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ABSTRACT 

Synchronous message passing via channels is an interprocess communication (IPC) mechanism found in 
several concurrent languages, such as CSP, occam, and Amber. Such languages provide a powerful 
selective I/O operation, which plays a vital role in managing communication with multiple processes. 
Because the channel IPC mechanism is “operation-oriented,” only procedural abstraction techniques 
can be used in structuring the communication/synchronization aspects of a system. This has the 
unfortunate effect of restricting the use of selective I/O. which in turn limits the communication 
structure. We propose a new, “value-oriented” approach to channel-based synchronization. We make 
synchronous operations first-class values, called events, in much the same way that functions are first- 
class values in functional programming languages. Our approach allows the use of data abstraction 
techniques for structuring IPC. We have incorporated events into PML, a concurrent functional 
programming language, and have implemented run-time support for them as part of the Pegasus 
system. 

I. Introduction 

A common mechanism of interprocess communication (IPC) and synchronization in concurrent programming 
languages is synchronous message passing via channels (channel IPC). First exhibited in CSPrHoaE781, this 
mechanism has also been used in occam IINMos831, Amber[Cardelli*61 and the Pegasus system[RG8B. A channel 
IPC mechanism typically provides three synchronous operations: send, to send a message on a channel; accepr, 
to read a message from a channel; and select, to allow non-deterministic communication on multiple channels. 

These channel IPC operations ate synchronous; for example, a process sending a message on a channel will 
block until another process executes a marching’ accept operation on the same channel (and vice versa). The 
select operation allows a process to synchronize on the matching of one of a group of send and accept 
operations. If two, or more, of the group are immediately matchable, then one is selected non-deterministically, 
otherwise the first operation matched is selected. Associated with each operation is an optional guard, which 
must be true if the operation is to be matched, and an action that is executed if the operation is selected. 

The select operation provides tremendous flexibility in allowing processes to manage communication with 
multiple processes. Unfortunately, there is no language structure to aid in the management of complex 
communication with a single process. One can use procedural abstraction to structure complex protocols, but the 
resulting abstraction cannot be used with select. In this paper, we present a channel IPC mechanism that uses 

t Consultant. Author’s current address: Department of Computer Science, Cornell University, Ithaca, NY 14853. 
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first-class values, called events, to represent the synchronous operations. This “value-oriented” approach 
provides a uniform and extensible framework for programming synchronization. 

We discuss the problems with the “operation-oriented” channel IPC mechanisms in more detail in the next 
section. Following this we present our “value-oriented” approach with synchronous operations as first-class 
values. We have incorporated our approach into PML (the system programming language of Pegasus IRGg61); in 

§IV we give an overview of PML, and in §V we give several examples of the use of events. Finally we briefly 
describe the implementation of events in Pegasus. 

II. Channel IPC 

Before we introduce our synchronization mechanism, we want to discuss the problems with channel PC that 
motivate our design. For purposes of this section we will consider an “operation-oriented” channel IPC 
mechanism with three operations: send, accept and select. 

We have been working on a system called Pegasus, that serves as a foundation for interactive 
applications [RG861. A major aspect of this system is the Pegasus Meta-language (PML), a concurrent functional 
programming language derived from ML~“‘l”e’851[MacQss1, with concurrency features derived from Amber. At 
an early stage of deveIoping Pegasus we built experimental systems (written in C++) structured around channel 
IPC[RG861, Our experience with these systems exposed several problems with the channel IPC mechanism as a 
programming notation. We describe these problems below and give realistic examples of where they can arise. 

II.1 Building abstractions 
One of the most important techniques of programming is building new abstractions from existing ones. The 

two most common abstraction mechanisms provided by modem languages are procedural and data abstraction. 
Because channel PC is supported by operations. only procedural abstraction can be used in constructing new 
IPC abstractions. 

As an illustration, consider remote procedure cull (RPC). This useful abstraction can be implemented using 
channel IFC. The PML function 

fun remote-F (x) -- (send(x, arg-ch) : accept (res-ch) ) 

implements the client’s side of such an abstraction2. Unfortunately, since the IPC protocol is hidden in a 
function, we are unable to use it in select. 

