
The Essence of ML

John C. Mitchell Robert Harper
AT&T Bell Laboratories Edinburgh University
Murray Hill, NJ 07974 Edinburgh, Scotland

Abstract

Standard ML is a useful programming language with
polymorphic expressions and a flexible module fa-
cility. One notable feature of the expression lan-
guage is an algorithm which allows type information
to be omitted. We study the implicitly-typed ex-
pression language by gjving a “syntactically isomor-
phic” explicitly-typed, polymorphic function calcu-
lus. Unlike the GirarddReynolds polymorphic calcu-
lus, for example, the types of our ML calculus may
be built-up b,y induction on type levels (universes).
For this reason, the pure ML calculus has straightfor-
ward set-theoretic, recursion-theoretic and domain-
theoretic semantics, anId operational properties such
as the termination of all recursion-free programs may
be proved relatively simply. The signatures, struc-
tures, and functors of the module language are easily
incorporated into the typed ML calculus, providing
a unified framework for studying the major features
of the language (including the novel “sharing con-
straints” on functor parameters). We show that, in
a precise sense, the language becomes inconsistent if
restrictions imposed by type levels are relaxed. More
specifically, we prove that the important program-
ming features of ML cannot be added to any impred-
icative language, such as the Girard-Reynolds calcu-
lus, without implicitly assuming a type of all types.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of
the publication and its date appear, and notice is given that copying
is by permission of the Association for Computing Machinery. To
copy otherwise, or to republish, requires a fee and/or specfic
permission.

1 Introduction

Recent years have seen increasing interest, in com-
puter science, in various forms of typed &calculi.
One motivation for studying these systems is that
they provide some insight into programming lan-
guages with similar typing features. For exam-
ple, the Girard-Reynolds second-order X-calculus
seems useful for analyzing languages with polymor-
phic functions or abstract data type declarations
[Gir72,Rey74,MP85]. The richer type systems pro-
posed by Martin-Lijf [Mar82], Constable [C*86], and
Huet and Coquand [CH84] also provide formal log-
its for reasoning about programs. This general line
of research has a different flavor from the original
Scott-Strachey approach to programming language
semantics, since the meta-language of type theory is
somewhat closer to the object languages studied, and
there is current interest in re-examining the status of
nontermination and 1. However, the long-term goals
are the same: a precise understanding of program-
ming language constructs and a sound mathematical
basis for reasoning formally or informally about pro-
grams.

In “The Essence of Algal” [Rey81], Reynolds
presents a study of Algol-60 in the denotational style,
contending that “Algol may be obtained from the
simple imperative language by imposing a proce-
dure mechanism based on a fully typed, call-by-name
lambda calculus.” In addition to testing the Scott-
Strachey approach for programming language anal-
ysis, Reynolds’ study gave an important picture of
Algol as the composition of several independent con-
stituents. Using the framework of type theory, we
propose an analogous case study of the programming
language Standard ML [HMM86], only the first steps
of which are completed here. In this paper, we will
describe a typed X-calculus that encompasses many
of the essential features of Standard ML and use this
to analyze some potential extensions of the language.

Proceedings of the Fifteenth Annual ACM

@ 1988 ACM-O-89791-2,52-7/88/0001/0028 $1.50 28

I

SIGACT-SIGPLAN Symposium on Princi-
ples of Programming Languages, San Diego,
California (January 1988) I

http://crossmark.crossref.org/dialog/?doi=10.1145%2F73560.73563&domain=pdf&date_stamp=1988-01-13

We have chosen Standard ML as the basis for this
analysis because it is sufficiently well-developed to
be interesting and useful as a “real” programming
language, and sufficiently well-designed to support
detailed analysis.

Standard ML is an updated version of the program-
ming “meta-language” of the LCF system [GMW79],
comprising a core expression language with poly-
morphic functions [Mi185] and a module language
for defining interdependent program units [Mac85].
The core language is designed around an automatic
type inference algorithm that performs compile-time
checking of “untyped” expressions. The module lan-
guage is designed to support the organization of pro-
grams into separately-compilable units, and involves
a moderate amount of explicit type information. We
believe that Standard ML may be characterized as
follows.

l The type system is a polymorphic lambda cal-
culus with two levels (universes). In addition to
polymorphic function spaces, the type construc-
tors include strong sums (described in Section
7), recursive types at the first level, and limited
use of equalizers (described in Section 9) at the
second level.

l Exceptions provide a means for escaping any
control structure to a point where the corre-
sponding exception is trapped.

l The operational semantics are given by a deter-
ministic evaluator, for which the type system is
sound with respect to normal termination. In
other words, if the evaluator halts with no excep-
tion raised, then the type of the result is guar-
anteed by the typing rules.

l References are provided using the syntax of type
constructors, and any value of the first level may
be stored in a reference cell.

l Values of each universe are “first-class” in the
sense that any operations appropriate to that
level may be applied. For example, any element
of any type from the first level may be stored in
a reference cell, and functors may take any val-
ues from the second level as parameters. This
is not strictly true of Standard ML as currently
implemented, since functors may not take func-
tors as arguments. However, we consider this an
implementation restriction, and not an essential
feature of the language.

There are many other aspects of ML that contribute
to its utility. For example, the combination of named

constructors in datatype declarations and pattern-
matching in function definitions leads to a succinct
and powerful programming style. However, this syn-
tax does not seem essential; ML without pattern
matching would still be ML.

For the reader familiar with Reynolds’ study of Al-
PL

a

a

0

0

the following comparisons may be helpful.

Idealized Algol leaves expression evaluation un-
determined, whereas deterministic evaluation
seems central to the way exceptional and normal
termination are defined in Standard ML.

Storage allocation in Idealized Algol adheres to
a stack discipline, while Standard ML does not.

Idealized Algol distinguishes storable values from
denotable values (c.f. [Gor79]), while Standard
ML treats data types and phrase types uni-
formly.

Idealized Algol has labels and goto’s, which are
replaced by the more structured exception mech-
anism of Standard ML.

While a thorough treatment of evaluation order is be-
yond the scope of this paper, it may be worthwhile
to clarify a few points. Reynolds argues that the pro-
cedure mechanism of Algol is call-by-name, but the
order of expression evaluation should be regarded as
indeterminate. We also believe that in one respect,
Standard ML evaluation is order dependent, and in
another respect, order independent. However, our
point of view is based on an entirely different sort
of distinction. Reynolds’ view of Algol evaluation re-
lies on the separation between Algol phrase types and
Algol data types. Since ML constructs are uniformly
applicable to values of all types (at least within the
first universe), it is difficult to separate procedures
from expressions. Therefore, ML must be viewed as
having a single form of run-time evaluation. Since the
definition of normal termination, the behavior of ex-
ceptions, and the straightforward explanation of side-
effects all seem to depend on evaluation order, we be-
lieve that full “run-time” evaluation of ML programs
is most successfully explained using a deterministic
evaluation strategy.

Due to the complexity of Standard ML, there are
actually two phases of evaluation in current imple-
mentations. The module language provides declara-
tions that bind identifiers to structured values with
type components, and these identifiers often occur in
type expressions. Consequently, non-trivial evalua-
tion is involved in determining equality of type ex-
pressions. During the type-checking phase of compi-
lation, only certain compound forms in type expres-
sions are evaluated, and so compile-time evaluation

29

appears to be finite Church-Rosser, as a consequence
of the finiteness of developments [Bar84, Theorem
11.2.251. Thus, we believe that while “run-time” eval-
uation is order dependent, order of evaluation may
safely be regarded as indeterminate for the purpose
of type checking.

The main focus of th:is paper will be the type sys-
tem of Standard ML, as this seems a prerequisite for
more comprehcensive analysis. To simplify the presen-
tation, we will. omit exceptions and references; what
is left is still quite interesting. The two main ar-
eas of investigation will be the discrepancy between
implicitly- and explicitl,y-typed frameworks, and the
importance of separating the types into two distinct
universes. With respect to the first point, we will ar-
gue that the implicitly-typed core language is most
profitably viewed as a short-hand for an explicitly-
typed language. This sjmplifies the semantics of the
language, since only well-typed expressions must have
meaning, and allows us to study the implicitly-typed
expression lan.guage within the same framework as
the module language. It is worth noting that al-
though the semantics is simplified, there seems to be
no significant loss of generality in taking this point
of view. We will see that Milner’s type inference
model, as described in [Mi178], and the ideal model of
[MPS86] may b e viewed as models of our explicitly-
typed core calculus.

An important feature of the analysis is that our
type system is stratified into levels, or uniz)erses, in
the style of Martin-L6f’s type theory [Mar82], and
in keeping with the suggestions of [Mac86]. As in
Martin-LGf’s theory, our universes result in a pred-
icative language, which means that the types may
be ranked in such a way that every value occurs
with higher rank than any values on which its exis-
tence or behavior is predicated. (For example, func-
tions always occur with higher rank than their ar-
guments.) The universe distinctions are faithful to
the separation of monotypes from polytypes in Mil-
ner’s earlier work [Mi178,DM82], and allow us to show
that implicit ML typing is syntactically equivalent
to our explicit typing rules. The predicative uni-
verses also distinguish our calculus from both the
implicit polymorphic typing of [Mit87,MPS86,Car85]
and the explicitly-typed polymorphic calculus of
[Gir7l,Gir72,Rey74]. In. particular, the pure ML cal-
culus without recursion has classical set-theoretic
models, while the Girard-Reynolds calculus does not
[Rey84].

