described in [Mi178], and the ideal model of 
[MPS86] may b e viewed as models of our explicitly- 
typed core calculus. 

An important feature of the analysis is that our 
type system is stratified into levels, or uniz)erses, in 
the style of Martin-L6f’s type theory [Mar82], and 
in keeping with the suggestions of [Mac86]. As in 
Martin-LGf’s theory, our universes result in a pred- 
icative language, which means that the types may 
be ranked in such a way that every value occurs 
with higher rank than any values on which its exis- 
tence or behavior is predicated. (For example, func- 
tions always occur with higher rank than their ar- 
guments.) The universe distinctions are faithful to 
the separation of monotypes from polytypes in Mil- 
ner’s earlier work [Mi178,DM82], and allow us to show 
that implicit ML typing is syntactically equivalent 
to our explicit typing rules. The predicative uni- 
verses also distinguish our calculus from both the 
implicit polymorphic typing of [Mit87,MPS86,Car85] 
and the explicitly-typed polymorphic calculus of 
[Gir7l,Gir72,Rey74]. In. particular, the pure ML cal- 
culus without recursion has classical set-theoretic 
models, while the Girard-Reynolds calculus does not 
[Rey84]. 

Some stud- 
ies of ML typing (e.g., [Car85,Mit87,MPS86]) have 
suggested, in effect, tha.t the restrictions imposed by 
universes might be relaxed to allow the full second- 

order polyrnorphism of the Girard-Reynolds calcu- 
lus [Gir71 ,Gir72,Rey74]. However, these studies were 
generally based on consideration of the ML core lan- 
guage alone, and did not take modules into account. 
We will adopt the view of modules proposed by Mac- 
Queen, in which the main constructs are reduced to 
the C and IT types (the swcalled “dependent” types) 
of Martin-LGf’s type theory [Mac86]. Using the typed 
X-calculus with these constructs, we are able to show 
that universes play an important role. 

Our examination of universes involves close study 
of a restricted subset of the language. In the fragment 
of Standard ML without recursion or recursively- 
defined types, every expression evaluates to a normal 
form, regardless of the order of evaluation. (The fact 
that no evaluator could continue indefinitely is called 
the strong normalization property.) This is what one 
would naturally expect, since no construct explicitly 
provides unbounded search or recursion. However, we 
will show that if the distinction between universes is 
removed, it becomes possible to define a type of all 
types. It follows from previous work on type: type, 
specifically, [Coq86,Gir72,How87,MR86], that there 
exist recursion-free programs that cannot be evalu- 
ated to a normal form by any evaluation strategy. 
As argued in [MR86], this alters the character of the 
language dramatically. Therefore, we believe that the 
separation of types into universes is essential to ML. 

As an artifact of the way we study universe distinc- 
tions, the bulk of this paper will not be concerned 
with evaluation order. For the fragment of ML with- 
out recursion or generative constructs, full evalua- 
tion in any order produces the same result. Con- 
sequently, our analysis of universes applies to both 
eager and lazy dialects of ML, and any similar lan- 
guage based on any other evaluation strategy. How- 
ever, in fairness, we should emphasize that the rele- 
vance of type: type to programming remains a topic 
for further research. While it seems undesirable for 
a language to provide two distinct methods of recur- 
sion, one directly and one indirectly via type: type, 
we do not have clear-cut evidence that this is truly 
pathological. However, in further study of type: type, 
many subtle and important issues remain to be inves- 
tigated. For example, we suspect that any study of 
representation independence or full abstraction would 
be complicated dramatically by a type of all types. 

The next section contains a short summary of the 
accepted type inference rules for the core language of 
Standard ML. In Section 3, an alternative, explicitly- 
typed core language is given. The two approached 
are proved equivalent in Section 4, and the semantics 
of the core language is discussed in Section 5. 

Sections 6 through 9 consider a full calculus encom- 
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passing the module language. A review of modules is 
given in Section 6, followed by a reduction to C and II 
types in Section7. Section 8 considers the importance 
of universe distinctions and type: type, and Section 9 
presents an extension to the type system that includes 
the “sharing” constraints of MacQueen’s module lan- 
guage. Finally, Section IO discusses the problems 
of representation independence and full abstraction, 
with concluding remarks in Section 11. All type sys- 
tems are defined formally in tables at the end of the 
paper. 

2 Implicitly typed ML 

Many studies of ML have focused on the type 
inference algorithm for the core expression lan- 
guage [Mi178,DM82,MPS86,Wan84]. This algorithm 
allows the ML programmer to write, for example, 

let id(x) = x in . . .end 

automatically inferring the fact that the function id is 
a function from type t to t, for any t. Milner’s seminal 
paper [Mil78] describes the type inference algorithm 
and proposes a semantic framework for justifying its 
behavior. In Milner’s semantics, an untyped expres- 
sion denotes some element of an.untyped value space, 
a.nd a type denotes a subset of this space. 

The syntactic part of Milner’s analysis is refined 
in [DM82], where an inference system for assigning 
types to expressions is given. The type inference rules 
are proved sound by showing that if it is possible to 
infer that expression e has type c, then the untyped 
meaning of e belongs to the set denoted by u. The 
type inference algorithm is then treated as a decision 
procedure for the inference system. 

Miln.er’s semantic 
analysis is elaborated in [MPS86,Car85], where the 
meanings of polymorphic types are clarified and re- 
cursive types are given semantics (see also [Mit87]). 
In Milner’s model, the sets denoted by type expres- 
sions do not include a special error value of the do- 
main, called wrong. Consequently, the soundness of 
ML typing is often summarized by the slogan well- 
typed expressions cannot go wrong [Mi178]. 

Although there are quite a few constructs in the 
core expression language of Standard ML, the behav- 
ior of the type checker may be understood by con- 
sidering the fragment presented in [DM82], which we 
will call Core-ML . The syntax of Core-ML is given 
by 

e . . - ..- 2 1 ee 1 Xx.e 1 let 2 = e in e, 

where x may be any identifier. The let expres- 
sion form is taken as primitive because it has a typ- 
ing rule that is not derivable from the others. We 
will review the type inference algorithm for Core-ML 
briefly, so that we may later compare Core-ML with 
an explcitly-typed calculus. 

We will use two classes of type expressions, 
monomorphic and polymorphic. In earlier work,. 
monomorphic expressions have been the type expres- 
sions without variables, and polymorphic expressions 
have had all type variables implicitly bound. We will 
make the same intuitive distinction in a slightly dif- 
ferent way. We begin with some infinite set of type 
variables, an arbitrary collection of base types, and 
define the monomorphic type expressions by 

7 ::= t 1 p 17--+T 

where p may be any base type and t any type variable. 
In a monomorphic type expression 7, a type variable 
t stands for some unknown, non-polymorphic type. 
The polymorphic type expressions (also called type 
schemes) are defined by 

u :: = 7 1 W.U. 

Intuitively, the elements of type Vt.u have type u for 
every possible value of the type variable t (which will 
generally occur in a). Since V binds t in c, we have 
vt.a = Vs.[s/t] 0, where [s/t]u denotes substitution of 
s for free occurrence of t in 6, as usual. Note that 
every monomorphic type is also considered a poly- 
morphic type. 