The incompatibility of select and PC abstractions is a significant problem in real systems; for example, 
consider a process that provides a virtual terminal interface between a window and a client. At any time, the 
process could receive input from either the client or the window manager; thus it must use a select. This means 
that the window manager’s interface cannot be structured using an RPC-style interface, the PC protocols must be 
open-coded to take advantage of select. This results in programs that are hard to maintain and debug. 

A related problem is that of controlling access to channels. As noted above, if a process has access to a 
channel, then it can both read and write on that channel. Sometimes, however, it is desirable to limit access to a 
channel to read-only (or write-only). A simple example is a channel providing input from the outside world 
(such as from the mouse). Writing to such a channel makes no sense, but. again, procedural abstraction is the 
only way we can control access3, and that costs us the use of select. 

2. We describe PML in $IV. In this example, remote-F is being defined as a function, of one argument x, that first sends x on 
arg ch, and then waits for a reply on res ch. The reply is returned as the result of remote F. - 

3. Obviously, run-time cheeks could be ma& for system channels such as the mouse, but in keeping-with the statbUy typed flavor of PML 
we want these cheeks to be. done at compile time. 
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II.2 Dynamic IPC configuration 
A common structuring technique for concurrent systems is the use of server processes. Since the number of 

clients of a service can vary dynamically, the logical PC structure also varies dynamically. Unfortunately, the 
select operation is statically structured. The guards allow select to be dynamically restricted, but there is no way 
to dynamically expand it. There are ways around this problem, but these tend to reduce efficiency and clarity. 

II.3 Other synchronous operations 

In addition to channel I/O operations, there are other ways a process may synchronize. Two common 
examples are waiting for another process to terminate, and delaying for some specified amount of real-time. In 
fact, some forms of the select operation incorporate real-time delay in a timeout feature. Unfortunately, in 
general, other synchronous operations are not part of the channel lPC framework, and thus cannot be included in 
select operations. While this is a minor point, we feel that the uniform treatment of synchronous operations is an 
important language design goal. 

III. The Event Type 

The problems raised in the previous section could be addressed by enriching the IPC mechanism, for 
example, by adding RFC functionality as a feature. This approach has the disadvantages of complicating the 
implementation and language definition, and of lost flexibility. Instead, our approach is to introduce an 
extensible view of synchronization that allows new synchronization abstractions to be built using the full power 
and flexibility of channel l/O. 

The key to our solution is to decouple the act of synchronization from the description of synchronous 
operations. We introduce event values, which represent synchronous operations, such as waiting for a message 
on a channel. Events are fist-class values and can be embedded in data-structures, passed as arguments and 
retumed as results. By using this “value-oriented” approach to synchronization, we allow the full power of data 
abstraction techniques to be used in structuring PC. Furthermore, our solution provides a uniform treatment of 
synchronization. 

To synchronize on the event ev, a process uses the sync expression 
sync ev 

The result of this expression is the result value from matching the event ev (we discuss this more formally in 
W.3). For example, if ev represents waiting for a message on a channel, then the result is the received message. 
Drawing an analogy with functions, sync is to event values as application is to function values. 

Event values have the parameter&d abstract type Event [al, where the type variable a is the result type 
of matching the event (typing rules are given in $111.4). The internal structure of an event value is hidden, just 
as the internal implementation of a function value is hidden. 

In the remainder of this section we describe event values and operations in detail, followed by the semantics 
of synchronization. 

III.1 Base event values 

The simplest event values are the base event values, which represent the actual synchronous operations. The 
two functions transmit and receive are used to build event values representing channel l/O operations. 
These are polymorphic functions with the types 

transmit : (axChannel[a]) +Event[Void] 
receive : Channel[U] +Event[a] 

where void is a type with a single value. For example, the expression 
transmit("hello world" ,ch) 

n%KI'IS an event Value, with type Event [Void], that represents the operation of sending the String “hello 
world” on the channel ch. The expression 
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synctransmit("hello world" ,ch) 

sends the message, and returns the void value. 

Our framework accommodates other synchronous operations as well. The functions 

delay : Integer +Event[Void] 
wait : ProcessId+Event[Void] 

can be used to build events for real-time delay and synchronizing with process termination. 

There are two distinguished event values, that are useful for boundary conditions: 

anyevent : Event[Void] 
noevent : Event[a] 

The value noevent is never matched, thus evaluating “sync noevent" causes the executing process to 
suspend forever. The value anyevent, on the other hand, is always matched immediately. So the expression 
“sync anyevent" is equivalent to the void constant value. 

