A New Backend for Standard ML of New Jersey

Kavon Farvardin
Computer Science
University of Chicago
Chicago, IL, USA
kavon@farvard.in

ABSTRACT

This paper describes the design and implementation of a new back-
end for the Standard ML of New Jersey (SML/NJ) system that is
based on the LLVM compiler infrastructure. We first describe the
history and design of the current backend, which is based on the
MLRisc framework. While MLR1sc has many similarities to LLVM,
it provides a lower-level, policy-agnostic, approach to code gen-
eration that enables customization of the code generator for non-
standard runtime models (i.e., register pinning, calling conventions,
etc.). In particular, SML/NJ uses a stackless runtime model based
on continuation-passing style with heap-allocated continuation
closures. This feature, and others, pose challenges to building a
backend using LLVM. We describe these challenges and how we
address them in our backend.

CCS CONCEPTS

« Software and its engineering — Compilers; Functional lan-
guages.

KEYWORDS

Code Generation, Compilers, LLVM, Standard ML, Continuation-
Passing Style

ACM Reference Format:

Kavon Farvardin and John Reppy. 2020. A New Backend for Standard ML
of New Jersey. In IFL 2020: Proceedings of the 32nd Symposium on Imple-
mentation and Application of Functional Languages (IFL °20), September 2—4,
2020, Canterbury, United Kingdom. ACM, New York, NY, USA, 12 pages.
https://doi.org/10.1145/3462172.3462191

1 INTRODUCTION

Standard ML of New Jersey is one of the oldest actively-maintained
functional language implementations in existence [1, 7]. Much like
the proverbial “Ship of Theseus,” every part of the compiler, runtime
system, and libraries has been reimplemented at least once, with
some parts having been reimplemented half a dozen times or more.

The backend of the compiler is one such example. The origi-
nal code generator translated a direct-style A-calculus intermedi-
ate representation (IR) to Motorola 68000 and DEC VAX machine
code [7]. Inspired by Kranz et al.’s work on the ORBIT compiler
for Scheme [24, 25], Appel and Jim converted the backend of the

This work is licensed under a Creative Commons Attribution International 4.0 License.

IFL °20, September 2—4, 2020, Canterbury, United Kingdom
© 2020 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-8963-1/20/09.
https://doi.org/10.1145/3462172.3462191

55

John Reppy
Computer Science
University of Chicago
Chicago, IL, USA
jhr@cs.uchicago.edu

compiler to use what they called a “Continuation-Passing, Closure-
Passing Style” [3, 6].!

At the same time, additional machine-code generators were writ-
ten for the MIPS and SPARC architectures. With the proliferation of
Reduced-Instruction-Set Computers (RISC) in the early 1990’s, there
was a need for even more backends. These code generators also
suffered from the problem that they did not share code, each was
a standalone effort, and that they did not support many machine-
code-level optimizations. These problems lead to the development
of MLRisc [21] as a portable machine-code generator for SML/N].
MLRisc defines an abstract load-store virtual-machine architecture
that sits between the language-specific parts of the code generator
and the target-machine-specific parts, such as instruction selec-
tion, register allocation, and instruction scheduling. Over the past
25 years, MLRi1sc has been used to support roughly ten different
target architectures in the SML/NJ system. It has also been used
by several other compilers [15-17] and as a platform for research
into advanced register allocation techniques [5, 20] and SSA-based
optimization [29].

Unfortunately, MLR1sc is no longer under active development,?
so we need to consider alternatives. An obvious choice is the LLVM
project, which provides a portable framework for generating and
optimizing machine code [26, 27]. LLVM takes a language-centric
approach to code generation by defining a low-level SSA-based [12]
language, called LLVM IR, for describing code. LLVM IR has a
textual representation, which we refer to as LLVM assembly code,
as well as a binary representation, called bitcode, and a procedural
representation in the form of a C+ API for generating LLVM IR
in memory. The LLVM framework includes many analysis and
optimization passes on both the target-independent LLVM IR and on
machine-specific code. Most importantly, it supports the operating
systems and architectures that SML/N]J supports, as well as some
that we want to support in the future. While LLVM was originally
developed to support C and C++ compilers, it has been used with
varying degrees of success by a number of functional-language
implementations [13, 14, 28, 34, 39, 40].

This paper describes our work building a new backend for SM-
L/NJ using the LLVM infrastructure. We describe the challenges
faced by this migration and how we addressed these challenges.
While there are many similarities between this effort and previous
applications of LLVM to functional-language compilers, there are
also a number of novel aspects driven by the SML/N]J runtime model
and compiler architecture. We conclude with an evaluation of our

! This CPS IR, with modifications to support multiple precisions of numeric types [18]
and direct calls to C functions [9], continues to be used in the backend of the SML/NJ
compiler.

2 The last significant work was the addition of support for the x86-64 (a.k.a., amd64)
architecture.

https://doi.org/10.1145/3462172.3462191
https://doi.org/10.1145/3462172.3462191
https://creativecommons.org/licenses/by/4.0/

IFL "20, September 2-4, 2020, Canterbury, United Kingdom

backend as well as some reflections on the pros and cons of using
LLVM.

2 STANDARD ML OF NEW JERSEY

The Standard ML of New Jersey (SML/N]J) system provides both
interactive compilation in the form of a Read-Eval-Print Loop (REPL)
and batch compilation. In both cases, SML source code is compiled
to binary machine code that is either loaded into a heap-allocated
code object for execution or written to a file. Linking is handled
in the elaborator, which wraps each compilation unit with a A-
abstraction that closes over its free variables; this code is then
applied to the dynamic representation of the environment to link it.
Dynamically, a compilation unit is represented as a function that
takes a tuple of bindings for its free variables and returns a tuple
representing the bindings that it has introduced. Thus, the SML/NJ
system does not need to understand system-specific object-file
formats or dynamic linking.

In the remainder of this section, we first describe SML/NJ’s run-
time conventions at an abstract level, then discuss the existing
backend implementation, and the MLRisc-based machine-code gen-
erator.

2.1 Runtime Conventions

As described by Appel [2, 3], SML/NJ has a runtime model that can
be described as a simple abstract machine (called the CMACHINE).
The CMAcHINE defines a small set of special registers to represent
its state; these are:

o alloc is the allocation pointer, which points to the next word
to allocate in the nursery.

e limit is the allocation-limit pointer, which points to the
upper limit of the nursery minus a buffer of 1024 words.
This buffer, which is called the allocation slop, allows most
heap-limit tests to be implemented as a simple comparison.

o store is the store-list pointer, which points to a list of loca-
tions that have been modified since the last garbage collec-
tion (i.e., it implements a write barrier).

o exnptr is the current-exception-handler pointer, which points
to a closure representing the current exception handler.

e varptr is the var pointer, which is a global mutable location
that can be used to implement features such as thread-local
storage [30].

o base is the base-pointer register, which points to the begin-
ning of the code object that holds the currently executing
function. It is used to compute code addresses in a position-
independent way.>

The alloc register is always mapped to a hardware register, the
other special registers are either mapped to dedicated hardware
registers or else represented by stack locations. For example, on the
x86-64 target, which has 16 general-purpose registers, the alloc,
limit, and store registers are mapped to hardware registers, but
the exnptr and varptr are represented by stack locations. The first
five of these registers (alloc, limit, store, exnptr, and varptr) are

3 The two architectures that we are currently supporting with our new LLVM backend
(Arm64 and x86-64) both support PC-relative addressing, so we do not need the base
pointer. The MLR1sc backend, however, does not take advantage of such addressing
modes.

Kavon Farvardin and John Reppy

Table 1: CMACHINE general purpose registers

std-link holds address of function for standard calls
std-clos holds pointer to closure object for standard calls
std-cont holds address of continuation

std-arg first general-purpose argument register

misc; miscellaneous argument registers (including

callee-save registers)

live throughout the execution of SML code and, thus, are implicitly
passed as parameters across calls.

In addition, the compiler assumes that intermediate results, ar-
guments to primitive operations, and arguments to function calls
are always held in registers. The CMACHINE registers are assigned
specific roles in the calling conventions as described in Table 1.
Function calls come in three forms:

Standard function calls are calls to “escaping” functions that
use a standard calling convention.* The first three arguments of
a standard function call are the function’s address (std-link), its
closure (std-clos), and return continuation address (std-cont). Fol-
lowing these arguments are k callee-save registers [8] (typically
k = 3), which are assigned to the first k miscellaneous registers
(miscy, . . ., miscy_;). The remaining arguments correspond to the
user arguments to the function and are mapped to registers by type;
i.e, pointers and integers are assigned to std-arg, miscy, miscg 1,
etc., and floating-point arguments are assigned to floating-point
registers.