In the Damas-Milner system, the assertion that 
a Core-ML expression e has type u is written e: m. 
Since the type of an expressions will generally de- 
pend on the types given to free variables, we will use 
typing statements that incorporate such assumptions. 
A type assignment, or context, I’, is a finite sequence 
of bindings of the form 2: 0, with no variable 2 oc- 
curring twice. It is useful to think of a context l? as 
a partial function from variables to types and write 
I’(z) for the unique u with 2: u in I? (if such a binding 
exists). We will also use the notation oom(I’) for the 
set of expression variables occurring in l?, and write 
l?,x:u (where 2 $ oom(I’)) for the type assignment 
obtained by appending the indicated binding to l?. A 
typing is a triple of the form r D e : u, which may be 
read, “the expression e has type scheme B in context 
r.” 

The Damas-Milner type assignment system is 
giveninTable1. WewritekDMI’De:oifI’De:u 
is derivable in this system, and say that an expression 
e is typable in a context l? iff there is a type scheme 
# such that k-DM r D e : u. 
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A type u is a substitution instance of a (T’ iff there is 
a substitution S of monotypes for type variables such 
that S(J) = U, where equality is modulo renaming of 
bound variables. A monotype r is a generic instance 
of a polytype 0 == Wi . . . t.m.~‘, written g C 7, iff there 

is a substitution S of monotypes for t i . . . t, such that 
S(T’) = T. For polytypes, we say g C P’ if every 
generic instance of 0’ is also a generic instance of CT. 
Syntactically, this means that there is an Q variant 
ifs ] . . . sk.7’ of a-’ such that no si (I 5 i 5 k) occurs 
free in g and (T LI 7’; see [DM82,Mit87] for further dis- 
cussion, and [Mit87] f or an interpretation of generic 
instantiation as semantic containment. When u E o’, 
we say CT is more general than (T’. It is worth men- 
tioning that the generic instance relation is preserved 
by substitution, i.e., if g !L o’, then S(a) E S(U’) for 
any substitution S. 

The following technical lemma summarizes some 
useful properties of the Damas-Milner system. 

Lemma 2.1 ;!. If/-DMrDe:(T, thenkDMr’De: 
o whenever r’(s) C I’(z) for 3: free in e. 

2. If ~-DM r D e : u and S is any substitution, then 
tDM s(r) D e : S(U). 

An important property of the Damas-Milner sys- 
tem is that every typable expression has a principal 
typing, from which all other typings may be efficiently 
derived. A typing I? D e : u is a principal typing 
for expression t: if ~DM I? D e : g and, whenever 
tDM I” b e : o’, we have cr C 0’ and I”(x) C F(x) for 
every x occurring in r. In other words, the principle 
typing for e must be derivable, and it must give the 
most general type in the Yeast general” context.’ 

Theorem 2.2 (Damas-Milner) If 
an untyped Con?-ML expression e is Damas-Milner 
typable, then there exists a principal typing I’ D e : c. 

Furthermore, there is a linear-time algorithm which, 
given e, computes the principle typing if it exists, and 
fails otherwise. 

3 Explicitly Typed ML 

In contrast to the Milner-style analyses of ML, we will 
view ML programs as explicitly typed, in the sense 
that variables a.re explicitly assigned a type at the 
point where they are bound, and all type manipula- 
tions are explicit. Essemially, we view the untyped 
concrete syntax of ML as a convenient shorthand for 

‘This formulation of principal typing differs from [DM82] 
in that the latter defines the principal typing with respect to 
a given context. Further discussion of this point may be found 
in [Lei83]. 

an explicitly4yped abstract syntax, with the type in- 
ference algorithm bridging the gap. One reason for 
taking this position is that the untyped approach does 
not scale up to include features of the modules sys- 
tem. Another reason is that it leads to significant 
technical simplifications in the semantics of the lan- 
guage. 

Implicitly-typed Core-ML is essentially equivalent 
to an explicitly-typed function calculus we will call 
Core-XML , for core expkcit ML. The types of Corc- 
XML fall into two classes, corresponding to the 
monomorphic types and polymorphic type of Corc- 
ML . To introduce some useful terminology, we will 
say that r is a type of the first universe, and write 
T: Vi, if 7 is built up from base types and type vari- 
ables using the function-space constructor +. This 
means that 7: Ur iff T is a monomorphic type expres- 
sion of Core-ML . 

The polymorphic type expressions of Core-ML are 
defined by quantifying over the monomorphic types. 
In Core-XML this corresponds to universal quantifi- 
cation over the first universe, and so it is natural 
to regard these types as being of a “higher” sec- 
ond universe. We will say that c is a type of th.e 
second universe, and write u: Uz, if u has the form 
IIt,: U1 . . . IIt,: U1 .T, where r : Ui. Thus Uz c0nsist.s 
of exactly the Core-ML polymorphic types, except 
that we will write II instead of !f, and the universe 
of each type variable is written explicitly. This is 
to allow a smooth generalization to full XML with 
type variables ranging over both universes, a step 
we will take in Section 7. Note that since every 
monomorphic type is also considered a polymorphic 
type (with binding of zero variables), we effectively 
have U1 G Uz. 

The presentation of Core-XML is simplified by 
adopting the meta-variable conventions used in the 
previous section, so that 7, ri , . . . will always be Ui 
types, and cr, ui , . . . will be iJ2 types. We will not ex- 
plicitly declare type variables in contexts. Rather, we 
assume at the outset that all type variables r, s, t, . . 

denote elements of Ui 
The un-checked pre-terms of explicitly typed 

Core-XML are given by the following grammar: 

M ..- ..- IC 1 MM 1 kC:T.M 1 MT 1 Xt.M 
let IC: (J = M in M 

Following Damas-Milner, we retain let as a primitive 
construct in Core-XML since its typing rule is not 
derivable from the other rules. However, in the full 
XML system it will be definable in terms of abstrac- 
tion and application, and will therefore be eliminated. 

The type checking rules of the language are listed in 
Table 2. To distinguish implicit Core-ML typing from 



explicit Core-XML typing, we will write I-X I? D A4 : CT 
if the typing r D M : (T is derivable from the Core- 
XML typing rules. The essential difference between 
tom and kx is that the GEN and SPEC rules of the 
implicit system are replaced by rules for explicit type 
abstraction and type application. A preterm M is a 
term of Core-XML if kx r D M : (T for some I and u. 

The difference between Core-XML and the Girard- 
Reynolds polymorphic X-calculus 
[BMM88,Rey74,Gir72] lies in the distinction between 
universes Ur and U2. Rule TAPP of Core-XML only 
allows a type application r D MT : [-r/t10 when r is a 
type of the first universe Ui . However, in the Girard- 
Reynolds calculus, there is no universe distinction, 
and we can apply a term of polymorphic type to any 
type. One consequence of the universe distinction 
is that Core-XML has classical set-theoretic models, 
while the Girard-Reynolds calculus does not [Rey84]. 