Some stud-
ies of ML typing (e.g., [Car85,Mit87,MPS86]) have
suggested, in effect, tha.t the restrictions imposed by
universes might be relaxed to allow the full second-

order polyrnorphism of the Girard-Reynolds calcu-
lus [Gir71 ,Gir72,Rey74]. However, these studies were
generally based on consideration of the ML core lan-
guage alone, and did not take modules into account.
We will adopt the view of modules proposed by Mac-
Queen, in which the main constructs are reduced to
the C and IT types (the swcalled “dependent” types)
of Martin-LGf’s type theory [Mac86]. Using the typed
X-calculus with these constructs, we are able to show
that universes play an important role.

Our examination of universes involves close study
of a restricted subset of the language. In the fragment
of Standard ML without recursion or recursively-
defined types, every expression evaluates to a normal
form, regardless of the order of evaluation. (The fact
that no evaluator could continue indefinitely is called
the strong normalization property.) This is what one
would naturally expect, since no construct explicitly
provides unbounded search or recursion. However, we
will show that if the distinction between universes is
removed, it becomes possible to define a type of all
types. It follows from previous work on type: type,
specifically, [Coq86,Gir72,How87,MR86], that there
exist recursion-free programs that cannot be evalu-
ated to a normal form by any evaluation strategy.
As argued in [MR86], this alters the character of the
language dramatically. Therefore, we believe that the
separation of types into universes is essential to ML.

As an artifact of the way we study universe distinc-
tions, the bulk of this paper will not be concerned
with evaluation order. For the fragment of ML with-
out recursion or generative constructs, full evalua-
tion in any order produces the same result. Con-
sequently, our analysis of universes applies to both
eager and lazy dialects of ML, and any similar lan-
guage based on any other evaluation strategy. How-
ever, in fairness, we should emphasize that the rele-
vance of type: type to programming remains a topic
for further research. While it seems undesirable for
a language to provide two distinct methods of recur-
sion, one directly and one indirectly via type: type,
we do not have clear-cut evidence that this is truly
pathological. However, in further study of type: type,
many subtle and important issues remain to be inves-
tigated. For example, we suspect that any study of
representation independence or full abstraction would
be complicated dramatically by a type of all types.

The next section contains a short summary of the
accepted type inference rules for the core language of
Standard ML. In Section 3, an alternative, explicitly-
typed core language is given. The two approached
are proved equivalent in Section 4, and the semantics
of the core language is discussed in Section 5.

Sections 6 through 9 consider a full calculus encom-

30

passing the module language. A review of modules is
given in Section 6, followed by a reduction to C and II
types in Section7. Section 8 considers the importance
of universe distinctions and type: type, and Section 9
presents an extension to the type system that includes
the “sharing” constraints of MacQueen’s module lan-
guage. Finally, Section IO discusses the problems
of representation independence and full abstraction,
with concluding remarks in Section 11. All type sys-
tems are defined formally in tables at the end of the
paper.

2 Implicitly typed ML

Many studies of ML have focused on the type
inference algorithm for the core expression lan-
guage [Mi178,DM82,MPS86,Wan84]. This algorithm
allows the ML programmer to write, for example,

let id(x) = x in . . .end

automatically inferring the fact that the function id is
a function from type t to t, for any t. Milner’s seminal
paper [Mil78] describes the type inference algorithm
and proposes a semantic framework for justifying its
behavior. In Milner’s semantics, an untyped expres-
sion denotes some element of an.untyped value space,
a.nd a type denotes a subset of this space.

The syntactic part of Milner’s analysis is refined
in [DM82], where an inference system for assigning
types to expressions is given. The type inference rules
are proved sound by showing that if it is possible to
infer that expression e has type c, then the untyped
meaning of e belongs to the set denoted by u. The
type inference algorithm is then treated as a decision
procedure for the inference system.

Miln.er’s semantic
analysis is elaborated in [MPS86,Car85], where the
meanings of polymorphic types are clarified and re-
cursive types are given semantics (see also [Mit87]).
In Milner’s model, the sets denoted by type expres-
sions do not include a special error value of the do-
main, called wrong. Consequently, the soundness of
ML typing is often summarized by the slogan well-
typed expressions cannot go wrong [Mi178].

Although there are quite a few constructs in the
core expression language of Standard ML, the behav-
ior of the type checker may be understood by con-
sidering the fragment presented in [DM82], which we
will call Core-ML . The syntax of Core-ML is given
by

e . . - ..- 2 1 ee 1 Xx.e 1 let 2 = e in e,

where x may be any identifier. The let expres-
sion form is taken as primitive because it has a typ-
ing rule that is not derivable from the others. We
will review the type inference algorithm for Core-ML
briefly, so that we may later compare Core-ML with
an explcitly-typed calculus.

We will use two classes of type expressions,
monomorphic and polymorphic. In earlier work,.
monomorphic expressions have been the type expres-
sions without variables, and polymorphic expressions
have had all type variables implicitly bound. We will
make the same intuitive distinction in a slightly dif-
ferent way. We begin with some infinite set of type
variables, an arbitrary collection of base types, and
define the monomorphic type expressions by

7 ::= t 1 p 17--+T

where p may be any base type and t any type variable.
In a monomorphic type expression 7, a type variable
t stands for some unknown, non-polymorphic type.
The polymorphic type expressions (also called type
schemes) are defined by

u :: = 7 1 W.U.

Intuitively, the elements of type Vt.u have type u for
every possible value of the type variable t (which will
generally occur in a). Since V binds t in c, we have
vt.a = Vs.[s/t] 0, where [s/t]u denotes substitution of
s for free occurrence of t in 6, as usual. Note that
every monomorphic type is also considered a poly-
morphic type.

In the Damas-Milner system, the assertion that
a Core-ML expression e has type u is written e: m.
Since the type of an expressions will generally de-
pend on the types given to free variables, we will use
typing statements that incorporate such assumptions.
A type assignment, or context, I’, is a finite sequence
of bindings of the form 2: 0, with no variable 2 oc-
curring twice. It is useful to think of a context l? as
a partial function from variables to types and write
I’(z) for the unique u with 2: u in I? (if such a binding
exists). We will also use the notation oom(I’) for the
set of expression variables occurring in l?, and write
l?,x:u (where 2 $ oom(I’)) for the type assignment
obtained by appending the indicated binding to l?. A
typing is a triple of the form r D e : u, which may be
read, “the expression e has type scheme B in context
r.”

The Damas-Milner type assignment system is
giveninTable1. WewritekDMI’De:oifI’De:u
is derivable in this system, and say that an expression
e is typable in a context l? iff there is a type scheme
such that k-DM r D e : u.

31

A type u is a substitution instance of a (T’ iff there is
a substitution S of monotypes for type variables such
that S(J) = U, where equality is modulo renaming of
bound variables. A monotype r is a generic instance
of a polytype 0 == Wi . . . t.m.~‘, written g C 7, iff there

is a substitution S of monotypes for t i . . . t, such that
S(T’) = T. For polytypes, we say g C P’ if every
generic instance of 0’ is also a generic instance of CT.
Syntactically, this means that there is an Q variant
ifs] . . . sk.7’ of a-’ such that no si (I 5 i 5 k) occurs
free in g and (T LI 7’; see [DM82,Mit87] for further dis-
cussion, and [Mit87] f or an interpretation of generic
instantiation as semantic containment. When u E o’,
we say CT is more general than (T’. It is worth men-
tioning that the generic instance relation is preserved
by substitution, i.e., if g !L o’, then S(a) E S(U’) for
any substitution S.

The following technical lemma summarizes some
useful properties of the Damas-Milner system.

Lemma 2.1 ;!. If/-DMrDe:(T, thenkDMr’De:
o whenever r’(s) C I’(z) for 3: free in e.

2. If ~-DM r D e : u and S is any substitution, then
tDM s(r) D e : S(U).

An important property of the Damas-Milner sys-
tem is that every typable expression has a principal
typing, from which all other typings may be efficiently
derived. A typing I? D e : u is a principal typing
for expression t: if ~DM I? D e : g and, whenever
tDM I” b e : o’, we have cr C 0’ and I”(x) C F(x) for
every x occurring in r. In other words, the principle
typing for e must be derivable, and it must give the
most general type in the Yeast general” context.’

Theorem 2.2 (Damas-Milner) If
an untyped Con?-ML expression e is Damas-Milner
typable, then there exists a principal typing I’ D e : c.

Furthermore, there is a linear-time algorithm which,
given e, computes the principle typing if it exists, and
fails otherwise.