Standard continuation calls are calls to “escaping” contin-
uations. The first argument is the continuation’s address and is
assigned to the std-cont register; it is followed by the k callee-save
registers, some of which are used to hold the continuation’s free
variables. The remaining arguments to the continuation are mapped
to registers in the same way as for standard functions.

Known function calls are “gotos with arguments” [37] that
represent the internal control flow (loops and join points) in a
standard function or continuation. Because the code generator
knows both the entry and call sites for known functions, it is able to
arrange for arguments to be passed in registers without unnecessary
copying [20].

To illustrate how these conventions are realized in the CPS IR,
consider the following trivial SML function:

fun f x = if (x < 1) then x else f (x-1);

The first-order CPS is a single cluster consisting of two CPS func-
tions as shown below.

fun f (link, clos, k, cs1, cs2, cs3, arg) =
lp (arg, k, csl, cs2, cs3)

and 1lp (arg, k, csl, cs2, cs3) =
if i63.>=(arg, 1) then
let val tmp = isubé63(arg, 1)
in 1p (tmp, k, cs1, cs2, cs3) end
else
4 In SML/NJ, which does not do any kind of sophisticated control-flow analysis,

escaping functions are those where at least some call sites or targets are statically
unknown.

A New Backend for Standard ML of New Jersey

k (k, cs1, cs2, cs3, arg)

Here we have taken the liberty of using meaningful variable names
and an SML-like syntax for readability. The function f is a standard
function, so its first three parameters are held in the std-link, std-
clos, and std-cont CMACHINE registers. The next three parameters
are the three callee-save registers followed by the function’s actual
argument (arg) in the std-arg register. The 1p function is internal
to the cluster, so the compiler is free to arrange its parameters in
any order. The loop terminates by invoking the return continuation
(k) using a standard continuation call. Here the first argument to the
call (k) will be held in the std-cont register, then come the callee-
saves, followed by the function’s result in the std-arg register.

The code generator must support one other calling conven-
tion, which is the convention used to invoke the garbage collector
(GC) [19]. This convention is a modified version of the standard
function convention that uses a fixed set of registers (link, clos,
cont, the callee-saves, and arg) as garbage-collection roots. Any
additional live data, including all non-pointer register values (e.g.,
untagged integer and floating-point registers), are packaged up in
heap objects that are referred to by the arg register.

When a heap-limit check fails, control jumps to a block of code
to invoke the GC. This code sets up the fixed set of root registers
(as described above), fetches the address of an assembly-language
function from the stack and then does a standard call to the assembly
code, which, in turn, transfers control to the runtime system. After
the GC finishes, control is returned back to the GC-invocation code,
which restores the live variables and resumes execution of the SML
code. Note that the return from the GC involves the exact same set
of fixed registers that are passed as arguments, which is how the
updated roots are communicated back to the program.

2.2 The Backend

The SML/N]J backend takes a higher-order continuation-passing-
style (CPS) IR and, via a sequence of optimizing and lowering steps,
produces a first-order CPS IR.” Unlike most other compilers, includ-
ing other CPS-based compilers, SML/N]J foregoes use of a stack to
manage calls and returns. Instead, all return continuations are rep-
resented by heap-allocated closures. The first-order CPS IR makes
these closures explicit in the form of records and record selection
operations. Because the runtime model uses heap-allocated con-
tinuation closures to represent function returns, the stack is not
used in the traditional way. Instead, the runtime system allocates
a single large frame that is used for register spilling and holding
additional runtime values.

Along with this first-order IR, the compiler computes additional
metadata about where heap-limit checks are needed and about
which calling conventions should be used. This metadata is stored
in auxiliary hash tables.

A program in the CPS IR is a collection of functions that represent
both user functions and continuations. The body of a function is
a CPS expression (cexp), where the leaves of an expression are
applications. Thus, a cexp in the first-order CPS IR, where functions
are not nested, can be viewed as an extended basic block [31].

The phases of this backend are illustrated in Figure 1. We de-

5 Note that while the invariants for the IR change with lowering, the actual represen-
tation as SML datatypes does not.

57

IFL 20, September 2-4, 2020, Canterbury, United Kingdom

CPS Conversion

|
CPS Optimization

I '

CPS Lowering
|

Literal Lifting
|

Closure Conversion

Spilling
|

Limit Checks
| -
Clustering
|

_GC Info
|

Higher-order
CPS IR

First-order
CPS IR

MLRISC Codegen
|
MLRISC
U

Machine
Code

Figure 1: The existing backend

scribe those passes that are directly affected by the design and
implementation of the new backend.

o The CPS Lowering phase is responsible for expanding certain
primitive operations (primops) into lower-level code.

o The Literal Lifting phase lifts floating-point and string lit-
erals (as well as data structures formed from these literals)
out of the code and replaces them with references to a per-
compilation-unit tuple of literal values.

o The Spilling phase ensures that the number of live variables
never exceeds the fixed-size spill area (1024 words).®

e The Limit Checks and GC Info phases are responsible for
determining where heap-limit checks should be added and
determining the live variables at those points. Allocation
checks are placed at the entry to functions (both escaping
and known) and continuations. As discussed above, most
functions allocate fewer than 1024 words, so the allocation
slop allows us to simply compare the allocation and limit
pointer for these checks.

e The Clustering phase groups CPS functions into clusters,
which are connected graphs of CPS functions where the
edges correspond to known function calls. The entry nodes

© Appel’s original code generator used the spilling phase to ensure that the number
of live variables did not exceed the available machine registers [3], but the switch to
MLRisc, which has a proper register allocator, relaxed this constraint.

IFL "20, September 2-4, 2020, Canterbury, United Kingdom

for a cluster are escaping functions and continuations; note
that a cluster may have more than one entry.

2.3 MLRisc

The final step of the backend is to generate machine code using the
MLRisc framework. MLR1sc was designed to address many of the
same problems as LLVM,; it provides a low-level virtual machine
based on a load-store (i.e., RISC-like) model. More so than LLVM,
MLRIisc is a “mechanism, not policy,” design leaving ABI issues
such as calling conventions, stack layout, register usage, etc., up
to the compiler writer.” It makes heavy use of SML’s functors
to support specialization for both the target architecture and the
source language. For example, the register allocator is defined by a
functor that is parameterized over the spilling mechanism, which
gives the compiler writer control over stack layout.

MLRisc’s policy agnostic approach was heavily influenced by the
needs of SML/NJ’s runtime model. SML/N]J’s stackless execution
model meant that calling conventions could not be baked into
the design. Likewise, use of dedicated registers for the allocation
pointer, etc. in the standard calling conventions meant that MLR1sc
had to support some form of register pinning. The MLR1sc register
allocator is also able to handle the multi-entry functions that can
arise from the clustering phase. Lastly, the need to generate binary
machine code meant that MLR1sc required an integrated assembler
to resolve local branch offsets, but that it did not require a direct
mechanism for generating object files.

3 CHALLENGES TO USING LLVM

LLVM was originally designed to support C and C++ compilers and,
as such, maintains a significant architectural bias toward conven-
tional runtime models. In this section, we enumerate some of the
mechanisms that our MLR1sc backend uses that do not have direct
analogues in LLVM. We also discuss the challenges of incorporating
a code generator written in C+ into a compiler written in SML. In
this section, we are focused on the vanilla LLVM IR; as we describe
in Sections 4 and 5, LLVM does provide ways to work around these
limitations.

3.1 Comparing MLRisc and LLVM

MLRi1sc and LLVM are both designed to provide support for portable
compilers. They are both based on a load-store model with an in-
finite supply of pseudo registers and a fairly standard set of basic
instructions. A major difference, however, is that MLR1sc abstracts
over the instruction-set architecture, but not over the system ABI
or runtime conventions. LLVM, on the other hand, has built in sup-
port for calling conventions, object-file formats, exception-handling
mechanisms, garbage-collection metadata, and debugging informa-
tion. Another major difference is in how they are used. While both
systems define a virtual machine that a code generator can target,
MLRisc only supports a procedural interface for code generation,
whereas LLVM provides LLVM assembly, LLVM bitcode, as well
as a procedural interface for code generation. The combination of
builtin runtime conventions plus a textual representation of LLVM

7 It does provide some higher-level utilities, such as implementations of various C-
language calling conventions;

58

Kavon Farvardin and John Reppy

IR means that the only way to support different runtime models is
to make changes to the LLVM implementation itself.

3.2 Limitations of the LLVM Model

Many of the issues that we face are a consequence of the fact that
LLVM abstracts away from the runtime model to a much greater
degree than MLRisc.