The language Core-XML differs from Martin-LBf’s 
type theory and the Nuprl system [C*86] not only in 
that we do not have Ur : Uz (which will change when 
we come to full XML), but also because types are ex- 
plicitly assigned to all identifiers at their binding oc- 
currences. For example, rule ABS of Core-XML only 
allows us to type a lambda abstraction Xx: T.M if the 
type of the bound variable z is explicitly declared. 
In contrast, Nuprl and Martin-LGf’s type theory give 
types to expressions like Xx.M. Without explicit typ- 
ing, Core-XML semantics would become somewhat 
more complicated, since we would need a “universal 
domain”-like interpretation for untyped lambda ab- 
straction, type abstraction, and type constructors like 
+ and II. 

Equations have the form I’ D M = N : T, 

where M and N are terms of type r (in the con- 
text I’). The equational proof system of Core-XML 
is similar to that of the Girard-Reynolds calculus 
[Gir71 ,Rey74,BMM88], with the following additional 
axiom for let: 

r D (let z: u = M in N) = [N/x]M : T 

A complete presentation of the equational inference 
system is omitted due to lack of space. 

4 Equivalence of Explicit and 
Implicit Systems 

In this section, we will show that implicitly-typed 
Core-ML and explicitly-typed Core-XML are essen- 
tially equivalent. A related correspondence between 
implicit ML typing and Girard-Reynolds typing re- 
stricted by “rank,” which is similar to our universe 
restriction, was suggested earlier in [Lei83, Section 71. 

However, the technical statement of Theorem 7.1 in 
that paper is incorrect, since rank 2 typing of lambda 
terms allows us to type X-abstractions polymorphi- 
tally, whereas the typing rules of Core-ML do not. 
It is to avoid precisely this problem that we have in- 
cluded let in the syntax of Core-XML . 

The type erasure M” of a typed term M is defined 
as follows: 

I 

X ifMzx 
M,“M,” ifM=MrMz 
Xx.MI” if M E Xx: r.Ml 

M”= M; if M E Xt.MI 

w if M E Mlcr 
let x=M; in Mg ME 

let x: CJ = MI in M2 

Theorem 4.1 If kx I’ D M : o, then I-DM r D M” : 
u. 

Theorem 4.2 If l-DM I? D e : CT, then there exists 
an explicitly typed term M such that M” E e and 
EX r D M : u. Furthermore; M can be computed 
eficiently from a proof of r D e : u. 

Theorem 2.2 states that there is an algorithm which 
finds, for any typable expression e, a principal typing 
for e. It is a simple matter to modify this algorithm 
so that it produces as well a derivation of the prin- 
cipal typing in the Damas-Milner system. Applying 
Theorem 4.2, we obtain an algorithm X that, given a 
typable expression e, yields an explicitly typed term 
M such that l-x l? D M : o (and fails otherwise). Al- 
gorithm X inserts type labels on X’s and let’s, type 
abstractions on all let-bound expressions, and type 
applications at all uses of identifiers whose type is 
of the form Vt 1 . . . t,.r. For example, the explicitly- 
typed term produced from 

let I = Ax.a: in II 

is 

Xt.let 1:Vt.t -+ t = Xt.Xx: t.x in I[t + t](I[t]). 

Note that the principal type of let I = Xz.x in II 
is Vt.t + t , which is the type of the explicitly-typed 
term. The syntactic completeness of Algorithm X 
follows from that of the type inference algorithm. 

It is worth pointing out that since Core-XML has 
let as a primitive, the translation used in Theorem 4.2 
does not alter the structure of terms. In particular, 
we do not treat let 2 = N in M as an abbreviation 
for [N/x] M. This distinguishes our translation from 
the explicit typing translation of [Wan84]. 



5 Semantics of Core-XML 

The Core-XML language has a straightforward 
model theory that is similar to the seman- 
tics of second-order lambda calculus described in 
[BM84,BMM88,Mit87], except that we have two uni- 
verses instead of one collection of types. An interest- 
ing choice in giving semant,ics to Core-XML lies in the 
interpretation of the containment U1 5 Uz. While it 
seems syntactically simpler to view every element of 
Ur as an element of Uz, t.here may be some seman- 
tic advantages of interpreting U1 C Uz as meaning 
that U1 may be embedded in Uz. With appropriate 
assumptions about the inclusion mapping from Ul to 
UZ, this seems entirely workable, and leads to a more 
flexible model definition tlhan literal set-theoretic in- 
terpretation of U1 C Uz. Due to space considerations, 
precise definitions are omitted. 

Since the only difference between Core-XML and 
the Girard-Reynolds second-order calculus is the dis- 
tinction between universes, every second-order model 
may be viewed a.s a Core-:XML model with VI = Uz. 
Consequently, Core-XML may be interpreted in the 
domain-theoretic and recu.rsion-theoretic models dis- 
cussed in 
[ABL86,BMM88,Gir72,Tro73,McC79,Mit86b]. One 
difference between the languages, however, is that 
Core-XML has classical set-theoretic models, while 
the Girard-Reynolds calculus does not [Rey84]. In 
fact, any model of ordinary (non-polymorphic) typed 
lambda calculus may be extended to a model of Core- 
XML by a simple set-theoretic construction. 

One class of models that is pertinent to the develop- 
ment of the last few sections is obtained by interpret- 
ing types as partial equivalence relations (PER’s; see 
[Mit86b] for further d’ 1scu:ssion and references). The 
ideal model of [MPS86], f;or example, can be viewed 
as a PER inference model, as defined in [Mit87], by 
replacing each ideal I with1 the partial equivalence re- 
lation I x I. By the results of [Mit86b], this gives 
us a second-order model, and hence a model of Core- 
XML . A similar Core-XML model can be constructed 
from Milner’s original description [Mi178], taking U1 
to be the collection of monotypes, and defining the 
elements of U2 (the polytypes) by quantification over 
VI. In either case, we obtain a Core-XML model 
with a degenerate equational theory, but type mem- 
bership interpreted as expected. Thus a consequence 
of the type soundness theorem for Core-XML models 
(see, e.g., [Mit86b,Mit87]) is that Core-ML expres- 
sions “cannot go wrong.” 

duction on types, strong normalization for Core-XML 
may be proved by a relatively straightforward exten- 
sion of the argument given in [Bar84, Appendix A]. 
However, it is worth pointing out that strong normal- 
ization for Core-XML follows from strong normaliza- 
tion of the Girard-Reynolds calculus, and so is also a 
corollary of the theorem originally proved by Girard 
[Gir71 ,Gir72,Mit86b]. 

6 Review of Standard ML Mod- 

ules 

An important part of Standard ML is the module 
system, proposed in [Mac851 and further documented 
in [HMM86]. W e will review the main features of 
the module design by example and then, in the next 
section, describe the full XML function calculus en- 
compassing modules. 

The basic units of the module system are called 
structures, signatures and functors. A structure is 
essentially a (heterogeneous) environment. For our 
purposes, an environment assigns meaning to value 
identifiers (by mapping them to values), to type iden- 
tifiers (by mapping them to types), and to structure 
identifiers (by mapping them to structures). The type 
of a structure is a signature, which lists the identifiers 
bound by the structure and their types. For example, 
the signature of a structure binding x to 3 will specify 
that x has type int. Since structures may bind type 
and structure identifiers as well as value identifiers, 
the notion of “type” must be extended to encompass 
these cases as well, as we will see below. Functors 
are functions mapping structures to structures, but 
currently there are no explicit functor signatures in 
Standard ML. 

