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1 Introduction

Concurrent ML (CML) is a high-level, high-performance lan-

guage for concurrent programming. It is cm extension of

Standard ML (SML)IMTH901, and is implemented on top of

Standard MLof New Jersey (SML/NJ)1w871. CMLisaprac-

ticallanguage andisbeing usedto build real systems. It

demonstrates that we need not sacrifice high-level notation

in order to have good performance.

Although most research in the area of concurrent language

design has been motivated by the desire to improve perfor-

mance by exploiting multiprocessors, we believe that concur-

rency is a useful programming paradigm for certain applica-

tion domains, For example, interactive systems often have

a naturally concurrent structure [cpm~ ‘G86? ‘ik891 “a901. An-

other example is distributed systems: most systems for dis-

tributed programming provide multi-threading at the node

level (e.g., Isis1BcJ+901 and ~gusILCJ~n). Sequential pro-

grams in these application domains often must use complex

and artificial control structures to schedule and interleave

activities (e.g., event-loops in graphics libraries). They are,

in effect, simulating concurrency. These application domains

need a high-level concurrent languagethat provides both effi-

cient sequential execution and efficient concurrent execution:

CML satisfies this need.

1.1 An overview of CML

CML is based on the sequential language SML iMTH901 and
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inherits the good features of SML: functions as first-class

values, strong static typing, polymorphism, datatypes and

pattern matching, lexical scoping, exception handling and a

state-of-the-art module facility. A brief introduction to SML

is given as an appendix; also see [Har86]. The sequential

performance of CML benefits from the quality of the SML/NJ

compiler. In addition CML has the foIlowing properties:

●

☛

●

●

o

0

CML provides a high-level model of concurrency with dy-
namic creation of threads and typed channels, and rerzdez-
vous communication. This distributed-memory model fits
well with the mostly applicative style of SML.

CML is a higher-order concurrent language. Just as SML

supports functions as first-class values, CML supports syn-

chronous operations as first-class values. These values,
called events, provide the tools for building new synchro-

nization abstractions. For example, we have found uses
for widely varying abstractions, such as remote procedure

call, multicast channels and buffered channels. This flex-

ibility is important, as it allows the synchronization and

communication abstractions to be tailored to the applica-

tion. CML’S events are an extension of the mechanism
described in [Rep88].

CML provides integrated 1/0 support. Potentially block-

ing 1/0 operations, such as reading from an input stream,

are full-fledged synchronous operations. Low-level sup-

port is also provided, from which distributed communica-
tion abstractions can be constructed.

CML provides automatic reclamation of threads and chan-
nels, once they become in accessible. This permits a tech-

nique of speculative communication, which is not possible
in other threads packages.

CML uses pre-emptive scheduling. To guarantee inter-
active responsiveness, a single thread cannot be allowed
to monopolize the processor. Pre-emption insures that a

context switch will occur at regular intervals, which al-

lows “off-the-shelf” code to be incorporated in a concur-
rent thread without destroying interactive responsiveness.

CML is efficient. Thread creation, thread switching and
message passing are very efficient (benchmarks are given
in section 5). Experience with CML has shown that it
is a viable language for implementing usable interactive
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systems; this is in direct contrast with Haahr’s experience

with concurrency in scheme IHLM901.In fact, message pass-

ing in CML is significantly faster than in Sun’s light-weight
process library.

CML is portable. It is written in SML and runs on essen-
tially every system supported by SML/NJ (four different
amhit ectu~es &d many ‘dif fereni operating systems).

1.2 Organization of this paper

The rest of the paper has four parts: section 2 describes and

motivates the design of CML (a complete description can be

found in [Rep90b]); section 3 describes the use of CML in two

application areas; sections 4 and 5 describe the implementa-

tion and its performance; and, lastly, section 6 compares CML

with related work. A brief introduction to SML is included

as an appendix,

2 Basic concurrency primitives

A CML program consists of a number of threads, which use

message passing on typed channels to communicate and syn-

chronize. The signature oft he basic thread and channel oper-

ations is given in figure 1. The function spawn dynamically

(* create a new thread .)

val spawn : (unit -> unit) -> thread_id

(* create a new channel *)

val channel : unit -> ‘ la than

(* message passing operations *)

val accept : ‘ a than -> , a

val send : (’a than W ‘a) –> unit

Figure 1: Basic concurrency primitives

creates a new thread to evaluate its argument. Channels are

also created dynamically, using the function channe 1 ]. The

functions accept and send are the synchronous commu-

nication operations. When a thread wants to communicate

on a channel, it must rendezvous with another thread that

wants to do a complementary communication on the same

channeL Most CSP-style languages (e.g., occam EBur881and

amber [carsbl) provide similar rendezvous-style communica-

tion. In addition, they provide a mechanism for selective com-

munication, which is necessary for threads to communicate

with multiple partners.

*The “I” in the type variable of channe 1’s result type is the strength of
the variable. This is a technical mechamsm used to allow polymorphic use of

upda~ble ob]ec~ without c~ating type loopholes

lt is possible to use polling to implement selective commu-

nication, but to do so is awkward and requires busy wait-

ing. Usually selective communication is provided as mul-

tiplexed 1/0 operation. This can be a multiplexed input

operation, such as occam’s ALT constructIBur881; or a general-

ized (or symmetric) select operation that multiplexes both in-

put and output communications, such as Pascal-m’s select

construct 1AB861.Implementing generalized select on a multi-

processor can be difficult iB0r861,but, as will be shown in sec-

tion 2.2, there are situations in which generalized selective

communication is necessary.