No direct access to hardware registers. Ths SML/NJ runtime model
relies on being able to map key CMACHINE registers, such as the
allocation pointer, to dedicated hardware registers for efficient exe-
cution. Unlike MLR1sc, LLVM does not provide a direct mechanism
for mapping variables to specific hardware registers.

No direct access to the stack. SML/NJ uses specific slots in the
stack frame to communicate information from the runtime system
to the SML execution (e.g., the address of the callGC function).
Some CMACHINE registers on some targets are also represented by
stack locations. In LLVM, however, the layout of a function’s stack
frame is largely opaque at the LLVM IR level and there is no way
to specify access to specific locations in the stack.

Builtin calling conventions. As described in Section 2.1, SML/NJ
defines its own register-based calling conventions that do not in-
volve the stack in any way, as well as a stack-based convention
for invoking the garbage collector. The call instruction in LLVM
is a heavyweight operation that embodies the policy defined by
its calling convention. While LLVM has a number of predefined
calling conventions, including several language-specific ones, there
is not a good match for the SML/N]J runtime. Defining a different
convention requires modifying the LLVM source and recompiling
the LLVM libraries.

Multi-entry-point functions. The clustering phase of the SML/NJ
backend produces clusters that can have multiple entry points. For
example, compiling the following function that walks over a binary
tree

fun walk Lf = ()

| walk (Nd(l, r)) =

will produce a cluster for f with two entries: a standard function for
calling f on the root or left subtree and a second continuation entry
for calling f on the right subtree. While it is natural to think of
mapping clusters to LLVM functions; LLVM functions are restricted
to a single entry point.

(walk 1; walk r)

Tail-call overhead. Efficient tail calls are critical to performance,
since all calls in CPS are tail calls. While LLVM provides a tail-call
optimization (TCO), its primary purpose is to avoid stack growth.
Even when TCO is applied to a function call, the resulting code
incurs the overhead of deallocating the caller’s frame and then
allocating a fresh frame for the callee.

Trapping arithmetic. The semantics of integer arithmetic in SML
require that the Overflow exception be raised when the result
exceeds the representable range of the type [18]. MLRisc supports
this requirement by defining trapping versions of the arithmetic
operations, with the semantics that an appropriate trap is signaled
on overflow. The runtime system handles this trap by mapping it to a
control transfer to the exception handler continuation. While LLVM

A New Backend for Standard ML of New Jersey

provides intrinsic functions for integer arithmetic with overflow, it
does not provide a mechanism for generating the appropriate trap.

Support for position-independent code. The machine code that
SML/NJ uses must be position independent. We achieve this prop-
erty by using the base pointer to compute absolute addresses from
relative offsets, both for evaluating labels and for jump tables. While
LLVM also supports position independent code, it does so by relying
on a dynamic linker to patch code when it is loaded.

3.3 Integrating LLVM into the Compiler

There are two approaches to using LLVM as a backend for a com-
piler. The first, which is most common, is to generate LLVM assem-
bly code into a text file and then use the command-line toolchain to
convert that to a target-machine object file.® This approach has the
advantage that it does not require a foreign-function mechanism
to communicate between the compiler and LLVM. The downside,
however, is that it adds significant overhead in the form of format-
ting textual output, parsing said output, and running subprocesses.
For an interactive compiler, such as SML/NJ’s REPL, this approach
also requires using system-specific dynamic linking to load and
execute the code that was just generated.

The other approach is to use LLVM’s C++ APIs to construct a rep-
resentation of the program directly, which can then be optimized
and translated to machine code. This approach, which is used by
industrial compilers, such as the clang C/C++ compiler, is similar to
what we currently do with MLRisc, but it poses its own challenges.
First of all, the C++ API for LLVM relies heavily on inline functions,
which cannot be called from foreign languages. As an alternative,
there is a C language wrapper for the C++ API that can be used,
but it is less efficient than the C++ API and has a reputation of lag-
ging behind changes in the C++ API. Another problem is the sheer
volume of foreign calls that would be required for code genera-
tion. Given that foreign function calls in many functional-language
implementations, including SML/NJ, are relatively expensive, this
volume can add measurable overhead to code generation. Thus, the
problem of efficient communication between the compiler and the
code generator is a challenge for using LLVM as a library.

Another challenge with using LLVM for SML/N]J is that it pro-
duces object files (the specific object-file format depends on the
system). For implementations that use traditional linking tools, this
property is not an issue, but for a system like SML/N]J that works
with raw code objects, it is necessary to both patch relocation in-
formation and to extract the code from the object file.

4 DESIGN OF THE NEW BACKEND

In order to use LLVM in the SML/N]J system, we need solutions
to the two broad challenges described above: how to support the
SML/NJ runtime model in LLVM (Section 3.2) and how to integrate
a LLVM-based backend into a compiler written in SML (Section 3.3).

8 Typically, this toolchain involves using llc to generate native assembly code and
then running an assembler to produce object code.

59

IFL 20, September 2-4, 2020, Canterbury, United Kingdom

4.1 Runtime conventions

Function entries and call sites are the key places where we need to
guarantee that our register conventions are being followed, else-
where in the function we can let the register allocator dictate where
information is held. Thus, by modifying LLVM to add a new calling
convention, we can dictate the register usage at those places. In
previous work for the Manticore system [13], we described a new
calling convention for LLVM, called Jump With Arguments (JWA),
that can be used to support the stackless, heap-allocated-closure
runtime model used by both Manticore and SML/N]J. The JWA
calling convention has the property that it uses almost all of the
available hardware registers for general-purpose parameter pass-
ing.? The convention also has the properties that no registers are
preserved across calls and that the return convention uses exactly
the same register convention as calls.

We furthermore mark every function with the naked attribute,
which tells LLVM to omit generating the function prologue and
epilogue.'? Thus the function runs in whatever stack frame exists
when it is called, which fits the SML/NJ model of a single frame
shared by all SML code.

There is one minor complication, which is that we actually have
several different conventions to support (i.e., escaping and known
functions, continuations, and GC invocation). While we could de-
fine multiple LLVM conventions, we can make them all fit within
the JWA convention by careful ordering of parameters and by using
LLVM’s undefined values for registers that are not part of a partic-
ular convention (e.g., the link and clos registers when throwing to
a STD_CONT fragment).

4.2 Integrating LLVM into SML/NJ

Replacing MLR1sc with LLVM raises the question of how to connect
the SML/NJ compiler, written in SML, with an LLVM code generator,
written in C+. Previous functional-language implementations have
generated LLVM assembly code and used a command-line toolchain
to translate that into object code, but we decided that this approach
was not a good fit for SML/NJ. Specifically, we were concerned
about compilation latency, since the interactive REPL is a central
part of the SML/N]J system, and about the extra dependencies on
executables that we would have to manage. Therefore, we decided
to integrate the LLVM libraries into the runtime system.

Having decided to directly generate LLVM code in memory, there
was the question of how to do that efficiently. Fortunately, the prob-
lem of how to connect compiler components that are implemented
in different languages was addressed many years ago as part of the
Zepher Compiler Infrastructure Project [41], which defined the Ab-
stract Syntax Description Language (ASDL) for specifying compiler
intermediate representations and a tool (asdlgen) for generating
picklers and unpicklers in multiple languages. The original asdlgen

¥ For SML/NJ, we use the same register convention that is used in the existing MLR1sc
backend. On the x86-64, we omit the stack pointer and one scratch register from the
convention, which leaves 14 registers available for parameter passing.

10 The function prologue and epilogue is where the function’s stack frame is allocated
and deallocated.

IFL "20, September 2-4, 2020, Canterbury, United Kingdom

tool does not support modern C+, so we built a new implementation
of the tool that generates code that is compatible with LLVM.!!

Thus, our original plan was to pickle the CPS IR on the SML side
and thenb pass it to the runtime as input to a LLVM-based code
generator that would essentially be a C+ rewrite of the existing
MLRIsc code generator. The resulting machine code would then be
returned to the SML code as an array of bytes. As we began work on
this approach, however, we discovered that the CPS IR was not the
right IR for connecting to LLVM. First, the MLRisc code generator
depended heavily on metadata that was external to the CPS IR.
Second, the CPS primops were designed to model the corresponding
SML operations (e.g., addition on tagged integers), which added a lot
redundancy and extra work to the code generation process. Thus,
we decided to introduce a new, lower-level IR, that would be the
vehicle for communicating with the LLVM-based code generator.
This new IR, which we call the CFG IR, is described in detail in the
next section, but its key features are that it is self-contained and
that its semantics are much closer to both the semantics of LLVM
and MLRisc.