Structures are denoted by structure expressions, 
the basic form of which is a sequence of declarations 
delimited by keywords struct and end. Structures 
are not entirely “first-class” in that they may only 
be bound to structure identifiers or passed as argu- 
ments to functors. However, we will see that this 
a universe distinction, and not an ad hoc restriction 
of the language. The following declaration binds a 
structure to the identifier S: 

structure S = 
struct 

type t = int 
val x : t = 7 

end 

A final, related topic is the theory of iogical rela- The structure expression following the equals sign 
tions for Core-XML , along the lines of [MM85,Sta85]. defines an environment mapping t to int and x to 
Since universes allow us to construct relations by in- 7. The way Standard ML is currently implemented, 
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structure expressions are “generative,” which means 
that for the purpose of type checking, each structure 
elaboration yields a distinct structure. The reason 
for this is that the modules language allows a user to 
specify that two structures must be equal, using shar- 
ing specifications, and so structure equality must be 
made efficiently decidable. More will be said about 
this in Section 9. 

The components of a structure are accessed by 
qualified names, using a syntax reminiscent of record 
access in many languages. For instance, the identi- 
fier S .x refers to the x component of S, and therefore 
has value 7. Similarly, S . t refers to the t component 
of S, and denotes the type int. The typing rule for 
qualified names, which is made precise using signa- 
tures, gives S . x type S . t. During the type checking 
phase of compilation, S. t will be evaluated to int, 
when necessary, so that S . x may be used as an integer 
expression. This “transparency” of type definitions 
distinguishes Standard ML structures from abstract 
data type declarations (see [MP85] for related discus- 
sion) . 

Signatures are denoted by signature expressions, 
the basic form of which is the specification. Signa- 
tures may be bound to signature identifiers using a 
signature binding, as follows. 

signature SIG = 
sig 

type t 
val x : t 

end 

This signature asserts that t is a type identifier, and 
that x is a value identifier of type t. It should be clear 
that SIG is a legitimate signature for the structure S 
defined above. 

It is worth remarking that there may be many dis- 
tinct signature expressions that accurately describe a 
given structure. For example, the signature 

signature SIG’ = 
sig 

type t 
val x : int 

end 

is also an acceptable specification of the structure S, 
for the value of x is in fact an integer. 

In addition to ambiguities of this form, there is an- 
other, more practically-motivated, reason why struc- 
tures do not possess unique (or most general) signa- 
tures. It seems important in practice that signatures 
be interpreted as constraints or views of a structure, 
rather than precise specifications. For example, in 

ML the structure S defined above also matches the 
signature 

signature SIG” = 
sig 

val x : int 
end 

since it clearly provides a component x of type int. 
This is related to the form of subtyping discussed 
in [Car84,CW86]. Although structures do not have 
unique signatures, it is shown in [HMT87b] that ev- 
ery structure has a “most general” signature, much as 
each expression of the core language has a most gen- 
eral type. For further discussion of signature match- 
ing, we refer the reader to [HMT87b]. 

To simplify our treatment of Standard ML, we will 
simplify signature matching so that each structure 
has a unique signature listing all of its components 
and their types. This allows us to view the more gen- 
eral form of signature matching as a convenience of 
concrete syntax, much as we view the implicitly-typed 
Core-ML as a shorthand for Core-XML . In particu- 
lar, we regard the signature matching algorithm of 
Standard ML as providing the automatic insertion of 
coercion functions that restrict structures to the re- 
quired signatures. 

Functors (which are functions mapping structures 
to structures) are generally declared using a syntax 
reminiscent of the typed function declarations used 
in many languages: 

functor F ( S : SIG > : SIG = 
struct 

type t = S.t * S.t 
val x : t = (S.x,S.x) 

end 

The parameter signature is mandatory, but, as a 
notational convenience, the result signature may be 
omitted, with the default obtained by an extension 
of the type inference algorithm for the core language. 
The functor F takes a structure matching the sig- 
nature SIG (defined above), and returns a structure 
matching the same signature, but with the type t of 
the result being the Cartesian product of S . t with 
itself, and, correspondingly, with x being the pair 
(S.x,S.x). 

A peculiarity of the module system is that signa- 
tures are not allowed to have free type variables. This 
implies that a result signature cannot refer to a pa- 
rameter or its signature, and hence certain forms of 
dependency cannot be expressed. For example, the 
following declaration is not legal in ML, since the 
signature describing the result of functor application 
contains a free occurrence of S. 
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functor G ( S : SIG > : sig val y : S. t 
* S.t end = 

struct 
val y = (S.x,S.x) 

end 

We would like to have S bound by the functor ex- 
pression, but thi.s is prohibited by current implemen- 
tations. However, with the result signature removed, 
the declaration above becomes legal Standard ML. 
This anomaly, which is at variance with the account 
given in [Mac86], appears to be an oversight arising 
from the lack of functor signatures. To avoid this 
problem, and to provide a more uniform language, 
we will incorporate functor signatures into our model 
of ML. 

7 Full XML 

In this section we will extend Core-XML to a function 
calculus XML by adding general constructs that al- 
low us to describe signatures, structures and functors. 
Following [Mac86], we will use general sums and prod- 
ucts in the style of Martin-LGf’s type theory [Mar82]. 
While general sums (also called “strong sums;” see 
[How80]) are closely related to structures, and general 
Cartesian products seem necessary to capture func- 
tars, the language XML will be somewhat more gen- 
eral than Standard ML. For example, an ML struc- 
ture may contain polymorphic functions, but there 
is no way to define a polymorphic structure in the 
implicitly-typed programming language. This is sim- 
ply because there is no provision for explicit binding 
of type variables. In XML, by virtue of the uniformity 
of the language definition, there will be no restriction 
on the types of things that can be made polymor- 
phic. For similar reasons, XML will have expressions 
corresponding to higher-order functors and functor 
signatures. Although higher-order functors are omit- 
ted from ML, they seem to be useful for supporting 
separate compilation. And, as mentioned in the last 
section, functor signatures smooth over some trouble 
spots. Consequently, we consider the introduction of 
these features a benefit of XML. In Section 9, we will 
discuss the addition of sharing constraints. 

Intuitively, general sums and products may be 
viewed as straightforward set-theoretic constructions. 
If A is an expression defining some collection (either 
a type or universe, for example), and B is an ex- 
pression with free variable z which defines a collec- 
tion for each x C_ A, then Cx:A.B and IIx:A.B are 
called the sum and product of the family B over the 
index set A, respectively. he product IIz: A.B is the 
Cartesian product of the -family { B(z) 1 z E A }; its 

elements may be regarded as functions f such that 
f(u) E [a/z]B for each a E A. he sum CZ: A.B is 
the disjoint union of the family { B(z) ] z E A }; its 
members are defined to be ordered pairs (u,b) with 
a E A and b E [a/x]B. Since the elements of sum 
types are pairs, general sums come with projection 
functions fst and snd for first and second compo- 
nents. 