3 Explicitly Typed ML

In contrast to the Milner-style analyses of ML, we will
view ML programs as explicitly typed, in the sense
that variables a.re explicitly assigned a type at the
point where they are bound, and all type manipula-
tions are explicit. Essemially, we view the untyped
concrete syntax of ML as a convenient shorthand for

‘This formulation of principal typing differs from [DM82]
in that the latter defines the principal typing with respect to
a given context. Further discussion of this point may be found
in [Lei83].

an explicitly4yped abstract syntax, with the type in-
ference algorithm bridging the gap. One reason for
taking this position is that the untyped approach does
not scale up to include features of the modules sys-
tem. Another reason is that it leads to significant
technical simplifications in the semantics of the lan-
guage.

Implicitly-typed Core-ML is essentially equivalent
to an explicitly-typed function calculus we will call
Core-XML , for core expkcit ML. The types of Corc-
XML fall into two classes, corresponding to the
monomorphic types and polymorphic type of Corc-
ML . To introduce some useful terminology, we will
say that r is a type of the first universe, and write
T: Vi, if 7 is built up from base types and type vari-
ables using the function-space constructor +. This
means that 7: Ur iff T is a monomorphic type expres-
sion of Core-ML .

The polymorphic type expressions of Core-ML are
defined by quantifying over the monomorphic types.
In Core-XML this corresponds to universal quantifi-
cation over the first universe, and so it is natural
to regard these types as being of a “higher” sec-
ond universe. We will say that c is a type of th.e
second universe, and write u: Uz, if u has the form
IIt,: U1 . . . IIt,: U1 .T, where r : Ui. Thus Uz c0nsist.s
of exactly the Core-ML polymorphic types, except
that we will write II instead of !f, and the universe
of each type variable is written explicitly. This is
to allow a smooth generalization to full XML with
type variables ranging over both universes, a step
we will take in Section 7. Note that since every
monomorphic type is also considered a polymorphic
type (with binding of zero variables), we effectively
have U1 G Uz.

The presentation of Core-XML is simplified by
adopting the meta-variable conventions used in the
previous section, so that 7, ri , . . . will always be Ui
types, and cr, ui , . . . will be iJ2 types. We will not ex-
plicitly declare type variables in contexts. Rather, we
assume at the outset that all type variables r, s, t, . .

denote elements of Ui
The un-checked pre-terms of explicitly typed

Core-XML are given by the following grammar:

M ..- ..- IC 1 MM 1 kC:T.M 1 MT 1 Xt.M
let IC: (J = M in M

Following Damas-Milner, we retain let as a primitive
construct in Core-XML since its typing rule is not
derivable from the other rules. However, in the full
XML system it will be definable in terms of abstrac-
tion and application, and will therefore be eliminated.

The type checking rules of the language are listed in
Table 2. To distinguish implicit Core-ML typing from

explicit Core-XML typing, we will write I-X I? D A4 : CT
if the typing r D M : (T is derivable from the Core-
XML typing rules. The essential difference between
tom and kx is that the GEN and SPEC rules of the
implicit system are replaced by rules for explicit type
abstraction and type application. A preterm M is a
term of Core-XML if kx r D M : (T for some I and u.

The difference between Core-XML and the Girard-
Reynolds polymorphic X-calculus
[BMM88,Rey74,Gir72] lies in the distinction between
universes Ur and U2. Rule TAPP of Core-XML only
allows a type application r D MT : [-r/t10 when r is a
type of the first universe Ui . However, in the Girard-
Reynolds calculus, there is no universe distinction,
and we can apply a term of polymorphic type to any
type. One consequence of the universe distinction
is that Core-XML has classical set-theoretic models,
while the Girard-Reynolds calculus does not [Rey84].

The language Core-XML differs from Martin-LBf’s
type theory and the Nuprl system [C*86] not only in
that we do not have Ur : Uz (which will change when
we come to full XML), but also because types are ex-
plicitly assigned to all identifiers at their binding oc-
currences. For example, rule ABS of Core-XML only
allows us to type a lambda abstraction Xx: T.M if the
type of the bound variable z is explicitly declared.
In contrast, Nuprl and Martin-LGf’s type theory give
types to expressions like Xx.M. Without explicit typ-
ing, Core-XML semantics would become somewhat
more complicated, since we would need a “universal
domain”-like interpretation for untyped lambda ab-
straction, type abstraction, and type constructors like
+ and II.

Equations have the form I’ D M = N : T,

where M and N are terms of type r (in the con-
text I’). The equational proof system of Core-XML
is similar to that of the Girard-Reynolds calculus
[Gir71 ,Rey74,BMM88], with the following additional
axiom for let:

r D (let z: u = M in N) = [N/x]M : T

A complete presentation of the equational inference
system is omitted due to lack of space.

4 Equivalence of Explicit and
Implicit Systems

In this section, we will show that implicitly-typed
Core-ML and explicitly-typed Core-XML are essen-
tially equivalent. A related correspondence between
implicit ML typing and Girard-Reynolds typing re-
stricted by “rank,” which is similar to our universe
restriction, was suggested earlier in [Lei83, Section 71.

However, the technical statement of Theorem 7.1 in
that paper is incorrect, since rank 2 typing of lambda
terms allows us to type X-abstractions polymorphi-
tally, whereas the typing rules of Core-ML do not.
It is to avoid precisely this problem that we have in-
cluded let in the syntax of Core-XML .

The type erasure M” of a typed term M is defined
as follows:

I

X ifMzx
M,“M,” ifM=MrMz
Xx.MI” if M E Xx: r.Ml

M”= M; if M E Xt.MI

w if M E Mlcr
let x=M; in Mg ME

let x: CJ = MI in M2

Theorem 4.1 If kx I’ D M : o, then I-DM r D M” :
u.

Theorem 4.2 If l-DM I? D e : CT, then there exists
an explicitly typed term M such that M” E e and
EX r D M : u. Furthermore; M can be computed
eficiently from a proof of r D e : u.

Theorem 2.2 states that there is an algorithm which
finds, for any typable expression e, a principal typing
for e. It is a simple matter to modify this algorithm
so that it produces as well a derivation of the prin-
cipal typing in the Damas-Milner system. Applying
Theorem 4.2, we obtain an algorithm X that, given a
typable expression e, yields an explicitly typed term
M such that l-x l? D M : o (and fails otherwise). Al-
gorithm X inserts type labels on X’s and let’s, type
abstractions on all let-bound expressions, and type
applications at all uses of identifiers whose type is
of the form Vt 1 . . . t,.r. For example, the explicitly-
typed term produced from

let I = Ax.a: in II

is

Xt.let 1:Vt.t -+ t = Xt.Xx: t.x in I[t + t](I[t]).

Note that the principal type of let I = Xz.x in II
is Vt.t + t , which is the type of the explicitly-typed
term. The syntactic completeness of Algorithm X
follows from that of the type inference algorithm.

It is worth pointing out that since Core-XML has
let as a primitive, the translation used in Theorem 4.2
does not alter the structure of terms. In particular,
we do not treat let 2 = N in M as an abbreviation
for [N/x] M. This distinguishes our translation from
the explicit typing translation of [Wan84].

5 Semantics of Core-XML

The Core-XML language has a straightforward
model theory that is similar to the seman-
tics of second-order lambda calculus described in
[BM84,BMM88,Mit87], except that we have two uni-
verses instead of one collection of types. An interest-
ing choice in giving semant,ics to Core-XML lies in the
interpretation of the containment U1 5 Uz. While it
seems syntactically simpler to view every element of
Ur as an element of Uz, t.here may be some seman-
tic advantages of interpreting U1 C Uz as meaning
that U1 may be embedded in Uz. With appropriate
assumptions about the inclusion mapping from Ul to
UZ, this seems entirely workable, and leads to a more
flexible model definition tlhan literal set-theoretic in-
terpretation of U1 C Uz. Due to space considerations,
precise definitions are omitted.

Since the only difference between Core-XML and
the Girard-Reynolds second-order calculus is the dis-
tinction between universes, every second-order model
may be viewed a.s a Core-:XML model with VI = Uz.
Consequently, Core-XML may be interpreted in the
domain-theoretic and recu.rsion-theoretic models dis-
cussed in
[ABL86,BMM88,Gir72,Tro73,McC79,Mit86b]. One
difference between the languages, however, is that
Core-XML has classical set-theoretic models, while
the Girard-Reynolds calculus does not [Rey84]. In
fact, any model of ordinary (non-polymorphic) typed
lambda calculus may be extended to a model of Core-
XML by a simple set-theoretic construction.