III.2 Composite event values 
The power of the event mechanism is the ability to build new composite event values. There are two 

flavors of composite events: choice events, which provide the functionality of select: and handler even& which 
provide a way to filter the match results of events. 

Choice events am constructed from one or more events by the choose expression, which has the form 
choose { ewl I *. * ) ev, } 

For example, the expression 
8yncchoo80 ( receive ch-a I receive ch-b } 

will synchronize on receiving a message from either ch-a or ch-b. If both base events can be immediately 

matched, then one is selected non-deterministically. A noevent value in a choose is effectively ignored, 
since it cannot be matched. Thus, noevent can be used as nil, and choose as cons to dynamically build 
“lists” of events (see 5V.2). 

The other way of building composite events is the handle expression. This has the form 
handlrevwith f 

where ev is an event valued expression and f is a function valued expression, called the handler. The handler is 
a filter that is applied to the match result of ev. For example, the following expression creates an input event 
that filters the input from the boolean channel ch4. 

handle receive ch with fn { true => "yes" 1 false => "no" } 

To the users of this event, the channel looks like a string valued channel. A more useful application of handler 
events is to package IPC protocols (see 9V.4). 

III.3 Synchronization 
While the semantics of synchronizing on base event values is self-evident (e.g., a transmit on a channel 

matches a receive on the same channel), synchronization on complex event values must be defined. For any 
event value ev there exists a semantically equivalent canonical event value e^v with the form 

choom ( handlebev, with fi 1 ..- I handlrbev,with fn ] 
where the bevy are base event values. An event value ev is transformed into its canonical form e> by application 
of the semantics preserving rewrite rules in figure 1. By defining the synchronization semantics of &, we will 
have defined the semantics of ev. 

4. The handler function in this example maps true to “yes” and false to “no”. 
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ev =a choomr { ev ] 

ev =3 hutdlrevwithfn{x->x} 

choose ( evl 1 -* - 1 evj-1 1 choosr I evil I - * * I ev',,, ) I evj+l I - -. 1 ev, } 
a ChOOae { eY1 I . . ’ l eVj_1 l evil l * - . l ev’, l evj+, l * . . l ev, ) 

handlochoom{eu, I ... I ev, )withf 
3 choom { brndlrevI withf 1 *** 1 handle ev,withf) 

handle handle ev withfwithf 
ti handleevwithfof 

Figure 1. Event value rewrite rules 

When a process evaluates the expression “sync A,” it blocks until one of the bevi can be matched. If 
more than one bevi is matchable, then one is chosen non-deterministically, but satisfying the requirement that if 
there are matchable base events other than anyevent, then one of them will be selected5. If two of the bevi 
match each other (e.g., a transmit and a receive on the same channel), then a run-time error occurs and an 
exception is raised. Once a base event, bevk, has been chosen and matched, the handler fk is applied to the 
match result. The result of this application is the result of the sync expression. 

IV. PML Overview 

We have incorporated events into the Pegasus system language PML. In this section we give a brief 
introduction PML, including the typing rules for events and some extended event notation. While space does not 
permit a comprehensive introduction to PML, we will provide enough information to allow readers to follow the 
examples in PV. Those familiar with standard ML~MilnerS51[MacQ8S1 should find little difficulty in reading PML. 

IV.1 Sequential PML 
PML is a statically typed polymorphic language with functions as first-class values. For example, the 

expression “fn ( x => x } ” is the polymorphic identity function and has the type CL + a. Discussion of ML- 
style polymorphic type systems can be found in [DM82] and [Cardelli851. The declaration “fun I tx) == x” 
binds I to the identity function; the compiler will infer I'S type. Since I is polymorphic we can apply it to 
anything; for example the value of “ ( I 1) '* is Land the value of “I (1, true)" is the pair (1, true). 

Notice that function application is denoted by juxtaposition. The value (1 is the null-tuple and has the type 
Void. Multiple bindings in a declaration are possible, for example “val x == 1 && y == 2." 