General sums allow us to write expressions for 
structures and signatures, provided we regard envi- 
ronments as tuples whose components are accessed 
by projection functions. For example, the declaration 
of structure S in the last section, with t = int and 
x = 7, may be viewed as binding S to the pair (int, 7). 
In XML, the components t and x are retrieved by 
projection functions, so that S. t is regarded as an 
abbreviation for snd(S). With general sums we can 
represent the signature SIG as the type Ct: Ul.t, of 
which the tuple (int, 7) is a member. he represent a- 
tion of structures by unlabeled tuples is adequate in 
the sense that it is a simple syntactic translation to 
replace qualified names by expressions involving pro- 
jection functions. However, this way of viewing struc- 
tures does not provide any natural interpretation of 
Standard ML open, which imports declarations from 
the given structure into the current scope. herefore, 
it would be preferable to define a type system with 
environments as part of the syntax. 

Since general products allow us to type functions 
from any collection to any other collection, we can 
write functors as elements of product types. For ex- 
ample, the functor F of the last section is defined by 
the expression 

AS: (Et: U1 .t).Cfst(S) x &t(S), (snd(S), snd(S))), 

which has type 

I-IS: (Et: u1 .t).Cs: Ul .s. 

Since there is no need to require that subexpres- 
sions of XML types be closed, we are able to write 
explicitly-typed functors with nontrivial dependent 
types in XML. In addition, due to the uniformity of 
the language, we also have higher-order functors. 

Unfortunately, general products and sums compli- 
cate the formalization of XML considerably. Since a 
structure may appear in a type expression, for exam- 
ple, it is no longer possible to describe the well-formed 
type expressions in isolation. his also makes the 
well-formed contexts difficult to define. herefore, 
we will define XML by giving a set of inference rules 
for determining the well-formed contexts, types and 
terms, in the style of Automath [DB80] and Martin- 
Lof [Mar82]. he un-checked pre-terms of XML are 

36 



given by the following grammar: 

M : : = II: ] Ur ] Uz ] triv ) M + M 1 IIx: M.M 
Cx: M.M 1 * I Ax: M.M I MM I (M, M) 

fst(W I sWM) 
he metavariables M, N, and P range over the pre- 

terms. We also use o and T to range over pre-terms, 
particularly when the term is intended to be a type. 

he observant reader will note that we no longer have 
let. his is because let x: u = M in N may be writ- 
ten as (XZ: c.N)M in XML, using lambda abstraction 
over the polymorphic type u: Uz. he type checking 
rules for XML appear in ables 3 through 7. 

he following lemma summarizes some technical 
properties of the type system. 

Lemma 7.1 I. If I-- I? D M : r, then l- I context. 

2. If I- I? D M : T, then either r E Uz or k r D r : 

u2. 

3. If t r,x: r D M : u and t r D N : T, then 
t r D [N/X]h!f : [N/X]a. 

Strong normalization for XML may be proved using 
a translation into Martin-Lijf’s 1973 system [Mar73]. 
We consider it an important open problem to develop 
a theory of logical relations for full XML, a task that 
is significantly complicated by the presence of general 
C and I’l types. 

While we have outlined the translation of Stan- 
dard ML signature, structure and functor expressions 
into XML, the status of the corresponding declara- 
tions deserves further explanation. he most natural 
treatment of these declarations might seem to be via 
lambda abstraction, regarding 

structure S: SIG = struct (body) end; 

b-w-am) 

as meaning 

(AS: SIG. (program)) (body). 

However, this does not model the behavior of the 
Standard ML type checker accurately, since the pro- 
gram must be typed without knowing the values of 
typed declared in S. In fact, this form of parameteri- 
zation seems to provide data abstraction, as noted in 
[Mac85]. 

An important aspect of Standard ML is that sig- 
nature and functor declarations may only occur at 
“top level,” which means they cannot be embedded 
in other constructs, and structures may only be de- 
clared inside other structures. Furthermore, recursive 
declarations are not allowed. Consequently, it is pos- 
sible to treat signature, structure and functor decla- 
rations by simple macro expansion. By this process, 
the program 

structure S = 
struct 

type t = int 
val x : t = 7 

end ; 
s.x + 3 

may be typed by observing that the type of S .x is 
S.t = @((i&,7)), which may be simplified to int. 

hus the first step in translating a Standard ML pro- 
gram into XML is to replace all occurrences of sig- 
nature, structure and functor identifiers with the ex- 
pressions to which they are bound. hen, type ex- 
pressions may be simplified using the type equality 
rule of able 4, as required. With the exception of 
“generativity,” which may be regarded as a means 
of characterizing a particularly simple approximation 
to XML equality (c.f.[HM 87b,HM 87a]), this pro- 
cess models elaboration during the Standard ML type 
checking phase fairly accurately. 

8 Predicativity and the rela- 
tionship between universes 

8.1 Universes 

Each of the constructs of XML is designed to cap- 
ture a specific part of the programming language. In 
an effort to provide a vocabulary for discussing ex- 
tensions to ML, and to simplify the presentation of 
the type theory, we have allowed arbitrary combina- 
tions of constructs and straightforward extensions like 
higher-order functor expressions. While generalizing 
in certain ways that seem syntactically and seman- 
tically natural, we have retained the distinction be- 
tween monomorphic and polymorphic types by keep- 
ing VI and U2 distinct. he restrictions imposed by 
universes are essential to the proof of heorem 4.1, 
and have the technical advantage of leading to far 
simpler semantic model constructions. However, it 
may seem reasonable to generalize ML polymorphism 
by lifting the universe restrictions (as in the Girard- 
Reynolds second-order lambda calculus), or alter the 
design decisions U1 C Uz and VI : U2. 

In this section, we will show that the assumptions 
Ul 2 U2 and U1 : U2 are essentially benign, and that 
in the presence of structures and functors, the uni- 
verse restrictions are essential if we wish to avoid a 
type of all types. Since there is insufficient space to 
debate the merits of type: type, we refer the reader 
to [Coq86,How87,MR86] for background information 
and further discussion. Based on previous investi- 
gation, it seems fair to say that type: type would cer- 
tainly change the character of ML dramatically. How- 
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ever, further research is needed to understand the 
ramifications of type: type more precisely. 

8.2 VI is a subset of Uz 

In XML, we have Ur 2 i’/z, since every Ur type is 
also treated as a. U2 type. The main reason for this 
is that it simplifies both the use of the language, and 
a number of technical details in its presentation. For 
example, by putting every 7: Ur into U2 as well, we 
can write 

u : uz 
IIt:- 

for the II-formation rule, instead of giving two sep- 
arate cases for r: VI and u: Uz. An important part 
of this design decision is that U1 c Ua places no ad- 
ditional semantic constraints on XML. More specifi- 
cally, if we remove the appropriate typing rule from 
the language definition, we are left with a system in 
which every U1 type is represented as a retract of 
some Us type. This allows us to faithfully translate 
XML into the language without U1 2 172, so that ev- 
ery semantic model of XML without Lri C Us may 
serve as a semantic model for XML with UI C U2. 
The justification for assuming U1 c Ua is made more 
precise by the following lemma. 