One class of models that is pertinent to the develop-
ment of the last few sections is obtained by interpret-
ing types as partial equivalence relations (PER’s; see
[Mit86b] for further d’ 1scu:ssion and references). The
ideal model of [MPS86], f;or example, can be viewed
as a PER inference model, as defined in [Mit87], by
replacing each ideal I with1 the partial equivalence re-
lation I x I. By the results of [Mit86b], this gives
us a second-order model, and hence a model of Core-
XML . A similar Core-XML model can be constructed
from Milner’s original description [Mi178], taking U1
to be the collection of monotypes, and defining the
elements of U2 (the polytypes) by quantification over
VI. In either case, we obtain a Core-XML model
with a degenerate equational theory, but type mem-
bership interpreted as expected. Thus a consequence
of the type soundness theorem for Core-XML models
(see, e.g., [Mit86b,Mit87]) is that Core-ML expres-
sions “cannot go wrong.”

duction on types, strong normalization for Core-XML
may be proved by a relatively straightforward exten-
sion of the argument given in [Bar84, Appendix A].
However, it is worth pointing out that strong normal-
ization for Core-XML follows from strong normaliza-
tion of the Girard-Reynolds calculus, and so is also a
corollary of the theorem originally proved by Girard
[Gir71 ,Gir72,Mit86b].

6 Review of Standard ML Mod-

ules

An important part of Standard ML is the module
system, proposed in [Mac851 and further documented
in [HMM86]. W e will review the main features of
the module design by example and then, in the next
section, describe the full XML function calculus en-
compassing modules.

The basic units of the module system are called
structures, signatures and functors. A structure is
essentially a (heterogeneous) environment. For our
purposes, an environment assigns meaning to value
identifiers (by mapping them to values), to type iden-
tifiers (by mapping them to types), and to structure
identifiers (by mapping them to structures). The type
of a structure is a signature, which lists the identifiers
bound by the structure and their types. For example,
the signature of a structure binding x to 3 will specify
that x has type int. Since structures may bind type
and structure identifiers as well as value identifiers,
the notion of “type” must be extended to encompass
these cases as well, as we will see below. Functors
are functions mapping structures to structures, but
currently there are no explicit functor signatures in
Standard ML.

Structures are denoted by structure expressions,
the basic form of which is a sequence of declarations
delimited by keywords struct and end. Structures
are not entirely “first-class” in that they may only
be bound to structure identifiers or passed as argu-
ments to functors. However, we will see that this
a universe distinction, and not an ad hoc restriction
of the language. The following declaration binds a
structure to the identifier S:

structure S =
struct

type t = int
val x : t = 7

end

A final, related topic is the theory of iogical rela- The structure expression following the equals sign
tions for Core-XML , along the lines of [MM85,Sta85]. defines an environment mapping t to int and x to
Since universes allow us to construct relations by in- 7. The way Standard ML is currently implemented,

34

structure expressions are “generative,” which means
that for the purpose of type checking, each structure
elaboration yields a distinct structure. The reason
for this is that the modules language allows a user to
specify that two structures must be equal, using shar-
ing specifications, and so structure equality must be
made efficiently decidable. More will be said about
this in Section 9.

The components of a structure are accessed by
qualified names, using a syntax reminiscent of record
access in many languages. For instance, the identi-
fier S .x refers to the x component of S, and therefore
has value 7. Similarly, S . t refers to the t component
of S, and denotes the type int. The typing rule for
qualified names, which is made precise using signa-
tures, gives S . x type S . t. During the type checking
phase of compilation, S. t will be evaluated to int,
when necessary, so that S . x may be used as an integer
expression. This “transparency” of type definitions
distinguishes Standard ML structures from abstract
data type declarations (see [MP85] for related discus-
sion) .

Signatures are denoted by signature expressions,
the basic form of which is the specification. Signa-
tures may be bound to signature identifiers using a
signature binding, as follows.

signature SIG =
sig

type t
val x : t

end

This signature asserts that t is a type identifier, and
that x is a value identifier of type t. It should be clear
that SIG is a legitimate signature for the structure S
defined above.

It is worth remarking that there may be many dis-
tinct signature expressions that accurately describe a
given structure. For example, the signature

signature SIG’ =
sig

type t
val x : int

end

is also an acceptable specification of the structure S,
for the value of x is in fact an integer.

In addition to ambiguities of this form, there is an-
other, more practically-motivated, reason why struc-
tures do not possess unique (or most general) signa-
tures. It seems important in practice that signatures
be interpreted as constraints or views of a structure,
rather than precise specifications. For example, in

ML the structure S defined above also matches the
signature

signature SIG” =
sig

val x : int
end

since it clearly provides a component x of type int.
This is related to the form of subtyping discussed
in [Car84,CW86]. Although structures do not have
unique signatures, it is shown in [HMT87b] that ev-
ery structure has a “most general” signature, much as
each expression of the core language has a most gen-
eral type. For further discussion of signature match-
ing, we refer the reader to [HMT87b].

To simplify our treatment of Standard ML, we will
simplify signature matching so that each structure
has a unique signature listing all of its components
and their types. This allows us to view the more gen-
eral form of signature matching as a convenience of
concrete syntax, much as we view the implicitly-typed
Core-ML as a shorthand for Core-XML . In particu-
lar, we regard the signature matching algorithm of
Standard ML as providing the automatic insertion of
coercion functions that restrict structures to the re-
quired signatures.

Functors (which are functions mapping structures
to structures) are generally declared using a syntax
reminiscent of the typed function declarations used
in many languages:

functor F (S : SIG > : SIG =
struct

type t = S.t * S.t
val x : t = (S.x,S.x)

end

The parameter signature is mandatory, but, as a
notational convenience, the result signature may be
omitted, with the default obtained by an extension
of the type inference algorithm for the core language.
The functor F takes a structure matching the sig-
nature SIG (defined above), and returns a structure
matching the same signature, but with the type t of
the result being the Cartesian product of S . t with
itself, and, correspondingly, with x being the pair
(S.x,S.x).

A peculiarity of the module system is that signa-
tures are not allowed to have free type variables. This
implies that a result signature cannot refer to a pa-
rameter or its signature, and hence certain forms of
dependency cannot be expressed. For example, the
following declaration is not legal in ML, since the
signature describing the result of functor application
contains a free occurrence of S.

35

functor G (S : SIG > : sig val y : S. t
* S.t end =

struct
val y = (S.x,S.x)

end

We would like to have S bound by the functor ex-
pression, but thi.s is prohibited by current implemen-
tations. However, with the result signature removed,
the declaration above becomes legal Standard ML.
This anomaly, which is at variance with the account
given in [Mac86], appears to be an oversight arising
from the lack of functor signatures. To avoid this
problem, and to provide a more uniform language,
we will incorporate functor signatures into our model
of ML.

7 Full XML

In this section we will extend Core-XML to a function
calculus XML by adding general constructs that al-
low us to describe signatures, structures and functors.
Following [Mac86], we will use general sums and prod-
ucts in the style of Martin-LGf’s type theory [Mar82].
While general sums (also called “strong sums;” see
[How80]) are closely related to structures, and general
Cartesian products seem necessary to capture func-
tars, the language XML will be somewhat more gen-
eral than Standard ML. For example, an ML struc-
ture may contain polymorphic functions, but there
is no way to define a polymorphic structure in the
implicitly-typed programming language. This is sim-
ply because there is no provision for explicit binding
of type variables. In XML, by virtue of the uniformity
of the language definition, there will be no restriction
on the types of things that can be made polymor-
phic. For similar reasons, XML will have expressions
corresponding to higher-order functors and functor
signatures. Although higher-order functors are omit-
ted from ML, they seem to be useful for supporting
separate compilation. And, as mentioned in the last
section, functor signatures smooth over some trouble
spots. Consequently, we consider the introduction of
these features a benefit of XML. In Section 9, we will
discuss the addition of sharing constraints.

Intuitively, general sums and products may be
viewed as straightforward set-theoretic constructions.
If A is an expression defining some collection (either
a type or universe, for example), and B is an ex-
pression with free variable z which defines a collec-
tion for each x C_ A, then Cx:A.B and IIx:A.B are
called the sum and product of the family B over the
index set A, respectively. he product IIz: A.B is the
Cartesian product of the -family { B(z) 1 z E A }; its

elements may be regarded as functions f such that
f(u) E [a/z]B for each a E A. he sum CZ: A.B is
the disjoint union of the family { B(z)] z E A }; its
members are defined to be ordered pairs (u,b) with
a E A and b E [a/x]B. Since the elements of sum
types are pairs, general sums come with projection
functions fst and snd for first and second compo-
nents.

General sums allow us to write expressions for
structures and signatures, provided we regard envi-
ronments as tuples whose components are accessed
by projection functions. For example, the declaration
of structure S in the last section, with t = int and
x = 7, may be viewed as binding S to the pair (int, 7).
In XML, the components t and x are retrieved by
projection functions, so that S. t is regarded as an
abbreviation for snd(S). With general sums we can
represent the signature SIG as the type Ct: Ul.t, of
which the tuple (int, 7) is a member. he represent a-
tion of structures by unlabeled tuples is adequate in
the sense that it is a simple syntactic translation to
replace qualified names by expressions involving pro-
jection functions. However, this way of viewing struc-
tures does not provide any natural interpretation of
Standard ML open, which imports declarations from
the given structure into the current scope. herefore,
it would be preferable to define a type system with
environments as part of the syntax.

Since general products allow us to type functions
from any collection to any other collection, we can
write functors as elements of product types. For ex-
ample, the functor F of the last section is defined by
the expression

AS: (Et: U1 .t).Cfst(S) x &t(S), (snd(S), snd(S))),

which has type

I-IS: (Et: u1 .t).Cs: Ul .s.