There is a fundamental conflict between the desire for abstrac-

tion and the need for selective communication, For example,

consider a server thread that provides a service via a request-

reply, or remote procedure call (lWC) style, protocol. The server

side of this protocol would be something like:

fun serverLoop () = if serviceAva~lable ()

then let val request = accept reqch Ln

send (replyCh, doit request) ;

serverLoop ()

end
else doSomethingElse ()

where the function do i t actually implements the service.

This protocol requires that clients obey the following two

rules:

1. A client must send a request before trying to read a reply.

2 Following a request the client must read exactly one reply

before issuing another request.

If all clients follow these rules, then we can guarantee that

each request is answered with the correct reply. A obvious

way to improve the reliability of programs that use this ser-

vice is to bundle the client-side protocol into a function that

hides the details, thus ensuring that the rules are followed.

The following code implements this abstraction:

fun clientCall x = (send (reqCh, x) ; accept replyCh)

While this insures that the protocol is observed, it hides too

much. If a client blocks on a call to client call (e.g., if the

server is not available), then it cannot respond to other com-

munications. The client would like to use selective communi-

cation in this situation, but cannot, because the synchronous

aspect of the protocol has been hidden by the function abstrac-

tion. The next section describes our solution to this dilemma.
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2.1 First-class synchronous operations

Following [Rep88] and [Rep89], we make synchronous op-

erations into first-class values by introducing a new kind

of value, called an event, which represents a potential syn-

chronous operation (analogous to the way a function value

describes a potential computation). These values provide an

abstraction of a protocol implementation, without obscuring

the synchronous aspect of a protocol. Figure 2 gives the sig-

nature of the basic event operations from the [Rep88] model,

CML extends this model in several significant ways, which

val

Val

Val

Val
Va 1

sync : ‘a event -> ‘a

receive : ( a than -> I a event

transmit : (’ a than * ‘ a) -> un~t event

choose : ‘ a event llst -> ‘ a event

wrap : (’a event * (’a -> ‘b)) -> ‘b event

Figure 2: Basic event operations

are discussed in section 2.4. The operator sync forces syn-

chronization on an event value. The functions rece ive and

t ran smit are used to build the base event values that de-

scribe channel communication. The event values returned by

receive and transmit are called base event values. We can

define accept and send using these and function composi-

tion:

val accept = sync 0 receive

val send = sync 0 transmit

The functions choose and wrap are combinators for con-

structing new event values: choose provides a generalized

selective communication mechanism and wrap combines an

event with a post-synchronization action, called the wrap-

per. For example, if we have two integer valued channels,

chl and ch2, then the following expression will block until

a message is available on one of the channels:

sync (choose [

wrap (receive chl, fn x => (2 * x) ) ,

wrap (reaelve ch2, fn x => (x + 1) )

1)

When a message becomes available,then we say the rece ive

event is enabled. If both base events are enabled at the same

time, then one will be chosen non-deterministically. When

a base event value is synchronized on, it produces a result,

which to which its wrappers are applied. For example, if the

above expression synchronizes on “receive ch 1,“ then the

result will be multiplied by 2, CML supports generalized (or

symmetric) selective communication; a choice event value

may have both input and output operations in it, A formal

operational semantics of CML has been developed and will

be included in the author’s forthcoming Ph.D. thesis IReP91b1.

To understand this the higher-order nature of this mecha-

nism, it is helpful to draw an analogy with first-class func-

tion values. Table 1 compares these two higher-order mech-

anisms.

Property Function values Event values
Type constructor -> event
Introduction A-abstraction receive

transmit
etc.

Elimination application sync
Combinato~ composition choose

II Imap Iwrap
etc. etc. II

Table 1: Relating first-class functions and events

The great benefit of this approach to concurrency is that it

allows the programmer to create new first-class synchroniza-

tion and communication abstractions. For example, we can

define an event-valued function that implements the client-

side of the RPC protocol given in the previous section:

fun clientCallEvt x = wrap (
transmit (reqch, x) ,
fn () => accept replyCh)

Application of the function transmit produces an event

value that represents the sending of the request. If the server

accepts the request, then we need to wait for a reply. To do

this we wrap the request event with a function that will accept

the reply. In the following section, we give a more substantial

example.

2.2 An example

An example that illustrates a number of key points is an im-

plementation of a buflered channel abstraction. Buffered chan-

nels provide a mechanism for asynchronous communication,

which is similar to the actor mailbox 1Agh861. The source code

for this abstraction is given in figure 3. The function buf f er

creates a new buffered channel, which consists of a btlffer

thread, an input channel and an output channel; the function

buff erSend is an asynchronous send operation; and the

function buff erRece i ve is an event-valued receive opera-

tion. The buffer is represented as a queue of messages, which

is implemented as a pair of stacks (lists); the Appendix gives
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abstype ‘ a buffer_chan = BC of (

inch : ‘ a than,

outch : ‘ a than

)
with

fun buffer () = let

val ~nCh = channel () and outCh = channel ( )

fun looP ( [1, [1) = loop ([accept inch], [1)
\ loop (front as (x: :r) , rear) = sync (

choose [

wrap (receive inCh,

fn y => loop (front, y: :rear) ) ,

wrap (transmit (outCh, x) ,

frl () => loop(rr rear) )

1)
[ loop ([1, rear) = loop (rev rear, [1 )

in

spawn (fn () => loop ([l, [1));

BC{inch=inCh, outch=outCh}

end

fun buffer Send (BC{mch, . . ), x) = send (inch, x)

fun bufferReceive (BC{outch, . . . ) ) = receive Outch

end (* abstype ‘)

Figure 3: Buffered channels

more details on this applicative implementation of queues.