4.3 The New Backend Pipeline

We conclude this section with a description of the new backend
pipeline, which is illustrated in Figure 2. We have greyed out the
labels of those passes from Figure 1 that are unchanged, but, for
some passes, changes were required.

e The CPS Lowering phase is expanded to lower more CPS
primops than before. These changes avoid some primops
that are difficult to translate directly to LLVM.

o The Clustering phase is modified to avoid multi-entry-point
clusters by introducing new CPS functions.

e The tracking of information about GC invocations is modi-
fied to work with the CFG code generator (discussed below
in Section 6.6).

e The CFG Codegen phase replaces the old MLR1sc Codegen
phase.

The new code generation path first pickles the CFG IR and then
passes the linearized representation to the runtime system where
it is unpickled into a C+ representation of the CFG IR. We then
generate LLVM IR code using a version of LLVM extended with the
JWA calling convention. The next two sections describe the CFG
and LLVM code generator in detail.

5 THE CFG REPRESENTATION

A major part of the new backend is the CFG IR that sits between
the existing first-order CPS IR and the MLR1sc and LLVM code
generators. The CFG IR encodes many of the invariants of the CPS
IR into its representation and makes the metadata required for code
generation explicit. The main datatypes used to represent the CFG
IR are shown in Figure 3; we omit the primitive operators and have
simplified the types slightly for space and presentation reasons.
Each unit of compilation (i.e., a definition typed into the REPL or
a source file) is mapped to a CFG compilation unit, which consists
of a list of clusters. The first cluster in the list is the entry cluster,

11 The original implementation is still available at http://asdl.sourceforge.net; the new
implementation, which currently only supports SML and C++ is included in the SML/NJ
distribution.

60

Kavon Farvardin and John Reppy

|
CPS Lowering
|

Higher-order
CPS IR

==

I First-order
CPS IR

|
|

CFG Codegen

|
|

Binary
Blob

|
Unpickler

Y

LLVM Codegen
U Runtime

|

LLVM with JWA

Machine
Code

Figure 2: The new backend. Components represented by or-
ange boxes are implemented in C:+.

which handles linking the new code with the existing dynamic
environment.

5.1 Clusters

CFG clusters roughly correspond to the clusters used in the ML-
Risc backend; each cluster consists of a list of fragments, which
are extended basic blocks. Clusters also have attributes, which cap-
ture some basic information about the code in the cluster, such as
does it require the base pointer register or does it contain trapping
arithmetic operations?

Clusters are created by identifying collections of CPS functions
that are connected by control transfers. It is frequently the case that
these collections will have multiple entry points (an example was
given in Section 3.2). For MLRisc, this property is not a problem,
since it can handle multi-entry-point functions, but LLVM restricts
functions to single entry.

Addressing this problem is one of the more complicated parts of
the translation to the CFG IR. Once we have identified a connected

http://asdl.sourceforge.net

A New Backend for Standard ML of New Jersey

collection of CPS functions, we have to normalize it into one or
more single-entry-point clusters.

One complication for this normalization phase is that the new
clusters may require access to the base pointer in order to compute
label values. The original calls to these new clusters are unlikely
to have the cluster’s address as a parameter, since they are not
standard calls. Thus, we have to change the calling convention
slightly in these cases by adding the base pointer as an additional
parameter.12

Normalization also constrains the flexibility of the register allo-
cator, since internal control-flow edges (i.e., gotos) are replaced with
tail calls that use the JWA convention. A better approach may be
to use the node-splitting (really cloning) techniques used to handle
irreducible control-flow graphs [22] as a way to preserve some of
the internal control flow in the case of loops.

5.2 Expressions and Statements

CFG expressions (exp) and statements (stm) are used to define
the computations that make up the body of fragments. While the
constructors of these datatypes are in close correspondence to the
CPS IR, there are some important differences.

First, pure expressions are represented as trees (the exp type),
instead of having each primitive operation be bound to a 1var. Shar-
ing of common expressions is made explicit by the LET constructor.
Using expression trees has a couple of advantages: it reduces the
size of CFG terms, which speeds pickling, and expression trees
match the procedural code-generation interfaces of both LLVM and
MLRisc.

Operations in the CFG IR are closer to machine level than those
of the CPS IR. For example, the default integer type in SML is
represented by a tagged value that has its lowest bit set (i.e., the
integer n is represented as 2n + 1). Arithmetic on tagged integers
requires various additional operations to remove and add tags. In
the old backend, these were added when generating MLR1sc code;
we now generate these operations as part of the translation to
CFG. The CFG IR also replaces many specialized CPS operations for
memory allocation and access with a smaller number of lower-level
operators.

Figure 3 also shows the representation of types in the CFGIR. The
types LABt (code addresses), PTRt (pointers or tagged values), and
TAGt (tagged values) describe values that the garbage collector can
parse and thus can be in a GC root. The other two types represent
raw numeric data (integer and floating-point) of the specified size
in bits. We map the LABt and PTRt types to the LLVM i64* type
(132#* on 32-bit machines). The TAGt type is mapped to 164, while
the INTt and FLTt types are mapped to the LLVM integer and float
types of the specified size. We do not try to use LLVM’s aggregate
types to model heap allocated objects, since we usually only have
that level of type information at the point of allocation.

5.3 Metadata

The other major difference between the CPS and CFG IRs is that
the metadata for calling conventions and GC support has been
incorporated into the CFG IR, instead of being held in external

12 The presence of this extra parameter is recorded as part of the cluster’s attributes
instead of being explicitly represented in the IR.

61

IFL 20, September 2-4, 2020, Canterbury, United Kingdom

datatype ty

= LABt | PTRt | TAGt
| NUMt of {sz int} | FLTt of {sz int}
type param = lvar * ty
datatype exp
= VAR of {name lvar}
| LABEL of {name lvar}
| NUM of {iv IntInf.int, sz int}
| LOOKER of {oper looker, args exp list}
| PURE of {oper pure, args exp list}
| SELECT of {idx int, arg exp}
| OFFSET of {idx int, arg exp}

datatype stm
= LET of exp * param * stm
| ALLOC of alloc * exp list * lvar x stm
| APPLY of exp * exp list % ty list
| THROW of exp * exp list * ty list
| GOTO of lvar x exp list
| SWITCH of exp * stm list
| BRANCH of branch * exp list * stm * stm
| ARITH of arith * exp list * param * stm
| SETTER of setter * exp list * stm
| CALLGC of exp list x lvar list * stm

datatype frag_kind

= STD_FUN | STD_CONT | KNOWN | INTERNAL
datatype frag = Frag of {
kind frag_kind,
lab lvar,
params param list,
body stm
3
type attrs = { ... }
datatype cluster = Cluster of {
attrs attrs, frags frag list

type comp_unit = cluster list

Figure 3: The main CFG types

tables. This change makes transferring the information to the LLVM
code generator much simpler, since we do not have to define a pickle
format for the hash tables used to track the data.

The calling-convention metadata is represented by three aspects
of the IR:

(1) Fragments are annotated with a frag_kind; STD_FUN for es-
caping functions, STD_CONT, for continuations, and INTERNAL
for internal known function calls. The KNOWN kind is used

IFL "20, September 2-4, 2020, Canterbury, United Kingdom

for the functions that are introduced to avoid multiple entry-
points during clustering.

(2) We use three different application forms: APPLY for functions,
THROW for continuations, and GOTO for internal jumps. Calls
to KNOWN functions are represented by an APPLY where the
function is specified by a LABEL value.

(3) The APPLY and THROW constructs include the type signature
of their arguments, which is necessary because LLVM re-
quires a type signature for the function in a call instruction.

Garbage collection tests and invocations are explicit in the CFG
IR. We describe this mechanism in more detail below in Section 6.6.

5.4 C- Representation

The CFG IR is defined using the ASDL specification language [32],
which provides language-independent mechanisms for specifying
inductive types similar to those found in most functional program-
ming languages. From this specification, we generate both the SML
and C+ representations of the IR, as well as the pickling/unpickling
code needed to communicate CFG values from SML to our LLVM
code generator. As would be expected, the mapping from ASDL to
SML types is straightforward. For C+, most types are represented as
classes, but enumerations (e.g., frag_kind in Figure 3) are mapped
to C+ enum types. Sum types are represented with an abstract base
class for the type and subclasses for the constructors.

6 IMPLEMENTATION DETAILS

In this section, we describe the LLVM code generator (i.e., the or-
ange boxes in Figure 2) in more detail. Our original implementation
was targeted toward the x86-64 architecture, but we have recently
ported the code generator to also support the Arm64 architecture.
Supporting a second target required very few changes to the code
generator; the bulk of the work was in adding JWA convention
support for Armé64 to LLVM.