Since there is no need to require that subexpres-
sions of XML types be closed, we are able to write
explicitly-typed functors with nontrivial dependent
types in XML. In addition, due to the uniformity of
the language, we also have higher-order functors.

Unfortunately, general products and sums compli-
cate the formalization of XML considerably. Since a
structure may appear in a type expression, for exam-
ple, it is no longer possible to describe the well-formed
type expressions in isolation. his also makes the
well-formed contexts difficult to define. herefore,
we will define XML by giving a set of inference rules
for determining the well-formed contexts, types and
terms, in the style of Automath [DB80] and Martin-
Lof [Mar82]. he un-checked pre-terms of XML are

36

given by the following grammar:

M : : = II:] Ur] Uz] triv) M + M 1 IIx: M.M
Cx: M.M 1 * I Ax: M.M I MM I (M, M)

fst(W I sWM)
he metavariables M, N, and P range over the pre-

terms. We also use o and T to range over pre-terms,
particularly when the term is intended to be a type.

he observant reader will note that we no longer have
let. his is because let x: u = M in N may be writ-
ten as (XZ: c.N)M in XML, using lambda abstraction
over the polymorphic type u: Uz. he type checking
rules for XML appear in ables 3 through 7.

he following lemma summarizes some technical
properties of the type system.

Lemma 7.1 I. If I-- I? D M : r, then l- I context.

2. If I- I? D M : T, then either r E Uz or k r D r :

u2.

3. If t r,x: r D M : u and t r D N : T, then
t r D [N/X]h!f : [N/X]a.

Strong normalization for XML may be proved using
a translation into Martin-Lijf’s 1973 system [Mar73].
We consider it an important open problem to develop
a theory of logical relations for full XML, a task that
is significantly complicated by the presence of general
C and I’l types.

While we have outlined the translation of Stan-
dard ML signature, structure and functor expressions
into XML, the status of the corresponding declara-
tions deserves further explanation. he most natural
treatment of these declarations might seem to be via
lambda abstraction, regarding

structure S: SIG = struct (body) end;

b-w-am)

as meaning

(AS: SIG. (program)) (body).

However, this does not model the behavior of the
Standard ML type checker accurately, since the pro-
gram must be typed without knowing the values of
typed declared in S. In fact, this form of parameteri-
zation seems to provide data abstraction, as noted in
[Mac85].

An important aspect of Standard ML is that sig-
nature and functor declarations may only occur at
“top level,” which means they cannot be embedded
in other constructs, and structures may only be de-
clared inside other structures. Furthermore, recursive
declarations are not allowed. Consequently, it is pos-
sible to treat signature, structure and functor decla-
rations by simple macro expansion. By this process,
the program

structure S =
struct

type t = int
val x : t = 7

end ;
s.x + 3

may be typed by observing that the type of S .x is
S.t = @((i&,7)), which may be simplified to int.

hus the first step in translating a Standard ML pro-
gram into XML is to replace all occurrences of sig-
nature, structure and functor identifiers with the ex-
pressions to which they are bound. hen, type ex-
pressions may be simplified using the type equality
rule of able 4, as required. With the exception of
“generativity,” which may be regarded as a means
of characterizing a particularly simple approximation
to XML equality (c.f.[HM 87b,HM 87a]), this pro-
cess models elaboration during the Standard ML type
checking phase fairly accurately.

8 Predicativity and the rela-
tionship between universes

8.1 Universes

Each of the constructs of XML is designed to cap-
ture a specific part of the programming language. In
an effort to provide a vocabulary for discussing ex-
tensions to ML, and to simplify the presentation of
the type theory, we have allowed arbitrary combina-
tions of constructs and straightforward extensions like
higher-order functor expressions. While generalizing
in certain ways that seem syntactically and seman-
tically natural, we have retained the distinction be-
tween monomorphic and polymorphic types by keep-
ing VI and U2 distinct. he restrictions imposed by
universes are essential to the proof of heorem 4.1,
and have the technical advantage of leading to far
simpler semantic model constructions. However, it
may seem reasonable to generalize ML polymorphism
by lifting the universe restrictions (as in the Girard-
Reynolds second-order lambda calculus), or alter the
design decisions U1 C Uz and VI : U2.

In this section, we will show that the assumptions
Ul 2 U2 and U1 : U2 are essentially benign, and that
in the presence of structures and functors, the uni-
verse restrictions are essential if we wish to avoid a
type of all types. Since there is insufficient space to
debate the merits of type: type, we refer the reader
to [Coq86,How87,MR86] for background information
and further discussion. Based on previous investi-
gation, it seems fair to say that type: type would cer-
tainly change the character of ML dramatically. How-

37

ever, further research is needed to understand the
ramifications of type: type more precisely.

8.2 VI is a subset of Uz

In XML, we have Ur 2 i’/z, since every Ur type is
also treated as a. U2 type. The main reason for this
is that it simplifies both the use of the language, and
a number of technical details in its presentation. For
example, by putting every 7: Ur into U2 as well, we
can write

u : uz
IIt:-

for the II-formation rule, instead of giving two sep-
arate cases for r: VI and u: Uz. An important part
of this design decision is that U1 c Ua places no ad-
ditional semantic constraints on XML. More specifi-
cally, if we remove the appropriate typing rule from
the language definition, we are left with a system in
which every U1 type is represented as a retract of
some Us type. This allows us to faithfully translate
XML into the language without U1 2 172, so that ev-
ery semantic model of XML without Lri C Us may
serve as a semantic model for XML with UI C U2.
The justification for assuming U1 c Ua is made more
precise by the following lemma.

Lemma 8.1 Let 7: UI be any type from the first uni-
verse, and let t be a variable that is not free in r.
Th.en there are XML contexts

i[] = X;f: U1.[] and j[] = [Itriv,

where triv may be any type, with the following prop-
erties:

l r D i[M] : IIt: U1 .r whenever r b M : r

l r D j[M] : T whenever r D M : IIt: VI .r

l r D j[i[M]] := M : 7 for all r D A4 : 7.

Using the contexts i[] and j[], it is quite easy to
translate every term in XML with UI C_ Ua into
an equivalent expression that is typed without us-
ing VI 5 U2. :Essentially, the translation replaces
every use of 7: .?Y’i as a 172 type with (IL!: U1 .T) : U2,
and encloses terms in contexts i[] and j[] to make
the typing work out right. Since this translation pre-
serves equality a:nd the structure of terms, there is no
loss of generality in having VI c Ua.

8.3 Strong sums and U,: U,

In the explicitly--typed core language Core-XML , we
have VI C U2, but not EJl: U2. However, when we

added general product and sum types, we also made
the assumption that Ur : U2. The reasons for this are
similar to the reasons for taking U1 5 Ua: it makes
the syntax more flexible, simplifies the technical pre-
sentation, and does not involve any unnecessary se-
mantic assumptions. A precise statement is spelled
out in the following lemma.

Lemma 8.2 In anyfragment of XML which is closed
under the term formation rules for types of the form
Ct: U1 .r, with r: VI, there are contexts

where triv may be any U1 type with closed term *: triv,
satisfying the following conditions.

1. If I? D r : U1, then I D i[r] : (Et: VI .triv).

2. IfSI’ D M : (Et: VI .triv), then r D j[M] : UI .

3.‘rDj[i[T]]=7:U1 forallrDT:U~.

Intuitively, the lemma say that in any fragment of
XML with sums over VI (and some Ul type triv con-
taining a closed term *), we can represent VI by the
type Ct: UI .triv. Therefore, even if we drop Ur : U2
from the language definition, we are left with a rep
resentation of Ui inside Uz. For this reason, we might
as well simplify matters and take VI : U2.

8.4 Impredicativity and “type: type”

In XML, as in Standard ML, polymorphic func-
tions are not actually applicable to arguments of all
types. For example, the identity function defined by
id(x) = z has polymorphic type, but it can only
be applied to elements of types from the first uni-
verse. We cannot apply the same identity function
ids to both integers and structures. One way to elim-
inate this restriction is to eliminate the distinction
between U1 and U2. If we replace UI and UZ by a
single universe in the definition of Core-XML , then
we obtain the second-order lambda calculus of Girard
and Reynolds [Gir’ll ,Gir72,Rey74]. (A similar tech-
nique is used to introduce impredicativity into Nuprl
in [How87].) The Girard-Reynolds calculus has a
number of reasonable theoretical properties (see, e.g.,
[BMM88,Mit86b,MP85]) and seems to be a useful
tool for studying polymorphism in programming lan-
guages .

However, if we make the fuZZ XML calculus im-
predicative by eliminating the distinction between lJ1
and U2, the language becomes very different from the
Girard-Reynolds calculus. Specifically, since we have
general products and U1: Uz, it is quite easy to see
that if we let VI = Uz, then Meyer and Reinhold’s

38

language X”’ with a type of all types [MR86] be-
comes a sublanguage of XML.