PML contains a powerful concrete type declaration mechanism coupled with pattern matching. For 
example, the standard polymorphic list type and list append are defined by: 

typeList[a] =-oneof (nil I cons(CIXList[a]) ); 

funappend (nil, 1st) ==lst 
I append (lst, nil) -=lst 
( append (cons(h, t), 1st) == cons(h, append(t, 1st)) 

The type declaration introduces nil, a polymorphic constant, and cons, a polymorphic constructor. The body 
of append, delimited by braces, is called a match pattern. A match pattern consists of a list of pattern- 
expression pairs separated by the “ I ” symbol. Another example is the polymorphic function 

fUnisNullnil==true I isNull* == false 

5. This property of anyevent can be used to poll channels for input. 
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which tests for the empty list; note that ‘ ‘*” is the wildcurd pattern. Match patterns are a generalization of the 
“case” construct found in many programming languages and are used in a number of PML constructs. 

PML supports error handling by providing an exception mechanism. Exception identifiers are treated as 
special constructors of the predefined type “Exn." An expression of the form “raise ex” raises the exception 
denoted by the expression ex. The expression “e except I ZeroDiv => 0 1” will return the value of “e,” 
unless the exception ZeroDiv is raised, in which case it will return zero. 

PML is an applicative style language and most values are immutable, but there are mutable values called 
references. References are created by the ref constructor, and updated by assignment. The unary operator 
“ ! ” is used for dereferencing. As an example, the expression 

lotvalx--reflinx:-!x+l; !xni 

yields the result 2. 

IV.2 Concurrency features 
The concurrent features of PML were originally derived from Amber. New processes are created using 

expressions of the form 
prooeme 

which creates a process to evaluate the expression e. As with functions, the process has a closure (i.e., the free 
variables of e). Since it is undesirable for processes to share side-effects, the values in a process’ closure are 
copied rather than shared6. 

Processes communicate via typed channels. New channels are created by declarations of the form 
chanchloftl && *-a &&ch,of~,, 

Each declared channel chi has the type Channel [z, 1. In order to protect the PML type system the declared 
types of channels are restricted to mono-types7. 

IV.3 Typing rules 
Events fit quite nicely into the PML type system. We use the standard technique of inference rules (see 

[Cardelli85]) for presenting the event operations’ typing rules. The types of the base event constructor functions 
were given in 1.1, the rules for composite events and sync are given in figure 2. 

Env k ev : Event['t] 
Envk (synaev) : T 

Envcev, : Event[T] 
. . . 

Env c ev, : Event[T] 

Envc (choose { evl 1 -*a 1 ev, }) : Event[T] 

Env c ev : Event[o] 
Envcf: <T-+T 

Env c (handle ev withf) : Event [T] 

Figure 2. Type inference rules 

6. In a distributed implementation copying is obviously required, but for shared-memory or single CPU implementations the compiler can use 
type information to avoid copying of immutable values. 

7. We can weaken this restriction using weok type variables, as is done with reference types in ML. but it is beyond the scope of this paper. 
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Event values are abstract; they cannot be decomposed. A user of an event value knows only its match result 

type* 

IV.4 Extending the event notation 
Certain forms are fairly common, so PML provides shorthand for them. The conventional channel I/O 

operations are defined by 

fun send (x, ch) =- synctransmit(x, ch); 

fun accept ch == 8ync receive ch 

Since the handler of a handle expression is often a function expression (i.e., “fn mp,” where mp is a match 
pattem),we allow the short-hand “handle ev with mp" for the expression “handle ev with fn mp". 

A select expression of guarded events is also provided*. The general form is 

{ whenbl ==>evl 
( when bz ==> ev2 
. . . 

1 when b, -> ev, 
I otherwiar => exp 

where the bi are boolean valued expressions, and the evi are event valued expressions. The “when bi =>” 

parts, called guards, are optional. Leaving a guard out is equivalent to the guard “when true =>.” The 
otherwise clause is also optional: leaving it out is equivalent to the clause 
“otherwise => raise SelectFail." 