6.1 Modifying LLVM

Our code generator requires a modified version of LLVM. The
changes are fairly straightforward. We add a description of our
register-only calling convention to the specification of calling con-
ventions for the target architecture. In addition, there are a number
of places in the architecture-specific parts of LLVM where the
calling convention is queried that require small additions or edits.
The complete details of the patches are described in a developer
note [33].

6.2 LLVM Code Generation

As described above, the exp and stm types in the CFG IR are rep-
resented as abstract classes in C+, with each constructor its own
subclass. Code generation is implemented as a two-pass walk over
the CFG IR. The first pass collects information, such as a mapping
from labels to clusters and fragments, and allocates placeholder
objects, such as LLVM functions for clusters, LLVM ¢-nodes for
INTERNAL fragments, and LLVM basic blocks for the arms of BRANCH
and SWITCH statements. The second pass walks the representation
generating LLVM code.

ASDL provides a mechanism for adding methods to the generated
classes. For the cluster, frag, and stm classes, we define a virtual

62

Kavon Farvardin and John Reppy

init method for the initialization pass. We also define a virtual
codegen method for these classes and for the exp and various
primitive operator classes. Dispatching on the constructor of a sum
type is implemented using the standard object-oriented pattern of
virtual-method dispatch.

The code generation process requires keeping track of a signifi-
cant amount of state, such as the current LLVM module, function,
and basic block, and maps from lvars to their LLVM representa-
tions. We define a code_buffer object to encapsulate this informa-
tion. This object also contains the implementation of various utility
methods to support the calling conventions and GC invocation.
Code generation for most of the CFG IR is straightforward, but we
explain how we address the challenges of Section 3 and some other
details in the sequel.

6.3 ¢ Nodes

LLVM’s language is a Static-Single-Assignment (SSA) IR [12]. As
the name suggests, variables (a.k.a. pseudo registers) in SSA are
assigned to only once. When control flows into a block from multi-
ple predecessors, it is necessary to introduce ¢ nodes, which make
explicit the merging of values from multiple sources. Generating
the SSA form from the CFG IR is quite straightforward.'®> During
the initialization pass, we preallocate ¢ nodes for each INTERNAL
fragment in a cluster. We define one ¢ node per fragment parameter
plus additional nodes for those special registers that are mapped to
hardware registers (e.g., alloc, limit, etc.). When compiling a GOTO
statement, we record the current values of the special registers and
the values generated for the GOTO’s arguments in the ¢ nodes of
the target fragment.

6.4 Stack References

As discussed in Section 3.2, we need to be able to generate references
to specific locations in the stack frame. We have experimented with
several possible mechanisms for accessing stack locations. Our first
attempt was the @1llvm. frameaddress intrinsic, but it requires using
a frame pointer, which burns an additional register. We then took
the approach of defining native inline assembly code for reading
and writing the stack. This approach produced the desired code,
but also introduced target-dependencies in the code generator. We
finally settled on using the @11lvm.read_register intrinsic to read
the stack pointer.

One change that we had to make to our runtime model is the
layout of the frame used to host SML execution. In the existing
MLR1sc code generator, the spill area is in the lower part of the
frame and the locations used to represent special registers, etc. are
in the upper part of the frame (close to to the top of the stack).!*
LLVM, however, follows the opposite convention and puts the spill
area at the top of the frame. Therefore, we have switched the layout
of the frame as of version 110.99 of SML/NJ. Fortunately, MLR1sC’s
flexibility made this change easy to implement.

13 As has been observed by others [4, 11, 23], there are strong similarities between
A-calculus IRs (especially CPS) and SSA form.

14 We are using the terms “upper” and “lower” with respect to the direction of stack
growth. Since the stack grows down, this means that the address of the lower part is
greater than the upper part.

A New Backend for Standard ML of New Jersey

6.5 Position-independent Code

While any CFG compilation unit is closed with respect to the code
labels it references, we need to be able to convert these labels to
actual code addresses at runtime so that we can build function
closures. As described in Section 2.1, the MLR1sc code generator
does this by explicitly maintaining a pointer to the beginning of
the current module. For example, if the first function in a module
has label ly and we have a standard function f with label f;, then
we can compute the base pointer by base = link — (I — l), where
(Ir — l) is a compile-time constant. While MLR1sc resolves these
offsets prior to machine-code generation, LLVM does not. Instead,
it generates relocation information that must be used to patch the
machine code (see Section 6.8).

A related issue is supporting the SWITCH statement. Our compiler
guarantees that a SWITCH is exhaustive; i.e., that if the SWITCH has n
cases, then the argument will be in the range 0..n — 1. We currently
translate this construct to LLVM’s switch instruction, but that is
sub-optimal because LLVM’s instruction does not assume exhaus-
tiveness and requires a default case. The resulting machine code
does a conditional test of the argument to see if it is in range before
indexing the jump table. As an alternative, we experimenting with
constructing an explicit jump table as a constant array value us-
ing LLVM’s block addresses and the indirectbr instruction. This
approach is more complicated to implement, but should produce
slightly faster code.

6.6 Invoking GC

As described in Section 2.1, invoking the GC requires a fair amount
of bookkeeping to preserve live data across the invocation. What
makes it complicated is the combination of different cases that
have to be managed. For example, a STD_CONT fragment does not
use the std-link or std-clos registers, so these are either used to
hold excess parameters or else must be nullified before the collec-
tion. Our original implementation handled the generation of this
bookkeeping code in the C++ code generator, but the resulting im-
plementation was both lengthy and complicated. While the MLR1sc
code generator also dealt with this complexity, it is a problem that
is much easier to solve in SML than C+. We subsequently realized
that a better strategy is to encode the GC invocation code in the
CFG IR. To this purpose, we added a heap-limit check as a branch
primop and the CALLGC statement form. The translation from CPS
to CFG handles the generation of code to invoke the GC, as well as
inserting the limit checks into the IR. In addition to moving com-
plexity out of the C+ code generator, this approach also allows us to
share the implementation of the GC invocation protocol between
the LLVM and legacy MLR1sc machine-code generators.

We also implement a feature of the MLRisc code generator that
shares implementations of the GC invocation code between multiple
STD_FUN and STD_CONT fragments. Because the parameters of these
fragments are in known locations and the code address of these
fragments are in known registers (i.e., std-link or std-cont), we can
move the invocation code into a function that can then be shared.
Measurements done when the GC API was originally designed show
that over 95% of STD_FUN GC invocations can be covered by just
five different invocation functions, while almost 95% of STD_CONT
GC invocations can be covered by just one invocation function [19].

63

IFL 20, September 2-4, 2020, Canterbury, United Kingdom

The actual invocation of the GC uses a non-tail JWA call to a
code address that is stored at a known stack location. We use the
JWA calling convention so that the GC roots are in predictable
registers and we mark the call as a non-tail call so that the runtime
can return to the GC invocation code. The return type of the call
is a struct with fields for each of the GC roots (recall that the JWA
call uses the same register assignment for calls and returns). These
are then bound to the variables specified by the CALLGC statement.

6.7 Trapping arithmetic

Our support for SML’s integer arithmetic, which raises the Overflow
exception on overflow, has gone through several design iterations.
LLVM provides “arithmetic with overflow” intrinsic functions that
return a pair of a result and an overflow bit. In the generated LLVM
code, we test the overflow bit and jump to code that causes the
Overflow exception to be raised. The need for this conditional
control flow is one of the reasons why trapping arithmetic is repre-
sented as a stm in the CFG IR.

The mechanism for actually raising the Overflow exception has
been the challenge. Ideally, we could just generate code to raise the
exception and be done with it. Unfortunately, by the time that we
get to code generation, we no longer have access to the environment
information that would allow us to get the Overflow exception.

The MLRi1sc code generator uses a hardware trap instruction
(e.g., ‘int 4” on the x86-64) to transfer control to a runtime-system
signal handler, which then dispatches the current exception-handler
function. We initially used LLVM’s inline assembly-code mecha-
nism to emulate the approach of the MLR1sc code generator. This
approach, however, adds dependencies on both the target archi-
tecture and the operating system to the implementation. We have
since realized that a more portable approach is to use the same
scheme that we use for invoking the garbage collector; i.e., a call
into the runtime system via an address stored in the stack frame.
The runtime system can then raise the exception as before, but it
does not require an OS-specific signal handler and the LLVM code
generator does not require architecture-specific assembly code.