Lemma 8.3 Any fragment of XML with VI: U2,
UI = lJ2, and closed under the type and term forma-
tion rules associated with general products is capable
of expressing all terms of X7” of [MRSS].

Note that although the term formation rules of XML
only provide general products over U2 types, letting
U1 = U2 will give us products over all types.

By Lemma 8.2, we know that sums over 7J1 give us
VI: UZ. Therefore, we have the following theorem.

Theorem 8.4 The function calculus X’:’ with a type
of all types may be interpreted in any fragment of
XML without universe distinctions which is closed
under general products, and sums over VI of the form
Et: u1 .r.

Intuitively, this says that any language without
universe distinctions that has general products (ML
functors) and general sums restricted to VI (ML
structures with type and value but not necessar-
ily structure components) also contains the language
XTE7 with a type of all types. Since there are a num-
ber of questionable properties of XTZ7, relaxing the
universe restrictions of XML would be seem distinct
departure from ML.

8.5 Trade-off between weak and
strong sums

When we first discovered Theorem 8.4, we announced
it as a trade-off theorem in programming language
design2. The “trade-off” implied by Theorem 8.4 is
between impredicative polymorphism and the kind
of C types used to represent ML structures in XML.
Generally speaking, impredicative polymorphism is
more flexible than predicative polymorphism, and C
types (sometimes called “strong sums” [How80]) al-
low us to type more terms than the existential types
associated with data abstraction (see [MP85]).

‘Either impredicative polymorphism with the
“weaker” existential types, or restricted pred-
icative polymorphism with “stronger” sum types
seems reasonable. By the normalization theo-
rem for the impredicative Girard-Reynolds calculus

2We described our “trade-off theorem” in the TYPES elec-
tronic mail forum in the spring of 1986. Hook and Howe then
replied that they had discovered a similar phenomenon inde-
pendently IHH86). We also learned that Coquand had proved
the same theorem by a different means in [Coq86], which in
preparation at the time of our announcement.

[Gir72,Mit86b13, we know that impredicative poly-
morphism with existential types is strongly normal-
izing. As noted in Section 7, a translation into
Martin-Liif’s 1973 system [Mar731 shows that XML
with predicative polymorphism and “strong” sums is
also strongly normalizing. However, by Theorem 8.4,
we know that if we combine strong sums with im-
predicative polymorphism by taking U1 = U2, the
most natural way of achieving this end, then we
must admit a type of all types. By Girard’s paradox
[Coq86,MR86,How87], type: type (in the presence of
other constructs) implies that strong normalization
fails. In short, assuming we wish to avoid type: type
and non-normalizing recursion-free terms, we have a
trade-off between impredicative polymorphism and
strong sums.

In formulating the XML type theory, it became ap-
parent that there were actually several ways to com-
‘tine impredicative polymorphism with strong sums.
The most reasonable is this: instead of adding im-
predicative po!ymorphism by equating the two uni-
verses, we :m+y add a form of impredicative polymor-
phism by adding a new type binding operator with
the formation rule

r,t:Ul D7:Ul

r D vt: u, .r : U]

Intuitively, this rule says that if T is a UI type, then
we will also have the polymorphic type Vt: U1 .T in UJ .
The term formation rules for this sort of polymorphic
type would allow us to apply any polymorphic ‘func-
tion of type Qt: VI .r to any type in UJ., including a
polymorphic type of the form ‘v’s: U1 .o. However, we
would still have strong sums like Ct: VI .T in ZJ, in-
stead of UI. We do not know if this extension of
XML is strongly normalizing.

9 Sharing

A distinctive feature of ML’s modules facility is the
sharing constraint used to ensure that incrementally
constructed systems are built from compatible com-
ponents. For example, if the functor F builds a struc-
ture T as a function of two structures R and S, it may
be necessary for a type R. t defined in R to be the
same as the type S. t defined in S. This is specified
as follows.

functor F (R : SIGR, S : SIGS sharing
R.t=S.t) = . . .

3Girard’s original proof included existential types. While
the somewhat simpler proof in [Mit86b] does not, normaliza-
tion with existential types can easily be derived by encoding
3t.u as Vr[vt(uw-)~r].

39

where SIGR and SIGS are suitable signatures for R
and S. An application of F to two structures R and S
is legal iff the t; component of each is the same type.
Sharing specifications are not limited to types; one
can also require that two component structures of R
and S be equal. However, equations are syntactically
restricted to equations between “paths”, which are
either simple identifiers, or identifiers qualified by one
of more component designations (e.g., S . p . q. r is a
path, but S.x + 3 is not).

Sharing speci.fications lmay be added to XML using
equalizer types, which are an adaptation of a well-
known idea fro:m category theory [LS86,Mac71]. In-
formally, the equalizer type

{rc:a 1 M=N:7}

is the collection of all elements IC of type c~ satisfy-
ing the equation M = IV : r, which may involve the
variable 2. It is worth mentioning that equalizers
are also part of the Nuprl type theory [C*86], arising
from the combination of set and eqdity type con-
structors. More specifically, the Nuprl the set type
{ 2: u] r } co:nsists of those elements a of type 0
such that the type [~/z]T is inhabited, and the equal-
ity type a = bin cr is inhabited exactly when a and
b are equal elements of type cr. So it is easy to see
that our equalizer types are the composition of two
Nuprl types. The typing rules for equalizers appear
in Table 7.

Functors with sharing constraints are written in
XML by restricting the domain to an appropriate
equahzer type. For example, the Standard ML func-
tor

functor F (P : SIG1 sharing P.s = P.t >
: SIG2 = . . .

requires a structure P whLose s and t components are
equal. If SIG1 declares that both s and t are types, s
is the first component of P, and t is the second, then
this functor is given by an XML term of the form

XP: { z:u, 1 &t(z) = snd(z) : U] }

where ~1 is the XML notation for SIGI.
In practice, as Standard ML is currently imple-

mented, equality for the purposes of type checking
is based on the idea of generativity mentioned briefly
in Sections 6 and 7. The reasons for this are discussed
in [Mac85 ,HMT87b], and are related to the algorith-
mic difficulty pointed out in [So178]: structure and
type equality are checked at compile time, and must
be made efficiently decidatble. While the full system of
equational inference rule:3 is omitted from this paper

due to space considerations, the intencled rules paral-
lel those in [BMM88,Gir72,MR86,Mit87,Rey74] and
capture a semantic notion of equality. The equations
used in Standard ML type checking constitute one
of many decidable approximations to XML equality,
and the effect of sharing constraints varies according
to the kind of approximation used. The consequences
of introducing equalizers, in the context of the par-
ticular equational reasoning used in the current type
checker, remain a topic for further investigation.

As mentioned above, only a restricted form of
equalizer may appear in Standard ML programs. One
justification for the restriction to paths is that strong
normalization fails otherwise, as follows. It is well
known that recursion is definable in the untyped
lambda calculus, via the fixed-point operator Y, and
that untyped lambda calculus may be interpreted in
typed lambda calculus satisfying an equation t = t+t
between types. (Further discussion of Y may be
found in [Bar84], for example, and the relationship
between untyped lambda calculus and type (or do-
main) equations in [Bar84,Sco80].) Given this, and
the fact that equalizers allow us to type terms with
respect to equational hypotheses, it is easy to show
that equalizers give us terms without normal form.
For example, if r is a context containing the typing
assumption 5: { y: triv] T = r-+7 : Ui }, for any Vi
type -r, then by the typing rules in Table 7, we may
conclude that l? D r = r-+7 : Ui. Therefore, using
the type equality rule from Table 4, we may give any
term with type r type T--U, and vice versa. This
allows is to give any untyped lambda term type T,
including untyped terms with no normal form. Dis-
charging the typing assumption via lambda abstrac-
tion, we can write a closed, well-typed functor with
parameter 2: { y: triv I T = T-V : Ur } and nonnor-
malizing body.

10 Towards Representation In-
dependence and Full Ab-
straction

Two important issues in the study of pro-
gramming languages are representation indepen-
dence [Rey83,MM85,Mit86a] and full abstraction
[Mi177,Plo77], neither of which seems to have been
successfully applied to the study of full ML. Roughly
speaking, representation independence is the prop-
erty that the behavior of well-typed programs is in-
dependent of low-level decisions about the implemen-
tation of basic data types. For example, in a typed
language with booleans, it should not matter whether

40

true is represented by 1, and false by 0, or vice versa,
as long as all the operations on booleans are imple-
mented appropriately. Full abstraction is related to
the observable equivalence of program expressions.
We say expressions M and N are observationally
equivalent if, for any program context C[] (i.e., ex-
pression with a “hole” such that C[M] and C[N] are
closed terms of printable type), the result of evalu-
ating C[M] is the same as evaluating C[N]. A fully
abstract interpretation for a programming language
is a semantic model with the property that observa-
tionally equivalent expressions are equal.