Lemma 8.1 Let 7: UI be any type from the first uni- 
verse, and let t be a variable that is not free in r. 
Th.en there are XML contexts 

i[] = X;f: U1.[] and j[] = [Itriv, 

where triv may be any type, with the following prop- 
erties: 

l r D i[M] : IIt: U1 .r whenever r b M : r 

l r D j[M] : T whenever r D M : IIt: VI .r 

l r D j[i[M]] := M : 7 for all r D A4 : 7. 

Using the contexts i[] and j[], it is quite easy to 
translate every term in XML with UI C_ Ua into 
an equivalent expression that is typed without us- 
ing VI 5 U2. :Essentially, the translation replaces 
every use of 7: .?Y’i as a 172 type with (IL!: U1 .T) : U2, 
and encloses terms in contexts i[ ] and j[] to make 
the typing work out right. Since this translation pre- 
serves equality a:nd the structure of terms, there is no 
loss of generality in having VI c Ua. 

8.3 Strong sums and U,: U, 

In the explicitly--typed core language Core-XML , we 
have VI C U2, but not EJl: U2. However, when we 

added general product and sum types, we also made 
the assumption that Ur : U2. The reasons for this are 
similar to the reasons for taking U1 5 Ua: it makes 
the syntax more flexible, simplifies the technical pre- 
sentation, and does not involve any unnecessary se- 
mantic assumptions. A precise statement is spelled 
out in the following lemma. 

Lemma 8.2 In anyfragment of XML which is closed 
under the term formation rules for types of the form 
Ct: U1 .r, with r: VI, there are contexts 

where triv may be any U1 type with closed term *: triv, 
satisfying the following conditions. 

1. If I? D r : U1, then I D i[r] : (Et: VI .triv). 

2. IfSI’ D M : (Et: VI .triv), then r D j[M] : UI . 

3.‘rDj[i[T]]=7:U1 forallrDT:U~. 

Intuitively, the lemma say that in any fragment of 
XML with sums over VI (and some Ul type triv con- 
taining a closed term *), we can represent VI by the 
type Ct: UI .triv. Therefore, even if we drop Ur : U2 
from the language definition, we are left with a rep 
resentation of Ui inside Uz. For this reason, we might 
as well simplify matters and take VI : U2. 

8.4 Impredicativity and “type: type” 

In XML, as in Standard ML, polymorphic func- 
tions are not actually applicable to arguments of all 
types. For example, the identity function defined by 
id(x) = z has polymorphic type, but it can only 
be applied to elements of types from the first uni- 
verse. We cannot apply the same identity function 
ids to both integers and structures. One way to elim- 
inate this restriction is to eliminate the distinction 
between U1 and U2. If we replace UI and UZ by a 
single universe in the definition of Core-XML , then 
we obtain the second-order lambda calculus of Girard 
and Reynolds [Gir’ll ,Gir72,Rey74]. (A similar tech- 
nique is used to introduce impredicativity into Nuprl 
in [How87].) The Girard-Reynolds calculus has a 
number of reasonable theoretical properties (see, e.g., 
[BMM88,Mit86b,MP85]) and seems to be a useful 
tool for studying polymorphism in programming lan- 
guages . 

However, if we make the fuZZ XML calculus im- 
predicative by eliminating the distinction between lJ1 
and U2, the language becomes very different from the 
Girard-Reynolds calculus. Specifically, since we have 
general products and U1: Uz, it is quite easy to see 
that if we let VI = Uz, then Meyer and Reinhold’s 
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language X”’ with a type of all types [MR86] be- 
comes a sublanguage of XML. 

Lemma 8.3 Any fragment of XML with VI: U2, 
UI = lJ2, and closed under the type and term forma- 
tion rules associated with general products is capable 
of expressing all terms of X7” of [MRSS]. 

Note that although the term formation rules of XML 
only provide general products over U2 types, letting 
U1 = U2 will give us products over all types. 

By Lemma 8.2, we know that sums over 7J1 give us 
VI: UZ. Therefore, we have the following theorem. 

Theorem 8.4 The function calculus X’:’ with a type 
of all types may be interpreted in any fragment of 
XML without universe distinctions which is closed 
under general products, and sums over VI of the form 
Et: u1 .r. 

Intuitively, this says that any language without 
universe distinctions that has general products (ML 
functors) and general sums restricted to VI (ML 
structures with type and value but not necessar- 
ily structure components) also contains the language 
XTE7 with a type of all types. Since there are a num- 
ber of questionable properties of XTZ7, relaxing the 
universe restrictions of XML would be seem distinct 
departure from ML. 

8.5 Trade-off between weak and 
strong sums 

When we first discovered Theorem 8.4, we announced 
it as a trade-off theorem in programming language 
design2. The “trade-off” implied by Theorem 8.4 is 
between impredicative polymorphism and the kind 
of C types used to represent ML structures in XML. 
Generally speaking, impredicative polymorphism is 
more flexible than predicative polymorphism, and C 
types (sometimes called “strong sums” [How80]) al- 
low us to type more terms than the existential types 
associated with data abstraction (see [MP85]). 

‘Either impredicative polymorphism with the 
“weaker” existential types, or restricted pred- 
icative polymorphism with “stronger” sum types 
seems reasonable. By the normalization theo- 
rem for the impredicative Girard-Reynolds calculus 

2We described our “trade-off theorem” in the TYPES elec- 
tronic mail forum in the spring of 1986. Hook and Howe then 
replied that they had discovered a similar phenomenon inde- 
pendently IHH86). We also learned that Coquand had proved 
the same theorem by a different means in [Coq86], which in 
preparation at the time of our announcement. 

[Gir72,Mit86b13, we know that impredicative poly- 
morphism with existential types is strongly normal- 
izing. As noted in Section 7, a translation into 
Martin-Liif’s 1973 system [Mar731 shows that XML 
with predicative polymorphism and “strong” sums is 
also strongly normalizing. However, by Theorem 8.4, 
we know that if we combine strong sums with im- 
predicative polymorphism by taking U1 = U2, the 
most natural way of achieving this end, then we 
must admit a type of all types. By Girard’s paradox 
[Coq86,MR86,How87], type: type (in the presence of 
other constructs) implies that strong normalization 
fails. In short, assuming we wish to avoid type: type 
and non-normalizing recursion-free terms, we have a 
trade-off between impredicative polymorphism and 
strong sums. 

In formulating the XML type theory, it became ap- 
parent that there were actually several ways to com- 
‘tine impredicative polymorphism with strong sums. 
The most reasonable is this: instead of adding im- 
predicative po!ymorphism by equating the two uni- 
verses, we :m+y add a form of impredicative polymor- 
phism by adding a new type binding operator with 
the formation rule 

r,t:Ul D7:Ul 

r D vt: u, .r : U] 

Intuitively, this rule says that if T is a UI type, then 
we will also have the polymorphic type Vt: U1 .T in UJ . 
The term formation rules for this sort of polymorphic 
type would allow us to apply any polymorphic ‘func- 
tion of type Qt: VI .r to any type in UJ., including a 
polymorphic type of the form ‘v’s: U1 .o. However, we 
would still have strong sums like Ct: VI .T in ZJ, in- 
stead of UI. We do not know if this extension of 
XML is strongly normalizing. 