The other issue that we encountered is that the special CMa-
CHINE registers must be both live and bound to their designated
hardware locations at the time of the call to the runtime system
(or trap in the earlier implementation). We can use the JWA call-
ing convention for this purpose. Our final implementation uses a
per-cluster basic block that does a non-tail JWA call to the runtime
system.15

6.8 Just-in-Time Compilation

LLVM provides rich support for just-in-time (JIT) compilation,
but its JIT infrastructure is primarily focused on the problems of
multi-threaded compilation, compilation on demand, and dynamic
linking. While multi-threaded compilation is a feature that we might
want to explore in the future, we already address the problems of
compilation on demand and linking in SML/NJ. Therefore, we use
the batch compilation infrastructure, but specify an in-memory

15 We do a non-tail call so that we have access to a code address in the code object
containing the overflowing instruction. This address is used to include the source-file
name in the location information for the exception.

IFL "20, September 2-4, 2020, Canterbury, United Kingdom

output stream for the target of the machine-code generator to
produce an in-memory object file.

As noted above, even though the compilation unit does not refer
to any external labels, LLVM’s assembly process does not resolve
the offsets used in PC-relative addressing. Resolving the relocation
entries introduces some architecture and object-file-format depen-
dencies to the final step of code generation. A couple of examples
are

o Floating-point negation and absolute-value instructions are
implemented using bitmasks on the x86-64; these bit masks
are in a data segment that immediately follows the text seg-
ment, but which has a different name in the MACH-O and
ELF formats. Additionally, MACH-O uses offsets from the
beginning of the code whereas ELF uses offsets relative to
the beginning of the data segment to specify the relocation
offset.

e When constructing code addresses (e.g., to define closures),
the 32-bit PC-relative offset is in its own four bytes of the
instruction on the x86-64, but is split into two pieces that
are embedded in two different instructions on the Armé4.

We are, however, able to use LLVM’s generic object-file API to
implement the code patching; we just include some conditional
logic based on the target platform. After object-code generation,
we identify the text segment and any data segments that need to be
included and copy them to a heap-allocated code object. We then
patch the PC-relative offsets and return the code object to the SML
side of the compiler.

7 STATUS AND EVALUATION

We have integrated the LLVM code generator for the x86-64 archi-
tecture into a version of the SML/NJ runtime system. A control flag
allows one two switch between the MLR1sc and LLVM backends
from the REPL. The system can compile substantial amounts of
SML code, including the SML/N]J compiler itself, but there are a
few remaining issues to sort out before it is self supporting. In this
section, we report on the performance of the LLVM backend as
compared to the MLR1sc backend. The measurements are presented
in Table 2; these were gathered on an Apple iMac with a 3.6GHz
Intel 19-10910 processor running macOS 10.15.7 Catalina. We used
a release build of LLVM 10.0.1 (with support for the JWA calling
convention). The LOC column specifies the results from the cloc
program (https://github.com/AlDanial/cloc). The experiments con-
sist of six benchmarks of varying size, plus compiling the SML/NJ
compiler itself.

7.1 Compile time

The first set of numbers in Table 2 show the time (in seconds)
to compile the example programs using the MLRISC backend vs.
using the LLVM backend. These numbers are the average of five
compiles of each benchmark. The measured times include all stages
of the compilation. As expected, using LLVM to generate code is
significantly slower than the MLR1sc backend. While there is a lot of
variability in the slowdown, it is fast enough to provide interactive
responsiveness for even hundreds of lines of code. Furthermore,
SML/NJ has an effective compilation manager [10] that supports

64

Kavon Farvardin and John Reppy

incremental recompilation, so developing larger projects should
still be reasonable fast.

We chose to use LLVM’s procedural interface as a way to re-
duce code generation latency when compared to the more common
approach of LLVM assembly code. To get a lower bound on the
cost of the alternative, we dumped the LLVM assembly for a cou-
ple of example programs and then measured the time required to
generate an object file from the LLVM assembly (i.e., by running
the llc program to generate assembly and then the assembler to
generate object code). The time take for this process was typically
about 50% more than the time required in our code generator to
go from pickled CFG to object code. Furthermore, we believe that
the time needed to generate the LLVM assembly code would likely
significantly exceed the pickler time, since the LLVM assembly code
is 15 times larger than the pickle file. Thus, we think that using the
procedural interface was a good choice.

7.2 Execution Time

The second set of performance numbers in Table 2 show the execu-
tion times for our examples. These numbers are the average of ten
runs of each benchmark. Based on our previous experience with the
LLVM and MLRisc backends for Manticore [13], we expected to see
noticeable improvements for floating-point code (e.g., the mandel-
brot and mc-ray benchmarks), which we do see. Surprisingly, we
also saw some significant speed up for other benchmarks, but since
the running times on these programs are so small, measurement
error may be more of an issue.

We should also note that the LLVM generated code was using
an implementation of the SML Basis Library that was compiled
using MLR1sc. Once the entire code is compiled using LLVM, we
may see further improvements. All in all, however, we are happy to
see performance of the code generated by LLVM to be faster than
MLRisc. Anecdotally, other functional-language implementations
have seen slow downs when switching to LLVM.

7.3 Compiler Size

LLVM is a large system and that is reflected in the size of our
compiler. The SML/N]J Version 110.99 runtime system is about 12K
bytes of code and the interactive system’s heap file is a bit over
14M bytes. In contrast, the runtime system including the statically
linked LLVM code generator is over 20M bytes of code and 50K
bytes of data.

On the other hand, the C+ source code for our backend is fairly
small: about 6,000 lines of code (not counting comments or blank
lines), of which about 2,500 is generated by ASDL.

8 RELATED WORK

The PURE programming language'® appears to have been the first
functional language to use LLVM in its implementation (starting
in 2008). The implementation of the PURE interpreter is in C+ and
LLVM is described in the documentation as being used as a JIT com-
piler, but there is no published description of the implementation.

Terei and Chakravarty’s LLVM-based code generator for the
Glasgow Haskell Compiler (GHC) [38, 39] is probably the earliest
attempt to use LLVM for a language with a non-standard runtime

16 See https://agraef.github.io/pure-lang.

https://github.com/AlDanial/cloc
https://agraef.github.io/pure-lang

A New Backend for Standard ML of New Jersey

IFL 20, September 2-4, 2020, Canterbury, United Kingdom

Table 2: Performance data

Compile Time (sec) Run Time (sec)
Program LOC | MLRISC LLVM Slowdown | MLRISC LLVM Speedup
mandelbrot 48 0.006 0.016 2.79 3.758 3.075 1.22
life 111 0.035 0.113 3.26 0.005 0.005 1.00
mc-ray 455 0.096 0.342 3.55 5.727 4.994 1.15
lexgen 1,032 0.256 0.828 3.24 0.020 0.019 1.07
vliw 3,033 1.050 2.710 2.58 0.044 0.031 1.40
hamlet 16,930 5.548 10.491 1.89 0.104 0.087 1.20
smlnj 157,094 47.836 143.440 3.00 n.a. n.a. n.a.

model. As such, they were the first to confront and solve a number
of the technical issues we describe here. In particular, they faced
the problem of how to map logical registers in their runtime model
to specific machine registers. It appears that Chris Lattner, the
creator of LLVM, suggested defining a new calling convention to
implement this mechanism.!” The GHC calling convention is now
a supported convention in LLVM.

The ErLLVM pipeline is an LLVM-based backend for the HiPE
Erlang compiler [34]. As with GHC, and our system, the problem
of targeting specific machine registers is solved with a new calling
convention; the HiPE convention is also part of the official LLVM
distribution. Unlike GHC and SML/N]J, ExLLVM uses, with some
adaptation, LLVM’s builtin mechanisms for garbage collection sup-
port and exception handling. The ErLLVM pipeline generates LLVM
assembly and then uses the LLVM and system tools to produce an
object file. They then parse the object file to extract a representation
that is compatible with the HiPE loader, which is similar to what
we do in SML/NJ.

We know of two other ML implementations that have LLVM
backends. The SML# system generates fairly vanilla LLVM assembly
code and uses LLVM’s existing fastcc calling convention [40]. To
ensure that tail recursion is efficient, they added loop detection
to their compiler and generate branches in these cases, instead of
relying on LLVM’s tail-call optimization.'

The MLton SML compiler also has a LLVM backend [28]. Their
LLVM compiler is modeled on their backend that generates C code,
so they do not have the problems of mapping specialized runtime
conventions onto LLVM. As with GHC and ErLLVM, they generate
LLVM assembly code; one difference, however, is that they stack
allocate all variables and then rely on LLVM’s mem2reg pass to
convert to SSA.

Our work reported here has as its roots the development of the
JWA calling convention for use in Manticore’s Parallel ML (PML)
compiler [13]. As with the other examples above, the PML compiler
generates LLVM assembly and uses the llc tool to generate native
assembly code. Because PML programs are linked using standard
tools, the compiler does not require special handling of position-
independent code or global addresses, such as the code to invoke
the GC. It also does not require access to specific locations in the

17 See http://nondot.org/sabre/LLVMNotes/GlobalRegisterVariables.txt.
18 Recall from Section 3 that LLVM’s tail-call optimization does not avoid the overhead
of allocating/deallocating stack frames.