Both representation independence and full abstrac-
tion seem difficult to study within the implicitly-
typed framework of Milner’s original paper and sub-
sequent similar studies. Proving representation in-
dependence for ML involves showing that if we
change the representation for some type like the
booleans, the output of any full program remains
unchanged. But because implicitly-typed interpre-
tations involve meanings for all untyped terms, it is
technically difficult to study “arbitrary” representa-
tions for booleans. Using the explicitly-typed frame-
work of this paper, it seems straightforward to use the
techniques of [MM85,Mit86a] to prove representation
independence for ML. In fact, since the types of our
function calculus are stratified into levels, representa-
tion independence for ML seems much simpler than
for the Girard-Reynolds calculus, and it seems likely
that the results of [Mit86a] on substitution equiva-
lence for abstract data type implementations could
be strengthened considerably. We consider this an
important direction for future research.

Although the development of fully-abstract models
is not an easy task (cJ.[Mu184]), our explicitly-typed,
stratified calculus seems the simplest adequate frame-
work. To begin with, it is not entirely clear how to de-
fine observational equivalence in an implicitly-typed
setting. One definition is that two terms M and N
of the same type are observationally equivalent if, for
every program context C[] such that both C[M] and
C[N] are well-typed, we have C[M] = C[N]. An al-
ternative would be to say that a context with C[M]
well-typed and C[N] not would distinguish M from
N. Neither definition seems very appealing, since
typed terms are compared according to their untyped
behavior, but perhaps there is some merit to one of
these.

A more promising approach to full abstraction is
to associate a different equivalence relation with each
type (see, e.g., [CZ86,FS87,Mit86b]), so that two
terms could be considered equivalent without hav-
ing equal untyped meanings. This allows us to in-
corporate the fact that, for example, M and N may

be equal when used as boolean functions, but un-
equal as integer functions. However, as shown in
[Mit86b] for the G irard-Reynolds calculus, models
based on partial equivalence relations are a special
case of explicitly-typed models. Therefore, there is
no loss of generality in considering an explicitly-typed
syntax and semantics. For this reason, we expect the
explicitly-typed analysis of ML given here will be use-
ful in any future study of full abstraction.

11 Conclusion and Directions
for F’urt her Investigation

We have given an precise description of the type sys-

tem for much of Standard ML, using a function cal-
culus called XML. Our analysis is based on the belief
that ML is most profitably viewed as an explicitly-
typed, predicative language with dependent product
and sum types. Explicit typing is central to giving a
single account of both the core expression language
and the module system, and seems useful for study-
ing representation independence or full abstraction,
as outlined in Section 10. The distinction between Ur
and Us in XML reflects the typing rules of Standard
ML, and Leads to a number of significant technical
simplifications in the study of XML. Moreover, uni-
verse distinctions seem essential to the character of
ML, as discussed in Section 8.

Some important aspects of Standard ML have been
omitted. For the language we have considered, ac-
tual implementations compare type expressions us-
ing the concept of “generativity,” which is discussed
in [HMT87b,HMT87a]. In addition, signature match-
ing allows structures to match signatures that specify
fewer components than the structures actually pro-
vide. We believe more accurate descriptions of both
of these characteristics of Standard ML could be given
within the framework of this paper, and that it would
be worthwhile to do so. It would also be useful to ex-
tend our account of ML to a fuller language with ex-
ceptions, recursive types and/or references. In partic-
ular, we hope that an explicitly-typed study of poly-
morphic references would clarify the connection be-
tween polymorphism and side effects, a continuing
trouble spot in the ML type inference algorithm.

Along with representation independence and fully
abstract models, an important topic for further study
is the status of data abstraction in Standard ML. It
is implicit in the discussion of [Mac851 that abstype
declarations, as described in [GMW79,MP85] may be
replaced by ?n-line” applications of functor expres-
sions. This seems quite plausible, but it is important
to clarify the precise sense in which functor applica-

41

tion is equivalent to abstype. Based on past experi-
ence, e.g.[MM8,5,Mit86a], a theory of logical relations
seems to be the appropriate method of investigation.

Another important direction is to develop an accu-
rate, straightforward presentation of ML operational
semantics. As with other versions of lambda calcu-
lus, equality in XML is given by an equational axiom
system. This equational system may also be formu-
lated as a set of reduction rules, as usual. However,
for the extension of XML obtained by adding excep-
tions, references and recursion, capturing the oper-
ational semantics of Stabndard ML relies on careful
consideration of the order in which re-write rules are
applied. (For example, if R is a divergent expression,
then (Xrc.O)fl diverges in the current call-by-value im-
plementation, but (Ax.O)fi = 0 is provable using the
usual &calculus style reasoning.) It would be use-
ful to develop a typed calculus that is faithful to the
operational semantics, following the pattern estab-
lished by Plotkin’s X,-calculus [Plo75] and Martin-
LGf’s type theory [Mar%!].

Acknowledgements:

Thanks to Dave MacQueen for many insightful dis-
cussions of ML over the last few years, and comments
on this paper in particular. Thanks also to Andrzej
Tarlecki for comments on an earlier draft.

References

[ABL86]

[Bar841

[BM84]

[BMM88]

R. Amadio, K. Bruce, and G. Longo. The
finitary projection model for second order
lambda calculus and solutions to higher
order domain. equations. In IEEE Symp.
Logic in Computer Science, pages 122-
130., 1986.

H.P. Barendregt. The Lambda Calculus:
Its Syntax and Semantics. North Holland,
1984. (revised edition).

K. Bruce and A. Meyer. A complete-
ness theorem. for second-order polymor-
phic lambda calculus. In Proc. Int. Symp.
on Semantics of Data Types, Sophia-
Antipolis (France), Springer LNCS 173,
pages 131-144., 1984.

K. B. Bruce, A. R. Meyer, and 3. C.
Mitchell. The semantics of second-order
lambda calculus. Information and Com-
putation, 1988. (to appear).

[c*86]

[Car841

[Car851

[CH84]

KWW

[CWSS]

[CZ86]

[DB80]

[DM82]

[FS87]

[Gir71]

Constable et al. Implementing Mathe-
matics with the NuprlProof Development
System. Volume 37 of Graduate Texts in
Mathematics, Prentice-Hall, 1986.

I,. Cardelli. The semantics of multi-
ple inheritance. In G. Kahn, D. Mac-
Queen, and G. Plotkin, editors, Seman-
tics of Data Types, pages 51-67, Springer-
Verlag, 1984.

R. Cartwright. Types as intervals. In
Proc. 12-th ACM Symp. on Principles
of Programming Languages, pages 22-36,
January 1985.

T. Coquand and G. Huet. A theory of
constructions. In Proc. Int. Symp. on Se-
mantics of Data Types, Sophia-Antipolis
(France), Springer LNCS 173, June 1984.
Paper does not appear in proceedings.

T. Coquand. An analysis of girard’s para-
dox. In Proc. IEEE Symp. on Logic in
Computer Science, pages 227-236, June
1986.

L. Cardelli and P. Wegner. On un-
derstanding types, data abstraction, and
polymorphism. Computing Surveys,
18(4), December 1986.

M. Coppo and M. Zacchi. Type in-
ference and logical relations. In Proc.
IEEE Symp. on Logic in Computer Sci-
ence, pages 218-226, June 1986.

N.G. De Bruijn. A survey of the project
automath. In To H.B. Curry: Essays
on Combinatory Logic, Lambda Calculus
and Formalism, pages 579-607, Academic
Press, 1980.

L. Damas and R. Milner. Principal
type schemes for functional programs. In
9-th ACM Symposium on Principles of
Programming Languages, pages 207-2 12,
3 982.

P. Freyd and A. Scedrov. Some semantic
aspects of polymorphic lambda calculus.
In IEEE Symp. Logic in Computer Sci-
ence, pages 315-319, June 1987.

J.-Y.
Girard. Une extension de l’interpretation
de Gadel B l’analyse, et son application B
l’&mination des coupures dans l’analyse

42

[Gir72]

[GMWi’9]

[Gor79]

[HH86]

[HMM86]

[HMT87a]

[HMT87b]

[How801

[How871

[Lei83]

et la theorie des types. In J.E. Fenstad,
editor, 2nd Scandinavian Logic Sympo-
sium, pages 63-92, North-Holland, 1971.

J.-Y. Girard. Interpretation fonc-
tionelle et elimination des coupures de
l’arithmetique d’ordre superieur. These
D’Etat, Universite Paris VII, 1972.

M.J. Gordon, R. Milner, and C.P.
Wadsworth. Edinburgh LCF. Volume 78
of Lecture Notes in Computer Science,
Springer-Verlag, 1979.

M.J.C. Gordon. The Denotational
Description of Programming Languages.
Springer-Verlag, 1979.

J. Hook and D. Howe. Impredicative
strong existential equivalent to type:type.
Technical Report TR 86-760, Cornell Uni-
versity, 1986.

R. Harper, D.B. MacQueen, and R. Mil-
ner. Standard ML. Technical Re-
port ECS-LFCS-86-2, Laboratory for the
Foundations of Computer Science, Edin-
burgh University, March 1986.

R. Harper, R. Milner, and M. Tofte.
The Semantics of Standard ML. Tech-
nical Report ECS-LFCS-87-36, Labora-
tory for the Foundations of Computer Sci-
ence, Edinburgh University, August 3 987.