This example illustrates several key points:

*

*

b

o

Buffered channels are a new communication abstraction,
which have first-class citizenship. A thread can use the
buff erRe ce ive function in any context that it could use

the built-in function receive, such as selective commu-
nication.

The buffer loop usesbothinput and output operations in its
selective communication. This isanexample of theneces-
sity of generalized selective communication. If we have
only a multiplexed input construct (e.g., occam’s ALT),

then we must to use a request/reply protocol to implement
the server side of the buf f erRece ive operation (see pp.

37-41 of [Bur88], for example). But if a request /reply pro-
tocol is used, then the buf f e rReceive operation cannot

be used in a selective communication by the client.

The buffer thread is a good example of a common CML

programming idiom: using threads to encapsulate state.

This style has the additional benefit of hiding the state of
the system in the concurrency operations, which makes
the sequential code cleaner. These threads serve the same

role that mo}l ifors do in some shared-memory concurrent

languages.

Once created, the buffer thread never terminates, which
may seem to pose a problem for resource recovery. If a
buffered channel ever becomes unreachable from all non-
blocked threads, then the buffer thread and channels will
be reclaimed by the garbage collector. Because the channels
and suspended thread state are normal SMLfNJ heap ob-

jects, we get thread reclamation for free. In general, threads

that communicate infinitely will block and be garbage col-
lected if they become disconnected from the active part of
the system. There are certain pathological live-fock situa-
tions, in which this fails, but these do not arise in practice.

A more complete version of this abstraction 1sincluded m the

CML distribution.

2.3 Other synchronous operations

One of the nice aspects of events is that other primitive syn-

chronous operations are easily accommodated in the frame-

work. There are three examples of this in CML: synchroniza-

tion on thread termination (sometimes called process join),

low-level 1/0 support and time-outs. The function

val wait : thread_~d –> unit event

produces an event for synchronizing on the termination of

another thread. This is often used by servers that need to

release resources allocated to client threads, Support for 10W-

level 1/0 is provided by the functions:

val syncOnInput : Int –> unit event

val syncOnOutput : lnt -> unit event

val sync OnExcept : ~nt –> unit event

which allow threads to synchronize on the status of file de-

scriptions. These operations are used in CML to implement

a multi-threaded 1/0 stream library. There are two functions

for synchronizing with the clock.

val wait Until : time -> unit event

val timeout : time –> unit event

The function wait unt i I returns an event that will synchro-

n~ze at the given time the function t imeout delays the spec-

ified time from the time sync is applied.

CML also provides a polling mechanism

val poll : ‘ a event -> ‘ a option event

where the SML type constructor option is

datatype ‘ a option = NoNE I SOMEof ‘ a

which budds an event for polling its argument. The event

value p o I I (ev ) is always enabled. If it is chosen when

involved in a synchronization, then it will return (SOME ev ),

if e,v is enabled and would return v; otherwise, it will return

NONE.

2.4 Extending the mechanism

The concurrency mechanism described thus far is essentially

that presented in [Rep881 and [Rep891. CML extends this

model in several important ways, in this section we motivate

and describe these extensions.
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Consider a protocol consisting of a sequence of client-server

communications: CI; CZ;. , ,; Cn. When this protocol is pack-

aged up in an event value, one of the c, is designated as

the commit poitlt; the communication on which this event is

chosen in a selective communication. In the mechanism of

[Rep881, the only possible commit point is CI. The wrap con-

struct allows on to tack on c?; ,. ,; c~ after c1 is chosen, but

there is no way to make any of the other Ci the commit point.

This asymmetry is a serious limitation to the originat mech-

anism. To illustrate this problem, consider a server that im-

plements an input stream abstraction. Since this abstraction

should be smoothly integrated into the concurrent model,

we make the input operations event-valued; for example, the

function

val input : lnstream -> string event

would be used to read a single character. Other operations,

such as input_l ine would also be provided. Let us assume

that the implementation of these operations uses a request-

reply protocol; thus, a successful input operations involves

the communication sequence

send (c/~,.q, REQ_INPUT) ; aCC@Pt (c&ep; u )

Packaging this L~p as an event (as we did in section 2.1), will

make the send communication be the commit point, but this

is not the right semantics. To see the problem, consider the

case where a client thread wants to synchronize on the choice

of reading a character and a five second timeout; e.g.:

sync (choose [

wrap (timeout (T1ME{sec=5, usec=O } ) ,

fn () => raise Timeout) ,

input instream

1)

The server will probably accept the request within the five

second limit, even though the wait for input might be indef-

i nite. The right semantics for the 1 nput operation requires

making the accept be the commit point. The guard combi-

nator provides a mechanism for doing this.

The guard combinator is the dual of wrap; it bundles code

to be executed before the commit point; this code can inch.lde

communications. It has the type

val guard : (unit –> ‘ a event) –> ‘ a event

A guard is essentially a suspension that is forced when sync

is applied to it. As a simple example of the use of guard, the

time out function, described above, is actually implemented

use waituntil and a guard:

fun ‘cImeout t = guard (

fn () => waitUnt~l (add_time (t, currentTime () ) )

where cur rent Time returns the current wall-clock time.