65

stack. While PML is a dialect of SML, it has a different semantics for
arithmetic (i.e., no Overflow exceptions), so it was not necessary
to use LLVM’s arithmetic with overflow intrinsics.

Recently, we have used the PML compiler to explore perfor-
mance and implementation tradeoffs between different runtime
strategies for representing continuations and the call stack [14].
The implementation of heap-allocated continuations in that study
was the version from our previous work [13], which lacks the more
sophisticated closure optimizations implemented by the SML/NJ
compiler [8, 35, 36]. It will be interesting to revisit the experiments
using our new LLVM backend for SML/NJ.

9 CONCLUSION AND FUTURE WORK

We have described a new LLVM-based backend for the SML/NJ
system. The main benefit of using LLVM is that it allows us to lever-
age the significant efforts of the LLVM developers in supporting
new target architectures. The modifications to LLVM to support
our JWA calling convention are fairly small and the complexity
of the LLVM backend is comparable to that of the MLRisc back-
end. We gain some improvement in the generated code (especially
for floating-point code), but suffer a significant, but acceptable,
hit in compile time. Another problem with using LLVM is that it
is a rapidly changing system, so we hope to get the JWA calling
convention integrated into LLVM.

We also think that the approach that we took toward generating
LLVM code has worked out well. The syntax of LLVM assembly
code is quite verbose and finicky, which can make generating it
difficult.

We are working to fully integrate the LLVM backend into the
SML/N]J system and we expect to start including it in the SML/N]J
distribution by the end of Summer 2021. LLVM will enable future
ports to new architectures, such as RISC-V, as well as exposing
hardware features, such as vector registers, to SML programmers.

REFERENCES

[1] Andrew Appel and David B. MacQueen. 1991. Standard ML of New Jersey.
In Programming Language Implementation and Logic Programming (PLILP *91)
(Lecture Notes in Computer Science, Vol. 528), J. Maluszynski and M. Wirsing (Eds.).
Springer-Verlag, New York, NY, USA, 1-13. https://doi.org/10.1007/3-540-54444-
5.83

[2] Andrew W. Appel. 1990. A Runtime System. Lisp and Symbolic Computation 3, 4
(Nov. 1990), 343-380. https://doi.org/10.1007/BF01807697

[3] Andrew W. Appel. 1992. Compiling with Continuations. Cambridge University
Press, Cambridge, England, UK.

http://nondot.org/sabre/LLVMNotes/GlobalRegisterVariables.txt
https://doi.org/10.1007/3-540-54444-5_83
https://doi.org/10.1007/3-540-54444-5_83
https://doi.org/10.1007/BF01807697

IFL "20, September 2-4, 2020, Canterbury, United Kingdom

=

=

[10

[11]

[12

[13]

[14]

[15]

[16

[17

(18]

[19

[20]

[21

oo
ok

[23]

Andrew W. Appel. 1998. SSA is Functional Programming. SIGPLAN Notices 33, 4
(April 1998), 17-20. https://doi.org/10.1145/278283.278285

Andrew W. Appel and Lal George. 2001. Optimal Spilling for CISC Machines with
Few Registers. In Proceedings of the ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI °01) (Snowbird, UT, USA). Association
for Computing Machinery, New York, NY, USA, 243-253. https://doi.org/10.
1145/378795.378854

A. W. Appel and T. Jim. 1989. Continuation-passing, Closure-passing Style.
In Conference Record of the 16th Annual ACM Symposium on Principles of Pro-
gramming Languages (POPL °89) (Austin, TX, USA). Association for Computing
Machinery, New York, NY, USA, 293-302. https://doi.org/10.1145/75277.75303
Andrew W. Appel and David B. MacQueen. 1987. A Standard ML Compiler.
In Functional Programming Languages and Computer Architecture (FPCA °87)
(Portland, OR, USA) (Lecture Notes in Computer Science, Vol. 274). Springer-Verlag,
New York, NY, USA, 301-324. https://doi.org/10.1007/3-540-18317-5_17
Andrew W. Appel and Zhong Shao. 1992. Callee-save Registers in Continuation-
Passing Style. Lisp and Symbolic Computation 5 (Sept. 1992), 191-221. https:
//doi.org/10.1007/BF01807505

Matthias Blume. 2001. No-Longer-Foreign: Teaching an ML compiler to speak C
“natively”. In First workshop on multi-language infrastructure and interoperability
(BABEL ’01) (Firenze, Italy) (Electronic Notes in Theoretical Computer Science,
Vol. 59). Elsevier Science Publishers, New York, NY, USA, 16 pages. Issue 1.
https://doi.org/10.1016/S1571-0661(05)80452-9

Matthias Blume and Andrew W. Appel. 1999. Hierarchical Modularity. ACM
Transactions on Programming Languages and Systems 21, 4 (July 1999), 813-847.
https://doi.org/10.1145/325478.325518

Manuel M.T. Chakravarty, Gabriele Keller, and Patryk Zadarnowski. 2004. A
Functional Perspective on SSA Optimisation Algorithms. Electronic Notes in
Theoretical Computer Science 82, 2 (2004), 347 — 361. https://doi.org/10.1016/
S1571-0661(05)82596-4 Proceedings of Compiler Optimization Meets Compiler
Verification (COCV °03).

Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and F. Kenneth
Zadeck. 1991. Efficiently Computing Static Single Assignment Form and the
Control Dependence Graph. ACM Transactions on Programming Languages and
Systems 13, 4 (Oct. 1991), 451-490. https://doi.org/10.1145/115372.115320
Kavon Farvardin and John Reppy. 2018. Compiling with Continuations and
LLVM. In Proceedings 2016 ML Family Workshop / OCaml Users and Developers
workshops (Nara, Japan) (Electronic Proceedings in Theoretical Computer Science,
Vol. 285), Kenichi Asai and Mark Shinwell (Eds.). Open Publishing Association,
Waterloo, NSW, Australia, 131-142. https://doi.org/10.4204/EPTCS.285.5
Kavon Farvardin and John Reppy. 2020. From Folklore to Fact: Comparing
Implementations of Stacks and Continuations. In Proceedings of the ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI °20)
(London, England, UK). Association for Computing Machinery, New York, NY,
USA, 75-90. https://doi.org/10.1145/3385412.3385994

Kathleen Fisher, Riccardo Pucella, and John Reppy. 2001. A framework for inter-
operability. In Proceedings of the First International Workshop on Multi-Language
Infrastructure and Interoperability (BABEL’01) (Electronic Notes in Theoretical
Computer Science, Vol. 59), Nick Benton and Andrew Kennedy (Eds.). Elsevier Sci-
ence Publishers, New York, NY, 17 pages. Issue 1. https://doi.org/10.1016/S1571-
0661(05)80450-5

Matthew Fluet, Mike Rainey, John Reppy, Adam Shaw, and Yingqi Xiao. 2007.
Manticore: A Heterogeneous Parallel Language. In Proceedings of the 2007
Workshop on Declarative Aspects of Multicore Programming (DAMP °07) (Nice,
France). Association for Computing Machinery, New York, NY, USA, 37-44.
https://doi.org/10.1145/1248648.1248656

Fermin Javier Reig Galilea. 2002. Compiler Architecture using a Portable Interme-
diate Language. Ph.D. Dissertation. University of Glasgow, Glasgow, Scotland,
UK.

Emden R. Gansner and John H. Reppy (Eds.). 2004. The Standard ML Basis Library.
Cambridge University Press, Cambridge, England, UK.