9 Sharing 

A distinctive feature of ML’s modules facility is the 
sharing constraint used to ensure that incrementally 
constructed systems are built from compatible com- 
ponents. For example, if the functor F builds a struc- 
ture T as a function of two structures R and S, it may 
be necessary for a type R. t defined in R to be the 
same as the type S. t defined in S. This is specified 
as follows. 

functor F ( R : SIGR, S : SIGS sharing 
R.t=S.t) = . . . 

3Girard’s original proof included existential types. While 
the somewhat simpler proof in [Mit86b] does not, normaliza- 
tion with existential types can easily be derived by encoding 
3t.u as Vr[vt(uw-)~r]. 
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where SIGR and SIGS are suitable signatures for R 
and S. An application of F to two structures R and S 
is legal iff the t; component of each is the same type. 
Sharing specifications are not limited to types; one 
can also require that two component structures of R 
and S be equal. However, equations are syntactically 
restricted to equations between “paths”, which are 
either simple identifiers, or identifiers qualified by one 
of more component designations (e.g., S . p . q. r is a 
path, but S.x + 3 is not). 

Sharing speci.fications lmay be added to XML using 
equalizer types, which are an adaptation of a well- 
known idea fro:m category theory [LS86,Mac71]. In- 
formally, the equalizer type 

{rc:a 1 M=N:7} 

is the collection of all elements IC of type c~ satisfy- 
ing the equation M = IV : r, which may involve the 
variable 2. It is worth mentioning that equalizers 
are also part of the Nuprl type theory [C*86], arising 
from the combination of set and eqdity type con- 
structors. More specifically, the Nuprl the set type 
{ 2: u ] r } co:nsists of those elements a of type 0 
such that the type [~/z]T is inhabited, and the equal- 
ity type a = bin cr is inhabited exactly when a and 
b are equal elements of type cr. So it is easy to see 
that our equalizer types are the composition of two 
Nuprl types. The typing rules for equalizers appear 
in Table 7. 

Functors with sharing constraints are written in 
XML by restricting the domain to an appropriate 
equahzer type. For example, the Standard ML func- 
tor 

functor F ( P : SIG1 sharing P.s = P.t > 
: SIG2 = . . . 

requires a structure P whLose s and t components are 
equal. If SIG1 declares that both s and t are types, s 
is the first component of P, and t is the second, then 
this functor is given by an XML term of the form 

XP: { z:u, 1 &t(z) = snd(z) : U] } . . . . 

where ~1 is the XML notation for SIGI. 
In practice, as Standard ML is currently imple- 

mented, equality for the purposes of type checking 
is based on the idea of generativity mentioned briefly 
in Sections 6 and 7. The reasons for this are discussed 
in [Mac85 ,HMT87b], and are related to the algorith- 
mic difficulty pointed out in [So178]: structure and 
type equality are checked at compile time, and must 
be made efficiently decidatble. While the full system of 
equational inference rule:3 is omitted from this paper 

due to space considerations, the intencled rules paral- 
lel those in [BMM88,Gir72,MR86,Mit87,Rey74] and 
capture a semantic notion of equality. The equations 
used in Standard ML type checking constitute one 
of many decidable approximations to XML equality, 
and the effect of sharing constraints varies according 
to the kind of approximation used. The consequences 
of introducing equalizers, in the context of the par- 
ticular equational reasoning used in the current type 
checker, remain a topic for further investigation. 

As mentioned above, only a restricted form of 
equalizer may appear in Standard ML programs. One 
justification for the restriction to paths is that strong 
normalization fails otherwise, as follows. It is well 
known that recursion is definable in the untyped 
lambda calculus, via the fixed-point operator Y, and 
that untyped lambda calculus may be interpreted in 
typed lambda calculus satisfying an equation t = t+t 
between types. (Further discussion of Y may be 
found in [Bar84], for example, and the relationship 
between untyped lambda calculus and type (or do- 
main) equations in [Bar84,Sco80].) Given this, and 
the fact that equalizers allow us to type terms with 
respect to equational hypotheses, it is easy to show 
that equalizers give us terms without normal form. 
For example, if r is a context containing the typing 
assumption 5: { y: triv ] T = r-+7 : Ui }, for any Vi 
type -r, then by the typing rules in Table 7, we may 
conclude that l? D r = r-+7 : Ui. Therefore, using 
the type equality rule from Table 4, we may give any 
term with type r type T--U, and vice versa. This 
allows is to give any untyped lambda term type T, 
including untyped terms with no normal form. Dis- 
charging the typing assumption via lambda abstrac- 
tion, we can write a closed, well-typed functor with 
parameter 2: { y: triv I T = T-V : Ur } and nonnor- 
malizing body. 

10 Towards Representation In- 
dependence and Full Ab- 
straction 

Two important issues in the study of pro- 
gramming languages are representation indepen- 
dence [Rey83,MM85,Mit86a] and full abstraction 
[Mi177,Plo77], neither of which seems to have been 
successfully applied to the study of full ML. Roughly 
speaking, representation independence is the prop- 
erty that the behavior of well-typed programs is in- 
dependent of low-level decisions about the implemen- 
tation of basic data types. For example, in a typed 
language with booleans, it should not matter whether 
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true is represented by 1, and false by 0, or vice versa, 
as long as all the operations on booleans are imple- 
mented appropriately. Full abstraction is related to 
the observable equivalence of program expressions. 
We say expressions M and N are observationally 
equivalent if, for any program context C[] (i.e., ex- 
pression with a “hole” such that C[M] and C[N] are 
closed terms of printable type), the result of evalu- 
ating C[M] is the same as evaluating C[N]. A fully 
abstract interpretation for a programming language 
is a semantic model with the property that observa- 
tionally equivalent expressions are equal. 

Both representation independence and full abstrac- 
tion seem difficult to study within the implicitly- 
typed framework of Milner’s original paper and sub- 
sequent similar studies. Proving representation in- 
dependence for ML involves showing that if we 
change the representation for some type like the 
booleans, the output of any full program remains 
unchanged. But because implicitly-typed interpre- 
tations involve meanings for all untyped terms, it is 
technically difficult to study “arbitrary” representa- 
tions for booleans. Using the explicitly-typed frame- 
work of this paper, it seems straightforward to use the 
techniques of [MM85,Mit86a] to prove representation 
independence for ML. In fact, since the types of our 
function calculus are stratified into levels, representa- 
tion independence for ML seems much simpler than 
for the Girard-Reynolds calculus, and it seems likely 
that the results of [Mit86a] on substitution equiva- 
lence for abstract data type implementations could 
be strengthened considerably. We consider this an 
important direction for future research. 