Returning to our RPC example from above, we can now build

an abstract RPC operation with the reply as the commit point,

The two different versions are:

fun clientCallEvtl x = wrap (

transmit (reqCh, x) ,

fn ( ) => accept replyCh)

fun cllentCallEvt2 x = guard (fn () => (

send (reqCh, x) ;

receive replyCh)

where c 1 i ent Ca 11 Evt 1 commits on the server’s accep-

tance of the request and c 1 ient Cal 1 Evt 2 commits on the

server’s reply to the request. Using guards to generate re-

quests like this raises a couple of other problems. First of all,

if the server cannot guarantee that requests will be accepted

promptly, then evaluating the guard may cause delays. The

solution to this is to spawn a new thread to issue the request:

fun clientCallEvt3 x = guard (fn () => (

spawn (fn ( ) => send(reqCh, x) ) ;

receive replyCh)

Another alternative is for the server to be a clearing-house for

requests; spawning anew thread to handle each new request.

The other problem is more serious: what if this RPC event

]s used in a selective communication and some other event

is chosen? How does the server avoid blocking forever on

sending a reply? For idempotent services, this can be handled

by having the client create a dedicated channel for the reply

and having the server spawn a new thread to send the reply.

The client side of this protocol is

fun clientCallEvt4 x = guard (fn () => let

val replych = channel ( )

in

spawn (fn () => send (reqCh, (replyCh, x) ) ) ;

receive replyCh

end)

When the server sends the reply it evaluates

spawn (fn () => send (replyCh, reply) )

If the client has already chosen a different event, then this

thread blocks and will be garbage collected.

For services that are not idempotent, this scheme is not SLIf-

ficient; the server needs a way to abort the transaction. The

function

val wrapl.bort : (’ a event * (unit -> unit) ) -> unit
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is provided for this purpose. The semantics are that if the

wrapped event is not chosen in a sync operation, then a new

thread is spawned to evaluate the second argument, called

the abort function. This is the complement of wrap in the

sense that if you view every base-event in a choice as having

both a wrapper and and an abort function, then, when sync

is applied, the wrapper of the chosen event is called and the

abort functions of the other base events are spawned off.

The client code for the RPC using abort must allocate two

channels: one for the reply and one for the abort message:

da’catype abort_msg = ABORT

fun clientCallEvt5 x = guard (fn () ‘> let

val reply Ch = channel ()

val abortCh = channel ()

fun abortFn ( ) = send (abortCh, ABORT)

in

spawn (fn () =>

send (reqCh, (replyCh, abortCh, x) ) ) ;

receive replyCh

end)

When the server is ready to reply (i,e., commit the transac-

tion), it synchronizes on the value

choose [

wrap (receive abortCh,

fn ABORT => aborf the transaction) ,
wrap (transmit (reply Ch, reply) ,

f n ( ) => commit the transaction)

1

This mechanism is used to implement the concurrent stream

1/0 library in CML.

Another extension to [Rep88] is the function:

val wrapHandler : (’ a event * (exn –> ‘ a) ) -> ‘ a event

wraps an exception handler around an event z. For example,

synch Input will raise an exception if the file specified by

the descriptor f d has been closed. Using wraPHandle r, we

can define a better behaved version of syncon I nput:

fun waitForInput fd = wrapHandler (

wrap (syncOnInput fd, fn () => true) ,

fn => false)—

Upon synchronization, this will return true if input is avail-

able, and false if the file is closed.

2.5 Stream 1/0

CML provides a concurrent version of the SML stream 1/0

primitives. Input operations in this version are event valued,

Zexn is the type of exception values

which allows them to be used in selective communication

For example, a program might want to give a user 60 seconds

to supply a password. This can be programmed as:

fun getpasswd () = sync (choose [

wrap (t~meoutsec=60, usec=O,

fn () => NONE),

wrap (input_line std_in, SOME)

1)

This will retumNONE, if the user fails to respond within 60 sec-

onds, otherwise it wraps SOME around the user’s response3.

Streams are implemented as threads which handle buffer-

ing. The input operations are actually request /reply/abort

protocols, similar to the one discussed above.

3 Applications

CML is more than an exercise in language design; it is in-

tended to be a useful tool for building large systems. In this

section we describe two applications of CML, and how they

use the features of CML.

3.1 Interactive systems

Providing a better foundation for programming interactive

systems, such as programming environments, was the origi-

nal motivation for this line of researchIRG861. Because of their

naturally concurrent structure, interactive systems are one of

the most important application areas for CML. Concurrency

arises in several ways in interactive systems:

User interaction. Handling user input is the most complex
aspect of an interactive program. Most interactive systems

use an event-loop and call-back functions. The event-loop
receives input events (e.g., mouse clicks) and passes them

to the appropriate euent-bundler. This structure is a poor-
man’s concurrency: the event-handlers are coroutines and

the event-loop is the scheduler.

Multiple services. For example, consider a document prepa-
ration system that provides both editing and formatting.

These two services are independent and can be naturally
organized as two separate threads. Multiple views are
implemented by replicating the threads.

Interleaving computation, A user of a document prepara-

tion system may want to edit one part of a document while

another part is being formatted. Since formatting may take

a significant amount of time, providing a responsive inter-
face requires interleaving formatting and editing. If the

editor and formatter are separate threads, then interleav-
ing comes for free.