Roughly, the meaning of the select expression is to synchronize on a choice of those ev;‘s with true 
guards. If no guard is true, then the otherwise clause is evaluated and there is no synchronization. 
Formally, the general form, given above, is semantically equivalent to 

lot 

val B, == b, && EV, == if B, then ev, elsenoevent fi; 
val B, == b, && EV, ==ifB,tbenchoose { EV, ) ev2 ) elseEV, fi; 
. . . 

val B, -=b, && EV, --if B, than choose ( EVnel 1 ev, } rlsrEV,-, fi 
in 

if B1 or *** orB,then 
8ynC EV, 

else 

=P 
fi 

ni 

V. Using Events 

To get a real feel for the power of events, one needs to see some concrete examples. In this section we give 
some detailed examples of the use of events to solve concurrent programming problems. In particular, we show 
how events can be used in ways that are not possible using the “operation-oriented” channel IPC. Most of these 
examples are simplified versions of techniques we are using in the Pegasus system. 

8. We will use “select” to refer to this fom and continue to use “select” to refer to selective I/O. 

256 



V.1 Controlling channel access 
One of the problems with channel IPC raised in 511.1 was controlling access to channels. Using events, we 

can create abstract unidirectional views of channels. For example, the functions 

funmkReadView(ch) == receive ch 
&& mkWriteView(ch) == fn { x =>transmit(x, ch) ) 

provide a way to construct such views. Notice that mkWriteView returns an event valued function. The 
values produced by these functions can be used with select; which would not be the case if we had used send 
and accept. 

V.2 Dynamic event lists 
Server processes sometimes need to manage dynamically varying lists of channels. The following function 

builds an event to monitor a (non-empty) list of channels. Synchronizing on the event returns the message 
received and the index of the source channel. 

fun ReadChList(chlst) ==let 
funRCL ( nil, *) ==noevent 
1 RCL (cons(ch, rest), i) ==choose 

(handle receive ch with ( msg=> (msg, i) } 
1 RCL ( rest, i+l) 

inRCL (chlst, 0) ni 

Notice that the recursive function RCL binds the channel indices in the handlers. 

V.3 Fault-tolerant channel I/O 
Another example of building new IFC abstractions is “fault-tolerant” channel I/O. Consider a server 

process that allocates a dedicated channel for each client and maintains a dynamic event structure of receive 
events on these channels, as in the previous section’. If a client terminates without informing the server, 
problems can result. One solution is to define a new “fault-tolerant” input event, for channel ch dedicated to 
process p, that raises an exception if p is dead. 

choose 
{ receive ch 
I handle wait p with { () =>rai~e (DeadF'rocp) ) 
I 

V.4 Supporting remote procedure call 
As we mentioned above, the RPC paradigm is very useful in the construction of concurrent systems. Using 

events we can implement an RPC protocol quite easily. The client is provided with an event valued function 
remote-F that hides the details of the protocol. 

fun remote-F(x) =- handle transmit (x, arg-ch) with [ accept(res-ch) ) 

Unlike the version of remote-F in $11.1, this can be used with select. As far as the client is concerned. 
remote-F is exactly like any base event function. To “call” F with arg, the client evaluates 

qnc remote-F(arg) 

On the server side there is a corresponding event value that implements the server’s half of the protocol. 
val re<F == handle receive arg-chwith { x=> send(Fx, res-ch) } 

If the server provides more than one service, it can use select to monitor requests. 
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We can extend this protocol to pass exceptions, raised when the server services F, to the client. We wrap 
the result messages in a concrete type 

typaResultMsg==oneof ( RES of ArgType 1 EXof Exn } 

and use the following protocol. 

fun remote-F(x) --handletransmit (x, arg-ch) with 
( () =>ca*eacceptres-chef 

1 RES ( Y 1 ==> Y 
1 EX (ex) ->raiaeex 

val req-F -=handts receive arechwith 
( send (RES(Fx) except ( ex=>EX(ex) ), res-ch) ) 

V-5 Putting it all together 
We have shown above that events provide a general mechanism for structuring a number of different 

concurrent programming problems. In this section we demonstrate the flexibility of our approach, by showing 
how the various features of the previous examples can be combined into a more complex protocol. 

Say we want a server which provides an RPC interface to clients, and which needs to know which client is 
making the request. Furthermore, we want the server to be informed of client failures (as in 5V.3) and we want 
to pass exceptions to the client (as in the previous example). The following two functions, respectively, build the 
client and server sides of the protocol, given the client process id and the argument and result channels. 

funmk-remote-F (arg-ch, res-ch) ==fn 
( x=>handletransmit(x, arg-ch) with 

( () ->ca*eaccept res-chef 
(RES(y)=>y 
1 EX (ex) ->raiaeex 

&& mk-req-F-event (clientsid, arg-ch, res-ch) ==choose 
( wait client_pid=> raise (DeadProcclient_pid) 
1 handle receive arg-chwith 

( send (RES(F x) except ( ex =>EX(ex) }, res-ch) ] 

1; 

The server process can then use the technique of 5V.2 to manage a dynamic list of clients. 