Although the development of fully-abstract models 
is not an easy task (cJ.[Mu184]), our explicitly-typed, 
stratified calculus seems the simplest adequate frame- 
work. To begin with, it is not entirely clear how to de- 
fine observational equivalence in an implicitly-typed 
setting. One definition is that two terms M and N 
of the same type are observationally equivalent if, for 
every program context C[] such that both C[M] and 
C[N] are well-typed, we have C[M] = C[N]. An al- 
ternative would be to say that a context with C[M] 
well-typed and C[N] not would distinguish M from 
N. Neither definition seems very appealing, since 
typed terms are compared according to their untyped 
behavior, but perhaps there is some merit to one of 
these. 

A more promising approach to full abstraction is 
to associate a different equivalence relation with each 
type (see, e.g., [CZ86,FS87,Mit86b]), so that two 
terms could be considered equivalent without hav- 
ing equal untyped meanings. This allows us to in- 
corporate the fact that, for example, M and N may 

be equal when used as boolean functions, but un- 
equal as integer functions. However, as shown in 
[Mit86b] for the G irard-Reynolds calculus, models 
based on partial equivalence relations are a special 
case of explicitly-typed models. Therefore, there is 
no loss of generality in considering an explicitly-typed 
syntax and semantics. For this reason, we expect the 
explicitly-typed analysis of ML given here will be use- 
ful in any future study of full abstraction. 

11 Conclusion and Directions 
for F’urt her Investigation 

We have given an precise description of the type sys- 

tem for much of Standard ML, using a function cal- 
culus called XML. Our analysis is based on the belief 
that ML is most profitably viewed as an explicitly- 
typed, predicative language with dependent product 
and sum types. Explicit typing is central to giving a 
single account of both the core expression language 
and the module system, and seems useful for study- 
ing representation independence or full abstraction, 
as outlined in Section 10. The distinction between Ur 
and Us in XML reflects the typing rules of Standard 
ML, and Leads to a number of significant technical 
simplifications in the study of XML. Moreover, uni- 
verse distinctions seem essential to the character of 
ML, as discussed in Section 8. 

Some important aspects of Standard ML have been 
omitted. For the language we have considered, ac- 
tual implementations compare type expressions us- 
ing the concept of “generativity,” which is discussed 
in [HMT87b,HMT87a]. In addition, signature match- 
ing allows structures to match signatures that specify 
fewer components than the structures actually pro- 
vide. We believe more accurate descriptions of both 
of these characteristics of Standard ML could be given 
within the framework of this paper, and that it would 
be worthwhile to do so. It would also be useful to ex- 
tend our account of ML to a fuller language with ex- 
ceptions, recursive types and/or references. In partic- 
ular, we hope that an explicitly-typed study of poly- 
morphic references would clarify the connection be- 
tween polymorphism and side effects, a continuing 
trouble spot in the ML type inference algorithm. 

Along with representation independence and fully 
abstract models, an important topic for further study 
is the status of data abstraction in Standard ML. It 
is implicit in the discussion of [Mac851 that abstype 
declarations, as described in [GMW79,MP85] may be 
replaced by ?n-line” applications of functor expres- 
sions. This seems quite plausible, but it is important 
to clarify the precise sense in which functor applica- 
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tion is equivalent to abstype. Based on past experi- 
ence, e.g.[MM8,5,Mit86a], a theory of logical relations 
seems to be the appropriate method of investigation. 

Another important direction is to develop an accu- 
rate, straightforward presentation of ML operational 
semantics. As with other versions of lambda calcu- 
lus, equality in XML is given by an equational axiom 
system. This equational system may also be formu- 
lated as a set of reduction rules, as usual. However, 
for the extension of XML obtained by adding excep- 
tions, references and recursion, capturing the oper- 
ational semantics of Stabndard ML relies on careful 
consideration of the order in which re-write rules are 
applied. (For example, if R is a divergent expression, 
then (Xrc.O)fl diverges in the current call-by-value im- 
plementation, but (Ax.O)fi = 0 is provable using the 
usual &calculus style reasoning.) It would be use- 
ful to develop a typed calculus that is faithful to the 
operational semantics, following the pattern estab- 
lished by Plotkin’s X,-calculus [Plo75] and Martin- 
LGf’s type theory [Mar%!]. 
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VAR r D X : 0 (r(X) = 0) 

GEN 

SPEC 

rDe:a 

r D e : &.a 
(t not free in I?) 

rDe:o 

1‘ D e : 0’ 
(fl c a’) 

ABS 

APP 

r,16:7 D e’ :T’ 

r D AX.e’ : T --f T’ 
b # FV(r)) 

r D e : 7’ + 7 r D e’ : 7’ 

r D ee’ : 7 

LET 
l?~e:a l?,X:~be’:+ 

r D let z = e in e’ : T’ (x $ Fvm) 

Table I : Damas-Milner Type Assignment 

VAR r D X : (T (r(X) = g) 

rt>h’:a 
TABS 

r D Xt.M : nt: u1 .c7 
(t not free in r) 

TAPP 

ABS 

r D M : nt: u, .o 
r D MT : [+]o 
r,x:rDM’:r’ 

rbXx:r.M’:r+r’ (x 6 FV(I’)) 

APP 

LET 

rDM:r’--,T rDn/J’:T’ 

rr>MM’:r 

I'DM:u l?,z:a~M’:~’ 
rDh?t X:U=M in M’:T’ (x 6 Fv(r)) 

Table 2: Core-XML Type System 

() context 

r ,5: 7 context 

r,x:Tox:T 

rDr:ui 

r, 5: t context 

r D hf : 7 r’ Context 

r’DM:r 

(i = 1,2; x glum) 

(vx E oom(r).r(x) = r'(s)) 

Table 3: Context and structural rules for XML 

I'DM:a I?Da=rZUi 
roM:T 

(i = 1,2) 

Table 4: Universes and type equality 
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r context 
r D triv : .!I, 

r context -- 
r D * : triv 

rDU:& rDT:& r,X:UDiVkT 

r D XX: 5.M : 5+ 
(X 6 ~dr)) 

Table 5: Types and terms in U1 

rD5:u2 r, x: u D r : u2 

r D nX: U.7 : u2 
(X e ~043) 

rDU:& r,X:UD7:& r,x:uDM:r 

r D XX: U.M : nX: 5.7 
(X 6 ~049) 

rDM:rIx:(T.7 rDN:U 

r D MN : [N/X]r 

rDM:u rDN:[M/X]7 r,X:5DT:u2 

r D (M, N) : xX: U.7 

r D iL!f : xX: 5.r 

r Dfst(M) : u 

r D M : xX: U.7 

r D sd(h!f) : VSt(M)/X]T 

Table 6: Types and terms in UQ 

rD5:u2 r,X:5DT: u2 II’,x:wDM:T r,x:uoN:r 

rD{X:U 1 M=N7}:u2 
tx e ~04r)) 

rD.P:U rD[P/x]M=[P/x]N:[P/X]T rD{X:5 1 k?=N:7}:U2 

rDP:{X:U 1 M=N:7} 

rDP:{X:5 1 M=N:T} 

rDP:5 

rDP:{X:U 1 M=N:7} 

r D [P/x]M = [P/x]N : II’/+ 

Table 7: Equalizer types for sharing constraints 
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