3Since SOMEis a constructor function (i.e., SOME : , a -> , a OptlO~),
it can be used as a function argument
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Output driven applications. Most windowing toolkits, for

example XlibINYe901, provide an input oriented model, in
which the application code is occasionally called in re-
sponse to some external event. But many applications are

output oriented, Consider, for example, a computationally

intensive simulation with a graphical display of the current

state of the simulation, This application must monitor win-

dow events, such as refresh and resize notifications, so that
it can redraw itself when necessary, In a sequential imple-

mentation, the handling of these events must be postponed

until the simulation is ready to update the displayed in-
formation. By separating the display code and simulation

code into separate threads, the handling of asynchronous
redrawing is easy.

The root cause of these forms of concurrency is computer-

human interaction: humans are asynchronous and slow.

CML has been used to build a multi-threaded interface to the

X protocolIW861, called eXene. This system provides a similar

level of function as XlibINYe901, but with a substantially differ-

ent, and we think better, model of user interaction. Windows

in eXene have an envkomnent, consisting of three streams of

input from the window’s parent (mouse, keyboard and con-

trol), and one output stream for requesting services from the

window’s parent, For each child of the window, there will

be corresponding output streams and an input stream. The

input streams are represented by event values and the output

streams by event valued functions. A window is responsi-

ble for routing messages to its children, but this can almost

always be done using a generic router function provided by

eXene. Typically, each window has a separate thread for each

input stream as well as a thread, or two, for managing state

and coordinating the other threads. By breaking the code up

this way, each individual thread is quite simple, This model

is similar to those of [Pik89] and [Haa901).

This structure allows us to use delegation techniques to define

new behavior from existing implementations. Delegation is

an object-oriented technique (so we know it must be good),

that originated in concurrent actor systems 1LFsS61.As an ex-

ample, consider the case of adding a menu to an existing

text window. We can do this in a general way by defining

a wrapper that takes a window’s environment and returns

a new, wrapped, environment. The wrapped environment

has a thread monitoring the mouse stream of the old environ-

ment. Normally, this thread just passes messages along to the

wrapped window, but when a mouse “button down” mes-

sage comes along, the thread pops LIp the menu and consumes

mouse messages until an item is chosen. Emcien Gansner, of

AT&T Bell Laboratories, has developed a “widget” toolkit on

top of eXene, which uses these delegation techniques heavily.

The implementation of eXene which is currently about 8,500

lines of CML code, uses threads heavily. At the lowest level,

threads are used to buffer communication with the X server.

There are threads to manage shared state, such as graphics

contexts, fonts and keycode translation tables. Because the

internal threads are fairly specialized and tightly integrated,

there is not much use of events as an abstraction mechanism.

The use of events as an abstraction mechanism is common

at the application programmer’s level. h addition to the

event-vah~ed interface of the window environments, there

are higher-level objects that have abstract synchronous inter-

faces. One example is a virtualterminal window (vtty). This

provides a synchronous stream interface to its clients, which

is compatible with the signature of CML’S concurrent 1/0

libra~. If the client-code is implemented as a @zctor[Mac841

(parametrized module), then it can be used with either the

concurrent 1/0 library or the vtty abstraction.

The vtty abstraction is a good example of where user-defined

abstract synchronous operations are necessary for program

modularity. At any time, the vtty thread must be ready to

receive input from the user and output from the applica-

tion; thus it needs selective communication. The underlying

window toolkit (eXene) provides an abstract interface to the

input stream, but, since it is event-valued, it can be used in

the selective communication.

Another example of the use of new communication abstrac-

tions is a twflered nudticast channel (a simple version is de-

scribed in [Rep90b]). This abstraction has proven quite useful

in supporting multiple views of an object. When the viewed

object is updated, the thread managing its state sends a no-

tification on the multicast channel. The multicast channel

basically serves the role of a call-back function, while free-

ing the viewed object from the details on managing multiple

views. All of the details of creating/destroying views and

distributing messages are taken care of by the multicast ab-

straction.

3.2 Distributed ML

Another project involving CML is the development of a dis-

tributed programming toolkit for ML, which is being done in

collaboration with Bard Bloom, Robert Cooper, Chet Murthy

and Tim Teitelbaum at Cornell University. The low-level

1/0 support of CML is sufficient to build a structured syn-

chronous interface to network communication (as was done
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in our X-windows application). Higher-level linguistic sup-

port for distributed programming, such as the promise mech-

anism of [LS88], can be built using events to define the new

abstractions. Some of these ideas have been prototype by

Chet Murthy as part of a re-implementation of the Nuprl in-

teractive proof system. Nuprl can require vast amounts of

system resources when used to develop large proofs, but it

also provides ample opportunity for coarse-grain parallelism.

The system is structured as a pool of proof servers distributed

across a local area network of workstations. A user’s ses-

sion manager will farm out pieces of the proof to idle and

available servers; it uses an object similar to a promise as a

place-holder for the outstanding work.

4 Implementation

CML is written entirely in SML, using a couple of non-

standard extensions provided by SML/NJ: j?rst-chms contin-

uations[Dm911 and asynchronous signals IReP90al. We added

one minor primitive operation to the compiler (a ten line

change in a 30,000 line compiler), which was necessary to

guarantee that sync preserve tail-recursion. Threads are im-

plemented d la [Wan80], using jirst-class continuations, and the

SML/NJ asynchronous signal facility is used to implement

pre-emptive scheduling,

Unlike other continuation-passing style compilers, such as

[Ste781and [KKR+ 861, the code generated by the SML/NJ

compiler does not use a run-time stack. This means that

c a 11 c c and throw are constant-time operations, While

this is possible using a stack IHDB901; heap-based implementa-

tions are better suited for implementing light-weight threads

(Haahr’s experience bears this out IHaa901).