Lal George. 1999. SML/N]J: Garbage Collection APL (May 1999). https://smlnj.
org/compiler-notes/gc-api.ps

Lal George and Andrew W. Appel. 1996. Iterated Register Coalescing. ACM
Transactions on Programming Languages and Systems 18, 3 (May 1996), 300-324.
https://doi.org/10.1145/229542.229546

Lal George, Florent Guillame, and John H. Reppy. 1994. A Portable and Optimiz-
ing Back End for the SML/NJ Compiler. In Proceedings of the 5th International
Conference on Compiler Construction (CC *94). Springer-Verlag, New York, NY,
USA, 83-97. https://doi.org/10.1007/3-540-57877-3_6

Johan Janssen and Henk Corporaal. 1997. Making Graphs Reducible with Con-
trolled Node Splitting. ACM Transactions on Programming Languages and Systems
19, 6 (Nov. 1997), 1031-1052. https://doi.org/10.1145/267959.269971

Richard A. Kelsey. 1995. A Correspondence between Continuation Passing Style
and Static Single Assignment Form. In Papers from the 1995 ACM SIGPLAN
Workshop on Intermediate Representations (IR '95) (San Francisco, California,
USA). Association for Computing Machinery, New York, NY, USA, 13-22. https:
//doi.org/10.1145/202529.202532

Kavon Farvardin and John Reppy

[24] David Kranz, Richard Kesley, Jonathan Rees, Paul Hudak, Jonathan Philbin,

and Norman Adams. 1986. ORBIT: An Optimizing Compiler for Scheme. In
Proceedings of the 1986 Symposium on Compiler Construction (SIGPLAN °86).
Association for Computing Machinery, New York, NY, USA, 219-233. https:
//doi.org/10.1145/12276.13333

David A. Kranz. 1988. ORBIT: An Optimizing Compiler for Scheme. Ph.D. Disser-
tation. Computer Science Department, Yale University, New Haven, Connecticut.
Research Report 632.

Chris Lattner and Vikram Adve. 2004. LLVM: A Compilation Framework for
Lifelong Program Analysis & Transformation. In Proceedings of the International
Symposium on Code Generation and Optimization (CGO 04) (Palo Alto, California).
IEEE Computer Society, Washington, D.C., USA, 75-86. https://doi.org/10.1109/
CGO.2004.1281665

Chris Arthur Lattner. 2002. LLVM: An infrastructure for multi-stage optimization.
Master’s thesis. University of Illinois at Urbana-Champaign, Urbana-Champaign,
IL, USA.

Brian Andrew Leibig. 2013. An LLVM Back-end for MLton. Master’s thesis.
Rochester Institute of Technology, Rochester, NY, USA. https://www.cs.rit.edu/
~mtf/student-resources/20124_leibig_msproject.pdf

Allen Leung and Lal George. 1999. Static Single Assignment Form for Machine
Code. In Proceedings of the ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI "99) (Atlanta, GA, USA). Association for Com-
puting Machinery, New York, NY, USA, 204-214. https://doi.org/10.1145/301618.
301667

J. Gregory Morrisett and Andrew Tolmach. 1993. Procs and Locks: A Portable Mul-
tiprocessing Platform for Standard ML of New Jersey. In Proceedings of the Fourth
ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming
(PPOPP *93) (San Diego, California, USA). Association for Computing Machinery,
New York, NY, USA, 198-207. https://doi.org/10.1145/155332.155353

Steven S. Muchnick. 1998. Advanced Compiler Design and Implementation. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA.

John Reppy. 2020. ASDL 3.0 Reference Manual. Included in the Standard ML of
New Jersey distribution.

John Reppy. 2021. Notes on using LLVM for code generation in SML/NJ. https:
//smlnj-gforge.cs.uchicago.edu/scm/viewve.php/dev-notes/?root=smlnj
Konstantinos Sagonas, Chris Stavrakakis, and Yiannis Tsiouris. 2012. ErLLVM: An
LLVM Backend for Erlang. In Proceedings of the Eleventh ACM SIGPLAN Workshop
on Erlang (ERLANG °12) (Copenhagen, Denmark). Association for Computing
Machinery, New York, NY, USA, 21-32. https://doi.org/10.1145/2364489.2364494
Zhong Shao and Andrew W. Appel. 1994. Space-efficient Closure Representations.
SIGPLAN Lisp Pointers VII, 3 (July 1994), 150-161. https://doi.org/10.1145/182590.
156783

Zhong Shao and Andrew W. Appel. 2000. Efficient and safe-for-space closure
conversion. ACM Transactions on Programming Languages and Systems 22, 1
(2000), 129-161.

Guy L. Steele Jr. 1977. LAMBDA: The Ultimate GOTO. Technical Report AI Memo
443. Massachusetts Institute of Technology, Cambridge, MA, USA.

David A. Terei. 2009. Low Level Virtual Machine for Glasgow Haskell Compiler. ,
73 pages. https://llvm.org/pubs/2009-10-TereiThesis.pdf Undergraduate Thesis.
David A. Terei and Manuel M.T. Chakravarty. 2010. An LLVM Backend for GHC.
In Proceedings of the 2010 ACM SIGPLAN Symposium on Haskell (HASKELL ’10)
(Baltimore, MD). Association for Computing Machinery, New York, NY, USA,
109-120. https://doi.org/10.1145/1863523.1863538

Katsuhiro Ueno and Atsushi Ohori. 2014. Compiling SML# with LLVM: a Chal-
lenge of Implementing ML on a Common Compiler Infrastructure. In Workshop
on ML. 1-2. https://sites.google.com/site/mlworkshoppe/smlsharp_llvm.pdf
Daniel C. Wang, Andrew W. Appel, Jeff L. Korn, and Christopher S. Serra. 1997.
The Zephyr Abstract Syntax Description Language. In Proceedings of the Con-
ference on Domain-Specific Languages on Conference on Domain-Specific Lan-
guages (DSL ’97) (Santa Barbara, California). USENIX Association, Berkeley, CA,
USA, 15 pages. https://www.usenix.org/legacy/publications/library/proceedings/
ds197/wang html

https://doi.org/10.1145/278283.278285
https://doi.org/10.1145/378795.378854
https://doi.org/10.1145/378795.378854
https://doi.org/10.1145/75277.75303
https://doi.org/10.1007/3-540-18317-5_17
https://doi.org/10.1007/BF01807505
https://doi.org/10.1007/BF01807505
https://doi.org/10.1016/S1571-0661(05)80452-9
https://doi.org/10.1145/325478.325518
https://doi.org/10.1016/S1571-0661(05)82596-4
https://doi.org/10.1016/S1571-0661(05)82596-4
https://doi.org/10.1145/115372.115320
https://doi.org/10.4204/EPTCS.285.5
https://doi.org/10.1145/3385412.3385994
https://doi.org/10.1016/S1571-0661(05)80450-5
https://doi.org/10.1016/S1571-0661(05)80450-5
https://doi.org/10.1145/1248648.1248656
https://smlnj.org/compiler-notes/gc-api.ps
https://smlnj.org/compiler-notes/gc-api.ps
https://doi.org/10.1145/229542.229546
https://doi.org/10.1007/3-540-57877-3_6
https://doi.org/10.1145/267959.269971
https://doi.org/10.1145/202529.202532
https://doi.org/10.1145/202529.202532
https://doi.org/10.1145/12276.13333
https://doi.org/10.1145/12276.13333
https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.1109/CGO.2004.1281665
https://www.cs.rit.edu/~mtf/student-resources/20124_leibig_msproject.pdf
https://www.cs.rit.edu/~mtf/student-resources/20124_leibig_msproject.pdf
https://doi.org/10.1145/301618.301667
https://doi.org/10.1145/301618.301667
https://doi.org/10.1145/155332.155353
https://smlnj-gforge.cs.uchicago.edu/scm/viewvc.php/dev-notes/?root=smlnj
https://smlnj-gforge.cs.uchicago.edu/scm/viewvc.php/dev-notes/?root=smlnj
https://doi.org/10.1145/2364489.2364494
https://doi.org/10.1145/182590.156783
https://doi.org/10.1145/182590.156783
https://llvm.org/pubs/2009-10-TereiThesis.pdf
https://doi.org/10.1145/1863523.1863538
https://sites.google.com/site/mlworkshoppe/smlsharp_llvm.pdf
https://www.usenix.org/legacy/publications/library/proceedings/dsl97/wang.html
https://www.usenix.org/legacy/publications/library/proceedings/dsl97/wang.html

	Abstract
	1 Introduction
	2 Standard ML of New Jersey
	2.1 Runtime Conventions
	2.2 The Backend
	2.3 MLRisc

	3 Challenges to using LLVM
	3.1 Comparing MLRisc and LLVM
	3.2 Limitations of the LLVM Model
	3.3 Integrating LLVM into the Compiler

	4 Design of the New Backend
	4.1 Runtime conventions
	4.2 Integrating LLVM into SML/NJ
	4.3 The New Backend Pipeline

	5 The CFG Representation
	5.1 Clusters
	5.2 Expressions and Statements
	5.3 Metadata
	5.4 C++ Representation

	6 Implementation Details
	6.1 Modifying LLVM
	6.2 LLVM Code Generation
	6.3 Nodes
	6.4 Stack References
	6.5 Position-independent Code
	6.6 Invoking GC
	6.7 Trapping arithmetic
	6.8 Just-in-Time Compilation

	7 Status and Evaluation
	7.1 Compile time
	7.2 Execution Time
	7.3 Compiler Size

	8 Related Work
	9 Conclusion and Future Work
	References