VI. Implementation 

We have implemented events on a single CPU machine as part of a complete reimplementation of Pegasus. 
The implementation consists of the event manager and a collection of other managers, such as the channel 
manager, for the various kinds of base events. The managers are monitors written in C++. Event values are 
represented by heap allocated tree structures, with the base events as leaves, and the choice and handler events as 
interior nodes. 

A process synchronizes on an event ev by calling the event manager. The event manager parses ev, 
constructing a list of its base events, and a handler list for each base event. The handler lists correspond to the 
composition of handler functions in $111.3 (figure 1). The event manager then logs the base events with the 
appropriate base event managers and, assuming no base event is immediately matched, it suspends the process. 
The base event managers notify the event manager when logged base events are matched. The event manager 
then applies the matched base event’s handlers to the match result, and returns the result to the process. 

The order in which the base events of an event are logged affects the behavior of a system. For example, if 
a process repeatedly synchronizes on the value “choose ( bevi I bev2 1” and if we always log the base 
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events in the or&r &vi, beva, then if bevl is always immediately matchable, bev2 will be starved. To avoid 
this problem, we log the base events in a pseudo-random order. This guarantees, with high probability, that if a 
base event Levi of an event value ev is matchable and a process repeatedly synchronizes on ev, then bevy will 
eventually be matched. In otherwords, select and choose arefair”. 

VII. Conclusions 

We have presented a new approach to synchronization that uses first-class values, called event values, to 
define synchronous operations. The major benefit of this approach is that the full power of data abstraction can 
be used in structuring the IPC of concurrent programs. New abstractions, such as RPC-style communication, can 
be built and used without losing the flexibility and power of selective I/O. Our approach also has the advantage 
of providing a uniform framework for managing other synchronous actions, such as real-time delay and process 
termination. We have given a number of realistic examples of the use of events. Finally we sketched the 
implementation of events in the Pegasus system. 

Acknowledgements 

Tim Teitelbaum’s comments greatly improved the organization of this paper. I would also like to 
acknowledge my Pegasus coconspirators, Emden Gansner and Steve North, for their comments. 

References 

[AS833 

[Cardelli85] 

[Cardelli86] 

[DM82] 

[Hoare78] 

[INMOS83] 

[Mimer851 

[MacQ851 

IRG861 

Andrews, G.R., Schneider, F.B. “Concepts and Notations for Concurrent Programming,” 
Computing Surveys, V. 15, Nr. 1, March, 1983, pp. 3-43. 

Cardelli, L. “Basic polymorphic typechecking,” Polymorphism, V. 2, Nr. 1, January 1985. 

Cardelli, L. “Amber,” Combinators and Functional Programming Languages, Lecture Notes in 
Computer Science 242, Springer-Verlag, 1986, pp.21-47. 

Damas, L., Milner, R. “Principal Type-Schemes for Functional Programs,” Conference Record of 
the 9th ACM Symposium on Principles of Programming Languages, January 25-27, 1982, pp. 
207-212. 

Hoare, C.A.R. “Communicating Sequential Processes,” Communications of the ACM, Vol. 21, 
No. 8, August, 1978, pp. 666677. 

INMOS Limited. Occam Programming Manual, Prentice-Hall, Englewood Cliffs, New Jersey, 
1984. 

Milner, R. “The Standard ML Core Language,*’ Polymorphism, V. 2, Nr. 2, October 1985. 

MacQueen, D. “Modules for Standard ML,” Polymorphism, V. 2, Nr. 2, October 1985. 

Reppy, J.H., Gansner, E.R. “A Foundation for Programming Environments,” Proceedings of the 
Second ACM SIGSOFTISIGPLAN Symposium on Practical Software Development Environments, 
December 9-11, 1986, pp. 218-227. 

10. Formally this is weokfair~~~~. although for practical purposes we can assume strung fairness (ie.. that “eventually” is bounded). 

259 