Event values have a natural implementation in terms of first-

class continuations. Without the choose operator, an event

value could be represented as

type r a event = ‘a cent -> ‘a

with sync being direct ly implemented by c a 11 c c. This

representation captures the intuition that an event is just a

synchronous operation with its synchronization point con-

tinuation as a free variable. The choose operator requires

polling, since we need to see which (if any) base events are

immediately available for synchronization. Thus, the imple-

mentation of an event value is a list of base events, with each

base event represented by a polling function, a function to

call for immediate synchronization and a function for block-

ing. The implementation of a precursor to CML is described

in detail in [Rep89].

The support of POI. 1 requires grouping base events that are

being polled as a group. Note that pol. I has the property

that the event

poll (poll ev~)

is equivalent to

wrap (poll etil, SOME)

We use this property to collapse nested applications of poI. 1.

The implementation of guard is straight forward: a guard

event value is represented by the guard function, when sync

is applied to a guard event, the guard function is evaluated.

This forcing is recursive, since a guard function might return

a guard event. When a combinator, such as wrap, is applied

to a guard event, the suspension is just pulled up one level.

For example, the guard case of the wrap implementation is

fun wrap (GUARD g, f) = GUARD (fno => wrap (go, f))

I wrap . . .

where GUARD is the internal representation’s constructor for

guard events. The application of choose to a guard event is

a little more tricky, since multiple guards maybe involved.

The most difficult CML feature to support is wrapAbort. If

wrapAbort is applied to a choice of several events, then, at

synchronization time, we must invoke the abort function if,

and only if, none of the events was selected. We handle this

by supplying an abort function for each element of the choicer

with one designated as the leader. When invoked, the other

abort threads send the leader a message; if the leader collects

messages from all of the other threads, then it evaluates the

abort function. The abort function will be evaluated if, and

only if, all of the abort threads are invoked.

The implementation consists of about 1,380 lines of com-

mented code. This breaks down into: 810 lines to implement

threads, channels, events, low-level 1/0 support and pre-

emptive scheduling; 430 lines to implement the stream 1/0

libra~; and 140 lines to handle initialization and termination.

In addition, there is a small library of useful abstractions, such

as buffered channels.
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5 Performance 5.2 Garbage collection overhead

Providing a better notation for programmin~ is not enough;

it must be efficient enough that users will be willing to write

major systems in it. To a great extent, SML/NJ has met this

goal as an implementation of a high-level language[AJ891.

Our benchmark results show that CML maintains this stan-

dard.

5.1 The benchmarks

We have conducted a series of benchmarks on three different

machines (see table 2). Each benchmarked operation was per-

formed 100,000 times; the loops were unrolled ten times to

reduce loop overhead, For each benchmark, we give the com-

bined user and system CPU time and the time spent garbage

collecting. All times are in micro-seconds. The benchmarks

were run using version 0.67 of SML/NJ and version 0.9.3 of ,

CML.

The first set of benchmarks (see table 3) measures the cost of

some basic operations:

Null function call This measures the time required to call
the null function; this operation is about 12 instructions on

the SPARC. Because of the compiler technology used by

SML/NJ the cost of this operation depends heavily on the

calling context; if there are many registers to be saved, then

the cost will be higher.

Thread switch This measures the cost of an explicit context
switch.

T’bread spawn/exit This measures the time it takes to spawn
and run a null thread, which includes the cost of two con-
text switches (the spawn operation switches control to the

newly spawned thread and a terminating thread must dis-
patch a new thread).

Rendezvous This measures the cost of a send/accept ren-

dezvous between two threads.

Event rendezvous This is an implementation of the rendez-
VOLIS benchmark using transmit/receive and sync.

The second set (see table4) measures the cost of several differ-

ent implementations of a simple service. The simple service

is essentially a memory cell; a transaction sets a new value

and returns the old value. The implementations are:

Function call This is the sequential implementation, which

uses an own variable to keep track of the state between
calls.

RPC This uses a request/reply exchange implemented using
send and accept.

Event RPC This implements the request/reply exchange as
an event value.

The high garbage collection overhead in these benchmarks

is mostly a result of the way the current SML/NJ collector,

which is a simple generational collector, keeps track of in-

tergenerational references 1APP891.Each time a mutable object

is updated, a record of that update is added to the store-list.

This store list is examined for potential roots at the begin-

ning of each garbage collection. The implementation of CML

uses a small number of very frequently updated objects: the

thread ready queue, current thread pointer and channel wait-

ing queues. This “hot-spot” behavior is the worst-case sce-

nario for SML/N~s collector, destroying the 0( ILIVEI ) nor-

mally expected from cop ying collection. The collector also

suffers from the problem of poor “real-time” responsiveness.

We have designed a new, multi-generational, collector for

SML/NJEReP91al, which uses the page-protection techniques

of [Sha871 and [AEL88] to implement the write barrier. This

new collector improves the performance of CML in two ways:

the hot-spot update behavior only incurs a constant cost for

garbage collection and eliminating the store-list reduces the

frequency of garbage collection and the cost of update opera-

tions. An instruction count analysis predicts a 25% reduction

in the cost of a CML context switch. Unfortunately, at the

time of this writing (March 1991), the new collector is not

stable enough to run the CML benchmarks.