R. Harper, R. Milner, and M. Tofte. A
type discipline for program modules. In
TAPSOFT ‘87, Springer-Verlag, March
3 987.

W. Howard. The formulas-as-types no-
tion of construction. In To H.B. Curry:
Essays on Combinatory Logic, Lambda-
Calculus and Formalism, pages 479-490,
Academic Press, 1980.

D.J. Howe. The computational behav-
ior of girard’s paradox. In IEEE Symp.
Logic in Computer Science, pages 205-
214, June 1987.

D. Leivant. Polymorphic type inference.
In Proc. IO-th ACM Symp. on Principles
of Programming Languages, pages 88-98,
1983.

[LS86]

[Mac711

[Mac851

[Mac861

[Mar731

[Mar821

[McC79]

[Mi177]

[Mi178]

[Mi185]

[Mit86a]

J. Lambek and P.J. Scott. Introduction
to Higher-Order Categorical Logic. Cam-
bridge studies in advanced mathematics
7, 1986.

S. MacLane. Categories for the Working
Mathematician. Volume 5 of Graduate
Texts in Mathematics, Springer-Verlag,
1971.

D.B. MacQueen. Modules for standard
ml. Polymorphism, 2(2), 1985. 35 pages.
An earlier version appeared in Proc. 1984
ACM Symp. on Lisp and Functional Pro-
gramming.

D.B. MacQueen. Using dependent types
to express modular structure. In Proc.
13-th ACM Symp. on Principles of Pro-
gramming Languages, 1986. To appear.

P. Martin-LGf. An intuitionistic theory of
types: predicative part. In H. E. Rose and
J. C. Shepherdson, editors, Logic CoElo-
quium, ‘73, pages 73-l 18, North-Holland,
Amsterdam, 1973.

P. Martin-LGf. Constructive mathemat-
ics and computer programming. In
Sixth International Congress for Logic,
Methodology, and Philosophy of Science,
pages 153-l 75, North-Holland, Amster-
dam, 1982.

N. McCracken. An Investigation of a
Programming Language with a Polymor-
phic Type Structure. PhD thesis, Syra-
cuse Univ., 1979.

R. Milner. Fully abstract models of typed
lambda calculi. Theoretical Computer
Science, 4(l), 1977.

R. Milner. A theory of type polymor-
phism in programming. JCSS, 17, 1978.
pages 348-375.

R. Milner. The standard ml core lan-
guage. Polymorphism, 2(2), 1985. 28
pages. An earlier version appeared in
Proc. 1984 ACM Symp. on Lisp and Func-
tional Programming.

J.C. Mitchell. Representation indepen-
dence and data abstraction. In Proc. i3-
th ACM Symp. on Principles of Program-
ming Languages, pages 263-276, January
1986.

43

[Mit86b]

[Mit87]

[MM851

[MP85]

[MPS86]

[MR86]

[Mu1841

[Plo75]

[Plo77]

F&Q’41

PeWI

J.C. Mitchell. A type-inference approach
to redulction properties and semantics of
polymorphic expressions. In ACM Con-

ference on. LISP and Functional Program-
ming, pages 308-3-I 9, August 1986.

J.C. Mitchell. Polymorphic type inference
and containment.. Information and Com-
putation, 1987. To appear.

J.C. Mitchell and A.R. Meyer. Second-
order logical relations. In Logics of Pro-
grams, pages 225-236, Springer-Verlag
LNCS 193, June 7985.

J.C. Mitchell and1 G.D. Plotkin. Abstract
types have existential types. In Proc. 12-
th ACM Symp. on Principles of Program-
ming L,anguages: pages 37-51, January
1985. YRevised and expanded version to
appear in ACM TOPLAS.

D. Mac:Queen, G Plotkin, and R. Sethi.
An ideal model for recursive polymor-
phic types. Information and Control,
71(1/2):95-l 30, :I 986.

A.R. M:eyer and M.B. Reinhold. Type is
not a type. In .PTOC. 13-th A CM Symp.
on Principles of -Programming Languages,
pages 287-295, January 1986.

K. Mulmuley. fi semantic characteriza-
tion of full abstraction for typed lambda
calculu:s. In Proc. 25-th IEEE Symp.
on Foundations of Computer Science,
pages 279-288, 1984.

G.D. Plotkin. Call- by-name, call-by-
value, and the la,mbda calculus. Theoret-
ical Computer Science, 1:125-j 59, 1975.

G.D. F’lotkin. Lcf considered as a pro-
gramming language. Theoretical Com-
puter Science, 13, 1977.

J.C. Reynolds. Towards a theory of
type structure. In Paris Colloq. on
Programming, pages 408-425, Springer-
Verlag LNCS 19, 1974.

J.C. Reynolds. The essence of algol. In
de Bakker and van Vliet, editors, Algo-
rithmic Languages, pages 345-372, IFIP,
North Holland, ‘I 983.

[Rey831

by841

[Sco80]

[So1781

[Sta85]

[Tro73]

[Wan841

J.C. Reynolds. Types, abstraction, and
parametric polymorphism. In Infor-
mation Processing ‘83, pages 513-523,
North-Holland, Amsterdam, 1983.

J.C. Reynolds. Polymorphism is not set-
theoretic. In Proc. Int. Symp. on Se-
mantics of Data Types, Sophia-Antipolis
(France), Springer LNCS 173, pages 145-
156, Springer-Verlag, 1984.

D.S. Scott. Relating theories of the
lambda calculus. In To H.B. Curry:
Essays on Combinatory Logic, Lambda
Calculus and Formalism, pages 403-450,
Academic Press, 1980.

M. Solomon, Type definitions with pa-
rameters. In Proc. 5-th ACM Symp.
on Principles of Programming Languages,
pages 31-38, 1978.

R. Statman. Logical relations and the
typed lambda calculus. Information and
Control, 65:85-97, 1985.

A.S. Troelstra. Mathematical Investi-
gation of Intuitionistic Arithmetic and
Analysis. Volume 344 of Lecture Notes in
Mathematics, Springer-Verlag, 1973.

M. Wand. A types-as-sets semantics for
milner-style polymorphism. In Proc. 1 l-
th A CM Symp. on Principles of Program-
ming Languages, pages I 58-164, January
1984.

44

VAR r D X : 0 (r(X) = 0)

GEN

SPEC

rDe:a

r D e : &.a
(t not free in I?)

rDe:o

1‘ D e : 0’
(fl c a’)

ABS

APP

r,16:7 D e’ :T’

r D AX.e’ : T --f T’
b # FV(r))

r D e : 7’ + 7 r D e’ : 7’

r D ee’ : 7

LET
l?~e:a l?,X:~be’:+

r D let z = e in e’ : T’ (x $ Fvm)

Table I : Damas-Milner Type Assignment

VAR r D X : (T (r(X) = g)

rt>h’:a
TABS

r D Xt.M : nt: u1 .c7
(t not free in r)

TAPP

ABS

r D M : nt: u, .o
r D MT : [+]o
r,x:rDM’:r’

rbXx:r.M’:r+r’ (x 6 FV(I’))

APP

LET

rDM:r’--,T rDn/J’:T’

rr>MM’:r

I'DM:u l?,z:a~M’:~’
rDh?t X:U=M in M’:T’ (x 6 Fv(r))

Table 2: Core-XML Type System

() context

r ,5: 7 context

r,x:Tox:T

rDr:ui

r, 5: t context

r D hf : 7 r’ Context

r’DM:r

(i = 1,2; x glum)

(vx E oom(r).r(x) = r'(s))

Table 3: Context and structural rules for XML

I'DM:a I?Da=rZUi
roM:T

(i = 1,2)

Table 4: Universes and type equality

45

r context
r D triv : .!I,

r context --
r D * : triv

rDU:& rDT:& r,X:UDiVkT

r D XX: 5.M : 5+
(X 6 ~dr))

Table 5: Types and terms in U1

rD5:u2 r, x: u D r : u2

r D nX: U.7 : u2
(X e ~043)

rDU:& r,X:UD7:& r,x:uDM:r

r D XX: U.M : nX: 5.7
(X 6 ~049)

rDM:rIx:(T.7 rDN:U

r D MN : [N/X]r

rDM:u rDN:[M/X]7 r,X:5DT:u2

r D (M, N) : xX: U.7

r D iL!f : xX: 5.r

r Dfst(M) : u

r D M : xX: U.7

r D sd(h!f) : VSt(M)/X]T

Table 6: Types and terms in UQ

rD5:u2 r,X:5DT: u2 II’,x:wDM:T r,x:uoN:r

rD{X:U 1 M=N7}:u2
tx e ~04r))

rD.P:U rD[P/x]M=[P/x]N:[P/X]T rD{X:5 1 k?=N:7}:U2

rDP:{X:U 1 M=N:7}

rDP:{X:5 1 M=N:T}

rDP:5

rDP:{X:U 1 M=N:7}

r D [P/x]M = [P/x]N : II’/+

Table 7: Equalizer types for sharing constraints

46