5.3 Analysis

We have noticed a discrepancy between the measured times

and instruction counts on the SPARC processors. For exam-

ple; a CML thread switch takes about 100 instructions, which

suggests an average of W5 cycles per instruction (CPI) on the

SPARCstation 1. The SPARCstation 1 has a write-through

cache, which we suspect is causing this high CPI figure. For

the DECstation, the number is around 2 CPI, which seems

more reasonable,

The measurements show that the penalty for using abstract

interfaces (i.e., hiding channel communication in event val-

ues) is acceptable. Table 5 gives the ratio between the non-GC

time of the event version and the non-event version of the two

communication protocols we benchmarked.

These numbers demonstrate that we can build real system

software using our high-level notation, without paying an

unacceptable performance penalty. With specialized com-
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Machine Processor Memory Operating System

SPARCstation 1 20 MHz SPARC 28Mb SunOS 41.1

Sun 4/490 33 MHz SPARC 32Mb SunOS 4.0.3

DECstation5000/200 25 MHz R3000 16Mb ULTRIX 4.1

Table 2: Benchmark machines

n Operation I SPARC 1 I Sun 4/490 I DEC 5000 11
time (@’) GC (uS) tune (@) GC (L&’) time (@’) GC (pS’)

Null funchon call 1.9 0 1.0 0 0.7 0

Thread switch 26 8 13 4 8 7

Thread spawn/exit 85 13 38 7 22 12

Rendezvous 94 19 45 12 27 18

Event rendezvous 163 24 77 14 44 22

Table 3: Basic concurrency operation benchmarks

n Machine I Event cost: non-event cost n

Table 5: Cost of abstraction

piler support, such as a dedicated register for the thread ready

queue, performance would improve substantially.

5.4 Comparison with the pSystem

Lastly, to put our measurements into perspective, we im-

plemented a similar (allowing for linguistic differences) set

of benchmarks in the ~System, which is a C light-weight

process library tBs901. We ran these benchmarks on the same

machines; the results are reported in table 6. The times are

n Operation I Time (uS) II
SPARC 1 Sun 4/490 DEC 5000

Null function call 0.3 I 0.2 ] 0.4
Task switch 131 I 54.3 I 9.6

u L
Task create 371 126 46.6

Send/receive 292 119 27.7

Send/receive/reply 308 123 28.4

Table 6: @ystem benchmarks

given in micro-seconds and represent the sum of the user and

system CPU times; obviously there is no garbage collection

overhead. Even though the pSystem provides a lower-level

concurrency model (no selective commumcation, for exam-

ple), and is implemented in a lower-level language, CML

provides as good or better performance, This shows that we

can have the advantages of the higher level language without

sacrificing performance; a rare situation indeed,

6 Related work

There are many approaches to concurrent language design

(see [AS83] for an overview); our approach is an offshoot

of the CSP-school of concurrent language design. CML be-

gan as a reimplementation of the concurrency primitives of

PMLIReP881 in SML/NJ, but has evolved into a significantly

more powerful language. PML in turn was heavily influ-

enced by amber [cwgq. There have been other attempts at

adding concurrency to various versions of ML. Most of these

have been based on message passing ([Ho183], [Mat89], and

[Ram90] for example), but there is at least one shared memory

approachLcM901. As we have shown in this paper, message

passing fits very nicely into SML. It allows an applicative

style of programming to be used most of the time; the state

modifying operations are hidden in the thread and channel

abstractions. CML extends the message passing paradigm by

making synchronous operations first-class, which provides

a mechanism for building user-defined synchronization ab-

stractions. While this idea was first proposed in [Rep881, we

have made several sigmficant improvements:

CML improves the event type in several ways, The

pol 1 operation provides a cleaner semantics than the PML
polling mechanism, and the wrapHandler operation pro-
vides needed support for writing wrappers. The guard

and wrapAbort operations are important new features
that allow substantially more sophisticated protocols to be
implemented as events.

Because CML is implemented in SML, objects such as

threads, channels and the scheduling queue are heap al-
located. This has two advantages: threads cannot over-

flow fixed-size stacks (a common problem in many thread

packages), and the memory resources used by threads and
channels are reclaimed by the garbage collector. The latter

is heavily exploited in CML programs (see section 2.2).

CML threads are significantly lighter-weight than those

of most threads packages. Because the memory overhead

of CML threads is very small (tens of bytes compared to
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Operation SPARC 1 Sun 4/490 DEC 5000
time (PS) GC (PS) time (uS) GC (wS) time (IA’) GC (PS)

function call 4.8 2.3 0 1.5 0

RPC 197 3! 92 20 54 32

eventRPC 252 35 117 20 63 33

Table 4: RPC protocol benchmarks

kilo-bytes for PML), a more profligate use of threads is

possible.

CML m-ovides intetmated sutmort for both low-level and
strea~-based 1/0. - ‘ ‘

Our implementation techniques are not particularly novel.

The use of timers to implement pre-emption is an old tech-

nique used by most threads packages, and the use of first-

class continuations to implement concurrency goes back, at

least, to [Wan80]. A number of papers have been published

on the use of first-class continuations to implement con-

currency in scheme (e.g., [Wan801, [HFW841 and [DH891),

but we break new ground in a couple of ways: we de-

scribe the implementation of first-class synchronous oper-

ations using first-class continuations; we describe a complete

language for concurrent programming and its use; and we

provide performance figures. The one published applica-

tion of continuation-based concurrency in scheme (which we

know of) claims that most scheme implementations do not

implement continuations efficiently enough to support this

use of concurrency lHaa9q (the techniques of [HDB901 may

address this problem). Our performance numbers and ex-

perience “in-the-field” suggest that the opposite is true for

CML.

Using concurrency to implement interactive systems has been

proposed and implemented by several people. In [RG86] we

made the argument that concurrency is vital for the construc-

tion of interactive programming environments. [Pik891 and

[Haa90] describe experimental window systems built out of

threads and channels, but neither of these were fast enough

for real use.

7 Conclusions

We have described ahigher-orderconcurrent language,CML,

and its use in real-world applications. CML supports first-

class synchronous operations, which provide a powerful mech-

anism for communication and synchronization abstraction.

Our experience with CML “in-the-field” and our measure-

ments of the performance of the implementation show that

CML is a practical tool for building real systems. We feeJ

that CML is unique in that it combines a flexible high-level

notation with good performance.

CML is a stable system, and is freely available for distribution.

The latest version of both CML and its manual are available

via anonymous ftp from cs, come 11. edu; for more infor-

mation send electronic mail to:

cml–bugs@cs. cornell. edu
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Appendix - A brief introduction to Standard ML

This appendix gives a brief introduction to the major aspects

of Standard ML. SML is formally defined in [MTH90]; for a

tutorial introduction see [Har86]. It has the following impor-
tant characteristics:

SML is a higher-order language: functions are first-class
values.

SML is strongly typed: every expression has a type, which
is inferred by the compiler. There are no run-time type

errors.

SML has a polymorphic type-system: the type of an ex-

pression inferred by the compiler is the most general pos-

sible type for the expression.

SML is Iexically scoped.
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SML has a pattern matching facility for decomposing struc-

tured values. This facility is used in equational definitions

of functions and in a generalized c a se-expression.

SML has a powerful datatype mechanism: datatype dec-
larations introduce constructors that may be used to build

values in expressions and to decompose values in patterns.

SML has a type-safe exception mechanism.

SML has a “state-of-the-art” module facility.

A few examples illustrate most of the features used in this

paper.

SML has a predefine list type constructor, which is defined
by the declaration:

dat at ype ‘a list = nil I :: of (’a r ‘a llst)

Infix : :

The first line says that I. i st is a type constructor with two

constructors: n i L which is the polymorphic empty-list, and
,, ::” (pronounced cons). Constructors are use in expressions

to build values, and used in patterns to destruct values. Note

that type constructors are postfix operators (the ‘“ a“ is a
type variable), with the exception of two built-in constructors:

“->” for function types and “*” for tuple types. The second

line declares”: :” to be an infix operator.

Because lists are an important type, SML provides syntactic

sugar for list patterns and expressions. The syntax

[cl, .... e~l

is syntactic sugar for

el;:ez:: . . . ::en:: nil

The list reverse function uses this syntax for the empty list in

its patterns:

fun rev 1 = let

fun rev’ ([], 1) = 1

I rev’ (x::r, 11 = rev’ (r, x::l)
in

rev’ (1, [1)

end

The tail-recursive function rev’ is a function from a pair of
lists to a list. It is defined equationally in two clauses. The

first clause says to return the second argument if the first is

the empty list; the second clause is a tail-recursive call which

conses the head of the first argument to the second. The
function rev is polymorphic; it will work on lists of any type.
Tail-recursion is the standard way to code loops in SML.

A more complicated example is the following functional im-
plementation of polymorphic FIFO queues:

abst ype ‘ a queue - Q of

(front : ‘a list, rear : ‘a list)

with

fun queue ( ) = Q(front = [1, rear = [])

fun insert (x, Q{ front, rear) ) =

Q { front == front, rear = x: :rear)
exception EmptyQ

fun remove (Q/front = [] , rear - [1 }) =

raise EmptyQ

I remove (Q{ front = [1 , rear)) =

remove (Q{ f rent = rev rear, rear =- [1 ))

I remove (Q{ front = x: :r, rear}) =

(x, Q{ front = r, rear = rear))

fun head q = let val (x, _) - remove q in x end

end (* abstype *)

The syntax

{i, = el, ... . in = en}

defines a labeled record, This syntax is also used in patterns to
destruct record values. It is possible to abbreviate a labeled

record pattern in two ways, as illustrated by the following

example, The abbreviated pattern:

(Q{ front, . ..))

is syntactic sugar for the pattern

(Q{ front = front, rear = rear) )

This abst ype declaration defines a new type constructor,

queue, together with a collection of operations. A queue
value is represented by the constructor Q applied to a record

of two fields: f rent and rear, which are both lists. This
declaration introduces the following bindings into the envi-

ronment:

type ‘ a queue

val queue : unit -> r a queue

val Insert : ‘ a * ‘ a queue -> ‘ a queue

exception EmptyQ

val remove : ‘ a queue -> ‘ a * ‘ a queue

val head : ‘ a queue -> ‘ a

Because this is an abstype declaration, the representation of
a queue is not visible outside the declaration. The type un it

is the type with one member the empty tuple “ ( ) .“

SML/NJ provides first-class continuations as an experimental

extensionIDM911. The interface is:

type ‘ a cent

val callcc : (’a cent -> ‘a) -> ‘a

val throw : ‘ a cent -> ‘ a -> ‘ b

These are used in the implementation of CML to implement

threads.
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